USRE33156E - Alkali soluble latex thickeners - Google Patents

Alkali soluble latex thickeners Download PDF

Info

Publication number
USRE33156E
USRE33156E US07/055,508 US5550887A USRE33156E US RE33156 E USRE33156 E US RE33156E US 5550887 A US5550887 A US 5550887A US RE33156 E USRE33156 E US RE33156E
Authority
US
United States
Prior art keywords
recited
alkali soluble
soluble thickener
component
weight percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/055,508
Inventor
Gregory D. Shay
Emmojean Eldridge
James E. Kail
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DeSoto Inc
Original Assignee
DeSoto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/643,370 external-priority patent/US4514552A/en
Application filed by DeSoto Inc filed Critical DeSoto Inc
Priority to US07/055,508 priority Critical patent/USRE33156E/en
Application granted granted Critical
Publication of USRE33156E publication Critical patent/USRE33156E/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/43Thickening agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters

Definitions

  • This invention relates to latex polymers which are soluble in aqueous alkaline medium to provide thickeners for use in aqueous coating compositions, especially latex paints.
  • Thickeners for aqueous systems are needed for various purposes, but they are particularly needed in aqueous latex paints to improve the rheology of the paint.
  • Hydroxyethyl cellulose is a well known thickener for aqueous systems, but it has various deficiencies in that excessive amounts must be used and the rheology of the thickened system is inadequate.
  • Various ethoxylated carboxyl-functional polymers which form alkali soluble thickeners are also known, but these have various deficiencies, including inadequate hydrolytic stability.
  • the alkali soluble thickener is an aqueous emulsion copolymer of:
  • the monohydric nonionic surfactants are themselves well known and are usually ethoxylated hydrophobes containing adducted ethylene oxide to provide the hydrophilic portion of the molecule.
  • the hydrophobes are usually an aliphatic alcohol or alkyl phenol in which a carbon chain containing at least 6 carbon atoms provides the hydrophobic portion of the surfactant.
  • These surfactants are illustrated by ethylene oxide adducts of dodecyl alcohol or octyl or nonylphenol which are available in commerce and which contain about 5 to about 150, preferably 10 to 60 moles of ethylene oxide per mole of hydrophobe; and
  • (D) from 0 up to about 2 weight percent of polyethylenically unsaturated monomer may be copolymerized into the copolymer, as is common in alkali soluble emulsion copolymers. These are illustrated by ethylene glycol diacrylate or dimethacrylate 1,6-hexanediol diacrylate or dimethylacrylate, diallyl benzene, and the like.
  • the preferred surfactants have the formula:
  • urethanes can be made by varoius procedures, so the urethane reaction product used herein can be made in any desired fashion so long as the resulting product is essentially the same as that made by the reaction of the components named herein.
  • the thickeners of this invention possess structural attributes of two entirely different types of thickeners (those which thicken by alkali solubilization of a high molecular weight entity, and those which thicken due to association), and this may account for the superior thickener properties which are obtained herein.
  • the ethoxylated monomer thickeners of this invention are not esters with unsaturated acids, as required in U.S. Pat. No. 4,384,096, and they do not have any of the diverse structures described by U.S. Pat. No. 4,079,028.
  • carboxylic acid monomer Considering the components which are copolymerized in aqueous emulsion in this invention, a large proportion of carboxylic acid monomer must be present, as previously defined.
  • carboxylic acid monomers can be used, such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, and the like. Methacrylic acid is presently preferred. This large proportion of acid is essential to provide a polymeric structure which will solubilize and provide a thickener when reacted with an alkali, like sodium hydroxide.
  • the polymer must also contain a significant proportion, as previously defined, of a monoethylenic monomer which has no surfactant characteristic.
  • the preferred monomers provide water insoluble polymers when homopolymerized and are illustrated by acrylate and methacrylate esters, such as ethyl acrylate, butyl acrylate or the corresponding methacrylate.
  • Other monomers which can be used are styrene, vinyl toluene, vinyl acetate, acrylonitrile, vinylidene chloride, and the like.
  • Nonreactive monomers are preferred, these being monomers in which the single ethylenic group is the only group reactive under the conditions of polymerization.
  • monomers which include groups reactive under baking conditions may be used in some situations, like hydroxyethyl acrylate. The selection of these monomers is no different in this invention than it was in the prior art noted previously.
  • the monohydric nonionic surfactant component is subject to considerable variation within the formula presented previously.
  • the essence of the surfactant is a hydrophobe carrying a polyethoxylate chain (which may include some polypropoxylate groups) and which is terminated with a single hydroxy group.
  • a polyethoxylate chain which may include some polypropoxylate groups
