USRE27026E - Preparation of porous structures - Google Patents

Preparation of porous structures Download PDF

Info

Publication number
USRE27026E
USRE27026E US27026DE USRE27026E US RE27026 E USRE27026 E US RE27026E US 27026D E US27026D E US 27026DE US RE27026 E USRE27026 E US RE27026E
Authority
US
United States
Prior art keywords
solvent
porous
vinyl
acid
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Application granted granted Critical
Publication of USRE27026E publication Critical patent/USRE27026E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers

Definitions

  • ABSTRACT OF THE DISCLOSURE Method of preparing a porous polymer which comprises polymerizing either an alkenyl aromatic monomer, an acrylate monomer, a vinyl ester monomer, or mixtures thereof and a polymerizable cross-linking agent in a binary solvent having a certain range of solubility parameter.
  • This invention relates to the preparation of porous structures. It more particularly relates to a method of preparing microporous synthetic resinous materials.
  • a wide variety of cellular and permeable polymeric materials are known which are formed oftentimes by polymerization into a generally porous structure or frequently are prepared by incorporating within a resinous material either after or during its formation an agent which will generate a gas and cause a plurality of interconnecting pores or passages within the polymeric body.
  • Other methods are known which include polymerizing a resinous material in the presence of a particulate solid which may at a later time if desired be dissolved, leaving a resinous structure with interconnecting pores.
  • Such particulate material may be incorporated into thermoplastic bodies by milling and similar mixing procedures and the porous body subsequently generated by dissolving away the solid material.
  • the porous bodies can be generated by polymerizing in the presence of such liquids.
  • the foregoing methods do not provide a means of controlling the pore size of the porous particles, particularly within a high range of pore sizes below about it] microns.
  • Such resinous materials having extremely small pore size that is, having pores ranging in size from about 20 Angstroms to about 1 micron in diameter are particularly beneficial and advantageous for use in the separation of solutions into their various components by selective absorption.
  • the figure depicts an enlarged view of a portion of a polymer body prepared in accordance with the invention wherein the reference character A refers to the portions of the polymer body and B designates the voids or spaces therebetween.
  • alkenyl aromatic is meant an alkenyl aromatic compound having the general formula:
  • Ar represents an aromatic hydrocarbon radical, or an aromatic halohydrocarbon radical of the benzene series, and R is hydrogen or the methyl radical.
  • alkenyl aromatic monomers are styrene, a-methylstyrene, ortho-methylstyrene, meta-methylstyrene, paramethylstyrene, ar-ethylstyrene, ar-vinylxylene, ar-chlorostyrene, or ar-bromostyrene and the like.
  • acrylate monomers alone or in combination with the alkenyl aromatic monomers may also be utilized.
  • acrylate-type monomers include monomers of the formula:
  • R is selected from the group consisting of hydrogen and an alkyl radical containing from about 1 to 12 carbon atoms and R is selected from the group consisting of hydrogen and methyl.
  • Typical acrylate materials which may be used are methyl methacrylate, ethyl acrylate, propyl acrylate, butyl acrylate, butyl methacrylate, propyl methacrylate, lauryl acrylate, Z-ethylhexylacrylate, ethyl methacrylate and the like.
  • Copolymers of vinyl chloride and vinylidene chloride, acrylonitrile with vinyl chloride, vinyl bromide, and similar halogenated vinyl compounds may be prepared by the process of the invention.
  • Esters such as vinyl esters having the formula:
  • R is an alkyl radical containing from 2 to 18 carbon atoms
  • R may also frequently be employed with benefit.
  • Typical monomers falling within this classification are vinyl acetate, vinyl butyrate, vinyl stearate, vinyl laurate, vinyl myristate, vinyl propionate, and the like.
  • Typical copolymerizable acids are acrylic acid, methacrylic acid, itaconic acid, citraconic acid, maleic acid, fumaric acid, oleic acid, vinylbenzoic acid, and the like.
  • polyester resins which are prepared by reacting terephthalic acid and dialkyl terephthalics or ester-forming derivatives thereof, with a glycol of the series HO(CH ),,OH, where n is a whole number within the range of 2-10 and having reactive olefinic linkages within the polymer molecule, are readily utilized in the practice of the invention.
  • Such polyesters also may include copolymerized therein up to 20 percent by weight of a second acid or ester thereof having reactive olefinic unsaturation such as fumaric acid, maleic acid, itaconic acid, tetrahydrophthalic acid, and the like.
  • Polyesters, containing olefinic unsaturation are readily reacted with monomeric olefinic materials such as the alkenyl aromatic monomers of the general formula:
  • Ar represents an aromatic hydrocarbon radical, or aromatic halohydrocarbon radical of the benzene series
  • R is hydrogen or the methyl radical.
  • alkenyl aromatic monomers are styrene, a-methylstyrene, ortho-methylstyrene, meta-methylstyrene, paramethylstyrene, ar-ethylstyrene, ar-vinylxylene, ar-chlorostyrene, and ar-bromostyrene; beneficially, if desired, other olefinically unsaturated polymerizable monomeric materials may be utilized such as acrylates and methacrylates, acrylonitrile, divinylbenzene, vinyl acetate, vinyl butyrate, and the like.
  • a number of polyfunctional olefinically unsaturated or difunctional monomeric constituents are readily employed in the invention.
  • suitable difunctional cross linking agents as divinylbenzene, diethylene glycol dimethacrylate, diallyl fumarate, diallyl phthalate, and the like are readily utilized.
  • the porous polymers prepared according to the method of the present invention are preferably prepared utilizing at least mole percent of a cross linking agent when vinyl or vinylidene type monomers are used. It is essential that the desired product be provided with sufficient cross linking in the polymer to prevent significant swelling thereof in the presence of solvent. Such swelling closes or reduces the dimensions of the pores in many cases to the point where the product loses its desirable characteristics. Further any polymer which shows insufficient cross linking is oftentimes sufficiently soft that it will pack, deform and if being used for filtration or similar purposes, will transmit little or none of the material which is being passed therethrough.
  • the choice of solvents is equally wide depending upon the particular monomer system that is utilized for the production of the porous polymeric material.
