Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.


  1. Búsqueda avanzada de patentes
Número de publicaciónUSH509 H
Tipo de publicaciónConcesión
Número de solicitudUS 07/136,325
Fecha de publicación2 Ago 1988
Fecha de presentación22 Dic 1987
Fecha de prioridad22 Dic 1987
Número de publicación07136325, 136325, US H509 H, US H509H, US-H-H509, USH509 H, USH509H
InventoresHung-Ya Chao
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Preparation of adhesives
US H509 H
Adhesives comprising microparticles of acrylate copolymers are formed from higher homologs of acrylates and methacrylates. By varying the type and amount of monomers used in the starting solution the tack level may be varied. Very high tack levels are achieved with compositions made from isodecyl acrylate and 2-ethylhexyl acrylate where acrylic acid, isobornyl acrylate and vinyl pyrrolidone are included in the starting mixture and where polyvinyl alcohol is used to avoid agglomeration.
Previous page
Next page
What is claimed is:
1. An adhesive composition which comprises a copolymer of (a) isodecyl acrylate or 2-ethylhexyl acrylate, and (b) acrylic acid, or vinyl pyrrolidone, the ratio of (a) to (b) by weight being from 99:1 to 85:15.
2. An adhesive composition as in claim 1 wherein said composition consisting essentially of a copolymer of 99 parts weight isodecyl acrylate and 1 part by weight acrylic acid.
3. An adhesive composition as in claim 1 wherein said composition is a copolymer of 99 parts by weight 2-ethylhexyl acrylate and 1 part by weight acrylic acid.
4. An adhesive composition as in claim 1 wherein said composition is a copolymer of 85 parts by weight isodecyl acrylate and 15 parts by weight vinyl pyrrolidone.

This invention relates to the preparation of microspheres from acrylates and methacrylates, which microspheres have improved adhesive properties.

U.S. Pat. No. 3,720,534, which is hereby fully incorporated by reference, teaches a method of acrylate gel formation by a suspension polymerization. The polymeric microparticles have occluded in situ about 35-80% by weight of a non-volatile, non-drying oil.

Although acrylate polymers are well-known for their intrinsic adhesive properties, the microparticles prepared according to U.S. Pat. No. 3,720,534 do not have good adhesive properties, because the polymers have too high a glass transition temperature and also the microparticles contain too much oil inside the particles.

It is known prior art that a tacky adhesive may be produced by polymerizing an acrylate or methacrylate. Such polymers can be deposited on bond paper and used as pressure sensitive adhesive. While the use of acrylates and methacrylates in general to form adhesives are known, it would nevertheless be advantageous to vary the level of tack. If such variations in tack level could be achieved it would be possible to produce an adhesive having an appropriate tack level required in a specific application.


The present invention, therefore, provides modified formulations so that microparticles prepared following the general procedures taught in U.S. Pat. No. 3,720,534 will have improved degrees of adhesive properties. Thus, when these microparticles are coated onto a substrate support, such as plastic film, foam, paper, etc., the coated sheets would provide from low to moderate, to high levels of adhesive strength.

More specifically, it has now been found that variations in tack level can be achieved by using the general procedures of microsphere preparation taught in U.S. Pat. No. 3,720,534 and using a group of monomeric components similar to that previously known in the above referenced prior art formulation, except that in the present invention (1) lower oil contents are used and (2) additional modifying monomers are used.

It has been found that by making these changes a series of tack levels can be achieved allowing one to select the necessary starting components and modifiers to achieve a desired tack level.

Not only has it been possible to vary resulting tack level by making these changes, but surprisingly it has been found that certain particular combinations of acrylates and modifying monomers result in much higher than expected tack levels. Thus, when isodecyl acrylate or 2-ethylhexyl acrylate are mixed in a weight ratio of about from 99:1 to 85:15 acrylate to a modifying monomer such as acrylic acid, vinyl pyrrolidone or isobornyl acrylate unexpectedly high tack levels are achieved.


It has now been found that acrylates and methacrylates with approximately 4-14 carbons can be used to achieve a desired range of adhesive qualities when their corresponding homopolymers are prepared in the manner of the present invention. These acrylates and methacrylates have glass transition temperatures in the range of from about -15° C. to -80° C., therefore providing desirable service temperatures in the range of from about -10° C. to 40° C.

The acrylates and methacrylates which exemplify such desirable starting materials are for example hexyl acrylate, octyl acrylate, decyl acrylate, isodecyl acrylate, dodecyl acrylate, heptyl acrylate, 1- or 2-methylbutyl acrylate, 2-methylpentyl acrylate, 6-methylnonyl acrylate, 2-ethylhexyl acrylate, and 4-methyl-2-pentyl acrylate.

It has also been found that the addition of minor amounts of a modifying monomer such as acrylic acid, beta-carboxyl-ethyl acrylate, methacrylic acid, maleic anhydride, isobornyl acrylate, itaconic acid, and vinyl pyrrolidone can be used to increase the aggressiveness of the adhesive. For the purposes of the present invention, from about 1% to approximately 20% by weight, preferrably about 1% to 10% of such a modifying monomer is advantageously used.