  • the hydroxy-terminated polyethoxylate used herein is reacted with a monoethylenically unsaturated monoisocyanate, as has been illustrated, the result is a monoethylenically unsaturated urethane in which a polyethoxylate structure is associated with a copolymerizable monoethylenic group via a urethane linkage.
  • alkali soluble polycarboxylic acid thickeners provide superior thickening action when urethane linkages are present even though the primary thickening mechanism is alkali solubilization of a polycarboxylic acid emulsion copolymer.
  • the hydroxylic stability of the urethane group is superior to the hydrolytic stability of the prior art ester group, and when preferred urethane monomers are used, this provides a further advantage in aqueous alkaline mediums as found in aqueous coating compositions, which are normally stored for long periods of time prior to use.
  • the monoethylenically unsaturated monoisocyanate used to provide the nonionic urethane monomer is subject to wide variation. Any copolymerizable unsaturation may be employed, such as acrylate and methacrylate unsaturation. One may also use allylic unsaturation, as provided by allyl alcohol. These, preferably in the form of an hydroxy-functional derivative, as is obtained by reacting a C 2 -C 4 monoepoxide, like ethylene oxide, propylene oxide or butylene oxide, with acrylic or methacrylic acid to form an hydroxy ester, are reacted in equimolar proportions with an organic diisocyanate, such as toluene diisocyanate or isophorone diisocyanate.
  • an organic diisocyanate such as toluene diisocyanate or isophorone diisocyanate.
  • the presently preferred monoethylenic monoisocyanate is styryl, as in alpha, alpha-dimethyl-m-isopropenyl benzyl isocyanate, and this unsaturated monoisocyanate lacks the ester group so it forms urethanes which lack this group.
  • the aqueous emulsion copolymerization is entirely conventional and will be illustrated in the examples.
  • the latex product can be diluted with water to about 1% solids content and then neutralized with alkali.
  • alkali is ammonium hydroxide, but sodium and potassium hydroxide, and even amines, like triethyl amine, may be used for neutralization.
  • the neutralized product dissolves in the water to provide an increase in the viscosity.
  • the unneutralized latex thickener is added to a paint and then neutralized. This facilitates handling the thickener because it has a lower viscosity before neutralization. This procedure also makes more water available for the paint formulation.
  • Example 1 is illustrative of Examples 1-A through 1-L in Table I for the preparation of the nonionic urethane monomers of this invention.
  • the reactor contents are then cooled to 80° C., the Dean Stark trap is replaced with a condenser, and the nitrogen sparge is switched to an air sparge for 15 minutes. With continued air sparging, 0.02 g methoxyhydroquinone inhibitor, 0.50 g dibutyl tin dilaurate catalyst, and 99.7 g of alpha, alpha-dimethyl-m-isopropenyl benzyl isocyanate (m-TMI, a product of American Cyanamide, may be used) are charged in order to the reactor. After a rapid initial exotherm which increases the reaction temperature about 8° C., the contents are heated to maintain 80° C. for an additional two hours. The product is then cooled to room temperature.
  • m-TMI alpha, alpha-dimethyl-m-isopropenyl benzyl isocyanate
  • the final product is a white wax in appearance with residual isocyanate content of 0.5% and with 98% of the original ethylenic unsaturation retained.
  • This product is designated Example 1-D in Table I.
  • Example 2 is illustrative of Examples 2-A through 2-D in Table II for the preparation of an alkali-soluble thickener containing no urethane monomer.
  • These latex thickeners display poor performance because they possess low solution viscosity, have poor thickening efficiency, and provide poor flow leveling properties in latex paints.
  • Example 3 To a three-liter flask equipped as in Example 3 hereinafter is charged 525.5 g deionized water. The water is heated to 80° C. and purged with nitrogen for 30 minutes.
  • a pre-emulsion of monomers is prepared in a separate stirred container by charging, in order, 756.7 g deionized water, 81.6 g sulfonated octyl phenol ethoxylate containing about 10 moles of adducted ethylene oxide per mol of the phenol (Alipal EP-110 surfactant, a product of GAF, may be used) 367.0 g ethyl acrylate, and 244.7 g methacrylic acid.
  • the product is a low viscosity latex of solids content 28.9%, RVT Brookfield viscosity 28.5 cps (No, 1 spindle at 100 rpm), pH of 2.8, and average particle size of 129 nm.
  • RVT Brookfield viscosity 28.5 cps (No, 1 spindle at 100 rpm)
  • pH 2.8
  • average particle size 129 nm.
  • This latex thickener is designated 2-C in Table II.
  • Example is illustrative of Examples 3-A through 3-U and 4-19 in Tables II and II for alkali-soluble thickeners prepared from the urethane monomers of this invention in Table I.
  • a pre-emulsion of monomers is prepared in a separate stirred container by charging, in order, 756.7 g deionized water, 81.6 g sulfonated octyl phenol ethoxylate containing about 10 moles of adducted ethylene oxide per mole of the phenol (Alipal EP-110 surfactant, a product of GAF, may be used) and a monomer blend consisting of 305.8 g ethyl acrylate, 244.7 g methacrylic acid, and 61.2 g of ethoxylated urethane monomer prepared in Example 1.
  • the product is a low viscosity latex of solids content 29.2%, RVT Brookfield viscosity 26.8 cps (No. 1 spindle at 100 rpm), pH of 2.9, and average particle size of 92 nm.
  • RVT Brookfield viscosity 26.8 cps (No. 1 spindle at 100 rpm)
  • pH 2.9
  • average particle size 92 nm.

