USRE27145E - Side-chain - Google Patents

Side-chain Download PDF

Info

Publication number
USRE27145E
USRE27145E US27145DE USRE27145E US RE27145 E USRE27145 E US RE27145E US 27145D E US27145D E US 27145DE US RE27145 E USRE27145 E US RE27145E
Authority
US
United States
Prior art keywords
block
polymer
lithium
butadiene
hydrogenated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Application granted granted Critical
Publication of USRE27145E publication Critical patent/USRE27145E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation

Definitions

  • ABSTRACT OF THE DISCLOSURE Hydrogenated block copolymers having a superior combination of physical properties are prepared by block polymerizing a vinyl arene with butadiene in the presence of a polar compound tocause a limited amount of branching in the polybutadiene block and thereafter hydrogenating the polymer.
  • This invention is concerned with novel block copolymers, their compositions and processes for their preparation. More particular, the invention is directed to certain hydrogenated block copolymers having optimum physical properties based upon a critical microstructure of the elastomeric polymeric blocks contained therein.
  • Rubbers and elastomers of either natural or synthetic origin normally require vulcanization in order to obtain useful elastomeric properties. Before vulcanization, rubbers possess tacky properties and low strength which makes them of little utility except as rubber cements. Another of their prime shortcomings is that of stability relative to either heat or oxidation.
  • Optimum elastomeric properties are not usually attained until the rubber has been subjected to a vulcanization treatment such as by means of heating with sulfur, sulfur compounds, peroxides or other means.
  • Vulcanization usually results in insolubilization of the rubber in most common solvents. While this may be of advantage in certain situations, for many purposes such as the application of paints, etc., and in the formation of molded objects, insolubilization is in fact a substantial disadvantage. It has been necessary in many cases to apply vulcanized rubbers in the form of latices or to vulcanize the rubber after it has been formed in a molding operation or the like. vulcanization under such circumstances often results in substantial losses of product, since the flashings from moldings etc., cannot be readily reworked but must be incorporated in other compositions acting merely as a filler or reinforcing agent.
  • the block copolymers under consideration comprise primarily those having a general structure ABA wherein the two terminal polymer blocks A comprise thermoplastic polymer blocks of vinylarenes such as polystyrene, while block B is a polymer block of a conjugated diene.
  • thermoplastic terminal blocks to the center elastomeric polymer block and the relative molecular weights of each of these blocks is balanced to obtain a rubber having an optimum combination of properties such that it behaves as a vulcanized rubber without requiring the actual step of vulcanization.
  • block copolymers can be designed not only with this important advantage but also so as to be handled in thermoplastic forming equipment and are soluble in a variety of relatively low cost solvents.
  • alpha olefin polymers appear to be due in part to their degree of branching. While the alpha olefin polymers have a basic straight carbon chain backbone, those with elastomeric properties always have dependent alkyl radicals.
  • EPR ethylene-propylene rubber
  • EPR ethylene-propylene rubber
  • EPR ethylene-propylene rubber
  • the resulting polymer is essentially nonelastomeric or in the other words relatively rigid, and behaves like a typical thermoplastic without possessing resilience, elongation, tensile strength without yield, low set or other properties characteristic of desirable elastomers.
  • a particular type of block copolymer has been prepared meeting in large measure the above requirements and combining within its structure, a configuration enabling the combination of a maximum number of physical properties especially desirable for such products.
  • These polymers are hydrogenated block copolymers having a configuration, prior to hydrogenation, of ABA wherein each of the As is an alkenyl-substituted aromatic hydrocarbon polymer block and B is a butadiene polymer block wherein 3555 mol percent of the condensed butadiene units in the butadiene polymer block have 1,2 configuration.
  • a means for the preparation of such branched block copolymers which comprises the steps of utilizing an alkyl lithium catalyst in a relatively inert hydrocarbon solvent for the block copolymer at each stage of its formation modified with a critically defined proportion of a polar compound of the group consisting of ethers, thio-ethers and tertiary amines; forming a first polymer block of an alkenyl aromatic hydrocarbon in said medium to form a living polymer block; adding butadiene thereto and continuing polymerization until the desired weight has been obtained; thereafter introducing an alkenyl arene and continuing block copolymerization to finally obtain the ABA block copolymer wherein the center polybutadiene block has the recited degree of branched configura- 3 :ion. Following the preparation of this unsaturated block :opolymer, the latter
  • the block copolymer having the diene center block it least 90% hydrogenated but less than 10% of the )olystyrene units hydrogenated exhibits the dual advanages of improved stability while maintaining good procssability.
  • Block copolymers wherein at least about 25% )f the polystyrene blocks are hydrogenated have the tdvantages both improved stability and increased softenng points.
  • Such compositions may be mixtures of block :opolymers wherein at least part of the molecules are saturated over their entire length, the remaining molecules reing those in which only the butadiene polymer block is it least 90% saturated.
  • the hydrogenated olymers may be those in which at least 90% of the )olybutadiene linkages are hydrogenated and in which he polystyrene blocks are those containing both saturated 1nd unsaturated styrene units.
  • terminal blocks A having average molecilar weights of 4,000-115,000 and polybutadiene blocks 1aving average molecular weights of 20,000450,000. Still more preferably, the terminal blocks have average molec- Jlar weights of 8,00060,000 while the polybutadiene polymer block has an average molecular weight between about 50,000 and 300,000. Likewise, in order to promote the optimum combination of physical properties, it is desirable that the terminal plastic blocks comprise 530% by Weight of the total block copolymer.
  • the proportion of polar modifying compounds to be used in forming the branched polybutadiene blocks in the above types of block copolymers will depend upon a iumber of factors such as the identity of the polar compound, the precise degree of branching desired, the hydro- :arbon medium utilized and the amount of lithium catalyst present.
  • the imount of polar compound will be expressed as a molar ratio of polar compound to lithium alkyl.
  • the molar ratio of polar :ompound to lithium should be between about 7 and 70, preferably between about 10 and 40.
  • the degree of branching of the polybutadiene block is essentially linear with the molar ratio of polar compounds :0 lithium. Consequently, if the ratio is too low, then the desired degree of branching is correspondingly decreased and the resulting block copolymer, when hydrogenated, Is essentially a plastic having substantially non-elastomeric properties e.g. poor rubber properties. On the other hand, if the molar proportion is increased beyond the maximum :imit recited, the degree of branching is excessive and, as I will be seen by reference to the figures, the elastomeric properties of the resulting products following hydrogenazion are drastically damaged.
  • the major abjective of the process is to utilize the correct proportion )f polar compound to lithium initiator such that the aranching of the polybutadiene block is within the desired 'ecited range of 35-55 mol percent. or in other terms, 35-55% of the carbon atoms in the polybutadiene block are in the form of dependent C side chains]
  • the center elastomeric block is preferably a polymerized butaliene polymer having a recited degree of branching, this 4 may be modified, with about 25% by weight of elastomeric block-producing monomers of other conjugated dienes such as isoprene and the like.
  • the non-elastomeric end polymer blocks comprise homopolymers or copolymers preferably prepared from alkenyl aromatic hydrocarbons and particularly from vinyl aromatic hydrocarbons wherein the aromatic may be either monocyclic or polycyclic (followed by hydrogenation).
  • Typical monomers include styrene, alpha methyl styrene, vinyl xylene, ethyl vinyl xylene, vinyl naphthalene and the like. Mixtures of such monomers may be utilized as well.
  • the two end blocks may be the same or different as long as they meet the generic description of these end blocks insofar as their thermoplastic character is concerned as differentiated from the elastomeric major of the center block.
  • the center block may be an elastomer in accordance with the definition contained in ASTM Special Technical Bulletin, No. 184 as follows:
  • the catalysts employed in the process of the present invention may be defined broadly as lithium based initiators although alkyl lithium initiators are preferred.
  • suitable initiators include lithium metal and aryl lithium compounds and in certain instances, dilithium initiators such as dilithium stilbene, lithium l-diphenyl ethylene or lithium naphthalene.
  • Alkyl lithium initiators, the preferred class may be generally divided into normal alkyl lithiums and branched alkyl lithiums, the latter having a number of functional aspects making them more desirable than the former.
  • Branched alkyl lithium initiators exhibit no disadvantageous induction period in the startup of the polymerization, the rate of polymerization is reasonably rapid but sutficiently steady so that it can be controlled and the products obtained are of a relatively narrow molecular Weight range also adding to the product control and effectiveness thereof for a number of purposes.
  • Polymerization is normally conducted at temperatures in the order of 20 to about C., preferably about +20 C. and 65 C.
  • the proportion of initiators will depend upon the molecular weight of the products desired, but may be varied, with the latter qualification, between about 1 and about 200 parts per million based on the Weight of the monomers involved.
  • the basic process when using the lithium-based catalysts comprises forming a solution of the first alkenyl arene monomer in an inert hydrocarbon such as alkanes, alkenes or cycloalkanes modified by the presence of the polar compounds of the group consisting of ethers, thioethers and tertiary amines.
  • an inert hydrocarbon such as alkanes, alkenes or cycloalkanes modified by the presence of the polar compounds of the group consisting of ethers, thioethers and tertiary amines.
  • the proportion of polar compounds should be restricted in accordance with the limits set forth hereinbefore in order to obtain the desired critical degree of branching in the center elastomeric block.
  • polymerization proceeds to produce the first terminal polymeric block having an average molecular weight between about 4000 and 100,000, this block being terminated on one end with a lithium radical and being referred to as a living polymer.
  • a lithium radical is injected into the system and block polymerization occurs, the presence of the polar compound now becoming important in producing the desired degree of branching of the polybutadiene block.
  • the temperature, initiator concentration and solvent may be adjusted at this time to optimize the desired degree of polymerization or rate of reaction.
  • the resulting product is then typified by the general structure ABLi, a living polymer block of the two monomers thus far employed.
  • a second addition of an alkenyl aromatic hydrocarbon is made to produce the final terminal block and result in the formation of the three block system ABA which is the result of polymerization followed by termination with a polar terminator such as an alcohol and the like.
  • the next necessary stage is to hydrogenate -the polymer in order to increase its service temperature and at the same time to improve the oxidation stability of the product.
  • Hydrogenation may be conducted utilizing a variety of hydrogenation catalysts such as nickel on kieselguhr, Raney nickel, copper chromate, molybdenum sulfide, and finely divided platinum or other noble metals on a low surface area carrier.
  • Hydrogenation may be conducted at any desired temperature or pressure, say, from atmospheric to 3000 p.s.i.g., the usual range being between 100 and 1000 p.s.i.g. at temperatures from about 75 F. to 600 F., for times between about 0.1 and 24 hours, preferably 0.2-8 hours.
  • Preferred catalysts comprise the reduced metal products obtained by reduction of cobalt nickel, tungsten or molybdenum compounds with aluminum alkyls or hydrides. These catalysts are selective, in that the elasomeric block, a set of block copolymers was prepared having similar individual block molecular weights.
  • polar compound was varied relative to the amount of lithium alkyl initiator present, the following is a typical example by which this set of block copolymers were prepared: Styrene (60 grams) was dissolved in benzene 1400 grams) containing varying proportions of tetrahydrofurane as the polar compound. This mixture was brought to C. and 0.003 mol of secondary butyl lithium was added. Polymerization was conducted at 40 C. in a reactor until all of the styrene had been converted to a polymer terminated with a lithium radical. Thereafter, butadiene was added to the reaction mixture (450 grams) and polymerization was continued until complete utilization of the butadiene monomer.
  • the styrene-butadiene block polymer so formed was then modified by the addition of styrene (60 grams) and polymerization continued until no monomer remain:
  • the resulting polystyrene-polybutadiene-polystyrene block polymer had average block molecular Weights of 15,000l00,00015,000.
  • the block copolymers so prepared by variation in tetrahydrofurane ratio relative to secondary butyl lithium were then hydrogenated at 500 p.s.i.g. hydrogen pressure, for 18 hours at 160 C. utilizing 0.3 gram of nickel on kieselguhr support per gram of polymer.
  • the hydrogenated polymers were then tested for physical properties which are shown in the table below.
  • the polybutadiene block is that most subject to oxidative attack, it is the primary objective of hydrogenation to reduce the unsaturation of this block, the hydrogenation of the terminal plastic blocks being of less importance. With some selective catalysts, this is readily accomplished whereas with others, the hydrogenation proceeds along the entire chain.
  • the diene unsaturation (measured by iodine number) should be reduced to less than 10% (preferably less than 5%) of its original value.
  • Reduction of styrene unsaturation (measured by ultra violet) may be expressed as an average of 0100%; e.g., no reduction at all, and up to complete reduction.
  • the hydrogenation product may be a mixture of products in which some of the polystyrene blocks are hydrogenated more than others.
  • each A is a polymerized mono alkenyl aromatic hydrocarbon block having an average molecular weight of about 4,000115,000;
  • B is a polymerized butadiene hydrocarbon block having an average molecular weight of about 20,000- 450,000;
  • polymeric blocks A are polymer blocks of a vinyl aromatic hydrocarbon.
  • each A is a polymerized styrene block having an average molecular weight of about 8,00060,000;
  • B is a polymerized butadiene block having an average molecular weight of about 50,000300,000, 40- 50 mol percent of the condensed butadiene units in block B having 1,2-c0nfigurati0n; of the butadiene carbon atoms in the block being vinyl sidechains;
  • step (b) is an ether.

Abstract

HYDROGENATED BLOCK COPOLYMERS HAVING A SUPERIOR COMBINATION OF PHYSICAL PROPERTIES ARE PREPARED BY BLOCK POLYMERIZING A VINYL ARENE WITH BUTADIENE IN THE PRESENCE OF A POLAR COMPOUND TO CAUSE A LIMITED AMOUNT OF BRANCHING IN THE POLYBUTADINE BLOCK AND THEREAFTER HYDROGENATING THE POLYMER.