  • the solvent should not be such a good solvent for the polymer that it is completely miscible in all proportions, nor should the solvent be a material which is a non-solvent for the monomer.
  • materials which are completely soluble result in a polymer product which has no apparent pore size and is simply swollen by the solvent whereas polymeric materials produced by the use of non-solvents result in a pore size that is much too large for such operations as the selective absorption and the like.
  • Suitable solvents for the practice of the invention are readily prepared by admixing the solvents and non-solvents or alternately by selecting a suitbale solvent having the desired characteristics. Usually for convenience and economy it is preferable to employ a mixture of solvents, i.e., a solvent and non-solvent which will result in the desired product.
  • the solubility parameters are discussed in Some Factors Affecting the Solubility of Polymers by P. A. Small, Journal of Applied Chemistry 3, 71 (1953) and also by Harry Burnell in the Interchemical Review 14, 3-16, 31-46 (1955).
  • the value of 6 is readily calculated by additive averaging on a weight basis. The same technique is also used to determine 6 for copolymers including those which are highly cross linked, insoluble and non-swellable.
  • alkenyl aromatic monomers such as styrene are solvent or diluent mixtures which have a cohesive energy density of from about to 85 and beneficially between about and 75.
  • the cohesive energy density (c.e.d.) is
  • AH is the molar heat of vaporization
  • R is the gas constant
  • T is temperature in degrees Kelvin
  • V is the molar volume (c.e.d.:8
  • Solvents or solvent mixtures having a cohesive energy density approaching to when used with alkenyl aromatic resinous polymers such as styrene-divinylbenzene copolymers give rise to very fine porous networks, whereas solvents or solvent mixtures having cohesive energy densities approaching 65 result in relatively coarse porous networks.
  • Polymers prepared in according with the method of the present invention may be made by mass polymerization of the solvent-polymerizable material mixture or the mixture may be disposed in the form of droplets in a suitable heat transfer medium.
  • reaction vessels were charged with suitable amounts of styrene and divinyl benzene inert liquid diluents wherein the relationship 6:6 :08 was maintained for the majority of the samples and 0.100 percent benzoyl peroxide based on the total weight of the monomer charged.
  • the reaction vessels were charged with nitrogen in sufficient quantity to remove at least a major portion of air present, were then sealed and placed in temperature controlled liquid baths. After a suitable polymerization period the reaction vessels were opened and the porous polymer samples removed. Portions of the resulting polymers were taken for measurement of various physical properties and examination under an electron microscope. Electron microscope pore size was confirmed by means of an Aminco-Winslow mercury porosimeter.
  • the polymer to be evaluated was cut into a suitable section, immersed in methylene chloride for a sufiicient period to remove the original diluent therefrom and vacuum devolatilized for period of 24 hours at 50 centigrade prior to determinations. Pressures up to 2000 pounds per square inch were utilized. The results are set forth in Table I.
  • the polymerization schedule used for the samples of Table I was 75 centigrade for 24 hours, 85 centigrade for 48 hours, centrigrade for 48 hours and centigrade for 48 hours.
  • Desirable porous polymers are obtained when the solubility parameter falls within the above range.
  • EXAMPLE IV 15 In a manner similar to Example I, a number of samples were prepared utilizing a polymer schedule of centigrade for 24 hours, centigrade for 48 hours, centi- TABLE II.APPEARANCES OF POROUS NETWORK POLYMERS Mole percent lliluent/ Toluene, Other Diluent Visual Appearance Micrograph 6 DVB Monomer vol. percent Appearance 2:1 .1 Translucent 0.1 micron 8. 9 $1.0 2:1 Nil Octane..- Opaque wh -10 microns. 7. 6 J. 0 2:1 100 Translucent 0.1 micron. 8. 0 8. 0 2: 1 50 Opaque Wh 0.l micron- S. 3 8. 0 2:1 25 o l.
  • EXAMPLE III In a manner similar to Example I, a plurality of samples were prepared using various diluents. The polymerigrade for 48 hours, 90 centigrade for 48 hours,
  • centigrade for 40 hours 85 centigrade for 24 hours, 55 103 centigrade for 48 hours, and centigrade for 48 hours.
  • the results are set forth in Table III.
  • the reaction mixture was Pyridie717% Ethylcyclohex- Very fine as then heated to a temperature of 80 centigrade for a ans Pyridine'%% Ethy10yc10hex 0.1 microns 83 period of 20 hours and gentle agitation maintained. At ane 91 7 1 3 8 the end of this time the contents were filtered and the Ethylcyco exane ony 0. microns I.
  • Dionne Ony U 9 70 product was mlcroporous beads having an average diame Dioxane Ma-208M718 83W 181' Of about 5 l'IllCl'OnS.
  • Dioxanc l7 ectone Dionne M9% Acewm 91 2 1D
  • the porous polymers of the foregoing examples were Acetone only 0.3-1.0 microns.
  • porous polymers having pore sizes of about 0.1 micron and smaller are prepared by maintaining the relationship 6:5 :03.
  • copolymers of various acrylate and methacrylate monomers copolymerizable acids, acrylic esters, vinyl copolymers such as vinyl chloride, vinylidene chloride, epoxy resin compositions as well as polyesters are readily prepared in the form of microporous polymers.
  • Porous polymers hav ing pore sizes of less than about 0.1 micron are prepared by copolymerizing 90 mole percent of ethyl acrylate with mole percent of diallyl fumarate in the presence of about 200 volume percent based on the volume of the monomers of chloroform.
  • porous copolymers are prepared by copolymerizing 50 parts by weight of acrylonitrile, 50 parts by weight of vinylidene chloride with 10 parts by weight of diethylene glycol dimethacrylate in the presence of 300 volume percent ethylene glycol.
  • similar porous polymers are readily prepared by copolymerizing 70 parts of vinyl chloride, parts vinyl acetate and 10 parts of diallyl fumarate in the presence of 250 volume percent of propyl acetate.
  • porous polymers may be readily prepared by reacting such diepoxy compounds as the diglycidyl ether of Bisphenol A with polyhydroxy compounds such as glycerine in the presence of a solvent wherein 6:6 :03 wherein 5 and 5 are obtained in accordance with the previously cited references.
  • porous polymers are readily prepared from polyester resins such as are prepared by the condensation of stoichiometric equivalents of phthalic acid and glycerine in the presence of a solvent where the relationship 6:6 :08 is maintained.
  • cross-linking agent is divinylbenzene