Abstract

Alkali soluble thickeners are disclosed which are aqueous emulsion copolymers of:
(A) about 20-70 weight percent of an alpha, beta-monoethylenically unsaturated carboxylic acid, typically methacrylic acid,
(B) about 20-80 weight percent of a monoethylenically unsaturated monomer lacking surfactant capacity, typically ethyl acrylate;
(C) about 0.5-60 weight percent of a nonionic urethane monomer which is the urethane reaction product of a monohydric nonionic surfactant with a monoethylenically unsaturated monoisocyanate, preferably one lacking ester groups like alpha, alpha-dimethyl-m-isopropenyl benzyl isocyanate; and
(D) from 0 up to about 2 weight percent of a polyethylenically unsaturated monomer. These emulsion copolymers are solubilized in water with the aid of an alkali, like ammonium hydroxide. When the copolymers are added to latex paints and neutralized, the viscosity of the paint is increased, brush drag is increased, and the paint rheology is otherwise improved.

Description

DESCRIPTION
1. Technical Field
This invention relates to latex polymers which are soluble in aqueous alkaline medium to provide thickeners for use in aqueous coating compositions, especially latex paints.
2. Background Art
Thickeners for aqueous systems are needed for various purposes, but they are particularly needed in aqueous latex paints to improve the rheology of the paint. Hydroxyethyl cellulose is a well known thickener for aqueous systems, but it has various deficiencies in that excessive amounts must be used and the rheology of the thickened system is inadequate. Various ethoxylated carboxyl-functional polymers which form alkali soluble thickeners are also known, but these have various deficiencies, including inadequate hydrolytic stability.
From the standpoint of alkali soluble thickeners which are carboxyl-functional emulsion copolymers, reference is made to U.S. Pat. No. 4,384,096 issued May 17, 1983. In that patent, 15-60 weight percent of a monoethylenic carboxylic acid is copolymerized in aqueous emulsion with 15-80 weight percent of a monoethylenic monomer, typified by a monovinyl ester, and 1-30 weight percent of a nonionic vinyl surfactant ester which is an ester of a nonionic ethoxylate surfactant with an acrylic or methacrylic acid. These copolymers are soluble in water with the aid of an alkali to form a thickener in the water solution.
Another prior patent of interest to this invention is U.S. Pat. No. 4,079,028 issued June 27, 1978 in which the thickener is a nonionic polyurethane of various types, but these do not provide their thickening characteristics as a result of alkali solubilization.
It has long been desired to provide superior thickeners for aqueous systems which are highly efficient, which better resist hydrolysis, and which provide better rheology. This is achieved herein by providing new alkali soluble anionic latex polymers which possess these desired characteristics.
DISCLOSURE OF INVENTION
In accordance with this invention, the alkali soluble thickener is an aqueous emulsion copolymer of:
(A) about 20-70, preferably 25-55, weight percent of an alpha, beta-monoethylenically unsaturated carboxylic acid, typically methacrylic acid;
(B) about 20-80, preferably 30-65, weight percent of a monoethylenically unsaturated monomer lacking surfactant capacity, typically ethyl acrylate; and
(C) about 0.5-60, preferably 10-50, weight percent of a nonionic urethane monomer which is the urethane reaction product of a monohydric nonionic surfactant with a monoethylenically unsaturated monoisocyanate, preferably one lacking ester groups like alpha, alpha-dimethyl-m-isopropenyl benzyl isocyanate. The monohydric nonionic surfactants are themselves well known and are usually ethoxylated hydrophobes containing adducted ethylene oxide to provide the hydrophilic portion of the molecule. The hydrophobes are usually an aliphatic alcohol or alkyl phenol in which a carbon chain containing at least 6 carbon atoms provides the hydrophobic portion of the surfactant. These surfactants are illustrated by ethylene oxide adducts of dodecyl alcohol or octyl or nonylphenol which are available in commerce and which contain about 5 to about 150, preferably 10 to 60 moles of ethylene oxide per mole of hydrophobe; and
(D) from 0 up to about 2 weight percent of polyethylenically unsaturated monomer may be copolymerized into the copolymer, as is common in alkali soluble emulsion copolymers. These are illustrated by ethylene glycol diacrylate or dimethacrylate 1,6-hexanediol diacrylate or dimethylacrylate, diallyl benzene, and the like.
The preferred surfactants have the formula:
R--O--CH.sub.2 --CHR'O).sub.m --CH.sub.2 --CH.sub.2 O.sub.n H
in which R is an alkyl group containing 6-22 carbon atoms (typically dodecyl) or an alkaryl group containing 8-22 carbon atoms (typically octyl phenol), R' is C1 -C4 alkyl (typically methyl), n is an average number from about 6-150, and m is an average number of from 0-50 provided n is at least as great as m and n+m=6-150; and
It will be understood that urethanes can be made by varoius procedures, so the urethane reaction product used herein can be made in any desired fashion so long as the resulting product is essentially the same as that made by the reaction of the components named herein.
The thickeners of this invention possess structural attributes of two entirely different types of thickeners (those which thicken by alkali solubilization of a high molecular weight entity, and those which thicken due to association), and this may account for the superior thickener properties which are obtained herein. On the other hand, the ethoxylated monomer thickeners of this invention are not esters with unsaturated acids, as required in U.S. Pat. No. 4,384,096, and they do not have any of the diverse structures described by U.S. Pat. No. 4,079,028.
Considering the components which are copolymerized in aqueous emulsion in this invention, a large proportion of carboxylic acid monomer must be present, as previously defined. Various carboxylic acid monomers can be used, such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, and the like. Methacrylic acid is presently preferred. This large proportion of acid is essential to provide a polymeric structure which will solubilize and provide a thickener when reacted with an alkali, like sodium hydroxide.
The polymer must also contain a significant proportion, as previously defined, of a monoethylenic monomer which has no surfactant characteristic. The preferred monomers provide water insoluble polymers when homopolymerized and are illustrated by acrylate and methacrylate esters, such as ethyl acrylate, butyl acrylate or the corresponding methacrylate. Other monomers which can be used are styrene, vinyl toluene, vinyl acetate, acrylonitrile, vinylidene chloride, and the like. Nonreactive monomers are preferred, these being monomers in which the single ethylenic group is the only group reactive under the conditions of polymerization. However, monomers which include groups reactive under baking conditions may be used in some situations, like hydroxyethyl acrylate. The selection of these monomers is no different in this invention than it was in the prior art noted previously.
The monohydric nonionic surfactant component is subject to considerable variation within the formula presented previously. The essence of the surfactant is a hydrophobe carrying a polyethoxylate chain (which may include some polypropoxylate groups) and which is terminated with a single hydroxy group. When the hydroxy-terminated polyethoxylate used herein is reacted with a monoethylenically unsaturated monoisocyanate, as has been illustrated, the result is a monoethylenically unsaturated urethane in which a polyethoxylate structure is associated with a copolymerizable monoethylenic group via a urethane linkage. In this invention it has been found that alkali soluble polycarboxylic acid thickeners provide superior thickening action when urethane linkages are present even though the primary thickening mechanism is alkali solubilization of a polycarboxylic acid emulsion copolymer. At the same time, the hydroxylic stability of the urethane group is superior to the hydrolytic stability of the prior art ester group, and when preferred urethane monomers are used, this provides a further advantage in aqueous alkaline mediums as found in aqueous coating compositions, which are normally stored for long periods of time prior to use.
The monoethylenically unsaturated monoisocyanate used to provide the nonionic urethane monomer is subject to wide variation. Any copolymerizable unsaturation may be employed, such as acrylate and methacrylate unsaturation. One may also use allylic unsaturation, as provided by allyl alcohol. These, preferably in the form of an hydroxy-functional derivative, as is obtained by reacting a C2 -C4 monoepoxide, like ethylene oxide, propylene oxide or butylene oxide, with acrylic or methacrylic acid to form an hydroxy ester, are reacted in equimolar proportions with an organic diisocyanate, such as toluene diisocyanate or isophorone diisocyanate. The presently preferred monoethylenic monoisocyanate is styryl, as in alpha, alpha-dimethyl-m-isopropenyl benzyl isocyanate, and this unsaturated monoisocyanate lacks the ester group so it forms urethanes which lack this group.