Description

June 22, 1971 TEIPERATURE, C
TEISILE, PSI N LII c O o 3 8 8 I I I R- C. JONES I Re. 27,145
APPAREIIT GLASS POINT, C
l l l 1.0.Sl0E-0HMN FIG. I
TEIISILE STRENGTH AT 75C I I l as c, suns-cam FIG. 3
BALL REBOUND, 7.
TEISILE, PSI
REBOUND,
7o C SIDE-CIIAIN FIG. 2
TENSILE STREIIGIH AT I00C I l I so 5o 10 1. 0, sum -cmuu FIG. 4
INVENTOR:
ROBERT C. JONES BY I @QM HIS AGENT States Patent Re. 27,145 Re issued June 22, 1971 27 145 HYDROGENATED BL( )CK COPOLYMERS F BUTADIENE AND A MONOVINYL ARYL HYDROCARBON Robert C. Jones, San Francisco, Calif., assignor to Shell Oil Company, New York, NY.
Original No. 3,431,323, dated Mar. 4, 1969, Ser. No. 338,795, Jan. 20, 1964. Application for reissue May 20, 1969, Ser. No. 848,755
Int. Cl. C08f /04 US. Cl. 260-880 10 Claims Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE Hydrogenated block copolymers having a superior combination of physical properties are prepared by block polymerizing a vinyl arene with butadiene in the presence of a polar compound tocause a limited amount of branching in the polybutadiene block and thereafter hydrogenating the polymer.
This invention is concerned with novel block copolymers, their compositions and processes for their preparation. More particular, the invention is directed to certain hydrogenated block copolymers having optimum physical properties based upon a critical microstructure of the elastomeric polymeric blocks contained therein.
Rubbers and elastomers of either natural or synthetic origin normally require vulcanization in order to obtain useful elastomeric properties. Before vulcanization, rubbers possess tacky properties and low strength which makes them of little utility except as rubber cements. Another of their prime shortcomings is that of stability relative to either heat or oxidation.
Optimum elastomeric properties are not usually attained until the rubber has been subjected to a vulcanization treatment such as by means of heating with sulfur, sulfur compounds, peroxides or other means. Vulcanization usually results in insolubilization of the rubber in most common solvents. While this may be of advantage in certain situations, for many purposes such as the application of paints, etc., and in the formation of molded objects, insolubilization is in fact a substantial disadvantage. It has been necessary in many cases to apply vulcanized rubbers in the form of latices or to vulcanize the rubber after it has been formed in a molding operation or the like. vulcanization under such circumstances often results in substantial losses of product, since the flashings from moldings etc., cannot be readily reworked but must be incorporated in other compositions acting merely as a filler or reinforcing agent.
It would be desirable to have a rubber which behaves like a vulcanized rubber without the necessity for vulcanization, as well as having the property of being soluble in a selected class of relatively inexpensive solvents such as certain hydrocarbons. Recently, a critically limited class of block copolymers has been investigated to determine the optimum structure for obtaining these combinations of properties. The block copolymers under consideration comprise primarily those having a general structure ABA wherein the two terminal polymer blocks A comprise thermoplastic polymer blocks of vinylarenes such as polystyrene, while block B is a polymer block of a conjugated diene. The proportion of the thermoplastic terminal blocks to the center elastomeric polymer block and the relative molecular weights of each of these blocks is balanced to obtain a rubber having an optimum combination of properties such that it behaves as a vulcanized rubber without requiring the actual step of vulcanization. Moreover, these block copolymers can be designed not only with this important advantage but also so as to be handled in thermoplastic forming equipment and are soluble in a variety of relatively low cost solvents.
While these block copolymers have a number of outstanding technical advantages, one of their principal limitations lies in their sensitivity to oxidation. This is due to their unsaturated character which can be minimized by hydrogenating the copolymer, especially in the center section comprising the polymeric diene block. Hydrogenation may be effected over the entire molecule, converting the terminal blocks such as polystyrene to polyvinylcyclohexaue blocks, while the diene polymer block is converted to a straight chain hydrocarbon having a relatively high degree of saturation, this portion of the block copolymer having properties similar to polymers of alpha olefins.
The elastomeric properties of certain alpha olefin polymers appear to be due in part to their degree of branching. While the alpha olefin polymers have a basic straight carbon chain backbone, those with elastomeric properties always have dependent alkyl radicals. For example, EPR (ethylene-propylene rubber) has a structure of dependent methyl radicals which appears to provide elasticity and other elastomeric properties. When an essentially unbranched straight chain polymer is formed, such as some polyethylenes, the resulting polymer is essentially nonelastomeric or in the other words relatively rigid, and behaves like a typical thermoplastic without possessing resilience, elongation, tensile strength without yield, low set or other properties characteristic of desirable elastomers.
The problem therefore exists of forming a block copolymer having the self-curing property discussed hereinbefore, solubility in relatively low cost solvents, stability toward oxidation and retention of the elastomeric properties over a wide temperature range in spite of hydrogenation of the polymer to obtain the desired degree of stability.
Now, in accordance with the present invention, a particular type of block copolymer has been prepared meeting in large measure the above requirements and combining within its structure, a configuration enabling the combination of a maximum number of physical properties especially desirable for such products. These polymers are hydrogenated block copolymers having a configuration, prior to hydrogenation, of ABA wherein each of the As is an alkenyl-substituted aromatic hydrocarbon polymer block and B is a butadiene polymer block wherein 3555 mol percent of the condensed butadiene units in the butadiene polymer block have 1,2 configuration. of the carbon atoms present in the butadiene polymer block are in the form of dependent vinyl side chains] Still in accordance with this invention, a means has been devised for the preparation of such branched block copolymers which comprises the steps of utilizing an alkyl lithium catalyst in a relatively inert hydrocarbon solvent for the block copolymer at each stage of its formation modified with a critically defined proportion of a polar compound of the group consisting of ethers, thio-ethers and tertiary amines; forming a first polymer block of an alkenyl aromatic hydrocarbon in said medium to form a living polymer block; adding butadiene thereto and continuing polymerization until the desired weight has been obtained; thereafter introducing an alkenyl arene and continuing block copolymerization to finally obtain the ABA block copolymer wherein the center polybutadiene block has the recited degree of branched configura- 3 :ion. Following the preparation of this unsaturated block :opolymer, the latter is subjected to hydrogenation of auch a degree that the unsaturation of the polybutadiene )lOCk is reduced to less than 10% of its original value.
The block copolymer having the diene center block it least 90% hydrogenated but less than 10% of the )olystyrene units hydrogenated exhibits the dual advanages of improved stability while maintaining good procssability. Block copolymers wherein at least about 25% )f the polystyrene blocks are hydrogenated have the tdvantages both improved stability and increased softenng points. Such compositions may be mixtures of block :opolymers wherein at least part of the molecules are saturated over their entire length, the remaining molecules reing those in which only the butadiene polymer block is it least 90% saturated. Alternatively, the hydrogenated olymers may be those in which at least 90% of the )olybutadiene linkages are hydrogenated and in which he polystyrene blocks are those containing both saturated 1nd unsaturated styrene units.
The figures forming a part of the specification indicate l number of physical properties of block copolymers of his variety containing a Wide range of C side chains howing that a critical range between about 35 and 55 nol percent 1,2 structure, of the carbon atoms in side :hains is required] in order to obtain the optimum comination of the most desired properties, while at the tame time retaining the benefits of self-curing and the )ossibility of processing the polymer in thermoforming :quipment such as extrusion or other thermoplastic moldng devices.
In order to have the most desirable properties, it is referred to form terminal blocks A having average molecilar weights of 4,000-115,000 and polybutadiene blocks 1aving average molecular weights of 20,000450,000. Still more preferably, the terminal blocks have average molec- Jlar weights of 8,00060,000 while the polybutadiene polymer block has an average molecular weight between about 50,000 and 300,000. Likewise, in order to promote the optimum combination of physical properties, it is desirable that the terminal plastic blocks comprise 530% by Weight of the total block copolymer.
The proportion of polar modifying compounds to be used in forming the branched polybutadiene blocks in the above types of block copolymers will depend upon a iumber of factors such as the identity of the polar compound, the precise degree of branching desired, the hydro- :arbon medium utilized and the amount of lithium catalyst present. For the purpose of the present invention, the imount of polar compound will be expressed as a molar ratio of polar compound to lithium alkyl. In order to achieve 3555 mol percent 1,2 structure, of carbon atoms in dependent side chains,] the molar ratio of polar :ompound to lithium should be between about 7 and 70, preferably between about 10 and 40.
The degree of branching of the polybutadiene block is essentially linear with the molar ratio of polar compounds :0 lithium. Consequently, if the ratio is too low, then the desired degree of branching is correspondingly decreased and the resulting block copolymer, when hydrogenated, Is essentially a plastic having substantially non-elastomeric properties e.g. poor rubber properties. On the other hand, if the molar proportion is increased beyond the maximum :imit recited, the degree of branching is excessive and, as I will be seen by reference to the figures, the elastomeric properties of the resulting products following hydrogenazion are drastically damaged. Consequently, the major abjective of the process is to utilize the correct proportion )f polar compound to lithium initiator such that the aranching of the polybutadiene block is within the desired 'ecited range of 35-55 mol percent. or in other terms, 35-55% of the carbon atoms in the polybutadiene block are in the form of dependent C side chains] While the center elastomeric block is preferably a polymerized butaliene polymer having a recited degree of branching, this 4 may be modified, with about 25% by weight of elastomeric block-producing monomers of other conjugated dienes such as isoprene and the like.
The non-elastomeric end polymer blocks comprise homopolymers or copolymers preferably prepared from alkenyl aromatic hydrocarbons and particularly from vinyl aromatic hydrocarbons wherein the aromatic may be either monocyclic or polycyclic (followed by hydrogenation). Typical monomers include styrene, alpha methyl styrene, vinyl xylene, ethyl vinyl xylene, vinyl naphthalene and the like. Mixtures of such monomers may be utilized as well. The two end blocks may be the same or different as long as they meet the generic description of these end blocks insofar as their thermoplastic character is concerned as differentiated from the elastomeric major of the center block. Where, in the specification, general reference is made to polystyrene blocks, it will be understood that other types of poly(-vinyl arenes) may be used in place thereof. The center block may be an elastomer in accordance with the definition contained in ASTM Special Technical Bulletin, No. 184 as follows:
A substance that can be stretched at room temperature to at least twice its original length and, after having been stretched and the stress removed, returned with force to approximately its original length in a short time.
The catalysts employed in the process of the present invention may be defined broadly as lithium based initiators although alkyl lithium initiators are preferred. Other suitable initiators include lithium metal and aryl lithium compounds and in certain instances, dilithium initiators such as dilithium stilbene, lithium l-diphenyl ethylene or lithium naphthalene. Alkyl lithium initiators, the preferred class, may be generally divided into normal alkyl lithiums and branched alkyl lithiums, the latter having a number of functional aspects making them more desirable than the former. Branched alkyl lithium initiators exhibit no disadvantageous induction period in the startup of the polymerization, the rate of polymerization is reasonably rapid but sutficiently steady so that it can be controlled and the products obtained are of a relatively narrow molecular Weight range also adding to the product control and effectiveness thereof for a number of purposes.
Polymerization is normally conducted at temperatures in the order of 20 to about C., preferably about +20 C. and 65 C. The proportion of initiators will depend upon the molecular weight of the products desired, but may be varied, with the latter qualification, between about 1 and about 200 parts per million based on the Weight of the monomers involved.
The basic process when using the lithium-based catalysts comprises forming a solution of the first alkenyl arene monomer in an inert hydrocarbon such as alkanes, alkenes or cycloalkanes modified by the presence of the polar compounds of the group consisting of ethers, thioethers and tertiary amines. Of course, since the presence of the polar compound is not essential in the formation of the first polymer block with many initiators, it is not essential to introduce the polar compounds at this stage since it may be introduced just prior to or together with addition of the butadiene for the formation of middle elastomeric branch block. Among the polar compounds which may be added in accordance with the one aspect of this invention ae dimethyl ether, diethyl ether, ethyl methyl ether, ethyl propyl ether, dioxane, dibenzyl ether, diphenyl ether, dimethyl sulfide, diethyl sulfide, tetramethylene oxide (tetrahydro furane), tripropyl amine, tributyl amine, trimethyl amine, triethyl amine, pyridine and quinoline. Mixtures of these polar compounds may be employed in the practice 'of the present invention. The proportion of polar compounds should be restricted in accordance with the limits set forth hereinbefore in order to obtain the desired critical degree of branching in the center elastomeric block.
When the lithium initiator, polar compound, alkenyl aromatic monomer and inert hydrocarbon are combined,
polymerization proceeds to produce the first terminal polymeric block having an average molecular weight between about 4000 and 100,000, this block being terminated on one end with a lithium radical and being referred to as a living polymer. At this time, without further alteration or removal of this lithium radical, butadiene is injected into the system and block polymerization occurs, the presence of the polar compound now becoming important in producing the desired degree of branching of the polybutadiene block. The temperature, initiator concentration and solvent may be adjusted at this time to optimize the desired degree of polymerization or rate of reaction. The resulting product is then typified by the general structure ABLi, a living polymer block of the two monomers thus far employed. After this, a second addition of an alkenyl aromatic hydrocarbon is made to produce the final terminal block and result in the formation of the three block system ABA which is the result of polymerization followed by termination with a polar terminator such as an alcohol and the like.
Having obtained the basic polymer with the described degree of branching in the center elastomeric butadiene polymer block, the next necessary stage is to hydrogenate -the polymer in order to increase its service temperature and at the same time to improve the oxidation stability of the product. Hydrogenation may be conducted utilizing a variety of hydrogenation catalysts such as nickel on kieselguhr, Raney nickel, copper chromate, molybdenum sulfide, and finely divided platinum or other noble metals on a low surface area carrier.
Hydrogenation may be conducted at any desired temperature or pressure, say, from atmospheric to 3000 p.s.i.g., the usual range being between 100 and 1000 p.s.i.g. at temperatures from about 75 F. to 600 F., for times between about 0.1 and 24 hours, preferably 0.2-8 hours. Preferred catalysts comprise the reduced metal products obtained by reduction of cobalt nickel, tungsten or molybdenum compounds with aluminum alkyls or hydrides. These catalysts are selective, in that the elasomeric block, a set of block copolymers was prepared having similar individual block molecular weights. While the polar compound was varied relative to the amount of lithium alkyl initiator present, the following is a typical example by which this set of block copolymers were prepared: Styrene (60 grams) was dissolved in benzene 1400 grams) containing varying proportions of tetrahydrofurane as the polar compound. This mixture was brought to C. and 0.003 mol of secondary butyl lithium was added. Polymerization was conducted at 40 C. in a reactor until all of the styrene had been converted to a polymer terminated with a lithium radical. Thereafter, butadiene was added to the reaction mixture (450 grams) and polymerization was continued until complete utilization of the butadiene monomer. The styrene-butadiene block polymer so formed was then modified by the addition of styrene (60 grams) and polymerization continued until no monomer remain: The resulting polystyrene-polybutadiene-polystyrene block polymer had average block molecular Weights of 15,000l00,00015,000.
The block copolymers so prepared by variation in tetrahydrofurane ratio relative to secondary butyl lithium were then hydrogenated at 500 p.s.i.g. hydrogen pressure, for 18 hours at 160 C. utilizing 0.3 gram of nickel on kieselguhr support per gram of polymer. The hydrogenated polymers were then tested for physical properties which are shown in the table below.
These data were then plotted in part in FIGURES l-4. It will be evident from a study of these figures and the accompanying table of data that block copolymers wherein the 1,2 content [side chain content] is between 35 and mol percent of the elastomeric center block appear to offer the best elastomeric compromise between low temperature resilience and stress-strain properties. At lower side chain levels, lower rebound and higher glass points are experienced. At higher side chain levels, tensile strength decreases along with rebuond, and glass point increases. Furthermore, tensile strength at elevated temperatures sulfers at 1,2 [side chain] contents above 55 mol diene block is hydrogenated rapidly, while the styrene percent. When the block copolymers having little or no PROPERTIES OF HYDROGENATED SBS, PRECURSOR HAVING VARYING 1,2 CONTENT AND 15-100-15Xl0' BLOCK LENGTHS Precursor, Modulus percent 1,2 in I.V., dl./g. Tensile Elongation butadiene (toluen I2 No at. break, 300%, 500%, at break, Set, Shore A block 25 0.) g 12/100 g p.s.i. p.s.i. p.s.i. percent percent hardness blocks are more slowly hydrogenated unless hydrogenation temperatures are increased.
Since the polybutadiene block is that most subject to oxidative attack, it is the primary objective of hydrogenation to reduce the unsaturation of this block, the hydrogenation of the terminal plastic blocks being of less importance. With some selective catalysts, this is readily accomplished whereas with others, the hydrogenation proceeds along the entire chain.
To improve the stability of the block copolymers, the diene unsaturation (measured by iodine number) should be reduced to less than 10% (preferably less than 5%) of its original value. Reduction of styrene unsaturation (measured by ultra violet) may be expressed as an average of 0100%; e.g., no reduction at all, and up to complete reduction. At intermediate reduction levels, it will be understood that the hydrogenation product may be a mixture of products in which some of the polystyrene blocks are hydrogenated more than others.
In order to compare the physical properties of the branched copolymers according to the present invention with those containing either less or more branching in the side chain branching in the center blocks were hydrogenated, the products resulted in a plastic-type polymer of limited solubility presumably due to a degree of crystallinity in the center segment.
I claim as my invention:
1. As a new composition of matter, a hydrogenated block copolymer having the general configuration ABA wherein, prior to hydrogenation.
(1) each A is a polymerized mono alkenyl aromatic hydrocarbon block having an average molecular weight of about 4,000115,000;
(2) B is a polymerized butadiene hydrocarbon block having an average molecular weight of about 20,000- 450,000;
(3) the blocks A constituting 2-33 weight percent of the copolymer;
(4) 35-55 mol percent of the condensed butadiene units in block B having 1,2-configuration; of the butadiene carbon atoms in block B being vinyl side chains;]
() and the unsaturation of block B having been reduced to less than of the original unsaturation.
2. A new composition of matter according to claim 1 wherein prior to hydrogenation the polymeric blocks A are polymer blocks of a vinyl aromatic hydrocarbon.
3. A new composition of matter according to claim 1 wherein the blocks A comprise 5-30% by weight of the copolymer, the unsaturation of block B is reduced to less than 5% of its original value and the average unsaturation of the hydrogenated block copolymer is reduced to less than of the original value.
4. As a new composition of matter, a hydrogenated block copolymer having the general configuration wherein, prior to hydrogenation,
(1) each A is a polymerized styrene block having an average molecular weight of about 8,00060,000;
(2) B is a polymerized butadiene block having an average molecular weight of about 50,000300,000, 40- 50 mol percent of the condensed butadiene units in block B having 1,2-c0nfigurati0n; of the butadiene carbon atoms in the block being vinyl sidechains;]
(3) the blocks A comprising 530% by weight of the copolymer; the unsaturation of block B having been reduced by hydrogenation to less than 10% of its original value.
5. A hydrogenated block copolymer composition acaccording to claim 1 wherein an average of less than about 10% of the mono alkenyl aromatic hydrocarbon units are hydrogenated.
6. A hydrogenated block copolymer composition ac- V cording to claim 1 wherein an average of more than about 25% of the mono alkenyl aromatic hydrocarbon units are hydrogenated. [hydrogeanted] 7. The process for the preparation of a block copolymer comprising the steps:
(a) polymerizing a mono alkenyl arene in the presence of an inert hydrocarbon solvent and alithium alkyl catalyst whereby a polymer block A having an average molecular weight of 4,000115,000 terminated with a lithium ion is formed;
(b) adding butadiene to the lithium-terminated block and block copolymerizing it with said first block in the presence of a polar compound of the group consisting of ethers, thioethers and tertiary amines, the molar ratio of said polar compound to lithium alkyl catalyst being between about 7 and 70, whereby a block copolymer terminated with lithium is formed 3555 mol percent of the condensed butdiene units in block B having 1,2-c0nfigurati0n; of the carbon atom in the butadiene polymer block being vinyl side chains,] the *butadiene polymer block B having an average molecular weight of 20,000450,000;
(0) adding thereto a mono alkenyl arene and block polymerizing it with the block copolymer of step (b), to form a block polymer ABA;
(d) and hydrogenating the block polymer whereby the unsaturation of the diene polymer block B is reduced to less than 10% of its original value.
8. A process according to claim 7 'Wherein the polar compound in step (b) is an ether.
9. A process according to claim 7 wherein the mono alkenyl arene is styrene and the polar compound is tetrahydrofiuran.
10. A process according to claim 9 wherein the lithium alkyl is a lithium secondary alkyl.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent UNITED STATES PATENTS 3,333,024 7/1967 Haefele 260-880 3,140,278 7/ 1964 Kuntz 260879 3,149,182 9/1964 Porter 260879 3,239,478 3/1966 Harlan 260879 3,251,905 5/1966 Zelinski 260-879 3,299,174 1/1967 Kuhre 260879 OTHER REFERENCES Kuntz: Journal Polymer Science, vol. 54, pp. 569-586 1961), pp. 576-577 and 583-584 specifically relied upon.
JAMES A. SEIDLECK, Primary Examiner R. A. GAITHER, Assistant Examiner US. Cl. X.R. 260879
US27145D 1969-05-20 1969-05-20 Side-chain Expired USRE27145E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84875569A 1969-05-20 1969-05-20

