USH738H - Switched holograms for reconfigurable optical interconnect - Google Patents

Switched holograms for reconfigurable optical interconnect Download PDF

Info

Publication number
USH738H
USH738H US07/381,543 US38154389A USH738H US H738 H USH738 H US H738H US 38154389 A US38154389 A US 38154389A US H738 H USH738 H US H738H
Authority
US
United States
Prior art keywords
switches
optical
beams
holograms
switch array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US07/381,543
Inventor
J. Barry McManus
Roger S. Putnam
H. John Caulfield
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Priority to US07/381,543 priority Critical patent/USH738H/en
Assigned to UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE ARMY reassignment UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE ARMY ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO LICENSE RECITED Assignors: CAULFIELD, H. JOHN, MC MANUS, J. BARRY, PUTNAM, ROGER S.
Application granted granted Critical
Publication of USH738H publication Critical patent/USH738H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light

Definitions

  • a Holoswitch in accordance with this invention, includes an array of optical switches that are arranged in a pattern of three rows of four switches each. Each switch is a combination of a twisted-nematic liquid crystal cell and a polarizing beamsplitter.
  • a holographic plate is arranged above output faces of nine of the optical switches with nine sub-holograms for receiving optical signals from the output faces.
  • Within each sub-hologram there is a number of holographic spots with one spot for each channel with each holographic spot being designed to deflect its beam or signal toward an output detector means or array.
  • FIGURE of the drawing is a pictorial representation of the Holoswitch in accordance with this invention.
  • a Holoswitch 10 includes a switch array 12 of twelve optical switches that are arranged in a pattern of three rows of four switches each. End switches 14 are mounted to deflect input beams 90 degrees to the other nine switches 16. Each switch 14 or 16 is a combination of a twisted-nematic liquid crystal cell 18 and a polarizing beamsplitter 20. A single hologram plate 22 rests above output faces 30 of each of the nine switches 16 of the switch array, with nine sub-holograms 24 of interconnection patterns. Within each sub-hologram 24, there is a number of holographics spots 26 with one spot for each channel. Each spot 26 individually deflects its beam toward an array of detector means or collection opticals 28 with any desired, prerecorded permutation. Input to the optical switches includes four optical input channels 1, 2, 3 and 4 that are in the form of an array of parallel laser beams. Additional input optical channels can be utilized if desired.
  • optical inputs 1, 2, 3, and 4 are presented to the input as illustrated and with optical switches 18 being set to direct input signals 1, 2, 3, and 4 to the desired selected sub-hologram 24, by having the appropriate potential applied to the appropriate optical switches 18 to cause the input to be directed to the desired sub-hologram 24, these optical inputs are then directed by the holographic spots 26 on sub-hologram 24 to detector means or array 28.
  • inputs 1,2, 3, and 4 can be caused to exit any one of the desired output faces 30 of polarizing beamsplitters 20 to its corresponding sub-hologram 24.
  • Applicants' device utilizes an array of optical switches that directs a set of optical beams toward any one of a selection of sub-holograms 24.
  • Applicants' device provides nine different interconnection patterns on a single four by five inch holographic plate.
  • Permutation holograms with 4, 16, 64 channels per pattern have been recorded.
  • Input beams 1, 2, 3, and 4 enter switch arrays 18 and are directed together toward one of nine output areas 30 as determined by the switch settings of optical switches 18.
  • the particular optical switch arrays 18 for the prototype of this invention consisted of 12 optical switches arranged in a pattern of 3 rows, of 4 switches each. Each switch was a combination of a twisted-nematic liquid crystal cell 18 and a polarizing beamsplitter.
  • a single holographic plate 22 above the output faces 30 of the switch array with 9 subholograms 24 of interconnection patterns was utilized.
  • Holoswitch device There are simple modifications of the Holoswitch device that can make it more useful. These include, making the device in a more compact, monolithic form, and using pixelated liquid crystal cells to allow many more connection patterns. If one makes the switch array as a monolithic, glued arrangement of prisms and liquid crystal cells, the Holoswitch linear size can be reduced half that of the prototype produced by applicants. Such a structure has been produced but without the hologram or support structures. This switch array, with the same number of prisms and cells as the original prototype, functions nearly as well as the original prototype. The holoswitch provides many more interconnection patterns if pixelated liquid crystal cells are used so that the beams can be directed independently to the sets of holograms.
  • liquid crystal cells are similar to twisted nematic television screens where there is one pixel per optical channel or beam.
  • N beam and M holograms with N spots each
  • M N possible permutations With the capability to individually control the path of each beam, one has M N possible permutations.
  • the number of patterns can be increased further if one allows for fan-out of the input beams, either by using multiple-exposure holographic spots, or by using the gray-scale of the individual pixels.
  • one beam can be split and sent toward several holograms simultaneously.
  • the increased capacity can be exploited by constructing the desired interconnection patterns by combining simpler generic patterns that are recorded in the sub-holograms.
  • Other uses and modifications of the device will be obvious to those skilled in this art.