The aqueous emulsion copolymerization is entirely conventional and will be illustrated in the examples. To obtain an estimate of thickening efficiency, the latex product can be diluted with water to about 1% solids content and then neutralized with alkali. The usual alkali is ammonium hydroxide, but sodium and potassium hydroxide, and even amines, like triethyl amine, may be used for neutralization. The neutralized product dissolves in the water to provide an increase in the viscosity. In the normal mode of addition, the unneutralized latex thickener is added to a paint and then neutralized. This facilitates handling the thickener because it has a lower viscosity before neutralization. This procedure also makes more water available for the paint formulation.
The invention is illustrated by the following examples, it being understood that throughout this document, all proportions are by weight unless otherwise stated.
The following Example is illustrative of Examples 1-A through 1-L in Table I for the preparation of the nonionic urethane monomers of this invention.
EXAMPLE 1 (Preparation of a Urethane Monomer)
To a one-liter glass reactor fitted with a thermometer, heating mantle, thermoregulator, stirrer, nitrogen sparge, and condenser including a Dean-Stark trap is charged 800.0 g of a 50 mole ethoxylate of nonyl phenol as a hot melt (Igepal CO-970, a product of GAF, may be used). The reactor contents are heated, with nitrogen sparging, to 150° C. and held for two hours while trace moisture is removed and collected in the Dean-Stark Trap (typically less than 1 g).
The reactor contents are then cooled to 80° C., the Dean Stark trap is replaced with a condenser, and the nitrogen sparge is switched to an air sparge for 15 minutes. With continued air sparging, 0.02 g methoxyhydroquinone inhibitor, 0.50 g dibutyl tin dilaurate catalyst, and 99.7 g of alpha, alpha-dimethyl-m-isopropenyl benzyl isocyanate (m-TMI, a product of American Cyanamide, may be used) are charged in order to the reactor. After a rapid initial exotherm which increases the reaction temperature about 8° C., the contents are heated to maintain 80° C. for an additional two hours. The product is then cooled to room temperature.
The final product is a white wax in appearance with residual isocyanate content of 0.5% and with 98% of the original ethylenic unsaturation retained. This product is designated Example 1-D in Table I.
For purposes of comparison, the following Example is illustrative of Examples 2-A through 2-D in Table II for the preparation of an alkali-soluble thickener containing no urethane monomer. These latex thickeners display poor performance because they possess low solution viscosity, have poor thickening efficiency, and provide poor flow leveling properties in latex paints.
EXAMPLE 2 (Control)
To a three-liter flask equipped as in Example 3 hereinafter is charged 525.5 g deionized water. The water is heated to 80° C. and purged with nitrogen for 30 minutes.
A pre-emulsion of monomers is prepared in a separate stirred container by charging, in order, 756.7 g deionized water, 81.6 g sulfonated octyl phenol ethoxylate containing about 10 moles of adducted ethylene oxide per mol of the phenol (Alipal EP-110 surfactant, a product of GAF, may be used) 367.0 g ethyl acrylate, and 244.7 g methacrylic acid.
Under a nitrogen blanket, 145.0 g (10%) of the monomer pre-emulsion is charged to the reactor followed by 10.0 g of 5% sodium persulfate solution. The contents exotherm to about 85° C., and after cooling back to 80° C., the addition of the remaining pre-emulsion is started and continued over 2.5 hours until complete. The reactor contents are heated for an additional 30 minutes at 80° C. to complete conversion of monomer to copolymer and then cooled.
The product is a low viscosity latex of solids content 28.9%, RVT Brookfield viscosity 28.5 cps (No, 1 spindle at 100 rpm), pH of 2.8, and average particle size of 129 nm. Upon ammonium hydroxide neutralization to pH 9 of a 1% active concentration of this latex in water, a clear solution is obtained with RVT Brookfield viscosity of only 60 cps (No. 1 spindle at 10 rpm). This latex thickener is designated 2-C in Table II.
The following Example is illustrative of Examples 3-A through 3-U and 4-19 in Tables II and II for alkali-soluble thickeners prepared from the urethane monomers of this invention in Table I.
EXAMPLE 3 (Preparation of an Alkali-Soluble Thickener with Urethane Monomer)
To a three-liter flask equipped with thermometer, stirrer, condenser, nitrogen inlet, thermoregulated water bath and monomer addition pump is charged 525.5 g deionized water. The water is heated to 80° C. and purged with nitrogen for 30 minutes.
A pre-emulsion of monomers is prepared in a separate stirred container by charging, in order, 756.7 g deionized water, 81.6 g sulfonated octyl phenol ethoxylate containing about 10 moles of adducted ethylene oxide per mole of the phenol (Alipal EP-110 surfactant, a product of GAF, may be used) and a monomer blend consisting of 305.8 g ethyl acrylate, 244.7 g methacrylic acid, and 61.2 g of ethoxylated urethane monomer prepared in Example 1.
Under a nitrogen blanket, 145.0 g (10%) of the monomer pre-emulsion is charged to the reactor followed by 10 g of 5% sodium persulfate solution. The contents exotherm to about 85° C., and after cooling back to 80° C., the addition of the remaining pre-emulsion is started and continued progressively over 2.5 hours until complete. The reactor contents are heated for an additional 30 minutes at 80° C. to complete the conversion of monomer to copolymer and then cooled.
The product is a low viscosity latex of solids content 29.2%, RVT Brookfield viscosity 26.8 cps (No. 1 spindle at 100 rpm), pH of 2.9, and average particle size of 92 nm. Upon neutralization to pH 9 with ammonium hydroxide of a 1% active concentration of this latex in water, a clear solution is obtained with RVT Brookfield viscosity of 1375 cps (No. 3 spindle at 10 rpm).
              TABLE I                                                     
______________________________________                                    
EXAMPLES OF NOVEL URETHANE MONOMERS                                       
REACTANTS                                                                 
______________________________________                                    
Mono-          Ethoxylated Surfactant Used                                
Example                                                                   
       Isocyanate              Ethylene oxide                             
No.    Used        Hydrophobe  (Moles)                                    
______________________________________                                    
1-A    M--TMI      Nonyl-Phenol                                           
                               9                                          
1-B    M--TMI      Nonyl-Phenol                                           
                               15                                         
1-C    M--TMI      Nonyl-Phenol                                           
                               30                                         
1-D    M--TMI      Nonyl-Phenol                                           
                               50                                         
1-E    M--TMI      Nonyl-Phenol                                           
                               100                                        
1-F    M--TMI      Octyl-Phenol                                           
                               40                                         
1-G    M--TMI      Dinonyl-Phenol                                         
                               49                                         
1-H    M--TMI      Dinonyl-Phenol                                         
                               150                                        
1-I    M--TMI      Lauryl(C12) 23                                         
1-J    M--TMI      Stearyl(C18)                                           
                               30                                         
1-K    M--TMI      Oleyl(C-18) 20                                         
1-L    IEM         Nonyl-Phenol                                           
                               50                                         
______________________________________                                    
The surfactants used in the above Table are:                              
Example No.   Trade Name                                                  
______________________________________                                    
1-A           Igepal CO-630                                               
1-B           Igepal CO-730                                               
1-C           Igepal CO-880                                               
1-D           Igepal CO-970                                               
1-E           Igepal CO-990                                               
1-F           Igepal CA-890                                               