Publications (1)

Publication Number Publication Date
USRE27145E true USRE27145E (en) 1971-06-22

Family

ID=25304183

Family Applications (1)

Application Number Title Priority Date Filing Date
US27145D Expired USRE27145E (en) 1969-05-20 1969-05-20 Side-chain

Country Status (1)

Country Link
US (1) USRE27145E (en)

Cited By (233)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057601A (en) 1975-11-20 1977-11-08 Phillips Petroleum Company Block copolymers of alkadienes and monovinyl arenes
US4239859A (en) 1979-08-29 1980-12-16 Shell Oil Company High impact polystyrene blend compositions
US4452951A (en) 1981-07-24 1984-06-05 Nippon Zeon Co. Ltd. Process for hydrogenating conjugated diene polymers
US4578429A (en) 1984-08-31 1986-03-25 Shell Oil Company Selectively hydrogenated block copolymers modified with acid compounds or derivatives
US4687815A (en) 1985-12-23 1987-08-18 Shell Oil Company Hydrogenated block copolymers
US4721739A (en) 1982-07-01 1988-01-26 Bic Corp. Erasable ink compositions
EP0254346A2 (en) * 1986-07-07 1988-01-27 Shell Internationale Researchmaatschappij B.V. Thermoplastic compositions and process for the preparation thereof
US4866128A (en) 1988-06-08 1989-09-12 Shell Oil Company Polymer blend
US4880878A (en) 1987-12-29 1989-11-14 Shell Oil Company Block copolymer blends with improved oil absorption resistance
USH731H (en) 1985-08-16 1990-02-06 Blends of thermoplastic polymers and modified block copolymers
US4898914A (en) 1985-08-16 1990-02-06 Shell Oil Company Modified block copolymers functionalized in the monoalkenyl aromatic or vinylarene block
US4906687A (en) 1987-12-31 1990-03-06 Shell Oil Company Blends of polar thermoplastic polymers and modified block copolymers
USH826H (en) 1988-02-17 1990-10-02 Lubricant compositions containing a viscosity index improver having dispersant properties
US4970254A (en) * 1988-09-22 1990-11-13 Shell Oil Company Method for hydrogenating functionalized polymer and products thereof
US4970265A (en) * 1989-03-27 1990-11-13 Shell Oil Company Functionalized polymers and process for modifying unsaturated polymers
US4983673A (en) * 1988-12-22 1991-01-08 Shell Oil Company High impact resistant blends of thermoplastic polyamides and modified diblock copolymers
US4988765A (en) * 1985-08-16 1991-01-29 Shell Oil Company High impact resistant blends of thermoplastic polyamides and modified diblock copolymers
US5051457A (en) * 1990-07-16 1991-09-24 Shell Oil Company Asphalt-block copolymer roofing composition
USH1022H (en) 1991-01-09 1992-02-04 Shell Oil Company Soft paintable polymer composition
US5106917A (en) * 1990-02-28 1992-04-21 Shell Oil Company Peelable lidstock based on polybutylene block copolymer blends
US5149895A (en) * 1990-01-16 1992-09-22 Mobil Oil Corporation Vulcanizable liquid compositions
US5166277A (en) * 1991-10-31 1992-11-24 Shell Oil Company Hydrogenation of unsaturation in low molecular weight diene polymers
US5175212A (en) * 1991-11-04 1992-12-29 Shell Oil Company Low temperature toughening of polycarbonates with a modified block copolymer
US5177155A (en) * 1991-05-13 1993-01-05 Shell Oil Company Selective hydrogenation of conjugation diolefin polymers with rare earth catalysts
USH1141H (en) 1990-07-16 1993-02-02 Shell Oil Company Asphalt-block copolymer roofing composition
US5187236A (en) * 1990-01-16 1993-02-16 Mobil Oil Corporation Solid block and random elastomeric copolymers
US5189110A (en) * 1988-12-23 1993-02-23 Asahi Kasei Kogyo Kabushiki Kaisha Shape memory polymer resin, composition and the shape memorizing molded product thereof
US5209862A (en) * 1991-01-30 1993-05-11 Shell Oil Company Vi improver and composition containing same
US5218033A (en) * 1990-12-07 1993-06-08 Shell Oil Company Functionalized vinyl aromatic/conjugated diolefin block copolymer and salt of fatty acid compositions
US5266635A (en) * 1993-02-26 1993-11-30 Shell Oil Company Impact resistant polycarbonates containing elastomers having phenolic groups
US5308676A (en) * 1991-09-20 1994-05-03 Shell Oil Company Torchable roll roofing membrane
US5336726A (en) * 1993-03-11 1994-08-09 Shell Oil Company Butadiene polymers having terminal silyl groups
US5342885A (en) * 1989-12-08 1994-08-30 Shell Oil Company Epoxy resin coating with COOH-grated hydrogenated block copolymer
US5349015A (en) * 1989-12-08 1994-09-20 Shell Oil Company Melt blending acid or anhydride-crafted block copolymer pellets with epoxy resin
US5376745A (en) * 1993-12-01 1994-12-27 Shell Oil Company Low viscosity terminally functionalized isoprene polymers
USH1405H (en) * 1992-04-09 1995-01-03 Shell Oil Company Epoxy resin composition
US5378761A (en) * 1993-06-24 1995-01-03 Shell Oil Company Monohydroxylated 1,3-polybutadiene/polyisocyanate product reacted with hydroxyl-functional resin
US5389711A (en) * 1990-02-14 1995-02-14 Shell Oil Company Plasticisers for salt functionalized polyvinyl aromatics
US5391637A (en) * 1993-11-23 1995-02-21 Shell Oil Company Capping of anionic polymers with oxetanes
US5393843A (en) * 1992-08-31 1995-02-28 Shell Oil Company Butadiene polymers having terminal functional groups
US5405914A (en) * 1993-07-29 1995-04-11 Shell Oil Company Process for improving the color of selectively hydrogenated block copolymers modified with acid compounds or derivatives
US5458791A (en) * 1994-07-01 1995-10-17 Shell Oil Company Star polymer viscosity index improver for oil compositions
US5460739A (en) * 1994-09-09 1995-10-24 Shell Oil Company Star polymer viscosity index improver for oil compositions
EP0684267A1 (en) 1994-05-27 1995-11-29 Shell Internationale Researchmaatschappij B.V. A method for producing asymmetric radial polymers
EP0697247A2 (en) 1994-07-15 1996-02-21 Shell Internationale Researchmaatschappij B.V. Process for the conversion of hydrocarbonaceous feedstock
EP0698626A1 (en) 1994-08-11 1996-02-28 Shell Internationale Researchmaatschappij B.V. Asymmetric triblock copolymer, viscosity index improver for oil compositions
EP0698638A1 (en) 1994-07-18 1996-02-28 Shell Internationale Researchmaatschappij B.V. Crosslinkable waterborne dispersions of hydroxy functional polydiene polymers and amino resins
EP0709416A2 (en) 1994-09-29 1996-05-01 Shell Internationale Researchmaatschappij B.V. Polyurethane sealants and adhesives containing saturated hydrocarbon polyols
EP0711795A1 (en) 1994-11-09 1996-05-15 Shell Internationale Researchmaatschappij B.V. Low viscosity adhesive compositions containing asymmetric radial polymers
EP0712892A1 (en) 1994-11-17 1996-05-22 Shell Internationale Researchmaatschappij B.V. Blends of block copolymers and metallocene polyolefins
US5554691A (en) * 1993-07-12 1996-09-10 Shell Oil Company Adhesives, sealants, coatings and polymer compositions containing monohydroxylated polydienes in hydroxyl functional resins
US5594072A (en) * 1993-06-30 1997-01-14 Shell Oil Company Liquid star polymers having terminal hydroxyl groups
US5602206A (en) * 1992-03-04 1997-02-11 Basf Corporation Block copolymer process
US5616542A (en) * 1996-04-03 1997-04-01 Shell Oil Company Oil with asymmetric radial polymer having block copolymer arm
EP0771641A2 (en) 1995-11-01 1997-05-07 Shell Internationale Researchmaatschappij B.V. Process to prepare a blown film of a block copolymer composition
EP0781782A1 (en) 1995-12-28 1997-07-02 Shell Internationale Researchmaatschappij B.V. Removal of alkali metal compounds from polymer cements
EP0781605A1 (en) 1995-12-28 1997-07-02 Shell Internationale Researchmaatschappij B.V. Removal of metal compounds from an acid solution
EP0781784A1 (en) 1995-12-28 1997-07-02 Shell Internationale Researchmaatschappij B.V. Removal of an alkali metal compound from a polymer cement
US5663250A (en) * 1996-05-16 1997-09-02 Shell Oil Company Deprotection with molten salt
US5681895A (en) * 1995-04-19 1997-10-28 Shell Oil Company Coupling of anionic polymers with trialkoxysilanes having silicon-hydrogen bonds
USH1725H (en) 1996-02-23 1998-05-05 Shell Oil Company Clear polyphenylene ether/block copolymer composition
US5777031A (en) * 1996-07-03 1998-07-07 Shell Oil Company High 1,2 content thermoplastic elastomer/oil/polyolefin composition
US5863646A (en) * 1996-03-25 1999-01-26 Ppg Industries, Inc. Coating composition for plastic substrates and coated plastic articles
WO1999005185A1 (en) * 1997-07-23 1999-02-04 Shell Internationale Research Maatschappij B.V. Enhanced hydrogenation catalyst removal from block copolymers by reduction in polymer cement viscosity by increasing the vinyl content of the block copolymers
US5925707A (en) 1997-07-30 1999-07-20 Shell Oil Company Oil gel formulations containing high vinyl content hydrogenated styrene-butadiene-styrene block copolymers
USH1799H (en) 1991-11-08 1999-08-03 Shell Oil Company Star polymer viscosity index improver for oil compositions
US5973071A (en) 1997-03-19 1999-10-26 Shell Oil Company Polymeric composition
US5993900A (en) 1996-06-24 1999-11-30 Shell Oil Company Acid-grafted hydrogenated elastomer/endblock aromatic resin primer
US6001469A (en) 1996-03-28 1999-12-14 Ppg Industries Ohio, Inc. Thermosettable primer and topcoat for plastics, a method for applying and coated plastic articles
US6075097A (en) 1997-06-06 2000-06-13 Shell Oil Company Process for producing conjugated diene diols using carbon dioxide
US6148830A (en) 1994-04-19 2000-11-21 Applied Elastomerics, Inc. Tear resistant, multiblock copolymer gels and articles
USH1949H1 (en) 1996-02-01 2001-03-06 Shell Oil Company Hydrogenated elastomer primed polyolefin film
US6203913B1 (en) 1997-12-19 2001-03-20 Ppg Industries Ohio, Inc. Coating composition for plastic substrates
US6225415B1 (en) 1999-09-20 2001-05-01 University Of North Carolina At Charlotte Process to selectively place functional groups within polymer chain
US6300414B1 (en) 1998-08-28 2001-10-09 Basf Corporation Additive for coating compositions for adhesion to TPO substrates
US6420490B1 (en) 1998-12-02 2002-07-16 Kraton Polymers U.S. Llc Telechelic polymers are produced by ozonation degradation of diene polymers
US6423778B1 (en) 1999-06-30 2002-07-23 Basf Corporation Process for coating olefinic substrates
US6451913B1 (en) 1999-09-01 2002-09-17 Kraton Polymers U.S. Llc Radial hydrogenated block copolymers showing one phase melt behavior
US6451865B1 (en) 1997-10-31 2002-09-17 Kraton Polymers U.S. Llc Foam composition comprising oil, thermoplastic elastomer and expandable particles
US20020188057A1 (en) * 1994-04-19 2002-12-12 Chen John Y. Gelatinous elastomer compositions and articles for use as fishing bait
US6593423B1 (en) 2000-05-03 2003-07-15 Ppg Industries Ohio, Inc. Adhesion promoting agent and coating compositions for polymeric substrates
US20030153681A1 (en) * 2002-02-07 2003-08-14 St. Clair David J. Gels from controlled distribution block copolymers
US20030181585A1 (en) * 2002-02-07 2003-09-25 Handlin Dale Lee Articles prepared from hydrogenated controlled distribution block copolymers
US20030187137A1 (en) * 2002-03-28 2003-10-02 Handlin Dale L. Novel tetrablock copolymer and compositions containing same
US6630532B1 (en) * 1999-09-15 2003-10-07 Kraton Polymer U.S. Llc Modified styrenic block copolymer compounds having improved elastic performance
US20030225209A1 (en) * 2002-06-04 2003-12-04 Handlin Dale Lee Articles prepared from hydrogenated block copolymers
US20030225210A1 (en) * 2002-06-04 2003-12-04 Handlin Dale Lee Gels from silane-coupled block copolymers
US20030229179A1 (en) * 2000-11-07 2003-12-11 Merritt William H. Adhesion promoter, coating compositions for adhesion to olefinic substrates and methods therefor
US20040018272A1 (en) * 2002-07-20 2004-01-29 Chen John Y. Gelatinous food elastomer compositions and articles for use as fishing bait
US6699941B1 (en) 2002-11-07 2004-03-02 Kraton Polymers U.S. Llc Block copolymer
USH2100H1 (en) 1996-03-26 2004-04-06 Kraton Polymers Llc Low stress relaxation adhesive having high molecular weight endblock copolymer
US20040072951A1 (en) * 2002-02-07 2004-04-15 Hansen David Romme Photopolymerizable compositions and flexographic plates prepared from controlled distribution block copolymers
US20040070187A1 (en) * 1994-04-19 2004-04-15 Chen John Y. Inflatable restraint cushions and other uses
US20040106705A1 (en) * 2001-04-12 2004-06-03 Mulder Evert Alan Pipe coating
US20040138371A1 (en) * 2002-02-07 2004-07-15 St. Clair David John Gels from controlled distribution block copolymers
US20040146541A1 (en) * 1994-04-19 2004-07-29 Chen John Y. Tear resistant gel articles for various uses
US20040147686A1 (en) * 2002-12-31 2004-07-29 Kraton Polymers U.S. Llc Process for preparing hydrogenated conjugated diene block copolymers
US6777026B2 (en) 2002-10-07 2004-08-17 Lord Corporation Flexible emissive coatings for elastomer substrates
WO2004106399A2 (en) 2003-05-30 2004-12-09 Kraton Polymers Research B.V. Process for making a coupled block copolymer compositon
US20040254082A1 (en) * 2003-06-12 2004-12-16 Bloch Ricardo A. Viscosity index improver concentrates
EP1493800A1 (en) 2003-07-01 2005-01-05 Infineum International Limited Viscosity index improvers for lubricating oil compositions
US20050008669A1 (en) * 1994-04-19 2005-01-13 Chen John Y. Tear resistant gels and articles for every uses
US6844412B2 (en) 2002-07-25 2005-01-18 Lord Corporation Ambient cured coatings and coated rubber products therefrom
US20050107541A1 (en) * 2003-10-30 2005-05-19 Bening Robert C. Coupled radial anionic polymers
US20050137295A1 (en) * 2003-12-17 2005-06-23 Kraton Polymers U.S. Llc Bituminous compositions modified by non-blocking elastomers
US20050137312A1 (en) * 2003-12-22 2005-06-23 Kraton Polymers U.S. Llc Adhesive formulations from novel radial (S-I/B)x polymers
US20050197465A1 (en) * 2004-03-03 2005-09-08 Kraton Polymers U.S. Llc Block copolymers having high flow and high elasticity
US20050215725A1 (en) * 2004-03-25 2005-09-29 Kraton Polymers U.S. Llc Thermoplastic gel compositions that can be converted into thermoset gel compositions by exposure to radiation
US20050215724A1 (en) * 2004-03-25 2005-09-29 Kraton Polymers U.S. Llc Thermoplastic gel compositions that can be converted into thermoset gel compositions by exposure to radiation
US20050222356A1 (en) * 2002-01-31 2005-10-06 Gert Joly Block copolymer compositions, having improved mechanical properties and processability
US20050222305A1 (en) * 2002-03-28 2005-10-06 Trommelen Erik A Bituminous composition
US20050222340A1 (en) * 2004-04-02 2005-10-06 Kraton Polymers U.S. Llc Process for the prevention or restriction of oil spills
US20050239930A1 (en) * 2004-04-27 2005-10-27 Kraton Polymers U.S. Llc Photocurable compositions and flexographic printing plates comprising the same
US20050256265A1 (en) * 2004-05-11 2005-11-17 Wright Kathryn J Articles prepared from high molecular weight tetrablock copolymers
US20060030665A1 (en) * 2002-01-31 2006-02-09 Gert Joly Blockcopolymer compositions, having improved mechanical properties and processability and styrenic blockcopolymer to be used in them
US20060106138A1 (en) * 2002-12-16 2006-05-18 Trommelen Erik A T Block copolymer modified bitumens, and felts, coatings, sealants and roads made therefrom
US20060183844A1 (en) * 2003-03-24 2006-08-17 Kraton Polymers U.S. Llc Poly(styrene-butadiene-styrene)polymers having a high vinyl content in the butadiene block and hot melt adhesive composition comprising said polymers