Abstract

METHOD OF PREPARING A POROUS POLYMER WHICH COMPRISES POLYMERIZING EITHER AN ALKENYL AROMATIC MONOMER, AN ACRYLATE MONOMER, A VINYL ESTER MONOMER, OR MIXTURES THEREOF AND POLYMERIZABLE CROSS-LINKING AGENT IN A BINARY SOLVENT HAVING A CERTAIN RANGE OF SOLUBILITY PARAMETER.

Description

Jan. 12, 1971 T. ALFREY. JR..
PHEPARATION OF POROUS STRUCTURES Original Filed July 1. 1966 I N VEN TORS. Turn er fl/f'r' Will/hm 6. L
United States Patent Office Re. 27,026 Reissued Jan. 12, 1971 27,026 PREPARATION OF POROUS STRUCTURES Turner Alfrey, Jr., Midland, Mich., and William G. Lloyd, Bowling Green, Ky., assignors to The Dow Chemical Company, Midland, Mich., a corporation of Delaware Original No. 3,322,695, dated May 30, 1967, Ser. No. 563,634, July 1, 1966, which is a continuation-in-part of Ser. No. 253,084, Jan. 22, 1963. Application for reissue Mar. 20, 1969, Ser. No. 817,231
Int. Cl. C08f 47/08; C08j 1/14 US. Cl. 2602.5 6 Claims Matter enclosed in heavy brackets II] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE Method of preparing a porous polymer which comprises polymerizing either an alkenyl aromatic monomer, an acrylate monomer, a vinyl ester monomer, or mixtures thereof and a polymerizable cross-linking agent in a binary solvent having a certain range of solubility parameter.
This application is a continuation-in-part of copending application Ser. No. 253,084 filed Jan. 22, 1963 now abandoned.
This invention relates to the preparation of porous structures. It more particularly relates to a method of preparing microporous synthetic resinous materials.
A wide variety of cellular and permeable polymeric materials are known which are formed oftentimes by polymerization into a generally porous structure or frequently are prepared by incorporating within a resinous material either after or during its formation an agent which will generate a gas and cause a plurality of interconnecting pores or passages within the polymeric body. Other methods are known which include polymerizing a resinous material in the presence of a particulate solid which may at a later time if desired be dissolved, leaving a resinous structure with interconnecting pores. Such particulate material may be incorporated into thermoplastic bodies by milling and similar mixing procedures and the porous body subsequently generated by dissolving away the solid material. By employing certain liquids which are incompatible or non-solvents for the polymeric material, oftentimes the porous bodies can be generated by polymerizing in the presence of such liquids.
The foregoing methods do not provide a means of controlling the pore size of the porous particles, particularly within a high range of pore sizes below about it] microns. Such resinous materials having extremely small pore size, that is, having pores ranging in size from about 20 Angstroms to about 1 micron in diameter are particularly beneficial and advantageous for use in the separation of solutions into their various components by selective absorption.
It is an object of this invention to provide a method of controlling the pore size of synthetic resinous materials during their polymerization.
It is a further object of this invention to provide a method of polymerizing a monomeric material into a resinous material having an average predetermined pore diameter.
It is a further object of this invention to utilize selective solvents for preparing polymer bodies of predetermined porosity.
These benefits and other advantages in accordance with the invention are readily achieved by polymerizing an organic material in admixture with from about /2 to about 20 times the weight of the material of a solvent which is miscible with the unpolymerized material and exhibits limited solubility for the polymeric form of the material, thereby forming a rigid cross-linked polymeric body having a plurality of interconnecting pores therein.
The structure of the polymers in accordance with the invention may be readily understood by reference to the drawing wherein:
The figure depicts an enlarged view of a portion of a polymer body prepared in accordance with the invention wherein the reference character A refers to the portions of the polymer body and B designates the voids or spaces therebetween.
A wide variety of monofunctional olefinically unsaturated polymerizable materials, including monovinyl materials may be employed in the practice of the present invention. Particularly advantageous are the alkenyl aromatic monomers. By the term alkenyl aromatic is meant an alkenyl aromatic compound having the general formula:
Ar CZCIIZ wherein Ar represents an aromatic hydrocarbon radical, or an aromatic halohydrocarbon radical of the benzene series, and R is hydrogen or the methyl radical. Examples of such alkenyl aromatic monomers are styrene, a-methylstyrene, ortho-methylstyrene, meta-methylstyrene, paramethylstyrene, ar-ethylstyrene, ar-vinylxylene, ar-chlorostyrene, or ar-bromostyrene and the like.
The acrylate monomers alone or in combination with the alkenyl aromatic monomers may also be utilized. Such acrylate-type monomers include monomers of the formula:
wherein R is selected from the group consisting of hydrogen and an alkyl radical containing from about 1 to 12 carbon atoms and R is selected from the group consisting of hydrogen and methyl. Typical acrylate materials which may be used are methyl methacrylate, ethyl acrylate, propyl acrylate, butyl acrylate, butyl methacrylate, propyl methacrylate, lauryl acrylate, Z-ethylhexylacrylate, ethyl methacrylate and the like. Copolymers of vinyl chloride and vinylidene chloride, acrylonitrile with vinyl chloride, vinyl bromide, and similar halogenated vinyl compounds may be prepared by the process of the invention. Esters, such as vinyl esters having the formula:
0 l CIIFTCH O l. -R