1-G           Igepal DM-880                                               
1-H           Igepal DM-970                                               
1-I           Siponic L-25                                                
1-J           Siponic E-15                                                
1-K           Emulphor ON-870                                             
1-L           Igepal CO-970                                               
______________________________________                                    
 The abbreviations used in the above Table are:                           
 M--TMI = Alpha, alphadimethyl-m-isopropenyl benzyl isocyanate            
 IEM = Isocyanatoethyl methacrylate                                       
 Igepal and Emulphor are trademarks of GAF Corporation                    
 Siponic is a trademark of Alcolac                                        
                                  TABLE II                                
__________________________________________________________________________
PREPARATIONS OF ALKALI-SOLUBLE LATEX THICKENERS                           
USING EXAMPLE 1-D URETHANE MONOMER                                        
                       1% Aqueous                                         
Thickener Monomer Composition                                             
                       Solution                                           
                              Properties In An Interior Flat Paint        
     Urethane                                                             
           Ethyl                                                          
                Methacrylic                                               
                       Viscosity                                          
                              Thickening                                  
                                     Brush Drag                           
                                           Leveling                       
Example                                                                   
     Monomer                                                              
           Acrylate                                                       
                Acid   at PH 9                                            
                              Efficiency                                  
                                     Viscosity                            
                                           Viscosity                      
(No.)                                                                     
     (Wt. %)                                                              
           (Wt. %)                                                        
                (Wt. %)                                                   
                       (CPS)  (Dry Lbs*)                                  
                                     (Poise)                              
                                           (Poise)                        
__________________________________________________________________________
2-A  None  25   75      52    32.42  1.85  3523                           
2-B  None  40   60      70    20.52  2.17  3555                           
2-C  None  55   45      96    22.48  2.39  2607                           
2-D  None  70   30      220   23.04  2.43  3444                           
3-A   5    45   50      470   12.87  2.14  1801                           
3-B   5    50   45      400   11.93  2.36  1501                           
3-C  10    35   55      764   9.72   2.17  1659                           
3-D  10    40   50     1220   9.00   2.31  2686                           
3-E  10    50   40     1375   9.30   1.95  2686                           
3-F  10    55   30     1553   --     --    --                             
3-G  15    25   60      268   11.86  2.17  1975                           
3-H  15    35   50     1730   8.01   2.45  2038                           
3-I  15    40   45     2025   8.02   2.27  2449                           
3-J  15    45   40     2140   7.97   2.10  2054                           
3-K  15    55   30     2575   8.72   2.15  3729                           
3-L  15    65   20     1416   13.50  1.30  5609                           
3-M  15    70   15      178   22.34  1.29  6636                           
3-N  20    50   30     4880   7.96   2.10  20.54                          
3-O  25    30   45     3400   --     --    --                             
3-P  25    35   40     5680   7.16   1.98  1975                           
3-Q  25    40   35     7350   --     --    --                             
3-R  25    50   25     4400   7.80   1.46  2528                           
3-S  30    25   45     5180   6.92   1.53  1248                           
3-T  30    40   30     6100   7.55   1.29  1375                           
3-U  45    25   30      880   8.79   2.43  1122                           
Cellulosic                                                                
     --    --   --     2196   7.00   0.96  2212                           
__________________________________________________________________________
 *Number of pounds of material which must be added to 100 gallons of latex
 paint to provide 92-96 KU Stormer Paint Viscosity                        
 Cellulosic is Natrosol 250 HBR, a hydroxyethyl cellulose from Hercules   
 Inc.                                                                     
                                  TABLE III                               
__________________________________________________________________________
OTHER EXAMPLES OP ALKALI-SOLUBLE THICKENERS                               
USING URETHANE MONOMERS FROM TABLE I                                      
Urethane                      1% Aqueous                                  
Monomer     Thickener Monomer Composition                                 
                              Solution                                    
                                     Properties In An Interior Flat       
                                     Paint                                
Thickener                                                                 
      Example                                                             
            Urethane                                                      
                  Ethyl                                                   
                       Methacrylic                                        
                              Viscosity                                   
                                     Thickening                           
                                            Brush Drag                    
                                                  Leveling                
Example                                                                   
      Used  Monomer                                                       
                  Acrylate                                                
                       Acid   at PH 9                                     
                                     Efficiency                           
                                            Viscosity                     
                                                  Viscosity               
(No)  (No)  (Wt. %)                                                       
                  (Wt. %)                                                 
                       (Wt. %)                                            
                              (CPS)  (Dry Lbs*)                           
                                            (Poise)                       
                                                  (Poise)                 
__________________________________________________________________________
4     1-A   10    50   40      417   9.56   1.66  3081                    
5     1-A   25    50   25     1272   --     --    --                      
6     1-A   10    40   50      625   9.85   1.88  1896                    
7     1-A   25    35   40     1550   7.95   1.05  1722                    
8     1-B   10    50   40      477   9.92   1.75  3160                    
9     1-C   10    50   40      969   8.81   2.25  4266                    
10    1-E   10    50   40     2256   10.25  1.82  6794                    
11    1-F   10    50   40     1480   8.09   1.89  1485                    
12    1-G   10    50   40     10053  8.52   2.20  2171                    
13    1-G   25    50   25     17160  --     --    --                      
14    1-G   10    40   50     6680   6.82   1.31  2007                    
15    1-G   25    35   40     29600  4.74   1.15  1896                    
16    1-H   10    50   40     3080   7.73   1.47  3444                    
17    1-I   10    50   40      752   8.52   2.20  2171                    
18    1-K   10    50   40     1830   8.80   1.09  3350                    
19    1-L   10    50   40     1066   9.45   2.04  1438                    
__________________________________________________________________________
 *see note in Table II                                                    