US7108873B2 (en) 1994-04-19 2006-09-19 Applied Elastomerics, Inc. Gelatinous food elastomer compositions and articles
WO2007000191A1 (en) 2004-12-24 2007-01-04 Kraton Polymers Research B.V. High melt strength thermoplastic elastomer composition
WO2007010039A1 (en) 2005-07-22 2007-01-25 Kraton Polymers Research B.V. Sulfonated block copolymers, method for making same, and various uses for such block copolymers
US20070020473A1 (en) * 2005-07-25 2007-01-25 Kraton Polymers U.S. Llc Flexible packaging laminate films including a block copolymer layer
US20070026175A1 (en) * 2003-07-15 2007-02-01 Denki Kagaku Kogyo Kabushiki Kaisha Heat-shrinkable foam films
US20070066753A1 (en) * 2005-09-16 2007-03-22 Ehrlich Martin L Highly processible compounds of high MW conventional block copolymers and controlled distribution block copolymers
US20070066757A1 (en) * 2005-09-22 2007-03-22 Corcoran Patrick H Method of producing adherent coatings on resinous substrates
US20070092722A1 (en) * 2005-10-24 2007-04-26 Kraton Polymers U.S. Llc Protective films and pressure sensitive adhesives
US20070105986A1 (en) * 2005-11-09 2007-05-10 Kraton Polymers U. S. Llc Blown asphalt compositions
US20070155846A1 (en) * 2004-09-03 2007-07-05 Xavier Muyldermans Foamable polymeric compositions and articles containing foamed compositions
US20070213241A1 (en) * 2006-03-10 2007-09-13 St Clair David John Viscosity index improver for lubricating oils
US20070225427A1 (en) * 2006-03-24 2007-09-27 Wright Kathryn J Novel unhydrogenated block copolymer compositions
US20070225428A1 (en) * 2006-03-24 2007-09-27 Bening Robert C Novel hydrogenated block copolymer compositions
US20070225429A1 (en) * 2006-03-24 2007-09-27 Wright Kathryn J Novel block copolymer compositons
WO2007111849A2 (en) 2006-03-24 2007-10-04 Kraton Polymers U.S. Llc Novel block copolymer compositions
US20080039584A1 (en) * 2006-03-24 2008-02-14 Kraton Polymers U.S. Llc High Temperature Block Copolymers and Process for Making Same
US20080076876A1 (en) * 2006-09-25 2008-03-27 Basf Corporation Coating compositions for adhesion to olefinic substrates
US20080153971A1 (en) * 2006-12-21 2008-06-26 Kraton Polymers U.S. Llc Solvent sprayable contact adhesive formulations from (S-I/B)x polymers
US20080153970A1 (en) * 2006-12-21 2008-06-26 Kraton Polymers U.S. Llc Solvent sprayable contact adhesive formulations from functionalized/controlled distribution block copolymers
US20080319130A1 (en) * 2005-12-22 2008-12-25 Dow Global Technologies Inc. Blends of Styrenic Block Copolymers and Propylene-Alpha Olefin Copolymers
US20090163361A1 (en) * 2007-12-21 2009-06-25 Kraton Polymers Us Llc Soft elastomeric films
US20090186958A1 (en) * 2008-01-18 2009-07-23 Kraton Polymers Us Llc Gel compositions
EP2083063A1 (en) 2008-01-22 2009-07-29 Infineum International Limited Lubricating oil composition
US20090234059A1 (en) * 2008-03-13 2009-09-17 Kraton Polymers Us Llc Miktopolymer compositions
US20090247689A1 (en) * 2006-09-20 2009-10-01 Kraton Polymers Us Llc Elastic film grade thermoplastic polymer compositions having improved elastic performance
US20090247703A1 (en) * 2008-03-28 2009-10-01 Handlin Jr Dale L Process for improving tear resistance in elastic films
US20100010147A1 (en) * 2008-07-08 2010-01-14 Kraton Polymer U.S. Llc Adhesives prepared from diphenylethylene containing block copolymers
US20100010154A1 (en) * 2008-07-08 2010-01-14 Kraton Polymers U.S. Llc Gels prepared from dpe containing block copolymers
US20100056721A1 (en) * 2008-09-03 2010-03-04 Kathryn Wright Articles prepared from certain hydrogenated block copolymers
US20100068515A1 (en) * 2008-09-16 2010-03-18 Paul Charles W Acrylic pressure sensitive adhesive formulation and articles comprising same
US20100112358A1 (en) * 2005-09-22 2010-05-06 Corcoran Patrick H Adherent coating compositions for resinous substrates
US20100130670A1 (en) * 2008-11-21 2010-05-27 Kraton Polymers Us Llc End use applications prepared from certain block copolymers
WO2010077799A1 (en) 2008-12-15 2010-07-08 Kraton Polymers Us Llc Hydrogenated styrenic block copolymers blends with polypropylene
US20100190912A1 (en) * 2006-04-21 2010-07-29 Kraton Polymers U.S. Llc Thermoplastic elastomer composition
US20110086977A1 (en) * 2009-10-13 2011-04-14 Carl Lesley Willis Metal-neutralized sulfonated block copolymers, process for making them and their use
US20110086982A1 (en) * 2009-10-13 2011-04-14 Carl Lesley Willis Amine neutralized sulfonated block copolymers and method for making same
US20110112236A1 (en) * 2009-11-12 2011-05-12 Kraton Polymers U.S. Llc Thermoplastic polyurethane block copolymer compositions
US20110184082A1 (en) * 2010-01-27 2011-07-28 Kraton Polymers U.S. Llc Compositions Containing Styrene-Isobutylene-Styrene And Styrene-Ethylene/Butylene-Styrene Block Copolymers
US8012539B2 (en) 2008-05-09 2011-09-06 Kraton Polymers U.S. Llc Method for making sulfonated block copolymers, method for making membranes from such block copolymers and membrane structures
WO2011133488A1 (en) 2010-04-22 2011-10-27 Kraton Polymers U.S. Llc High tensile strength article with elastomeric layer
WO2012050860A1 (en) 2010-09-29 2012-04-19 Kraton Polymers U.S. Llc Energy recovery ventilation sulfonated block copolymer laminate membrane
WO2012050740A1 (en) 2010-09-29 2012-04-19 Kraton Polymers U.S. Llc Elastic, moisture-vapor permeable films, their preparation and their use
WO2012054325A1 (en) 2010-10-18 2012-04-26 Kraton Polymers U.S. Llc Method for producing a sulfonated block copolymer composition
US8222346B2 (en) 2003-09-23 2012-07-17 Dais-Analytic Corp. Block copolymers and method for making same
EP2607466A2 (en) 2011-12-21 2013-06-26 Infineum International Limited Viscosity index improvers for lubricating oil compositions
WO2013138146A1 (en) 2012-03-15 2013-09-19 Kraton Polymers U.S. Llc Blends of sulfonated block copolymers and particulate carbon and membranes, films and coatings comprising them
WO2014046989A2 (en) 2012-09-19 2014-03-27 Kraton Polymers U.S. Llc Paramethylstyrene block copolymers and their use
EP2712809A1 (en) 2007-10-19 2014-04-02 Lord Corporation Suspension system for aircraft auxilliary power unit with elastomeric member
WO2014058823A1 (en) 2012-10-08 2014-04-17 Teknor Apex Company Thermoplastic elastomer compositions having biorenewable content
WO2014087815A1 (en) 2012-12-07 2014-06-12 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー Adhesive composition for protective film of coated surface and method for preparing same
WO2014087814A1 (en) 2012-12-07 2014-06-12 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー Adhesive composition for protective film of coated surface and method for preparing same
WO2014110534A1 (en) 2013-01-14 2014-07-17 Kraton Polymers U.S. Llc Anion exchange block copolymers, their manufacture and their use
WO2014132718A1 (en) 2013-02-28 2014-09-04 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー Transparent and tough rubber composition, and process for producing same
WO2014150119A1 (en) 2013-03-15 2014-09-25 Nike International Ltd. Modified thermoplastic elastomers for increased compatibility with supercritical fluids
WO2015006179A1 (en) 2013-07-12 2015-01-15 Kraton Polymers U.S. Llc High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications
WO2015065826A1 (en) 2013-11-01 2015-05-07 Kraton Polymers U.S. Llc A fuse molded three dimensional article and a method for making the same
US9061254B2 (en) 2013-01-14 2015-06-23 Kraton Polymers U.S. Llc Block copolymers, their manufacture and their use
WO2015103241A1 (en) 2014-01-06 2015-07-09 Kraton Polymers U.S. Llc Hot melt pressure sensitive adhesive and thermoset comprising styrene-butadiene polymers having high vinyl and high di-block
WO2015153747A1 (en) 2014-04-02 2015-10-08 Kraton Polymers U.S. Llc Block copolymers containing a copolymer myrcene block
WO2015153736A1 (en) 2014-04-02 2015-10-08 Kraton Polymers U.S. Llc Adhesive compositions containing a block copolymer with polymyrcene
EP2940110A1 (en) 2014-04-29 2015-11-04 Infineum International Limited Lubricating oil compositions
US9216405B1 (en) 2014-06-26 2015-12-22 Kraton Polymers U.S. Llc Rotary enthalpy exchange wheel having sulfonated block copolymer
EP2975071A1 (en) 2014-07-16 2016-01-20 Kraton Polymers U.S. LLC Block copolymers, their manufacture and their use
US9243163B2 (en) 2012-02-24 2016-01-26 Kraton Polymers U.S. Llc High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications
US9304231B2 (en) 2014-02-04 2016-04-05 Kraton Polymers U.S. Llc Heat fusible oil gels
WO2016057452A1 (en) 2014-10-09 2016-04-14 Kraton Polymers U.S. Llc Adhesive compositions with amorphous polyolefins
US9394472B2 (en) 2014-03-27 2016-07-19 Kraton Polymers U.S. Llc Low fluid loss drilling fluid compositions comprising diblock copolymers
WO2017006298A1 (en) 2015-07-09 2017-01-12 Eoc Belgium Nv Cross-linkable hydroxyfunctional latex
EP3190166A1 (en) 2015-12-09 2017-07-12 Infineum International Limited Viscosity index improver concentrates
EP3192858A1 (en) 2016-01-15 2017-07-19 Infineum International Limited Use of lubricating oil composition
US9758649B2 (en) 2015-03-30 2017-09-12 Kraton Polymers U.S. Llc Cured transparent rubber article, and manufacturing process for the same
US9758648B2 (en) 2015-03-30 2017-09-12 Kraton Polymers U.S. Llc Curable transparent rubber composition, a cured transparent rubber composition made thereof, and manufacturing process for the same
US9757901B2 (en) 2013-11-26 2017-09-12 Kraton Polymers U.S. Llc Laser sintering powder, laser sintering article, and a method of making a laser sintering article
WO2017165521A1 (en) 2016-03-24 2017-09-28 Kraton Polymers U.S. Llc Semi-crystalline block copolymers and compositions therefrom
US9834625B2 (en) 2015-08-14 2017-12-05 Kraton Polymers U.S. Llc Amine-containing polyalkenyl coupling agents and polymers prepared therefrom
US9840600B2 (en) 2015-03-30 2017-12-12 Kraton Polymers U.S. Llc Diene rubber composition configured to be vulcanized at lower temperature; and manufacturing process of rubber article from the same
EP3257921A1 (en) 2016-06-14 2017-12-20 Infineum International Limited Lubricating oil additives
US9862819B2 (en) 2015-06-12 2018-01-09 Kraton Polymers U.S. Llc Composition for soft skins and uses thereof
US9861941B2 (en) 2011-07-12 2018-01-09 Kraton Polymers U.S. Llc Modified sulfonated block copolymers and the preparation thereof
US9932463B2 (en) 2015-03-30 2018-04-03 Kraton Polymers U.S. Llc Curable transparent rubber composition, a cured transparent rubber composition made thereof, and manufacturing process for the same
US9938401B2 (en) 2012-11-05 2018-04-10 Kraton Polymers U.S. Llc Fire retardant systems for polymers that enable flexibility and strength
US9944776B2 (en) 2014-08-26 2018-04-17 Kraton Polymers U.S. Llc Transparent, tough and heatproof rubber composition comprising neodymium-catalyzed isoprene component, and manufacturing process for the same
EP3321347A1 (en) 2016-11-14 2018-05-16 Infineum International Limited Lubricating oil additives based on overbased gemini surfactant
WO2018098023A1 (en) 2016-11-22 2018-05-31 3M Innovative Properties Company Pentablock copolymers
US10047212B2 (en) 2015-03-30 2018-08-14 Kraton Polymers U.S. Llc Curable transparent rubber composition, a cured transparent rubber composition made thereof, and manufacturing process for the same
US10053609B2 (en) 2015-06-12 2018-08-21 Kraton Polymers U.S. Llc Styrenic block copolymers as thermally-activated viscosifiers for oilfield applications
WO2018152075A1 (en) 2017-02-17 2018-08-23 3M Innovative Properties Company Triblock copolymers
EP3366755A1 (en) 2017-02-22 2018-08-29 Infineum International Limited Improvements in and relating to lubricating compositions
US10066098B2 (en) 2015-09-16 2018-09-04 Kraton Polymers U.S. Llc Styrenic block copolymer compositions
EP3369802A1 (en) 2017-03-01 2018-09-05 Infineum International Limited Improvements in and relating to lubricating compositions
US10208168B2 (en) 2011-10-25 2019-02-19 Kraton Polymers U.S. Llc Polyoxyalkyleneamine modified sulfonated block copolymers, their preparation and their use
EP3461877A1 (en) 2017-09-27 2019-04-03 Infineum International Limited Improvements in and relating to lubricating compositions
US10287428B2 (en) 2015-06-12 2019-05-14 Kraton Polymers U.S. Llc Heat activated gels for cable filling applications
WO2019094201A1 (en) 2017-11-09 2019-05-16 Milliken & Company Additive composition and polymer compositions comprising the same
EP3492566A1 (en) 2017-11-29 2019-06-05 Infineum International Limited Lubricating oil additives
EP3492567A1 (en) 2017-11-29 2019-06-05 Infineum International Limited Lubricating oil additives
WO2019183302A1 (en) 2018-03-23 2019-09-26 Kraton Polymers Llc Ultrahigh melt flow styrenic block copolymers
US10633567B2 (en) 2015-10-29 2020-04-28 Kraton Polymers U.S. Llc Hot melt elastic attachment adhesive for low temperature applications
WO2020165740A1 (en) 2019-02-11 2020-08-20 Eoc Belgium Nv Cross-linkable functional latex comprising aluminium trihydroxide
EP3738988A1 (en) 2019-05-16 2020-11-18 3M Innovative Properties Company Amphiphilic triblock copolymer
EP3741832A2 (en) 2019-05-24 2020-11-25 Infineum International Limited Nitrogen-containing lubricating oil additives
EP3770235A1 (en) 2018-09-24 2021-01-27 Infineum International Limited Polymers and lubricating compositions containing polymers
US11021559B2 (en) 2011-10-31 2021-06-01 Kraton Polymers Llc Sulfonated block copolymer laminates with polar or active metal substrates
EP3831913A1 (en) 2019-12-05 2021-06-09 Infineum International Limited Triblock copolymer concentrates for lubricating oil compositions
WO2021124011A1 (en) 2019-12-17 2021-06-24 3M Innovative Properties Company Articles including an isoporous membrane disposed on a porous substrate and methods of making the same
EP3851507A1 (en) 2020-01-15 2021-07-21 Infineum International Limited Polymers and lubricating compositions containing polymers
US11167251B2 (en) 2016-11-22 2021-11-09 3M Innovative Properties Company Porous membranes including pentablock copolymers and method of making the same
EP3926026A1 (en) 2020-06-16 2021-12-22 Infineum International Limited Oil compositions
US11466115B2 (en) 2018-06-01 2022-10-11 3M Innovative Properties Company Porous membranes including triblock copolymers
WO2023006474A1 (en) 2021-07-26 2023-02-02 Basf Coatings Gmbh Peelable coating system and methods for forming the peelable coating system
EP4159832A1 (en) 2021-10-04 2023-04-05 Infineum International Limited Lubricating oil compositions
EP4174154A1 (en) 2021-10-29 2023-05-03 Infineum International Limited Method of limiting chemical degradation due to nitrogen dioxide contamination
EP4174153A1 (en) 2021-10-29 2023-05-03 Infineum International Limited Method of limiting chemical degradation due to nitrogen dioxide contamination
EP4174152A1 (en) 2021-10-29 2023-05-03 Infineum International Limited Ionic liquid composition
US11692048B2 (en) 2017-03-10 2023-07-04 Kraton Corporation Fusible oil gel compositions and methods of making and using same
EP4303287A1 (en) 2022-07-06 2024-01-10 Infineum International Limited Lubricating oil compositions