wherein R is an alkyl radical containing from 2 to 18 carbon atoms, may also frequently be employed with benefit. Typical monomers falling within this classification are vinyl acetate, vinyl butyrate, vinyl stearate, vinyl laurate, vinyl myristate, vinyl propionate, and the like.
Typical copolymerizable acids are acrylic acid, methacrylic acid, itaconic acid, citraconic acid, maleic acid, fumaric acid, oleic acid, vinylbenzoic acid, and the like.
Advantageously the synthetic polyester resins which are prepared by reacting terephthalic acid and dialkyl terephthalics or ester-forming derivatives thereof, with a glycol of the series HO(CH ),,OH, where n is a whole number within the range of 2-10 and having reactive olefinic linkages within the polymer molecule, are readily utilized in the practice of the invention. Such polyesters also may include copolymerized therein up to 20 percent by weight of a second acid or ester thereof having reactive olefinic unsaturation such as fumaric acid, maleic acid, itaconic acid, tetrahydrophthalic acid, and the like. Polyesters, containing olefinic unsaturation are readily reacted with monomeric olefinic materials such as the alkenyl aromatic monomers of the general formula:
wherein Ar represents an aromatic hydrocarbon radical, or aromatic halohydrocarbon radical of the benzene series, and R is hydrogen or the methyl radical. Examples of alkenyl aromatic monomers are styrene, a-methylstyrene, ortho-methylstyrene, meta-methylstyrene, paramethylstyrene, ar-ethylstyrene, ar-vinylxylene, ar-chlorostyrene, and ar-bromostyrene; beneficially, if desired, other olefinically unsaturated polymerizable monomeric materials may be utilized such as acrylates and methacrylates, acrylonitrile, divinylbenzene, vinyl acetate, vinyl butyrate, and the like.
A number of polyfunctional olefinically unsaturated or difunctional monomeric constituents are readily employed in the invention. Advantageously, with the vinyl or alkenyl aromatic type monomers, suitable difunctional cross linking agents as divinylbenzene, diethylene glycol dimethacrylate, diallyl fumarate, diallyl phthalate, and the like are readily utilized.
The porous polymers prepared according to the method of the present invention are preferably prepared utilizing at least mole percent of a cross linking agent when vinyl or vinylidene type monomers are used. It is essential that the desired product be provided with sufficient cross linking in the polymer to prevent significant swelling thereof in the presence of solvent. Such swelling closes or reduces the dimensions of the pores in many cases to the point where the product loses its desirable characteristics. Further any polymer which shows insufficient cross linking is oftentimes sufficiently soft that it will pack, deform and if being used for filtration or similar purposes, will transmit little or none of the material which is being passed therethrough.
Accordingly, the choice of solvents is equally wide depending upon the particular monomer system that is utilized for the production of the porous polymeric material. The solvent should not be such a good solvent for the polymer that it is completely miscible in all proportions, nor should the solvent be a material which is a non-solvent for the monomer. Generally materials which are completely soluble result in a polymer product which has no apparent pore size and is simply swollen by the solvent whereas polymeric materials produced by the use of non-solvents result in a pore size that is much too large for such operations as the selective absorption and the like. Suitable solvents for the practice of the invention are readily prepared by admixing the solvents and non-solvents or alternately by selecting a suitbale solvent having the desired characteristics. Usually for convenience and economy it is preferable to employ a mixture of solvents, i.e., a solvent and non-solvent which will result in the desired product.
Suitable solvent mixtures are readily determined for the preparation of specific polymer systems by use of the relationship: 6=5 i0.8 wherein 6 is the solubility parameter for the solvent system and 6 is the solubility parameter for the polymer. The solubility parameters are discussed in Some Factors Affecting the Solubility of Polymers by P. A. Small, Journal of Applied Chemistry 3, 71 (1953) and also by Harry Burnell in the Interchemical Review 14, 3-16, 31-46 (1955). For mixed solvents the value of 6 is readily calculated by additive averaging on a weight basis. The same technique is also used to determine 6 for copolymers including those which are highly cross linked, insoluble and non-swellable. Some typical values for 6 are: polystyrene, 9.1; polydivinyl benzene, 8.8; polymethyl methacrylate, 9.3; polyethyl methacrylate, 9.1; poly n propyl methacrylate, 8.9; poly n butyl methacrylate, 8.7; polymethyl acrylate, 9.7; polyethyl acrylate, 9.2; polybutyl acrylate, 8.7; polyvinyl acetate, 9.4; polyethylene dimethacrylate, 9.2; polyethylene diacrylate, 9.5.
Particularly beneficial and advantageous in the practice of the present invention utilizing alkenyl aromatic monomers such as styrene are solvent or diluent mixtures which have a cohesive energy density of from about to 85 and beneficially between about and 75. The cohesive energy density (c.e.d.) is
wherein AH is the molar heat of vaporization, R is the gas constant, T is temperature in degrees Kelvin and V is the molar volume (c.e.d.:8 Solvents or solvent mixtures having a cohesive energy density approaching to when used with alkenyl aromatic resinous polymers such as styrene-divinylbenzene copolymers give rise to very fine porous networks, whereas solvents or solvent mixtures having cohesive energy densities approaching 65 result in relatively coarse porous networks.