Abstract

A device that provides reconfigurable optical interconnections of multipleata channels that have applications in highly parallel computers. The device utilizes an array of optical switches which direct a set of optical beams toward any one of a selection of holograms and each hologram when selected deflects the input beams toward a detector.

Description

DEDICATORY CLAUSE
The invention described herein was made in the course of or under a contract or subcontract thereunder with the Government and may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to us of any royalties thereon.
BACKGROUND OF THE INVENTION
In the optical computer field, there is a need for a switching device that has application in highly parallel optical computers.
Accordingly, it is an object of this invention to provide a switching device for switching optical inputs to the desired detector means.
Other objects and advantages of this invention will be obvious to those skilled in this art.
SUMMARY OF THE INVENTION
In accordance with this invention, a Holoswitch is provided that includes an array of optical switches that are arranged in a pattern of three rows of four switches each. Each switch is a combination of a twisted-nematic liquid crystal cell and a polarizing beamsplitter. A holographic plate is arranged above output faces of nine of the optical switches with nine sub-holograms for receiving optical signals from the output faces. Within each sub-hologram, there is a number of holographic spots with one spot for each channel with each holographic spot being designed to deflect its beam or signal toward an output detector means or array. By switching the twisted-nematic liquid crystal cells as desired, multiple inputs to the switch array can be directed as desired to the detector means.
DESCRIPTION OF THE DRAWINGS
The single FIGURE of the drawing is a pictorial representation of the Holoswitch in accordance with this invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to the drawing, a Holoswitch 10 includes a switch array 12 of twelve optical switches that are arranged in a pattern of three rows of four switches each. End switches 14 are mounted to deflect input beams 90 degrees to the other nine switches 16. Each switch 14 or 16 is a combination of a twisted-nematic liquid crystal cell 18 and a polarizing beamsplitter 20. A single hologram plate 22 rests above output faces 30 of each of the nine switches 16 of the switch array, with nine sub-holograms 24 of interconnection patterns. Within each sub-hologram 24, there is a number of holographics spots 26 with one spot for each channel. Each spot 26 individually deflects its beam toward an array of detector means or collection opticals 28 with any desired, prerecorded permutation. Input to the optical switches includes four optical input channels 1, 2, 3 and 4 that are in the form of an array of parallel laser beams. Additional input optical channels can be utilized if desired.
In operation, when optical inputs 1, 2, 3, and 4 are presented to the input as illustrated and with optical switches 18 being set to direct input signals 1, 2, 3, and 4 to the desired selected sub-hologram 24, by having the appropriate potential applied to the appropriate optical switches 18 to cause the input to be directed to the desired sub-hologram 24, these optical inputs are then directed by the holographic spots 26 on sub-hologram 24 to detector means or array 28. By applying the appropriate signals to optical switches 18, inputs 1,2, 3, and 4 can be caused to exit any one of the desired output faces 30 of polarizing beamsplitters 20 to its corresponding sub-hologram 24.
It will be appreciated that applicants have provided reconfigurable optical interconnections of multiple data channels that have applications in highly parallel computers. Applicants' device utilizes an array of optical switches that directs a set of optical beams toward any one of a selection of sub-holograms 24. Each sub-hologram 24, when selected, deflects the input beams toward an array of detector means or collection optics with any desired prerecorded premutation. Out of the enormous number of permutations that are possible with many (approximately 1000) input channels, only a tiny subset represents useful interconnection patterns in a computer. Thus, a modest number of holograms is sufficient for many parallel computing algorithms. Applicants' device provides nine different interconnection patterns on a single four by five inch holographic plate. Permutation