Cited By (354)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057601A (en) 1975-11-20 1977-11-08 Phillips Petroleum Company Block copolymers of alkadienes and monovinyl arenes
US4239859A (en) 1979-08-29 1980-12-16 Shell Oil Company High impact polystyrene blend compositions
US4308358A (en) 1979-08-29 1981-12-29 Shell Oil Company High impact polystyrene blend compositions
US4452951A (en) 1981-07-24 1984-06-05 Nippon Zeon Co. Ltd. Process for hydrogenating conjugated diene polymers
US4721739A (en) 1982-07-01 1988-01-26 Bic Corp. Erasable ink compositions
US4578429A (en) 1984-08-31 1986-03-25 Shell Oil Company Selectively hydrogenated block copolymers modified with acid compounds or derivatives
USH731H (en) 1985-08-16 1990-02-06 Blends of thermoplastic polymers and modified block copolymers
USH1438H (en) * 1985-08-16 1995-05-02 Shell Oil Company Modified block copolymers functionalized in the monoalkenyl aromatic or vinylarene block
US4988765A (en) * 1985-08-16 1991-01-29 Shell Oil Company High impact resistant blends of thermoplastic polyamides and modified diblock copolymers
US4898914A (en) 1985-08-16 1990-02-06 Shell Oil Company Modified block copolymers functionalized in the monoalkenyl aromatic or vinylarene block
US4687815A (en) 1985-12-23 1987-08-18 Shell Oil Company Hydrogenated block copolymers
EP0254346A3 (en) * 1986-07-07 1989-11-15 Shell Internationale Research Maatschappij B.V. Thermoplastic compositions and process for the preparation thereof
EP0254346A2 (en) * 1986-07-07 1988-01-27 Shell Internationale Researchmaatschappij B.V. Thermoplastic compositions and process for the preparation thereof
US4880878A (en) 1987-12-29 1989-11-14 Shell Oil Company Block copolymer blends with improved oil absorption resistance
US4906687A (en) 1987-12-31 1990-03-06 Shell Oil Company Blends of polar thermoplastic polymers and modified block copolymers
USH826H (en) 1988-02-17 1990-10-02 Lubricant compositions containing a viscosity index improver having dispersant properties
US4866128A (en) 1988-06-08 1989-09-12 Shell Oil Company Polymer blend
US4970254A (en) * 1988-09-22 1990-11-13 Shell Oil Company Method for hydrogenating functionalized polymer and products thereof
US4983673A (en) * 1988-12-22 1991-01-08 Shell Oil Company High impact resistant blends of thermoplastic polyamides and modified diblock copolymers
US5189110A (en) * 1988-12-23 1993-02-23 Asahi Kasei Kogyo Kabushiki Kaisha Shape memory polymer resin, composition and the shape memorizing molded product thereof
US4970265A (en) * 1989-03-27 1990-11-13 Shell Oil Company Functionalized polymers and process for modifying unsaturated polymers
US5369167A (en) * 1989-12-08 1994-11-29 Shell Oil Company Melt blending acid or anhydride-grafted block copolymer pellets with epoxy resin
US5349015A (en) * 1989-12-08 1994-09-20 Shell Oil Company Melt blending acid or anhydride-crafted block copolymer pellets with epoxy resin
US5342885A (en) * 1989-12-08 1994-08-30 Shell Oil Company Epoxy resin coating with COOH-grated hydrogenated block copolymer
US5187236A (en) * 1990-01-16 1993-02-16 Mobil Oil Corporation Solid block and random elastomeric copolymers
US5149895A (en) * 1990-01-16 1992-09-22 Mobil Oil Corporation Vulcanizable liquid compositions
US5389711A (en) * 1990-02-14 1995-02-14 Shell Oil Company Plasticisers for salt functionalized polyvinyl aromatics
US5106917A (en) * 1990-02-28 1992-04-21 Shell Oil Company Peelable lidstock based on polybutylene block copolymer blends
USH1141H (en) 1990-07-16 1993-02-02 Shell Oil Company Asphalt-block copolymer roofing composition
US5051457A (en) * 1990-07-16 1991-09-24 Shell Oil Company Asphalt-block copolymer roofing composition
US5218033A (en) * 1990-12-07 1993-06-08 Shell Oil Company Functionalized vinyl aromatic/conjugated diolefin block copolymer and salt of fatty acid compositions
USH1022H (en) 1991-01-09 1992-02-04 Shell Oil Company Soft paintable polymer composition
US5209862A (en) * 1991-01-30 1993-05-11 Shell Oil Company Vi improver and composition containing same
US5177155A (en) * 1991-05-13 1993-01-05 Shell Oil Company Selective hydrogenation of conjugation diolefin polymers with rare earth catalysts
US5308676A (en) * 1991-09-20 1994-05-03 Shell Oil Company Torchable roll roofing membrane
US5166277A (en) * 1991-10-31 1992-11-24 Shell Oil Company Hydrogenation of unsaturation in low molecular weight diene polymers
US5175212A (en) * 1991-11-04 1992-12-29 Shell Oil Company Low temperature toughening of polycarbonates with a modified block copolymer
USH1799H (en) 1991-11-08 1999-08-03 Shell Oil Company Star polymer viscosity index improver for oil compositions
US5602206A (en) * 1992-03-04 1997-02-11 Basf Corporation Block copolymer process
USH1405H (en) * 1992-04-09 1995-01-03 Shell Oil Company Epoxy resin composition
USRE39617E1 (en) 1992-08-31 2007-05-08 Kraton Polymers Us Llc Butadiene polymers having terminal functional groups
US5393843A (en) * 1992-08-31 1995-02-28 Shell Oil Company Butadiene polymers having terminal functional groups
US5405911A (en) * 1992-08-31 1995-04-11 Shell Oil Company Butadiene polymers having terminal functional groups
USRE39559E1 (en) * 1992-08-31 2007-04-10 Kraton Polymer Us L.L.C. Butadiene polymers having terminal functional groups
US5266635A (en) * 1993-02-26 1993-11-30 Shell Oil Company Impact resistant polycarbonates containing elastomers having phenolic groups
US5336726A (en) * 1993-03-11 1994-08-09 Shell Oil Company Butadiene polymers having terminal silyl groups
US5378761A (en) * 1993-06-24 1995-01-03 Shell Oil Company Monohydroxylated 1,3-polybutadiene/polyisocyanate product reacted with hydroxyl-functional resin
US5594072A (en) * 1993-06-30 1997-01-14 Shell Oil Company Liquid star polymers having terminal hydroxyl groups
US5554691A (en) * 1993-07-12 1996-09-10 Shell Oil Company Adhesives, sealants, coatings and polymer compositions containing monohydroxylated polydienes in hydroxyl functional resins
US5405914A (en) * 1993-07-29 1995-04-11 Shell Oil Company Process for improving the color of selectively hydrogenated block copolymers modified with acid compounds or derivatives
US5418296A (en) * 1993-11-23 1995-05-23 Shell Oil Company Capping of anionic polymers with oxetanes
US5391637A (en) * 1993-11-23 1995-02-21 Shell Oil Company Capping of anionic polymers with oxetanes
US5376745A (en) * 1993-12-01 1994-12-27 Shell Oil Company Low viscosity terminally functionalized isoprene polymers
US7290367B2 (en) 1994-04-19 2007-11-06 Applied Elastomerics, Inc. Tear resistant gel articles for various uses
US7234560B2 (en) 1994-04-19 2007-06-26 Applied Elastomerics, Inc. Inflatable restraint cushions and other uses
US7226484B2 (en) 1994-04-19 2007-06-05 Applied Elastomerics, Inc. Tear resistant gels and articles for every uses
US20050008669A1 (en) * 1994-04-19 2005-01-13 Chen John Y. Tear resistant gels and articles for every uses
US20040146541A1 (en) * 1994-04-19 2004-07-29 Chen John Y. Tear resistant gel articles for various uses
US20020188057A1 (en) * 1994-04-19 2002-12-12 Chen John Y. Gelatinous elastomer compositions and articles for use as fishing bait
US6148830A (en) 1994-04-19 2000-11-21 Applied Elastomerics, Inc. Tear resistant, multiblock copolymer gels and articles
US7108873B2 (en) 1994-04-19 2006-09-19 Applied Elastomerics, Inc. Gelatinous food elastomer compositions and articles
US20040070187A1 (en) * 1994-04-19 2004-04-15 Chen John Y. Inflatable restraint cushions and other uses
US7134236B2 (en) 1994-04-19 2006-11-14 Applied Elastomerics, Inc. Gelatinous elastomer compositions and articles for use as fishing bait
EP0684267A1 (en) 1994-05-27 1995-11-29 Shell Internationale Researchmaatschappij B.V. A method for producing asymmetric radial polymers
US5458791A (en) * 1994-07-01 1995-10-17 Shell Oil Company Star polymer viscosity index improver for oil compositions
EP0690082A2 (en) 1994-07-01 1996-01-03 Shell Internationale Researchmaatschappij B.V. Star polymer viscosity index improver for oil lubricating compositions
EP0697247A2 (en) 1994-07-15 1996-02-21 Shell Internationale Researchmaatschappij B.V. Process for the conversion of hydrocarbonaceous feedstock
EP0698638A1 (en) 1994-07-18 1996-02-28 Shell Internationale Researchmaatschappij B.V. Crosslinkable waterborne dispersions of hydroxy functional polydiene polymers and amino resins
EP0698626A1 (en) 1994-08-11 1996-02-28 Shell Internationale Researchmaatschappij B.V. Asymmetric triblock copolymer, viscosity index improver for oil compositions
US5460739A (en) * 1994-09-09 1995-10-24 Shell Oil Company Star polymer viscosity index improver for oil compositions
EP0700942A2 (en) 1994-09-09 1996-03-13 Shell Internationale Researchmaatschappij B.V. Star polymer viscosity index improver for lubricating oil compositions
EP0709416A2 (en) 1994-09-29 1996-05-01 Shell Internationale Researchmaatschappij B.V. Polyurethane sealants and adhesives containing saturated hydrocarbon polyols
EP0711795A1 (en) 1994-11-09 1996-05-15 Shell Internationale Researchmaatschappij B.V. Low viscosity adhesive compositions containing asymmetric radial polymers
EP0712892A1 (en) 1994-11-17 1996-05-22 Shell Internationale Researchmaatschappij B.V. Blends of block copolymers and metallocene polyolefins
US5681895A (en) * 1995-04-19 1997-10-28 Shell Oil Company Coupling of anionic polymers with trialkoxysilanes having silicon-hydrogen bonds
EP0771641A2 (en) 1995-11-01 1997-05-07 Shell Internationale Researchmaatschappij B.V. Process to prepare a blown film of a block copolymer composition
US5658526A (en) * 1995-11-01 1997-08-19 Shell Oil Company Method to prepare blown films of vinyl aromatic/conjugated diolefin block copolymer
EP0781784A1 (en) 1995-12-28 1997-07-02 Shell Internationale Researchmaatschappij B.V. Removal of an alkali metal compound from a polymer cement
EP0781605A1 (en) 1995-12-28 1997-07-02 Shell Internationale Researchmaatschappij B.V. Removal of metal compounds from an acid solution
EP0781782A1 (en) 1995-12-28 1997-07-02 Shell Internationale Researchmaatschappij B.V. Removal of alkali metal compounds from polymer cements
USH1949H1 (en) 1996-02-01 2001-03-06 Shell Oil Company Hydrogenated elastomer primed polyolefin film
USH1725H (en) 1996-02-23 1998-05-05 Shell Oil Company Clear polyphenylene ether/block copolymer composition
US5863646A (en) * 1996-03-25 1999-01-26 Ppg Industries, Inc. Coating composition for plastic substrates and coated plastic articles
USH2100H1 (en) 1996-03-26 2004-04-06 Kraton Polymers Llc Low stress relaxation adhesive having high molecular weight endblock copolymer
US6146706A (en) 1996-03-28 2000-11-14 Ppg Industries Ohio, Inc. Thermosettable primer and topcoat for plastics a method for applying and coated plastic articles
US6001469A (en) 1996-03-28 1999-12-14 Ppg Industries Ohio, Inc. Thermosettable primer and topcoat for plastics, a method for applying and coated plastic articles
US5616542A (en) * 1996-04-03 1997-04-01 Shell Oil Company Oil with asymmetric radial polymer having block copolymer arm
US5663250A (en) * 1996-05-16 1997-09-02 Shell Oil Company Deprotection with molten salt
US5993900A (en) 1996-06-24 1999-11-30 Shell Oil Company Acid-grafted hydrogenated elastomer/endblock aromatic resin primer
US5777031A (en) * 1996-07-03 1998-07-07 Shell Oil Company High 1,2 content thermoplastic elastomer/oil/polyolefin composition
US5973071A (en) 1997-03-19 1999-10-26 Shell Oil Company Polymeric composition
US6075097A (en) 1997-06-06 2000-06-13 Shell Oil Company Process for producing conjugated diene diols using carbon dioxide
USH1956H1 (en) 1997-07-23 2001-04-03 Shell Oil Company Enhanced hydrogenation catalyst removal from block copolymers by reduction in polymer cement viscosity by increasing the vinyl content of the block copolymers
WO1999005185A1 (en) * 1997-07-23 1999-02-04 Shell Internationale Research Maatschappij B.V. Enhanced hydrogenation catalyst removal from block copolymers by reduction in polymer cement viscosity by increasing the vinyl content of the block copolymers
US5925707A (en) 1997-07-30 1999-07-20 Shell Oil Company Oil gel formulations containing high vinyl content hydrogenated styrene-butadiene-styrene block copolymers
US6451865B1 (en) 1997-10-31 2002-09-17 Kraton Polymers U.S. Llc Foam composition comprising oil, thermoplastic elastomer and expandable particles
US6979714B2 (en) 1997-12-19 2005-12-27 Ppg Industries Ohio, Inc. Adhesion promoting agent and coating compositions for polymeric substrates
US20030212209A1 (en) * 1997-12-19 2003-11-13 Kondos Constantine A. Adhesion promoting agent and coating compositions for polymeric substrates
US6203913B1 (en) 1997-12-19 2001-03-20 Ppg Industries Ohio, Inc. Coating composition for plastic substrates
US6300414B1 (en) 1998-08-28 2001-10-09 Basf Corporation Additive for coating compositions for adhesion to TPO substrates
US6420490B1 (en) 1998-12-02 2002-07-16 Kraton Polymers U.S. Llc Telechelic polymers are produced by ozonation degradation of diene polymers
US6423778B1 (en) 1999-06-30 2002-07-23 Basf Corporation Process for coating olefinic substrates
US6451913B1 (en) 1999-09-01 2002-09-17 Kraton Polymers U.S. Llc Radial hydrogenated block copolymers showing one phase melt behavior
US6630532B1 (en) * 1999-09-15 2003-10-07 Kraton Polymer U.S. Llc Modified styrenic block copolymer compounds having improved elastic performance
US6225415B1 (en) 1999-09-20 2001-05-01 University Of North Carolina At Charlotte Process to selectively place functional groups within polymer chain
US6593423B1 (en) 2000-05-03 2003-07-15 Ppg Industries Ohio, Inc. Adhesion promoting agent and coating compositions for polymeric substrates
US20030229179A1 (en) * 2000-11-07 2003-12-11 Merritt William H. Adhesion promoter, coating compositions for adhesion to olefinic substrates and methods therefor
US6939916B2 (en) * 2000-11-07 2005-09-06 Basf Corporation Adhesion promoter, coating compositions for adhesion to olefinic substrates and methods therefor
US20040106705A1 (en) * 2001-04-12 2004-06-03 Mulder Evert Alan Pipe coating
US7186779B2 (en) 2002-01-31 2007-03-06 Kraton Polymers U.S. Llc Block copolymer compositions, having improved mechanical properties and processability
US7268184B2 (en) 2002-01-31 2007-09-11 Kraton Polymers U.S. Llc Blockcopolymer compositions, having improved mechanical properties and processability and styrenic blockcopolymer to be used in them
US20060030665A1 (en) * 2002-01-31 2006-02-09 Gert Joly Blockcopolymer compositions, having improved mechanical properties and processability and styrenic blockcopolymer to be used in them
US20050222356A1 (en) * 2002-01-31 2005-10-06 Gert Joly Block copolymer compositions, having improved mechanical properties and processability
US7267855B2 (en) 2002-02-07 2007-09-11 Kraton Polymers U.S. Llc Articles prepared from hydrogenated controlled distribution block copolymers
US6759454B2 (en) 2002-02-07 2004-07-06 Kraton Polymers U.S. Llc Polymer modified bitumen compositions
US20030176574A1 (en) * 2002-02-07 2003-09-18 St. Clair David J. Adhesives and sealants from controlled distribution block copolymers
US20030181585A1 (en) * 2002-02-07 2003-09-25 Handlin Dale Lee Articles prepared from hydrogenated controlled distribution block copolymers