For less aggressive adhesive applications, and in order to extend range of tack levels on the lower end, it has been found that acrylate or methacrylate monomers such as tetraethyleneglycol diacrylate, tetraethyleneglycol dimethacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, pentaerythritol triacrylate, pentaerythritol tetracrylate, trimethylolpropane triacrylate, diethyleneglycol diacrylate, diethyleneglycol dimethacrylate, 1,4-butanediol dimethacrylate, and 1,3 butyleneglycol diacrylate, may be used.

As the oil component of the invention polybutene oil with a molecular weight in the range of 400 to 2,300 is particularly useful although many other oils such as dibutyl phthalate, butylbenzyl phthalate, alkylated biphenyls, alkylated naphthalenes, paraffin and isoparaffin oils, can also be used. The oil component will generally be used at a level of from 0 to 50% by weight of the acrylate or methacrylate monomer used.

Polyvinyl alcohol (PVA) is used as a suspension agent during polymerization in order to keep each microparticle away from the other without agglomeration. PVA also serves as a binder so after completing the polymerization, the microparticle slurry is ready for coating onto paper. PVA with about 75-90% hydrolysis with a molecular weight in the range 2,000-250,000 been found to be useful in the invention. PVA used in higher concentrations results in adhesives having lower tack, while if used at lower concentrations the adhesives will have higher tack, but if it were used at too low concentrations, instability of the adhesive slurry resulted and agglomeration of the microparticles occurred. Generally from 1 to 3% by weight based on the acrylate or methacrylate monomer will be used.

The general procedures for making microparticles will now be described.

50-100 parts of an acrylate monomer or monomer mixture and 0-50 parts of an oil are stirred at room temperature for complete dissolution. 0.1-1.5 parts of a free radical initiator such as dicumyl peroxide, di-ter-butyl peroxide, benzoyl peroxide, or azodiisobutyronitrile is added into the solution. The solution is then mixed with about 100-300 parts of deoxygenerated 1.5% aqueous PVA solution. The content is allowed to react at 65°-90° C. under nitrogen, and stirred at a speed of from 500-700 rpm for about 4-24 hours to complete the polymerization.

After polymerization, polyacrylate microparticles of between 5-200 microns size are obtained. The slurry can then be coated and dried on a substrate such as paper at a coating weight of 3-8 g/m2. The sheet can then be tested for adhesive strength using "Grams of Tack" from a Polyken Probe Tack Tester.

Using this general procedure the following experiments were run in an effort to determine the effect of varying the starting monomer, amount of oil and the amount of added modifying monomer on the tack level achieved in the final product.


114 parts of isodecylacrylate and 30 parts of Amoco polybutene oil H-1900 were stirred at room temperature until the latter was completely dissolved in the former. 6 parts of vinyl pyrrolidone was added into the solution, followed by dissolving 0.405 parts of benzoyl peroxide into it. Into a 1000 ml 4-necked flask was placed 150 parts of 1.5% aqueous Vinol 523 (a partially hydrolyzed polyvinyl alcohol from Air Products and Chemicals) solution followed by the addition of the above acrylate solution. The 4-necked flask was eqipped with a thermometer, a mechanical stirrer, a reflux condenser, and a nitrogen inlet tube. Through the reflux condenser, vacuum was applied for about 10 minutes to purge the oxygen out of the flask. Nitrogen was flushed into the solution. A nitrogen blanket was maintained during the entire polymerization reaction. After setting the mechanical stirrer at a speed of about 600 rpm, the container was heated in a heating jacket to 65°-85° C. The reaction was run for 16 hours. Microparticles ranging from 20-140 microns were obtained.

The slurry was deposited on a 20# bond paper using a wire wound coating rod to deposit a dry coating weight of about 4-7 g/m2. The resultant sheet has the capacity to adhere to other surfaces the manner of a pressure sensitive adhesive label. The tack is 214 grams measured by a Polyken Probe Tack Tester.


The procedures set up in Example 1 were repeated except that the following acrylate/oil mixtures were used. Also, PVA with different molecular weights were used.