Claims (14)

What is claimed is:
1. An alkali soluble thickener which is an aqueous emulsion copolymer of:
(A) about 20-70 weight percent of an alpha, beta-monoethylenically unsaturated carboxylic acid,
(B) about 20-80 weight percent of a monoethylenically unsaturated monomer lacking surfactant capacity;
(C) about 0.5-60 weight percent of a non-ionic urethane monomer which is the urethane reaction product of a nonohydric nonionic surfactant with a monoethylenically unsaturated monoisocyanate; and
(D) from 0 up to about 2 weight percent of a polyethylenically unsaturated monomer.
2. An alkali soluble thickener as recited in claim 1 in which said component (C) is present in an amount of from 10-50 weight percent and said monohydric nonionic surfactant is an ethoxylated aliphatic alcohol or alkyl phenol in which a carbon chain containing at least 6 carbon atoms provides the hydrophobic portion of said surfactant.
3. An alkali soluble thickener as recited in claim 1 in which said monohydric nonionic surfactant has the formula:
R--O--(CH.sub.2 --CHR'O).sub.m --CH.sub.2 --CH.sub.2 O.sub.n H
in which R is an alkyl group containing 6-22 carbon atoms or an alkaryl group containing 8-22 carbon atoms, R' is C1 -C4 alkyl, n is an average number from about 6-150, and m is an average number of from 0-50 provided n is at least as great as m and n+m=6-150.
4. An alkali soluble thickener as recited in claim 1 in which said component (A) is present in an amount of from 25-55 weight percent.
5. An alkali soluble thickener as recited in claim 4 in which said component (A) is methacrylic acid.
6. An alkali soluble thickener as recited in claim 1 in which said component (B) is present in an amount of 30-65 weight percent.
7. An alkali soluble thickener as recited in claim 6 in which said component (B) is ethyl acrylate.
8. An alkali soluble thickener as recited in claim 1 in which said component (C) contains styryl unsaturation.
9. An alkali soluble thickener as recited in claim 8 in which said component (C) is urethane of said monohydric nonionic surfactant with alpha, alpha-dimethyl-m-isopropenyl benzyl isocyanate.
10. An alkali soluble thickener as recited in claim 1 in which said component (C) is a urethane of an ethoxylate of nonyl phenol.
11. An alkali soluble thickener as recited in claim 10 in which said ethoxylate contains about 50 moles of adducted ethylene oxide per mole of nonyl phenol.
12. An aqueous latex containing the neutralized aqueous emulsion copolymer of claim 1.
13. An aqueous latex as recited in claim 12 in which said copolymer is neutralized with ammonium hydroxide. .Iadd.
14. An alkali soluble thickener as recited in claim 1 in which said aqueous emulsion copolymer is anionic. .Iaddend. .Iadd.15. An alkali soluble thickener as recited in claim 1 in which said monoethylenically unsaturated monoisocyanate of said component (C) is the reaction product of equimolar proportions of an organic diisocyanate with an hydroxy ester of a C2 -C4 monoepoxide with acrylic or methacrylic acid. .Iaddend. .Iadd.16. An alkali soluble thickener as recited in claim 1 in which the monomer of said component (B) provides a water insoluble polymer when homopolymerized. .Iaddend. .Iadd.17. An alkali soluble thickener as recited in claim 1 in which the monomer of said component (B) is chosen from monomers in which the single ethylenic group is the only group reactive under the conditions of polymerization. .Iaddend. .Iadd.18. An aqueous latex as recited in claim 12 in which the urethane reaction product of said component (C) lacks the ester group and said latex provides an aqueous alkaline medium. .Iaddend.
US07/055,508 1984-08-23 1987-05-29 Alkali soluble latex thickeners Expired - Fee Related USRE33156E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/055,508 USRE33156E (en) 1984-08-23 1987-05-29 Alkali soluble latex thickeners

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/643,370 US4514552A (en) 1984-08-23 1984-08-23 Alkali soluble latex thickeners
US07/055,508 USRE33156E (en) 1984-08-23 1987-05-29 Alkali soluble latex thickeners

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06/643,370 Reissue US4514552A (en) 1984-08-23 1984-08-23 Alkali soluble latex thickeners

Publications (1)

Publication Number Publication Date
USRE33156E true USRE33156E (en) 1990-01-30

Family

ID=26734310

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/055,508 Expired - Fee Related USRE33156E (en) 1984-08-23 1987-05-29 Alkali soluble latex thickeners

Country Status (1)