holograms with 4, 16, 64 channels per pattern have been recorded. Input beams 1, 2, 3, and 4 enter switch arrays 18 and are directed together toward one of nine output areas 30 as determined by the switch settings of optical switches 18. The particular optical switch arrays 18 for the prototype of this invention consisted of 12 optical switches arranged in a pattern of 3 rows, of 4 switches each. Each switch was a combination of a twisted-nematic liquid crystal cell 18 and a polarizing beamsplitter. A single holographic plate 22 above the output faces 30 of the switch array with 9 subholograms 24 of interconnection patterns was utilized. Within each sub-hologram 24, there are a number of holographic spots 26, with one spot for each channel, that individually deflect its beam toward output array 28. The use of spatially multiplexed holograms for optical interconnect has been demonstrated previously and a variety of other holographic optical interconnection methods have previous been described. The new characteristic of applicants' Holoswitch device is the use of a switch array to address different holograms to change the interconnection pattern.
There are simple modifications of the Holoswitch device that can make it more useful. These include, making the device in a more compact, monolithic form, and using pixelated liquid crystal cells to allow many more connection patterns. If one makes the switch array as a monolithic, glued arrangement of prisms and liquid crystal cells, the Holoswitch linear size can be reduced half that of the prototype produced by applicants. Such a structure has been produced but without the hologram or support structures. This switch array, with the same number of prisms and cells as the original prototype, functions nearly as well as the original prototype. The holoswitch provides many more interconnection patterns if pixelated liquid crystal cells are used so that the beams can be directed independently to the sets of holograms. These liquid crystal cells are similar to twisted nematic television screens where there is one pixel per optical channel or beam. With N beam and M holograms (with N spots each), there are only M possible interconnection patterns available with the prototype Holoswitch design. With the capability to individually control the path of each beam, one has MN possible permutations. The number of patterns can be increased further if one allows for fan-out of the input beams, either by using multiple-exposure holographic spots, or by using the gray-scale of the individual pixels. With the pixels only partially switched, one beam can be split and sent toward several holograms simultaneously. The increased capacity can be exploited by constructing the desired interconnection patterns by combining simpler generic patterns that are recorded in the sub-holograms. Other uses and modifications of the device will be obvious to those skilled in this art.

Claims (3)

We claim:
1. A Holoswitch comprising a switch array of a multiplicity of optical switches, said optical switches each including a liquid crystal cell and a polarizing beamsplitter, said switch array of said multiplicity of switches having said multiplicity of switches arranged for receiving a plurality of parallel optical beams and for directing the beams as a set toward a selected row of several rows formed by switches of said switch array, each switch of said several rows of said switch array having an output face through which said optical parallel beams can be projected to holographic spots of a hologram plate located adjacent said output face, and said optical face further projecting said beams from the holographic spots to detector means.
2. A Holoswitch as set forth in claim 1, wherein said switch array has 3 input switches aligned in series and 9 output switches that are arranged in 3 rows of 3 switches each with the input, switches having an output face that is 90 degrees with respect to inputs of said input switches.
3. A Holoswitch as set forth in claim 1, wherein said plurality of parallel optical beams is four parallel optical beams.
US07/381,543 1989-07-17 1989-07-17 Switched holograms for reconfigurable optical interconnect Abandoned USH738H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/381,543 USH738H (en) 1989-07-17 1989-07-17 Switched holograms for reconfigurable optical interconnect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/381,543 USH738H (en) 1989-07-17 1989-07-17 Switched holograms for reconfigurable optical interconnect