In general as the value of 6 approaches that of 6 the pore size of the polymer decreases and as these values diverge the pore size becomes greater.
Polymers prepared in according with the method of the present invention may be made by mass polymerization of the solvent-polymerizable material mixture or the mixture may be disposed in the form of droplets in a suitable heat transfer medium.
The present invention is further illustrated, but not limited, by the following examples.
EXAMPLE I Reaction vessels were charged with suitable amounts of styrene and divinyl benzene inert liquid diluents wherein the relationship 6:6 :08 was maintained for the majority of the samples and 0.100 percent benzoyl peroxide based on the total weight of the monomer charged. The reaction vessels were charged with nitrogen in sufficient quantity to remove at least a major portion of air present, were then sealed and placed in temperature controlled liquid baths. After a suitable polymerization period the reaction vessels were opened and the porous polymer samples removed. Portions of the resulting polymers were taken for measurement of various physical properties and examination under an electron microscope. Electron microscope pore size was confirmed by means of an Aminco-Winslow mercury porosimeter. The polymer to be evaluated was cut into a suitable section, immersed in methylene chloride for a sufiicient period to remove the original diluent therefrom and vacuum devolatilized for period of 24 hours at 50 centigrade prior to determinations. Pressures up to 2000 pounds per square inch were utilized. The results are set forth in Table I.
The polymerization schedule used for the samples of Table I was 75 centigrade for 24 hours, 85 centigrade for 48 hours, centrigrade for 48 hours and centigrade for 48 hours.
Desirable porous polymers are obtained when the solubility parameter falls within the above range.
TABLE I.-APPEARANCES OF POROUS NETWORK POLYMERS Mole Diluent/ Toluene, Visual Micrograph Pereent Monomer vol. percent Other Diluent Appearance Appearance 6 Nil Octane Opaque Wh microns 0 0 .do ..do -1 micron .I .0 do do 0.l micron 0 Fr ar C MMMMMIQMMNI omwoooo...
Very fine EXAMPLE II In a manner similar to Example I further samples were prepared using a polymerization schedule of 70, 80, 90, 100, and 120 with 48-hour intervals at each temperature. The relationship results are set forth in Table II.
EXAMPLE IV 15 In a manner similar to Example I, a number of samples were prepared utilizing a polymer schedule of centigrade for 24 hours, centigrade for 48 hours, centi- TABLE II.APPEARANCES OF POROUS NETWORK POLYMERS Mole percent lliluent/ Toluene, Other Diluent Visual Appearance Micrograph 6 DVB Monomer vol. percent Appearance 2:1 .1 Translucent 0.1 micron 8. 9 $1.0 2:1 Nil Octane..- Opaque wh -10 microns. 7. 6 J. 0 2:1 100 Translucent 0.1 micron. 8. 0 8. 0 2: 1 50 Opaque Wh 0.l micron- S. 3 8. 0 2:1 25 o l. -0.l micron. 8.0 8. 0 2:1 20 -0.l micron. 7. 0 8. 0 2:1 10 -l micron" 7. 7 8. SI 2:1 Nil 1-3 microns- 7. B 8. 0 0. 5:1 100 (0.1 micron. 8.0 8. 0 1:1 100 Translucent... -0.l micron. 8. 0 3. 0 3 :1 Opaque Wh -0.l micron. 8. 9 8. 0 0. 5: l d -l micron. 7. 0 8. 9 1:1 1-2 microns. 7. 6 8. 0 3:1 -10 microns. 7. 6 8. 0 2:1 0.1%).3 micron 8.9 8.8 2:1 Nil Octance Opaque wh -1 micorn 7. 6 8. 8
EXAMPLE III In a manner similar to Example I, a plurality of samples were prepared using various diluents. The polymerigrade for 48 hours, 90 centigrade for 48 hours,
centigrade for 24 hours, and 120 centigrade for 24 hours. The results are set forth in Table IV.
TABLE IV.APPEARANCES 0F POROUS NETWORK POLYMERS Monomers Diluents Visual Appearance Micrograph 6 appearance p-Cymerne only 8. 5 8. 0
p"lert butylstyrene and p-Oymene 50%-MeOH 50%.. 11,4 8. 6 DVB. p-Cymene 2%-MeOH 75%-. 12.0 8. 6 MeOH only 14.5 8. 6
Ethyl acetate only 9. 1 J. l
Ethyl methacrylate and EtOAe 75%-octane 25%. 8. 8 .I. l ethylene glycol di- EtOAc 50%-octane 50%. s. 4 .I. l methacrylate. EtOAc 25%-octane 75%. 8. 1 0. l Octane only 7. 6 .I. l
I All 06 mole percent monovinyl monomer and 5 mole percent divinyl monomer, with two volumes diluent per volume monomer mixture.
zation schedule was 75 centigrade for 29 hours, 80
centigrade for 40 hours, 85 centigrade for 24 hours, 55 103 centigrade for 48 hours, and centigrade for 48 hours. The results are set forth in Table III.
TABLE III.APPEARANCES OF POROUS NETWORK POLYMERS 1 EXAMPLE V A vessel was charged with 25 parts of styrene, 8.3 parts of divinyl benzene, 0.067 part of benzoyl peroxide, 66.6
1 v1 1 M 60 chromate and 0.2 part of the condensation product of a Di uents sun crograph 6 t Appearance Appearance 1.1 molar mixture of dlethanol amme and adlpic ac d. The aqueous solution was ad usted to a pH of 4.0 with hydrochloric acid. The contents of the vessel were then Pyridine only Opaque tan. 3microns.. 10.9 intimately admixed with high shear agitation until a uniiggg Imgular form dispersion was obtained. The reaction mixture was Pyridie717% Ethylcyclohex- Very fine as then heated to a temperature of 80 centigrade for a ans Pyridine'%% Ethy10yc10hex 0.1 microns 83 period of 20 hours and gentle agitation maintained. At ane 91 7 1 3 8 the end of this time the contents were filtered and the Ethylcyco exane ony 0. microns I. Dionne Ony U 9 70 product was mlcroporous beads having an average diame Dioxane Ma-208M718 83W 181' Of about 5 l'IllCl'OnS. Dioxanc l7 ectone Dionne M9% Acewm 91 2 1D The porous polymers of the foregoing examples were Acetone only 0.3-1.0 microns.
two volumes diluent per volume monomer mixture, 60 9.1.
10 found to have a surface generally in accordance with their pore size and were capable of absorbing relatively large quantities of solutes from solutions, and when tightly com- 7 pacted or prepared in the form of a continuous body,