Country Link
US (1) USRE33156E (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102936A (en) * 1989-10-21 1992-04-07 Hoechst Ag Copolymers based on ethylenically unsaturated monomers and containing urethane groups, processes for their preparation and their use
US5109091A (en) * 1990-08-18 1992-04-28 Hoechst Ag Copolymers containing carboxyl groups, their preparation, and their use as thickeners
US5292843A (en) * 1992-05-29 1994-03-08 Union Carbide Chemicals & Plastics Technology Corporation Polymers containing macromonomers
US5292828A (en) * 1992-05-29 1994-03-08 Union Carbide Chemicals & Plastics Technology Corporation Polymers containing complex hydrophobic groups
US5294692A (en) * 1993-06-30 1994-03-15 National Starch And Chemical Investment Holding Corporation Associative monomers and polymers
US5426182A (en) * 1992-05-29 1995-06-20 Union Carbide Chemical & Plastics Technology Corporation Polysaccharides containing complex hydrophobic groups
US5461100A (en) * 1992-05-29 1995-10-24 Union Carbide Chemicals & Plastics Technology Corporation Aircraft anti-icing fluids
US5478602A (en) * 1992-05-29 1995-12-26 Union Carbide Chemicals & Plastics Technology Corporation Polymers containing macromonomers and their use in a method of coating substrates
US5486587A (en) * 1992-05-29 1996-01-23 Union Carbide Chemicals & Plastics Technology Corporation Aqueous latexes containing macromonomers
US5488180A (en) * 1992-05-29 1996-01-30 Union Carbide Chemicals & Plastics Technology Corporation Complex hydrophobe compounds
US5614604A (en) * 1991-02-08 1997-03-25 The Sherwin-Williams Company Coating thickeners comprised of silane-modified polyurethanes
US5639841A (en) * 1995-02-28 1997-06-17 Union Carbide Chemicals & Plastics Technology Corporation Polymers containing macromonomer mixtures
US5739378A (en) * 1992-05-29 1998-04-14 Union Carbide Chemicals & Plastics Technology Corporation Complex hydrophobe-containing oligomers
US5840789A (en) * 1996-08-16 1998-11-24 National Starch And Chemical Investment Holding Corporation Aqueous compositions thickened with acrylate-based polymeric rheology modifiers
US6447803B1 (en) 1998-08-14 2002-09-10 National Starch And Chemical Investment Holding Corporation Thickener-rheology modifier system for personal care compositions
US6465416B2 (en) * 1999-11-10 2002-10-15 National Starch And Chemical Investment Holding Corporation Associative thickener for aqueous fabric softener
US20030204014A1 (en) * 1998-12-14 2003-10-30 Yeung Dominic Wai-Kwing Polymers which exhibit thermothickening properties and process making same
US20030207988A1 (en) * 2002-01-18 2003-11-06 Krishnan Tamareselvy Multi-purpose polymers, methods and compositons
US6762269B1 (en) 1998-08-13 2004-07-13 National Starch And Chemical Investment Holding Corporation High temperature viscosity stable thickener
US20060020059A1 (en) * 1999-04-30 2006-01-26 Coatex S.A. Novel acrylic copolymer agents based on urethane for improving the workability of hydraulic binders, preparation method, binders containing same and uses thereof
US7153496B2 (en) 2002-01-18 2006-12-26 Noveon Ip Holdings Corp. Hair setting compositions, polymers and methods
US20070203311A1 (en) * 2006-02-24 2007-08-30 Aroop Kumar Roy Polymerizable Silicone Copolymer Macromers and Polymers Made Therefrom
US20070275101A1 (en) * 2006-02-23 2007-11-29 Lu Helen S Removable antimicrobial coating compositions and methods of use
US20080014160A1 (en) * 2003-08-22 2008-01-17 David Faivre Antiperspirant Gel Compositions
EP2036590A2 (en) 2007-09-14 2009-03-18 L'Oréal Cosmetic compositions containing a cationic copolymer, a cyclodextrin and a surfactant, and uses thereof
EP2070511A2 (en) 2007-09-14 2009-06-17 L'Oreal Cosmetic composition comprising at least one specific cationic polymer, at least one surface-active agent, at least one cationic or amphoteric polymer and at least one mineral particle, and cosmetic treatment method using said composition
WO2011017090A1 (en) 2009-07-27 2011-02-10 E. I. Du Pont De Nemours And Company Removable antimicrobial coating compositions containing acid-activated rheology agent and methods of use
WO2011017097A1 (en) 2009-07-27 2011-02-10 E. I. Du Pont De Nemours And Company Removable antimicrobial coating compositions containing cationic rheology agent and methods of use
US8021650B2 (en) 2006-02-24 2011-09-20 Lubrizol Advanced Materials, Inc. Polymers containing silicone copolyol macromers and personal care compositions containing same
WO2014138327A1 (en) 2013-03-08 2014-09-12 Lubrizol Advanced Materials, Inc. Improved foaming performance in cleansing compositions through the use of nonionic, amphiphilic polymers
WO2014137859A1 (en) 2013-03-08 2014-09-12 Lubrizol Advanced Materials, Inc. Polymers and methods to mitigate the loss of silicone deposition from keratinous substrates
WO2015100122A1 (en) 2013-12-23 2015-07-02 Lubrizol Advanced Materials, Inc. Suspension and stability agent for antidandruff hair care compositions
WO2016100466A1 (en) 2014-12-18 2016-06-23 Lubrizol Advanced Materials, Inc. Amphiphilic suspension and stability agent for antidandruff hair care compositions
WO2016106168A1 (en) 2014-12-23 2016-06-30 Lubrizol Advanced Materials, Inc. Laundry detergent compositions stabilized with an amphiphilic rheology modifier crosslinked with an amphiphilic crosslinker
WO2019177925A1 (en) 2018-03-16 2019-09-19 Lubrizol Advanced Materials, Inc. Foaming cleanser compositions containing a non-polar oil and amphiphilic polymer
US10987290B2 (en) 2017-10-20 2021-04-27 The Procter And Gamble Company Aerosol foam skin cleanser
US11207248B2 (en) 2014-11-10 2021-12-28 The Procter And Gamble Company Personal care compositions with two benefit phases

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079028A (en) * 1975-10-03 1978-03-14 Rohm And Haas Company Polyurethane thickeners in latex compositions
US4384096A (en) * 1979-08-27 1983-05-17 The Dow Chemical Company Liquid emulsion polymers useful as pH responsive thickeners for aqueous systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079028A (en) * 1975-10-03 1978-03-14 Rohm And Haas Company Polyurethane thickeners in latex compositions
US4079028B1 (en) * 1975-10-03 1990-08-21 Rohm & Haas
US4384096A (en) * 1979-08-27 1983-05-17 The Dow Chemical Company Liquid emulsion polymers useful as pH responsive thickeners for aqueous systems