Publications (1)

Publication Number Publication Date
USH738H true USH738H (en) 1990-02-06

Family

ID=23505430

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/381,543 Abandoned USH738H (en) 1989-07-17 1989-07-17 Switched holograms for reconfigurable optical interconnect

Country Status (1)

Country Link
US (1) USH738H (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159473A (en) * 1991-02-27 1992-10-27 University Of North Carolina Apparatus and method for programmable optical interconnections
US5528402A (en) * 1994-02-07 1996-06-18 Parker; William P. Addressable electrohologram employing electro-optic layer and patterned conductor between two electrodes
US5539543A (en) * 1994-01-27 1996-07-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Reconfigurable optical interconnections via dynamic computer-generated holograms
WO1996032666A1 (en) * 1995-04-12 1996-10-17 Northrop Grumman Corporation Method for mitigating cross-talk in high-efficiency holograms
WO1997044697A1 (en) * 1996-05-21 1997-11-27 Northrop Grumman Corporation Reference beam auto-focus apparatus for modularized volume-holographic memory
US6094283A (en) * 1998-10-16 2000-07-25 Digilens, Inc. Holographic display with switchable aspect ratio
US6339486B1 (en) 1998-10-16 2002-01-15 Digilens, Inc. Holographic technique for illumination of image displays using ambient illumination
US20020024702A1 (en) * 2000-08-25 2002-02-28 Robert Mays Filtering technique for free space interconnects
US6407724B2 (en) 1996-03-15 2002-06-18 Digilens, Inc. Method of and apparatus for viewing an image
US6421109B1 (en) 1998-10-16 2002-07-16 Digilens, Inc. Method and system for display resolution multiplication
US6424437B1 (en) 2000-10-10 2002-07-23 Digilens, Inc. Projection display employing switchable holographic optical elements
US6473209B1 (en) 1999-08-04 2002-10-29 Digilens, Inc. Apparatus for producing a three-dimensional image
US6504629B1 (en) 1999-03-23 2003-01-07 Digilens, Inc. Method and apparatus for illuminating a display
US6507419B1 (en) 1999-03-23 2003-01-14 Digilens, Inc. Illumination system using optical feedback
US6661495B1 (en) 1998-07-29 2003-12-09 Digilens, Inc. Pancake window display system employing one or more switchable holographic optical elements
US6678078B1 (en) 1999-01-07 2004-01-13 Digilens, Inc. Optical filter employing holographic optical elements and image generating system incorporating the optical filter
US7082267B1 (en) 2000-08-25 2006-07-25 R& Dm Foundation Shared multi-channel parallel optical interface
US9036994B2 (en) 2012-10-11 2015-05-19 Nano-Optic Devices, Llc Method of optical interconnection of data-processing cores on a chip
US9143235B2 (en) 2012-10-14 2015-09-22 Nano-Optic Devices Llc Multicore chip with holographic optical interconnects