US7847022B2 (en) 2002-02-07 2010-12-07 Kraton Polymers U.S. Llc Articles prepared from controlled distribution block copolymers
US7282536B2 (en) 2002-02-07 2007-10-16 Kraton Polymers Llc Block copolymers and method for making same
US20050137350A1 (en) * 2002-02-07 2005-06-23 Bening Robert C. Novel block copolymers and method for making same
US20050137347A1 (en) * 2002-02-07 2005-06-23 Bening Robert C. Novel block copolymers and method for making same
US20050137349A1 (en) * 2002-02-07 2005-06-23 Bening Robert C. Novel block copolymers and method for making same
US7244785B2 (en) 2002-02-07 2007-07-17 Bening Robert C Block copolymers and method for making same
US20030153681A1 (en) * 2002-02-07 2003-08-14 St. Clair David J. Gels from controlled distribution block copolymers
US20050137346A1 (en) * 2002-02-07 2005-06-23 Bening Robert C. Novel block copolymers and method for making same
US20050137348A1 (en) * 2002-02-07 2005-06-23 Bening Robert C. Novel block copolymers and method for making same
US20050171290A1 (en) * 2002-02-07 2005-08-04 Bening Robert C. Novel block copolymers and method for making same
US7332542B2 (en) 2002-02-07 2008-02-19 Kraton Polymers U.S. Llc Block copolymers and method for making same
US20040138371A1 (en) * 2002-02-07 2004-07-15 St. Clair David John Gels from controlled distribution block copolymers
US7141621B2 (en) 2002-02-07 2006-11-28 Kraton Polymers U.S. Llc Gels from controlled distribution block copolymers
US7223816B2 (en) 2002-02-07 2007-05-29 Handlin Jr Dale L Solvent-free, hot melt adhesive composition comprising a controlled distribution block copolymer
US7138456B2 (en) 2002-02-07 2006-11-21 Bening Robert C Block copolymers and method for making same
US7169850B2 (en) 2002-02-07 2007-01-30 Kraton Polymers U.S. Llc Block copolymers and method for making same
US6987142B2 (en) 2002-02-07 2006-01-17 Kraton Polymers U.S. Llc Adhesives and sealants from controlled distribution block copolymers
US20040072951A1 (en) * 2002-02-07 2004-04-15 Hansen David Romme Photopolymerizable compositions and flexographic plates prepared from controlled distribution block copolymers
US7012118B2 (en) 2002-02-07 2006-03-14 Kraton Polymers U.S. Llc Photopolymerizable compositions and flexographic plates prepared from controlled distribution block copolymers
US7169848B2 (en) 2002-02-07 2007-01-30 Kraton Polymers U.S. Llc Block copolymers and method for making same
US7067589B2 (en) 2002-02-07 2006-06-27 Kraton Polymers U.S. Llc Block copolymers and method for making same
US20050222305A1 (en) * 2002-03-28 2005-10-06 Trommelen Erik A Bituminous composition
US20030187137A1 (en) * 2002-03-28 2003-10-02 Handlin Dale L. Novel tetrablock copolymer and compositions containing same
US7001950B2 (en) 2002-03-28 2006-02-21 Kraton Polymers U.S. Llc Tetrablock copolymer and compositions containing same
US7271207B2 (en) 2002-03-28 2007-09-18 Kraton Polymers U.S. Llc Bituminous composition
US7220798B2 (en) 2002-06-04 2007-05-22 Kraton Polymers Us Llc Process for preparing block copolymer and resulting composition
US7001956B2 (en) 2002-06-04 2006-02-21 Kraton Polymers U.S. Llc Articles prepared from hydrogenated block copolymers
US7625979B2 (en) 2002-06-04 2009-12-01 Kraton Polymers U.S. Llc Process for preparing block copolymer and resulting composition
US20030225210A1 (en) * 2002-06-04 2003-12-04 Handlin Dale Lee Gels from silane-coupled block copolymers
US20030225209A1 (en) * 2002-06-04 2003-12-04 Handlin Dale Lee Articles prepared from hydrogenated block copolymers
US7166672B2 (en) 2002-06-04 2007-01-23 Kraton Polymers U.S. Llc Gels from silane-coupled block copolymers
US20040018272A1 (en) * 2002-07-20 2004-01-29 Chen John Y. Gelatinous food elastomer compositions and articles for use as fishing bait
US7208184B2 (en) 2002-07-20 2007-04-24 Applied Elastomerics, Inc. Gelatinous food elastomer compositions and articles for use as fishing bait
US6844412B2 (en) 2002-07-25 2005-01-18 Lord Corporation Ambient cured coatings and coated rubber products therefrom
US6777026B2 (en) 2002-10-07 2004-08-17 Lord Corporation Flexible emissive coatings for elastomer substrates
US6699941B1 (en) 2002-11-07 2004-03-02 Kraton Polymers U.S. Llc Block copolymer
US20060106138A1 (en) * 2002-12-16 2006-05-18 Trommelen Erik A T Block copolymer modified bitumens, and felts, coatings, sealants and roads made therefrom
US20040147686A1 (en) * 2002-12-31 2004-07-29 Kraton Polymers U.S. Llc Process for preparing hydrogenated conjugated diene block copolymers
US20060183844A1 (en) * 2003-03-24 2006-08-17 Kraton Polymers U.S. Llc Poly(styrene-butadiene-styrene)polymers having a high vinyl content in the butadiene block and hot melt adhesive composition comprising said polymers
US7517932B2 (en) * 2003-03-24 2009-04-14 Kraton Polymers U.S. Llc Poly(styrene-butadiene-styrene)polymers having a high vinyl content in the butadiene block and hot melt adhesive composition comprising said polymers
WO2004106399A2 (en) 2003-05-30 2004-12-09 Kraton Polymers Research B.V. Process for making a coupled block copolymer compositon
WO2004108784A1 (en) 2003-06-04 2004-12-16 Kraton Polymers Research B.V. Articles prepared from hydrogenated block copolymers
US7018962B2 (en) 2003-06-12 2006-03-28 Infineum International Limited Viscosity index improver concentrates
US20040254082A1 (en) * 2003-06-12 2004-12-16 Bloch Ricardo A. Viscosity index improver concentrates
EP1493800A1 (en) 2003-07-01 2005-01-05 Infineum International Limited Viscosity index improvers for lubricating oil compositions
US20070026175A1 (en) * 2003-07-15 2007-02-01 Denki Kagaku Kogyo Kabushiki Kaisha Heat-shrinkable foam films
US8222346B2 (en) 2003-09-23 2012-07-17 Dais-Analytic Corp. Block copolymers and method for making same
US7232864B2 (en) 2003-10-30 2007-06-19 Bening Robert C Coupled radial anionic polymers
US20050107541A1 (en) * 2003-10-30 2005-05-19 Bening Robert C. Coupled radial anionic polymers
US20050137295A1 (en) * 2003-12-17 2005-06-23 Kraton Polymers U.S. Llc Bituminous compositions modified by non-blocking elastomers
US20050137312A1 (en) * 2003-12-22 2005-06-23 Kraton Polymers U.S. Llc Adhesive formulations from novel radial (S-I/B)x polymers
US7589152B2 (en) 2003-12-22 2009-09-15 Kraton Polymers U.S. Llc Adhesive formulations for novel radial (S-I/B)x polymers
US7439301B2 (en) 2004-03-03 2008-10-21 Kraton Polymers U.S. Llc Block copolymers having high flow and high elasticity
WO2005092979A1 (en) 2004-03-03 2005-10-06 Kraton Polymers Research B.V. Elastomeric bicomponent fibers comprising block copolymers having high flow
EP2586803A1 (en) 2004-03-03 2013-05-01 Kraton Polymers US LLC Block copolymers having high flow and high elasticity
US20050197465A1 (en) * 2004-03-03 2005-09-08 Kraton Polymers U.S. Llc Block copolymers having high flow and high elasticity
EP2428534A1 (en) 2004-03-03 2012-03-14 Kraton Polymers US LLC Elastomeric bicomponent fibers comprising block copolymers having high flow
US20050215724A1 (en) * 2004-03-25 2005-09-29 Kraton Polymers U.S. Llc Thermoplastic gel compositions that can be converted into thermoset gel compositions by exposure to radiation
US20050215725A1 (en) * 2004-03-25 2005-09-29 Kraton Polymers U.S. Llc Thermoplastic gel compositions that can be converted into thermoset gel compositions by exposure to radiation
US20050222340A1 (en) * 2004-04-02 2005-10-06 Kraton Polymers U.S. Llc Process for the prevention or restriction of oil spills
US7241540B2 (en) 2004-04-27 2007-07-10 Kraton Polymers U.S. Llc Photocurable compositions and flexographic printing plates comprising the same
US20050239930A1 (en) * 2004-04-27 2005-10-27 Kraton Polymers U.S. Llc Photocurable compositions and flexographic printing plates comprising the same
US20050256265A1 (en) * 2004-05-11 2005-11-17 Wright Kathryn J Articles prepared from high molecular weight tetrablock copolymers
US7262248B2 (en) 2004-05-11 2007-08-28 Kraton Polymers U.S. Llc Articles prepared from high molecular weight tetrablock copolymers
US8008398B2 (en) 2004-09-03 2011-08-30 Kraton Polymers U.S. Llc Foamable polymeric compositions and articles containing foamed compositions
US20070155846A1 (en) * 2004-09-03 2007-07-05 Xavier Muyldermans Foamable polymeric compositions and articles containing foamed compositions
US20080132645A1 (en) * 2004-12-24 2008-06-05 Xavier Muyldermans High Melt Strength Thermoplastic Elastomer Composition
WO2007000191A1 (en) 2004-12-24 2007-01-04 Kraton Polymers Research B.V. High melt strength thermoplastic elastomer composition
WO2007010039A1 (en) 2005-07-22 2007-01-25 Kraton Polymers Research B.V. Sulfonated block copolymers, method for making same, and various uses for such block copolymers
US7737224B2 (en) 2005-07-22 2010-06-15 Kraton Polymers U.S. Llc Sulfonated block copolymers, method for making same, and various uses for such block copolymers
US7569281B2 (en) 2005-07-25 2009-08-04 Kraton Polymers U.S. Llc Flexible packaging laminate films including a block copolymer layer
US20070020473A1 (en) * 2005-07-25 2007-01-25 Kraton Polymers U.S. Llc Flexible packaging laminate films including a block copolymer layer
US20070066753A1 (en) * 2005-09-16 2007-03-22 Ehrlich Martin L Highly processible compounds of high MW conventional block copolymers and controlled distribution block copolymers
US7714069B2 (en) 2005-09-22 2010-05-11 E. I. Du Pont De Nemours And Company Method of producing adherent coatings on resinous substrates
US20100112358A1 (en) * 2005-09-22 2010-05-06 Corcoran Patrick H Adherent coating compositions for resinous substrates
US7763679B2 (en) 2005-09-22 2010-07-27 E.I. Du Pont De Nemours And Company Adherent coating compositions for resinous substrates
US20070066757A1 (en) * 2005-09-22 2007-03-22 Corcoran Patrick H Method of producing adherent coatings on resinous substrates
US7645507B2 (en) 2005-10-24 2010-01-12 Kraton Polymers U.S. Llc Protective films and pressure sensitive adhesives
US20070092722A1 (en) * 2005-10-24 2007-04-26 Kraton Polymers U.S. Llc Protective films and pressure sensitive adhesives
US7576148B2 (en) 2005-11-09 2009-08-18 Kraton Polymers U.S. Llc Blown asphalt compositions
US20070105986A1 (en) * 2005-11-09 2007-05-10 Kraton Polymers U. S. Llc Blown asphalt compositions
US20080319130A1 (en) * 2005-12-22 2008-12-25 Dow Global Technologies Inc. Blends of Styrenic Block Copolymers and Propylene-Alpha Olefin Copolymers
US7893159B2 (en) 2005-12-22 2011-02-22 Dow Global Technologies Inc. Blends of styrenic block copolymers and propylene-alpha olefin copolymers
US7625851B2 (en) 2006-03-10 2009-12-01 Kraton Polymers Us Llc Viscosity index improver for lubricating oils
US20070213241A1 (en) * 2006-03-10 2007-09-13 St Clair David John Viscosity index improver for lubricating oils
WO2007106346A2 (en) 2006-03-10 2007-09-20 Kraton Polymers U.S. Llc Viscosity index improver for lubricating oils
US7582702B2 (en) 2006-03-24 2009-09-01 Kraton Polymers U.S. Llc Block copolymer compositons
US20070225429A1 (en) * 2006-03-24 2007-09-27 Wright Kathryn J Novel block copolymer compositons
US7585916B2 (en) 2006-03-24 2009-09-08 Kraton Polymers Us Llc Block copolymer compositions
US20070225427A1 (en) * 2006-03-24 2007-09-27 Wright Kathryn J Novel unhydrogenated block copolymer compositions
US20070225428A1 (en) * 2006-03-24 2007-09-27 Bening Robert C Novel hydrogenated block copolymer compositions
US7592390B2 (en) 2006-03-24 2009-09-22 Kraton Polymers U.S. Llc Hydrogenated block copolymer compositions
US20080039584A1 (en) * 2006-03-24 2008-02-14 Kraton Polymers U.S. Llc High Temperature Block Copolymers and Process for Making Same
WO2007111853A2 (en) 2006-03-24 2007-10-04 Kraton Polymers U.S. Llc Novel hydrogenated block copolymer compositions
WO2007111849A2 (en) 2006-03-24 2007-10-04 Kraton Polymers U.S. Llc Novel block copolymer compositions
US7858693B2 (en) 2006-03-24 2010-12-28 Kratonpolymers U.S. Llc Unhydrogenated block copolymer compositions
US7449518B2 (en) 2006-03-24 2008-11-11 Kraton Polymers U.S. Llc High temperature block copolymers and process for making same
WO2007111852A2 (en) 2006-03-24 2007-10-04 Kraton Polymers U.S. Llc Novel unhydrogenated block copolymer compositions
US20100190912A1 (en) * 2006-04-21 2010-07-29 Kraton Polymers U.S. Llc Thermoplastic elastomer composition
US20090247689A1 (en) * 2006-09-20 2009-10-01 Kraton Polymers Us Llc Elastic film grade thermoplastic polymer compositions having improved elastic performance
US20080076876A1 (en) * 2006-09-25 2008-03-27 Basf Corporation Coating compositions for adhesion to olefinic substrates
US20080153971A1 (en) * 2006-12-21 2008-06-26 Kraton Polymers U.S. Llc Solvent sprayable contact adhesive formulations from (S-I/B)x polymers
US20080153970A1 (en) * 2006-12-21 2008-06-26 Kraton Polymers U.S. Llc Solvent sprayable contact adhesive formulations from functionalized/controlled distribution block copolymers
EP2712809A1 (en) 2007-10-19 2014-04-02 Lord Corporation Suspension system for aircraft auxilliary power unit with elastomeric member
EP2712808A1 (en) 2007-10-19 2014-04-02 Lord Corporation Suspension system for aircraft auxiliary power unit with elastomeric member
US8188192B2 (en) 2007-12-21 2012-05-29 Kraton Polymers U.S. Llc Soft elastomeric films
US20090163361A1 (en) * 2007-12-21 2009-06-25 Kraton Polymers Us Llc Soft elastomeric films
WO2009082685A1 (en) 2007-12-21 2009-07-02 Kraton Polymers Us Llc Soft elastomeric films
US7994256B2 (en) 2008-01-18 2011-08-09 Kraton Polymers U.S. Llc Gel compositions
US20090186958A1 (en) * 2008-01-18 2009-07-23 Kraton Polymers Us Llc Gel compositions
EP2083063A1 (en) 2008-01-22 2009-07-29 Infineum International Limited Lubricating oil composition
US8552114B2 (en) 2008-03-13 2013-10-08 Kraton Polymers U.S. Llc Miktopolymer compositions
US8349950B2 (en) 2008-03-13 2013-01-08 Kraton Polymers Us Llc Miktopolymer compositions
US20090234059A1 (en) * 2008-03-13 2009-09-17 Kraton Polymers Us Llc Miktopolymer compositions
US20090247703A1 (en) * 2008-03-28 2009-10-01 Handlin Jr Dale L Process for improving tear resistance in elastic films
US8012539B2 (en) 2008-05-09 2011-09-06 Kraton Polymers U.S. Llc Method for making sulfonated block copolymers, method for making membranes from such block copolymers and membrane structures
US8377514B2 (en) 2008-05-09 2013-02-19 Kraton Polymers Us Llc Sulfonated block copolymer fluid composition for preparing membranes and membrane structures
US20110230614A1 (en) * 2008-05-09 2011-09-22 Handlin Jr Dale Lee Sulfonated block copolymer fluid composition for preparing membranes and membrane structures
US8377515B2 (en) 2008-05-09 2013-02-19 Kraton Polymers U.S. Llc Process for preparing membranes and membrane structures from a sulfonated block copolymer fluid composition
US20100010147A1 (en) * 2008-07-08 2010-01-14 Kraton Polymer U.S. Llc Adhesives prepared from diphenylethylene containing block copolymers
US20100010154A1 (en) * 2008-07-08 2010-01-14 Kraton Polymers U.S. Llc Gels prepared from dpe containing block copolymers
US20100056721A1 (en) * 2008-09-03 2010-03-04 Kathryn Wright Articles prepared from certain hydrogenated block copolymers