acted very satisfactorily as mieroporous filters for the separation of finely dispersed solids from gases and liquids and also molecular sieves. The porous polymers having pore sizes of about 0.1 micron and smaller are prepared by maintaining the relationship 6:5 :03.
In a manner similar to the foregoing examples, copolymers of various acrylate and methacrylate monomers copolymerizable acids, acrylic esters, vinyl copolymers such as vinyl chloride, vinylidene chloride, epoxy resin compositions as well as polyesters are readily prepared in the form of microporous polymers. Porous polymers hav ing pore sizes of less than about 0.1 micron are prepared by copolymerizing 90 mole percent of ethyl acrylate with mole percent of diallyl fumarate in the presence of about 200 volume percent based on the volume of the monomers of chloroform. Somewhat similar beneficial porous copolymers are prepared by copolymerizing 50 parts by weight of acrylonitrile, 50 parts by weight of vinylidene chloride with 10 parts by weight of diethylene glycol dimethacrylate in the presence of 300 volume percent ethylene glycol. Generally similar porous polymers are readily prepared by copolymerizing 70 parts of vinyl chloride, parts vinyl acetate and 10 parts of diallyl fumarate in the presence of 250 volume percent of propyl acetate. In a similar manner porous polymers may be readily prepared by reacting such diepoxy compounds as the diglycidyl ether of Bisphenol A with polyhydroxy compounds such as glycerine in the presence of a solvent wherein 6:6 :03 wherein 5 and 5 are obtained in accordance with the previously cited references. Also porous polymers are readily prepared from polyester resins such as are prepared by the condensation of stoichiometric equivalents of phthalic acid and glycerine in the presence of a solvent where the relationship 6:6 :08 is maintained.
As is apparent from the foregoing specification, the method of the present invention is susceptible of being embodied with various alterations and modifications which may differ particularly from those that have been described in the preceding specification and description. For this reason, it is to be fully understood that all of the foregoing is intended to be merely illustrative and is not to be construed or interpreted as being restrictive or otherwise limiting of the present invention, excepting as it is set forth and defined in the hereto appended claims.
What is claimed is:
l. The method of preparing a porous polymer having a predetermined porosity comprising polymerizing (A) polymerizable organic material which is a member selected from the group consisting of [an] (1) alkenyl aromatic compounds having the general formula R Ar-o =om wherein Ar represents an aromatic hydrocarbon radical, or an aromatic halohydrocarbon radical of the benzene series, and R is hydrogen or the methyl radical; (2) acrylate [-type] monomers of the formula cnFo-c on wherein R is selected from the group consisting of hydrogen and an alkyl radical containing from about 1 to 12 carbon atoms and R is selected from the group consisting of hydrogen and methyl; [copolymers of vinyl chloride and vinylidene chloride, acrylonitrile and vinyl chloride, vinyl bromide] (3) vinyl esters having the formula wherein R is an alkyl radical containing from 2 to 18 carbon atoms; [acrylic acid, methacrylic acid, itaconic acid, citraconic acid, maleic acid, fumaric acid, oleic acid, vinylbenzoic acid; the synthetic polyester resins which are prepared by reacting terephthalic acid and dialkyl terephthalicsor ester-forming derivatives thereof, with a glycol of the series HO(CH ),,OH, wherein n is a whole number within the range of 2-10 and having reactive olefinic linkages within the polymer molecule, the hereinabove described polyesters which include copolymerized therein up to 20 percent by weight of a second acid or ester thereof having reactive olefinic unsaturation] and (4) mixtures thereof; and (B) at least 10 mole percent of a cross-linking agent selected from the group consisting of divinylbenzene, diethylene glycol dimethacrylate, diallyl fumarate, diallyl phthalate and mixtures thereof, to form a rigid cross-linked polymer body having a plurality of interconnecting pores therein; said polymerization being carried out in [a solvent, the solvent being in a proportion of from] about one-half to about twenty [times the weight] parts by weight of a solvent mixture per part of the polymerizable mixture; [wherein the following relationship exists:] said solvent mixture comprising at least one solvent and 10 to 90 percent based on volume of at least one nonesolvent and having as said mixture a solubility parameter chosen within the range 6:5 :08, where 6 is the solubility parameter of the solvent and 5 is the solubility parameter of the polymer, to control the average pore size of the polymer.
2. The method of claim l wherein the vinyl material is styrene.
3. The method of claim 2, wherein the cross-linking agent is divinylbenzene.
4. The method of claim 3 wherein the cohesive energy density of the solvent is from about to about 75.
5. The method of claim 1, wherein the solvent is present in a proportion of from about 1 to 5 times the weight of the polymerizable materials.
6. The method of claim 1, wherein the polymerizable material is prepared in the form of beads by a suspension polymerization technique.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS 2,744,291 5/1956 Stastny et al. 2602.5
2,848,428 8/ 1958 Rubens 2602.5
3,018,257 l/1962 Spencer 2602.5
FOREIGN PATENTS 889,304 2/1962 Great Britain 2602 MURRAY TILLMAN, Primary Examiner M. FOELAK, Assistant Examiner US. Cl. X.R.
US27026D 1969-03-20 1969-03-20 Preparation of porous structures Expired USRE27026E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81723169A 1969-03-20 1969-03-20