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159473A (en) * 1991-02-27 1992-10-27 University Of North Carolina Apparatus and method for programmable optical interconnections
US5539543A (en) * 1994-01-27 1996-07-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Reconfigurable optical interconnections via dynamic computer-generated holograms
US5528402A (en) * 1994-02-07 1996-06-18 Parker; William P. Addressable electrohologram employing electro-optic layer and patterned conductor between two electrodes
WO1996032666A1 (en) * 1995-04-12 1996-10-17 Northrop Grumman Corporation Method for mitigating cross-talk in high-efficiency holograms
US6407724B2 (en) 1996-03-15 2002-06-18 Digilens, Inc. Method of and apparatus for viewing an image
WO1997044697A1 (en) * 1996-05-21 1997-11-27 Northrop Grumman Corporation Reference beam auto-focus apparatus for modularized volume-holographic memory
US6661495B1 (en) 1998-07-29 2003-12-09 Digilens, Inc. Pancake window display system employing one or more switchable holographic optical elements
US6094283A (en) * 1998-10-16 2000-07-25 Digilens, Inc. Holographic display with switchable aspect ratio
US6377369B1 (en) 1998-10-16 2002-04-23 Digi Lens, Inc. Holgraphic display with switchable aspect ratio
US6421109B1 (en) 1998-10-16 2002-07-16 Digilens, Inc. Method and system for display resolution multiplication
US6339486B1 (en) 1998-10-16 2002-01-15 Digilens, Inc. Holographic technique for illumination of image displays using ambient illumination
US6678078B1 (en) 1999-01-07 2004-01-13 Digilens, Inc. Optical filter employing holographic optical elements and image generating system incorporating the optical filter
US6504629B1 (en) 1999-03-23 2003-01-07 Digilens, Inc. Method and apparatus for illuminating a display
US6507419B1 (en) 1999-03-23 2003-01-14 Digilens, Inc. Illumination system using optical feedback
US6473209B1 (en) 1999-08-04 2002-10-29 Digilens, Inc. Apparatus for producing a three-dimensional image
US20020024702A1 (en) * 2000-08-25 2002-02-28 Robert Mays Filtering technique for free space interconnects
US7082267B1 (en) 2000-08-25 2006-07-25 R& Dm Foundation Shared multi-channel parallel optical interface
US6424437B1 (en) 2000-10-10 2002-07-23 Digilens, Inc. Projection display employing switchable holographic optical elements
US9036994B2 (en) 2012-10-11 2015-05-19 Nano-Optic Devices, Llc Method of optical interconnection of data-processing cores on a chip
US9143235B2 (en) 2012-10-14 2015-09-22 Nano-Optic Devices Llc Multicore chip with holographic optical interconnects

Similar Documents

Publication Publication Date Title
USH738H (en) Switched holograms for reconfigurable optical interconnect
AU735008B2 (en) A system for the production of a dynamic image for display
US4988153A (en) Holographic memory read by a laser array
US5013140A (en) Optical space switch
US5256869A (en) Free-space optical interconnection using deformable mirror device
US5495356A (en) Multidimensional switching networks
US5784309A (en) Optical vector multiplier for neural networks
CA1292551C (en) Optical switch
US4824192A (en) Optical processing
US3653067A (en) High-speed printing apparatus
EP0190383A1 (en) Recursive optical filter system
US5436867A (en) Holographic random access memory
EP0229177B1 (en) Optical shuffle arrangement
US4779235A (en) Parallel operation optical processor unit
US3614191A (en) Associative memory employing holography
US5539543A (en) Reconfigurable optical interconnections via dynamic computer-generated holograms
US3572881A (en) Large-capacity associative memory employing holography
US5111314A (en) Optical correlator interconnect for optical computer
Mok et al. Spatially and angle-multiplexed holographic random access memory
US4891790A (en) Optical system with an optically addressable plane of optically bistable material elements
US5339201A (en) Optical computing element
US5317453A (en) Optical computer element
SU1531166A1 (en) Multichannel parallel optical converter for optronic memory
US3627405A (en) Acousto-optic light deflection
EP0282227A1 (en) Signal switching processor

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED STATES OF AMERICA, THE, AS REPRESENTED BY T

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO LICENSE RECITED;ASSIGNORS:MC MANUS, J. BARRY;PUTNAM, ROGER S.;CAULFIELD, H. JOHN;REEL/FRAME:005172/0359;SIGNING DATES FROM 19890612 TO 19890629

STCF Information on status: patent grant

Free format text: PATENTED CASE