US8440304B2 (en) 2008-09-16 2013-05-14 Henkel Corporation Acrylic pressure sensitive adhesive formulation and articles comprising same
US20100068515A1 (en) * 2008-09-16 2010-03-18 Paul Charles W Acrylic pressure sensitive adhesive formulation and articles comprising same
US20100130670A1 (en) * 2008-11-21 2010-05-27 Kraton Polymers Us Llc End use applications prepared from certain block copolymers
US8445087B2 (en) 2008-12-15 2013-05-21 Kraton Polymers U.S. Llc Hydrogenated styrenic block copolymers blends with polypropylene
WO2010077799A1 (en) 2008-12-15 2010-07-08 Kraton Polymers Us Llc Hydrogenated styrenic block copolymers blends with polypropylene
US20110086977A1 (en) * 2009-10-13 2011-04-14 Carl Lesley Willis Metal-neutralized sulfonated block copolymers, process for making them and their use
US20110086982A1 (en) * 2009-10-13 2011-04-14 Carl Lesley Willis Amine neutralized sulfonated block copolymers and method for making same
US8263713B2 (en) 2009-10-13 2012-09-11 Kraton Polymers U.S. Llc Amine neutralized sulfonated block copolymers and method for making same
EP2784096A1 (en) 2009-10-13 2014-10-01 Kraton Polymers US LLC Process for stabilizing and storing a polar component
US8445631B2 (en) 2009-10-13 2013-05-21 Kraton Polymers U.S. Llc Metal-neutralized sulfonated block copolymers, process for making them and their use
US20110112236A1 (en) * 2009-11-12 2011-05-12 Kraton Polymers U.S. Llc Thermoplastic polyurethane block copolymer compositions
US8580884B2 (en) 2009-11-12 2013-11-12 Kraton Polymers U.S. Llc Thermoplastic polyurethane block copolymer compositions
US8299177B2 (en) 2010-01-27 2012-10-30 Kranton Polymers U.S. LLC Compositions containing styrene-isobutylene-styrene and controlled distribution block copolymers
US20110184082A1 (en) * 2010-01-27 2011-07-28 Kraton Polymers U.S. Llc Compositions Containing Styrene-Isobutylene-Styrene And Styrene-Ethylene/Butylene-Styrene Block Copolymers
WO2011133488A1 (en) 2010-04-22 2011-10-27 Kraton Polymers U.S. Llc High tensile strength article with elastomeric layer
WO2012050860A1 (en) 2010-09-29 2012-04-19 Kraton Polymers U.S. Llc Energy recovery ventilation sulfonated block copolymer laminate membrane
WO2012050740A1 (en) 2010-09-29 2012-04-19 Kraton Polymers U.S. Llc Elastic, moisture-vapor permeable films, their preparation and their use
US9429366B2 (en) 2010-09-29 2016-08-30 Kraton Polymers U.S. Llc Energy recovery ventilation sulfonated block copolymer laminate membrane
US9394414B2 (en) 2010-09-29 2016-07-19 Kraton Polymers U.S. Llc Elastic, moisture-vapor permeable films, their preparation and their use
US9365662B2 (en) 2010-10-18 2016-06-14 Kraton Polymers U.S. Llc Method for producing a sulfonated block copolymer composition
WO2012054325A1 (en) 2010-10-18 2012-04-26 Kraton Polymers U.S. Llc Method for producing a sulfonated block copolymer composition
US9861941B2 (en) 2011-07-12 2018-01-09 Kraton Polymers U.S. Llc Modified sulfonated block copolymers and the preparation thereof
US10208168B2 (en) 2011-10-25 2019-02-19 Kraton Polymers U.S. Llc Polyoxyalkyleneamine modified sulfonated block copolymers, their preparation and their use
US11021559B2 (en) 2011-10-31 2021-06-01 Kraton Polymers Llc Sulfonated block copolymer laminates with polar or active metal substrates
EP2607466A2 (en) 2011-12-21 2013-06-26 Infineum International Limited Viscosity index improvers for lubricating oil compositions
US9249335B2 (en) 2012-02-24 2016-02-02 Kraton Polymers U.S. Llc High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications
US9243163B2 (en) 2012-02-24 2016-01-26 Kraton Polymers U.S. Llc High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications
US9771473B2 (en) 2012-02-24 2017-09-26 Kraton Polymers U.S. Llc High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications
US9637660B2 (en) 2012-02-24 2017-05-02 Kraton Polymers U.S. Llc High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications
US9359523B2 (en) 2012-02-24 2016-06-07 Kraton Polymers U.S. Llc High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications
US10233323B2 (en) 2012-03-15 2019-03-19 Kraton Polymers U.S. Llc Blends of sulfonated block copolymers and particulate carbon and membranes, films, and coatings comprising them
WO2013138146A1 (en) 2012-03-15 2013-09-19 Kraton Polymers U.S. Llc Blends of sulfonated block copolymers and particulate carbon and membranes, films and coatings comprising them
US8703860B2 (en) 2012-09-19 2014-04-22 Kraton Polymers U.S. Llc Paramethylstyrene block copolymers and their use
WO2014046989A2 (en) 2012-09-19 2014-03-27 Kraton Polymers U.S. Llc Paramethylstyrene block copolymers and their use
WO2014058823A1 (en) 2012-10-08 2014-04-17 Teknor Apex Company Thermoplastic elastomer compositions having biorenewable content
US9938401B2 (en) 2012-11-05 2018-04-10 Kraton Polymers U.S. Llc Fire retardant systems for polymers that enable flexibility and strength
WO2014087814A1 (en) 2012-12-07 2014-06-12 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー Adhesive composition for protective film of coated surface and method for preparing same
WO2014087815A1 (en) 2012-12-07 2014-06-12 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー Adhesive composition for protective film of coated surface and method for preparing same
US9061254B2 (en) 2013-01-14 2015-06-23 Kraton Polymers U.S. Llc Block copolymers, their manufacture and their use
US10022680B2 (en) 2013-01-14 2018-07-17 Kraton Polymers U.S. Llc Anion exchange block copolymers, their manufacture and their use
WO2014110534A1 (en) 2013-01-14 2014-07-17 Kraton Polymers U.S. Llc Anion exchange block copolymers, their manufacture and their use
US9364825B2 (en) 2013-01-14 2016-06-14 Kraton Polymers U.S. Llc Block copolymers, their manufacture and their use
US9422422B2 (en) 2013-02-28 2016-08-23 Kraton Polymers U.S. Llc Transparent and tough rubber composition and manufacturing process for the same
WO2014132718A1 (en) 2013-02-28 2014-09-04 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー Transparent and tough rubber composition, and process for producing same
WO2014150119A1 (en) 2013-03-15 2014-09-25 Nike International Ltd. Modified thermoplastic elastomers for increased compatibility with supercritical fluids
WO2015006179A1 (en) 2013-07-12 2015-01-15 Kraton Polymers U.S. Llc High flow, hydrogenated styrene-butadiene-styrene block copolymers and applications
WO2015065826A1 (en) 2013-11-01 2015-05-07 Kraton Polymers U.S. Llc A fuse molded three dimensional article and a method for making the same
US10843401B2 (en) 2013-11-01 2020-11-24 Kraton Polymers U.S. Llc Fuse molded three dimensional article and a method for making the same
US9757901B2 (en) 2013-11-26 2017-09-12 Kraton Polymers U.S. Llc Laser sintering powder, laser sintering article, and a method of making a laser sintering article
US9752068B2 (en) 2014-01-06 2017-09-05 Kraton Polymers U.S. Llc Hot melt pressure sensitive adhesive and thermoset comprising styrene-butadiene polymers having high vinyl and high di-block
WO2015103241A1 (en) 2014-01-06 2015-07-09 Kraton Polymers U.S. Llc Hot melt pressure sensitive adhesive and thermoset comprising styrene-butadiene polymers having high vinyl and high di-block
US9304231B2 (en) 2014-02-04 2016-04-05 Kraton Polymers U.S. Llc Heat fusible oil gels
US9394472B2 (en) 2014-03-27 2016-07-19 Kraton Polymers U.S. Llc Low fluid loss drilling fluid compositions comprising diblock copolymers
US9458362B2 (en) 2014-04-02 2016-10-04 Kraton Polymers U.S. Llc Adhesive compositions containing a block copolymer with polymyrcene
WO2015153747A1 (en) 2014-04-02 2015-10-08 Kraton Polymers U.S. Llc Block copolymers containing a copolymer myrcene block
WO2015153736A1 (en) 2014-04-02 2015-10-08 Kraton Polymers U.S. Llc Adhesive compositions containing a block copolymer with polymyrcene
US10053603B2 (en) 2014-04-02 2018-08-21 Kraton Polymers U.S. Llc Block copolymers containing a copolymer myrcene block
EP2940110A1 (en) 2014-04-29 2015-11-04 Infineum International Limited Lubricating oil compositions
EP3415589A1 (en) 2014-04-29 2018-12-19 Infineum International Limited Lubricating oil compositions
US9216405B1 (en) 2014-06-26 2015-12-22 Kraton Polymers U.S. Llc Rotary enthalpy exchange wheel having sulfonated block copolymer
EP2975071A1 (en) 2014-07-16 2016-01-20 Kraton Polymers U.S. LLC Block copolymers, their manufacture and their use
US9944776B2 (en) 2014-08-26 2018-04-17 Kraton Polymers U.S. Llc Transparent, tough and heatproof rubber composition comprising neodymium-catalyzed isoprene component, and manufacturing process for the same
WO2016057452A1 (en) 2014-10-09 2016-04-14 Kraton Polymers U.S. Llc Adhesive compositions with amorphous polyolefins
US9758649B2 (en) 2015-03-30 2017-09-12 Kraton Polymers U.S. Llc Cured transparent rubber article, and manufacturing process for the same
US9840600B2 (en) 2015-03-30 2017-12-12 Kraton Polymers U.S. Llc Diene rubber composition configured to be vulcanized at lower temperature; and manufacturing process of rubber article from the same
US9758648B2 (en) 2015-03-30 2017-09-12 Kraton Polymers U.S. Llc Curable transparent rubber composition, a cured transparent rubber composition made thereof, and manufacturing process for the same
US9932463B2 (en) 2015-03-30 2018-04-03 Kraton Polymers U.S. Llc Curable transparent rubber composition, a cured transparent rubber composition made thereof, and manufacturing process for the same
US10047212B2 (en) 2015-03-30 2018-08-14 Kraton Polymers U.S. Llc Curable transparent rubber composition, a cured transparent rubber composition made thereof, and manufacturing process for the same
US10287428B2 (en) 2015-06-12 2019-05-14 Kraton Polymers U.S. Llc Heat activated gels for cable filling applications
US10053609B2 (en) 2015-06-12 2018-08-21 Kraton Polymers U.S. Llc Styrenic block copolymers as thermally-activated viscosifiers for oilfield applications
US9862819B2 (en) 2015-06-12 2018-01-09 Kraton Polymers U.S. Llc Composition for soft skins and uses thereof
WO2017006298A1 (en) 2015-07-09 2017-01-12 Eoc Belgium Nv Cross-linkable hydroxyfunctional latex
US9834625B2 (en) 2015-08-14 2017-12-05 Kraton Polymers U.S. Llc Amine-containing polyalkenyl coupling agents and polymers prepared therefrom
US10066098B2 (en) 2015-09-16 2018-09-04 Kraton Polymers U.S. Llc Styrenic block copolymer compositions
US10633567B2 (en) 2015-10-29 2020-04-28 Kraton Polymers U.S. Llc Hot melt elastic attachment adhesive for low temperature applications
US10731100B2 (en) 2015-12-09 2020-08-04 Infineum International Limited Viscosity index improver concentrates
EP3190166A1 (en) 2015-12-09 2017-07-12 Infineum International Limited Viscosity index improver concentrates
US10011803B2 (en) 2015-12-09 2018-07-03 Infineum International Limited Viscosity index improver concentrates
EP3192858A1 (en) 2016-01-15 2017-07-19 Infineum International Limited Use of lubricating oil composition
WO2017165521A1 (en) 2016-03-24 2017-09-28 Kraton Polymers U.S. Llc Semi-crystalline block copolymers and compositions therefrom
US10633465B2 (en) 2016-03-24 2020-04-28 Kraton Polymers U.S. Llc Block copolymers having semi-crystalline blocks and compositions and articles made therefrom
EP3257921A1 (en) 2016-06-14 2017-12-20 Infineum International Limited Lubricating oil additives
EP3321347A1 (en) 2016-11-14 2018-05-16 Infineum International Limited Lubricating oil additives based on overbased gemini surfactant
WO2018098023A1 (en) 2016-11-22 2018-05-31 3M Innovative Properties Company Pentablock copolymers
US11167251B2 (en) 2016-11-22 2021-11-09 3M Innovative Properties Company Porous membranes including pentablock copolymers and method of making the same
US10781279B2 (en) 2016-11-22 2020-09-22 3M Innovative Properties Company Pentablock copolymers
US10889692B2 (en) 2017-02-17 2021-01-12 3M Innovative Properties Company Triblock copolymers
WO2018152075A1 (en) 2017-02-17 2018-08-23 3M Innovative Properties Company Triblock copolymers
EP3366755A1 (en) 2017-02-22 2018-08-29 Infineum International Limited Improvements in and relating to lubricating compositions
EP3369802A1 (en) 2017-03-01 2018-09-05 Infineum International Limited Improvements in and relating to lubricating compositions
US11692048B2 (en) 2017-03-10 2023-07-04 Kraton Corporation Fusible oil gel compositions and methods of making and using same
EP3461877A1 (en) 2017-09-27 2019-04-03 Infineum International Limited Improvements in and relating to lubricating compositions
WO2019094201A1 (en) 2017-11-09 2019-05-16 Milliken & Company Additive composition and polymer compositions comprising the same
EP3492566A1 (en) 2017-11-29 2019-06-05 Infineum International Limited Lubricating oil additives
EP3492567A1 (en) 2017-11-29 2019-06-05 Infineum International Limited Lubricating oil additives
WO2019183302A1 (en) 2018-03-23 2019-09-26 Kraton Polymers Llc Ultrahigh melt flow styrenic block copolymers
US11466115B2 (en) 2018-06-01 2022-10-11 3M Innovative Properties Company Porous membranes including triblock copolymers
EP3770235A1 (en) 2018-09-24 2021-01-27 Infineum International Limited Polymers and lubricating compositions containing polymers
EP4039782A1 (en) 2018-09-24 2022-08-10 Infineum International Limited Polymers and lubricating compositions containing polymers
BE1027044A1 (en) 2019-02-11 2020-09-02 Eoc Belgium Nv INTERNETABLE FUNCTIONAL LATEX CONTAINING ALUMINUM TRIHYDROXIDE
WO2020165740A1 (en) 2019-02-11 2020-08-20 Eoc Belgium Nv Cross-linkable functional latex comprising aluminium trihydroxide
WO2020229308A1 (en) 2019-05-16 2020-11-19 3M Innovative Properties Company Amphiphilic triblock copolymer
EP3738988A1 (en) 2019-05-16 2020-11-18 3M Innovative Properties Company Amphiphilic triblock copolymer
EP3741832A2 (en) 2019-05-24 2020-11-25 Infineum International Limited Nitrogen-containing lubricating oil additives
EP3831913A1 (en) 2019-12-05 2021-06-09 Infineum International Limited Triblock copolymer concentrates for lubricating oil compositions
WO2021124011A1 (en) 2019-12-17 2021-06-24 3M Innovative Properties Company Articles including an isoporous membrane disposed on a porous substrate and methods of making the same
EP3851507A1 (en) 2020-01-15 2021-07-21 Infineum International Limited Polymers and lubricating compositions containing polymers
EP3926026A1 (en) 2020-06-16 2021-12-22 Infineum International Limited Oil compositions
WO2023006474A1 (en) 2021-07-26 2023-02-02 Basf Coatings Gmbh Peelable coating system and methods for forming the peelable coating system
EP4159832A1 (en) 2021-10-04 2023-04-05 Infineum International Limited Lubricating oil compositions
EP4174154A1 (en) 2021-10-29 2023-05-03 Infineum International Limited Method of limiting chemical degradation due to nitrogen dioxide contamination
EP4174153A1 (en) 2021-10-29 2023-05-03 Infineum International Limited Method of limiting chemical degradation due to nitrogen dioxide contamination
EP4174152A1 (en) 2021-10-29 2023-05-03 Infineum International Limited Ionic liquid composition
US11859149B2 (en) 2021-10-29 2024-01-02 Infineum International Limited Ionic liquid composition
EP4303287A1 (en) 2022-07-06 2024-01-10 Infineum International Limited Lubricating oil compositions