______________________________________                           Particle(Parts)        (Parts) Emul-    Size   TackAcrylate/Monomer          Oil     sifier   (μ) Level______________________________________Ex. 2 I  (120)       #1 (30) V523   20-140 97Ex. 3 I  (114)/#1 (6)              #1 (30) RX 2435                             20-100 210Ex. 4 I  (135)       #3 (15) RX 2435                             20-80  87Ex. 5 II  (114)/#1 (6)              #1 (30) RX 2435                             20-100 224Ex. 6 II  (119.64)/           V523   15-200 46  #5 (0.36)Ex. 7 I  (142.5)/#4 (7.5)    V523   20-100 158Ex. 8 I  (135)       #1 (15) RX 2435                              5-140 96Ex. 9 I  (120)       #2 (30) V205   10-180 107Ex. 10 II  (119.64)/   #1 (30) RX 2435                             20-180 51  #6 (0.36)Ex. 11 I  (142.5)/#3 (7.5)    V523   15-190 242Ex. 12 I  (120)       #4 (30) V523   20-100 89Ex. 13 I  (120)       #5 (30) G20-90 10-150 82Ex. 14 II  (114)/#2 (6)              #1 (30) RX 2435                             20-100 102Ex. 15 I  (114.24)/   #1 (30) V523   10-80  49  #3 (5.4)/  #6 (0.36)Ex. 16 I  (150)               V523   80-160 88Ex. 17 I  (130)/#7 (20)       V523   20-140 211Ex. 18 I  (140)/#7 (10)       V523   20-150 198______________________________________ Note: In Example 2-18 the notations mean the following: Acrylate: I = isodecyl acrylate II = 2ethylhexyl acrylate Modifying Monomer: #1 = acrylic acid #2 = maleic anhydride #3 = vinyl pyrrolidone #4 = betacarboxyl-ethyl acrylate #5 = trimethylol propane triacrylate #6 = 1,6hexanediol diacrylate #7 = isobornyl acrylate Oil #1 = H100 polybutene oil from Amoco Chemicals Oil #2 = L100 polybutene oil from Amoco Chemicals Oil #3 = dibutyl phthalate Oil #4 = Isopar M isoparaffin oil from Exxon Chemicals Oil #5 = Isopar G isoparaffin oil from Exxon Chemicals PVA is polyvinyl alcohol; V205 and V523 are Vinol 205 and 523 from Air Products and Chemicals; RX 2435 and G2090 are from Monsanto.

As can be seen from the Examples a wide range of tack levels can be achieved. Both lower and higher tack levels can be achieved by varying the make-up of the monomeric starting materials.

Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US4968562 *27 Feb 19906 Nov 1990Minnesota Mining And Manufacturing CompanyHollow acid-free acrylate polymeric microspheres having multiple small voids
US5279896 *9 Nov 199218 Ene 1994Nitto Denko CorporationHeat-resistant vibration-damping pressure-sensitive adhesive composition, process for producing the same and vibration-damping adhesive tape or sheet using the composition
US5393800 *21 Feb 199228 Feb 1995Dymax CorporationTwo-component coating formulation
US5458983 *29 Jul 199417 Oct 1995Moore Business Forms, Inc.Repositionable acrylate adhesive
US5712321 *1 Feb 199627 Ene 1998Dymax CorporationDual-curing coating formulation and method
US5753362 *11 Ago 199519 May 1998Soken Chemical & Engineering Co., Ltd.Acrylic sheet, acrylic adhesive sheet and processes for preparing the sheets
US5817426 *4 Dic 19966 Oct 1998Avery Dennison CorporationAcrylic pressure-sensitive adhesives for low-energy surfaces and corrugated board
US6129965 *21 Jun 199310 Oct 2000Moore Business Forms, Inc.Cut sheet linerless labels
US62930374 Dic 199725 Sep 2001Avery Dennison CorporationPressure-sensitive adhesives and self-adhesive postage stamps made therewith
US6413629 *29 Feb 20002 Jul 2002Kimoto Co., Ltd.Easy adhesion film for transparent conductive thin film
US649525314 Sep 200017 Dic 2002Kimoto Co., Ltd.Support film for a transparent conductive thin film
US896201225 Ene 201324 Feb 2015Nipro Patch Co., Ltd.Nonaqueous pressure-sensitive adhesive for medicinal tape preparation for percutaneous absorption, medicinal tape preparation for percutaneous absorption, and process for producing the same
US9633581 *20 Dic 201325 Abr 2017Avery Dennison CorporationRecycling processes and labels and adhesives and use therein
US20060057366 *11 Nov 200316 Mar 2006Marc HusemannPoly(meth) acrylate-based pressure-sensitive adhesive
US20060193900 *27 Feb 200631 Ago 2006Hisamitsu Pharmaceutical Co., Inc.Pressure sensitive adhesive and patch
US20090274748 *14 Jul 20095 Nov 2009Nipro Patch Co., LtdNonaqueous pressure-sensitive adhesive for medicinal tape preparation for percutaneous absorption, medicinal tape preparation for percutaneous absorption, and process for producing the same
US20140175198 *20 Dic 201326 Jun 2014Avery Dennison CorporationRecycling Processes and Labels and Adhesives and Use Therein
EP0352442A2 *1 Jun 198931 Ene 1990Lohmann GmbH & Co. KGWatersoluble adhesive based on polyvinylcarboxylic acids, its preparation and use
EP0352442A3 *1 Jun 198918 Sep 1991Lohmann GmbH & Co. KGWatersoluble adhesive based on polyvinylcarboxylic acids, its preparation and use
Clasificación de EE.UU.526/264, 526/318.4, 526/318.43, 526/931
Clasificación internacionalC09J133/08, C08F220/18
Clasificación cooperativaC08F220/18, C09J2201/606, C09J133/08
Clasificación europeaC09J133/08, C08F220/18