Publications (1)

Publication Number Publication Date
USRE27026E true USRE27026E (en) 1971-01-12

Family

ID=25222630

Family Applications (1)

Application Number Title Priority Date Filing Date
US27026D Expired USRE27026E (en) 1969-03-20 1969-03-20 Preparation of porous structures

Country Status (1)

Country Link
US (1) USRE27026E (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093570A (en) 1975-05-01 1978-06-06 Asahi Kasei Kogyo Kabushiki Kaisha Production of porous polymers
US4248924A (en) 1976-09-03 1981-02-03 Sumitomo Electric Industries, Ltd. Asymmetric porous film materials and process for producing same
NL8302139A (en) * 1975-05-01 1983-10-03 Asahi Chemical Ind Porous, polar copolymers having ion exchange capacity - comprising polar and non-polar mono- and multi-ethylenic monomer units (BE031176)
FR2549072A1 (en) * 1983-07-13 1985-01-18 Elf Aquitaine PROCESS FOR THE PREPARATION OF FUNCTIONALIZED GRAIN COPOLYMERS BY SUSPENSION POLYMERIZATION IN A NON-AQUEOUS MEDIUM
US4898913A (en) 1989-04-07 1990-02-06 Dow Corning Corporation Method of making hydrophobic copolymers hydrophilic
US4948818A (en) 1989-05-15 1990-08-14 Dow Corning Corporation Method of making porous hydrophilic-lipophilic copolymeric powders
US4962170A (en) * 1989-08-31 1990-10-09 Dow Corning Corporation Method of making highly absorptive polymers
US4962133A (en) * 1989-09-05 1990-10-09 Dow Corning Corporation Method of making highly adsorptive copolymers
US4961532A (en) * 1989-07-07 1990-10-09 Dow Corning Corporation Fragrance release device containing a highly adsorptive copolymer
USRE33429E (en) * 1981-03-23 1990-11-06 Dow Corning Corporation Lattice-entrapped emollient-moisturizer composition
US5017238A (en) * 1989-08-30 1991-05-21 Dow Corning Corporation Aqueous cleaning dispersions using adsorptive polymeric powder and method of using
US5035890A (en) * 1989-04-10 1991-07-30 Dow Corning Corporation Emulsifier-free hand and body lotion
US5037485A (en) * 1989-09-14 1991-08-06 Dow Corning Corporation Method of cleaning surfaces
US5100477A (en) * 1989-05-15 1992-03-31 Dow Corning Corporation Decontamination of toxic chemical agents
US5102662A (en) * 1989-12-08 1992-04-07 Dow Corning Corporation Insect repellent plastic
US5208038A (en) * 1989-12-08 1993-05-04 Dow Corning Corporation Coacervated highly absorptive polymers
EP0588442A1 (en) * 1989-05-15 1994-03-23 Dow Corning Corporation Method of making hydrophilic-lipophilic copolymeric powders