Similar Documents

Publication Publication Date Title
USRE27145E (en) Side-chain
US3431323A (en) Hydrogenated block copolymers of butadiene and a monovinyl aryl hydrocarbon
US3595942A (en) Partially hydrogenated block copolymers
US3670054A (en) Block copolymers having reduced solvent sensitivity
US4086298A (en) Branched block copolymers and their manufacture
US4167545A (en) Branched block copolymers and their manufacture
US4335221A (en) Preparation of mixtures of linear three-block copolymers, and moldings produced therefrom
US3700748A (en) Selectively hydrogenated block copolymers
US4152370A (en) Preparation, composition, and use of block polymers
CA1057889A (en) Star polymers and process for the preparation thereof
US3231635A (en) Process for the preparation of block copolymers
US3634549A (en) Conjugated diene block copolymers having a random copolymer elastomeric block and their hydrogenated counterparts
EP0441485B1 (en) Vulcanizable liquid copolymer
EP0254346B1 (en) Thermoplastic compositions and process for the preparation thereof
AU686193B2 (en) Solid elastomeric block copolymers
WO2004044015A1 (en) Block copolymer having a hard phase and a soft phase
US3985826A (en) Hydrogenated block copolymers of butadiene and isoprene
US3766295A (en) Block polymer compositions
CA1155248A (en) Block copolymers of diene having their terminal end blocks of a random copolymer of styrene and alpha-methylstyrene; block copolymers of diene having their terminal end blocks of a random copolymer of styrene or alkylstyrene and an alpha-methylstyrene
CA2130169A1 (en) Solid elastomeric block copolymers
JP2002540230A (en) Hydrogenated block copolymer
CA1087339A (en) Branched block copolymers of a monovinyl-aromatic compound and a conjugated diene
EP1569999A1 (en) Styrenic block copolymer compositions to be used for the manufacture of transparent, gel free films.
EP1169358B1 (en) Hydrogenated block copolymers
US3706817A (en) Block copolymers having dissimilar nonelastomeric polymer blocks