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8302139A (en) * 1975-05-01 1983-10-03 Asahi Chemical Ind Porous, polar copolymers having ion exchange capacity - comprising polar and non-polar mono- and multi-ethylenic monomer units (BE031176)
US4093570A (en) 1975-05-01 1978-06-06 Asahi Kasei Kogyo Kabushiki Kaisha Production of porous polymers
US4248924A (en) 1976-09-03 1981-02-03 Sumitomo Electric Industries, Ltd. Asymmetric porous film materials and process for producing same
USRE33429E (en) * 1981-03-23 1990-11-06 Dow Corning Corporation Lattice-entrapped emollient-moisturizer composition
FR2549072A1 (en) * 1983-07-13 1985-01-18 Elf Aquitaine PROCESS FOR THE PREPARATION OF FUNCTIONALIZED GRAIN COPOLYMERS BY SUSPENSION POLYMERIZATION IN A NON-AQUEOUS MEDIUM
EP0133392A1 (en) * 1983-07-13 1985-02-20 Societe Nationale Elf Aquitaine Process for preparing copolymers in bead form, with functions, by suspension polymerisation in a non aqueous medium
US4898913A (en) 1989-04-07 1990-02-06 Dow Corning Corporation Method of making hydrophobic copolymers hydrophilic
US5035890A (en) * 1989-04-10 1991-07-30 Dow Corning Corporation Emulsifier-free hand and body lotion
US4948818A (en) 1989-05-15 1990-08-14 Dow Corning Corporation Method of making porous hydrophilic-lipophilic copolymeric powders
US5100477A (en) * 1989-05-15 1992-03-31 Dow Corning Corporation Decontamination of toxic chemical agents
EP0588442A1 (en) * 1989-05-15 1994-03-23 Dow Corning Corporation Method of making hydrophilic-lipophilic copolymeric powders
US4961532A (en) * 1989-07-07 1990-10-09 Dow Corning Corporation Fragrance release device containing a highly adsorptive copolymer
US5017238A (en) * 1989-08-30 1991-05-21 Dow Corning Corporation Aqueous cleaning dispersions using adsorptive polymeric powder and method of using
US4962170A (en) * 1989-08-31 1990-10-09 Dow Corning Corporation Method of making highly absorptive polymers
US4962133A (en) * 1989-09-05 1990-10-09 Dow Corning Corporation Method of making highly adsorptive copolymers
US5037485A (en) * 1989-09-14 1991-08-06 Dow Corning Corporation Method of cleaning surfaces
US5102662A (en) * 1989-12-08 1992-04-07 Dow Corning Corporation Insect repellent plastic
US5208038A (en) * 1989-12-08 1993-05-04 Dow Corning Corporation Coacervated highly absorptive polymers

Similar Documents

Publication Publication Date Title
US3322695A (en) Preparation of porous structures
USRE27026E (en) Preparation of porous structures
US3960784A (en) Bodies of expandable synthetic resins and method of preparation
CA1120649A (en) Process for producing expandable thermoplastic resin beads using polypropylene as nucleus
US4168353A (en) Process for producing foamable polyethylene resin particles
EP0294783B1 (en) Expandable thermoplastic resin beads
US4278777A (en) Grafted polymers and method of preparing and using same
US3509078A (en) Cross linked macroporous polymers
JPS6215575B2 (en)
US3468820A (en) Production of particulate expandable styrene polymers
US3275548A (en) Removal of dissolved substances from aqueous dispersions
Okubo et al. Production of micron‐sized monodispersed cross‐linked polymer particles having hollow structure
US3925280A (en) Fabrication multiphase plastics from liquid suspension
CA2161484A1 (en) Expandable styrene polymers containing recycled material
US5166221A (en) Expandable styrene polymers, and aromatic-resistant foams produced therefrom
US4874796A (en) Expandable thermoplastic resin beads
JP3000845B2 (en) Foam comprising polystyrene resin composition
US3852096A (en) Process for fabricating an article from a multiphase copolymer composition
US4920153A (en) Expandable thermoplastic resin beads
US3631132A (en) Flame resistant expandable styrene polymers containing tribromophenyl-dibromopropyl ether and method of preparing
US5008298A (en) Expandable thermoplastic resin beads
US3864427A (en) Molding Compositions
US4968466A (en) Expandable thermoplastic resin beads
US4252704A (en) Graft Polymers with cross-linked polyester elastomers
JPH11255946A (en) Foamable styrene-based resin particle having flame retardance and its production