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102936A (en) * 1989-10-21 1992-04-07 Hoechst Ag Copolymers based on ethylenically unsaturated monomers and containing urethane groups, processes for their preparation and their use
US5109091A (en) * 1990-08-18 1992-04-28 Hoechst Ag Copolymers containing carboxyl groups, their preparation, and their use as thickeners
US5614604A (en) * 1991-02-08 1997-03-25 The Sherwin-Williams Company Coating thickeners comprised of silane-modified polyurethanes
US5292843A (en) * 1992-05-29 1994-03-08 Union Carbide Chemicals & Plastics Technology Corporation Polymers containing macromonomers
US5292828A (en) * 1992-05-29 1994-03-08 Union Carbide Chemicals & Plastics Technology Corporation Polymers containing complex hydrophobic groups
US5342883A (en) * 1992-05-29 1994-08-30 Union Carbide Chemicals & Plastics Technology Corporation Polymers containing macromonomers
US5426182A (en) * 1992-05-29 1995-06-20 Union Carbide Chemical & Plastics Technology Corporation Polysaccharides containing complex hydrophobic groups
US5461100A (en) * 1992-05-29 1995-10-24 Union Carbide Chemicals & Plastics Technology Corporation Aircraft anti-icing fluids
US5478602A (en) * 1992-05-29 1995-12-26 Union Carbide Chemicals & Plastics Technology Corporation Polymers containing macromonomers and their use in a method of coating substrates
US5486587A (en) * 1992-05-29 1996-01-23 Union Carbide Chemicals & Plastics Technology Corporation Aqueous latexes containing macromonomers
US5739378A (en) * 1992-05-29 1998-04-14 Union Carbide Chemicals & Plastics Technology Corporation Complex hydrophobe-containing oligomers
US5488180A (en) * 1992-05-29 1996-01-30 Union Carbide Chemicals & Plastics Technology Corporation Complex hydrophobe compounds
US5442091A (en) * 1993-06-30 1995-08-15 National Starch And Chemical Investment Holding Corporation Associative monomers
US5478881A (en) * 1993-06-30 1995-12-26 National Starch And Chemical Investment Holding Corporation Solutions, latexes and carpet coating compositions containing novel associative monomers and polymers
US5532036A (en) * 1993-06-30 1996-07-02 National Starch And Chemical Investment Holding Corporation Methods for reducing volatile organic chemical contents of carpets
US5412142A (en) * 1993-06-30 1995-05-02 National Starch And Chemical Investment Holding Corporation Associative monomers
US5294692A (en) * 1993-06-30 1994-03-15 National Starch And Chemical Investment Holding Corporation Associative monomers and polymers
US5639841A (en) * 1995-02-28 1997-06-17 Union Carbide Chemicals & Plastics Technology Corporation Polymers containing macromonomer mixtures
US5840789A (en) * 1996-08-16 1998-11-24 National Starch And Chemical Investment Holding Corporation Aqueous compositions thickened with acrylate-based polymeric rheology modifiers
US6025431A (en) 1996-08-16 2000-02-15 National Starch And Chemical Investment Holding Corporation Thickened personal care composition
US6762269B1 (en) 1998-08-13 2004-07-13 National Starch And Chemical Investment Holding Corporation High temperature viscosity stable thickener
US6447803B1 (en) 1998-08-14 2002-09-10 National Starch And Chemical Investment Holding Corporation Thickener-rheology modifier system for personal care compositions
US7105153B2 (en) 1998-08-14 2006-09-12 National Starch And Chemical Investment Holding Corporation Thickener-rheology modifier system for personal care compositions
US20030068350A1 (en) * 1998-08-14 2003-04-10 Sorrentino Paul M. Thickener-rheology modifier system for personal care compositions
US6838514B2 (en) * 1998-12-14 2005-01-04 Rhodia Inc. Polymers which exhibit thermothickening properties and process making same
US20030204014A1 (en) * 1998-12-14 2003-10-30 Yeung Dominic Wai-Kwing Polymers which exhibit thermothickening properties and process making same
US20060020059A1 (en) * 1999-04-30 2006-01-26 Coatex S.A. Novel acrylic copolymer agents based on urethane for improving the workability of hydraulic binders, preparation method, binders containing same and uses thereof
US6465416B2 (en) * 1999-11-10 2002-10-15 National Starch And Chemical Investment Holding Corporation Associative thickener for aqueous fabric softener
US20080045646A1 (en) * 2002-01-18 2008-02-21 Krishnan Tamareselvy Multi-Purpose Polymers, Methods and Compositions
US7153496B2 (en) 2002-01-18 2006-12-26 Noveon Ip Holdings Corp. Hair setting compositions, polymers and methods
US20030207988A1 (en) * 2002-01-18 2003-11-06 Krishnan Tamareselvy Multi-purpose polymers, methods and compositons
US7288616B2 (en) 2002-01-18 2007-10-30 Lubrizol Advanced Materials, Inc. Multi-purpose polymers, methods and compositions
US7649047B2 (en) 2002-01-18 2010-01-19 Lubrizol Advanced Materials, Inc. Multi-purpose polymers, methods and compositions
US20080014160A1 (en) * 2003-08-22 2008-01-17 David Faivre Antiperspirant Gel Compositions
US7892525B2 (en) 2003-08-22 2011-02-22 Lubrizol Advanced Materials, Inc. Antiperspirant gel compositions
US20080026026A1 (en) * 2006-02-23 2008-01-31 Lu Helen S Removable antimicrobial coating compositions and methods of use
US20070275101A1 (en) * 2006-02-23 2007-11-29 Lu Helen S Removable antimicrobial coating compositions and methods of use
US9668476B2 (en) 2006-02-23 2017-06-06 Lanxess Corporation Removable antimicrobial coating compositions and methods of use
US8021650B2 (en) 2006-02-24 2011-09-20 Lubrizol Advanced Materials, Inc. Polymers containing silicone copolyol macromers and personal care compositions containing same
US20070203311A1 (en) * 2006-02-24 2007-08-30 Aroop Kumar Roy Polymerizable Silicone Copolymer Macromers and Polymers Made Therefrom
US8796484B2 (en) 2006-02-24 2014-08-05 Lubrizol Advanced Materials, Inc. Polymerizable silicone copolyol macromers and polymers made therefrom
EP2036590A2 (en) 2007-09-14 2009-03-18 L'Oréal Cosmetic compositions containing a cationic copolymer, a cyclodextrin and a surfactant, and uses thereof
EP2070511A2 (en) 2007-09-14 2009-06-17 L'Oreal Cosmetic composition comprising at least one specific cationic polymer, at least one surface-active agent, at least one cationic or amphoteric polymer and at least one mineral particle, and cosmetic treatment method using said composition
WO2011017090A1 (en) 2009-07-27 2011-02-10 E. I. Du Pont De Nemours And Company Removable antimicrobial coating compositions containing acid-activated rheology agent and methods of use
US20110182959A1 (en) * 2009-07-27 2011-07-28 E.I. Du Pont De Nemours And Company. Removable antimicrobial coating compositions containing acid-activated rheology agent and methods of use
US20110177146A1 (en) * 2009-07-27 2011-07-21 E. I. Du Pont De Nemours And Company Removable antimicrobial coating compositions containing cationic rheology agent and methods of use
WO2011017097A1 (en) 2009-07-27 2011-02-10 E. I. Du Pont De Nemours And Company Removable antimicrobial coating compositions containing cationic rheology agent and methods of use
WO2014138327A1 (en) 2013-03-08 2014-09-12 Lubrizol Advanced Materials, Inc. Improved foaming performance in cleansing compositions through the use of nonionic, amphiphilic polymers
WO2014137859A1 (en) 2013-03-08 2014-09-12 Lubrizol Advanced Materials, Inc. Polymers and methods to mitigate the loss of silicone deposition from keratinous substrates
WO2015100122A1 (en) 2013-12-23 2015-07-02 Lubrizol Advanced Materials, Inc. Suspension and stability agent for antidandruff hair care compositions
US11207248B2 (en) 2014-11-10 2021-12-28 The Procter And Gamble Company Personal care compositions with two benefit phases
WO2016100466A1 (en) 2014-12-18 2016-06-23 Lubrizol Advanced Materials, Inc. Amphiphilic suspension and stability agent for antidandruff hair care compositions
WO2016106168A1 (en) 2014-12-23 2016-06-30 Lubrizol Advanced Materials, Inc. Laundry detergent compositions stabilized with an amphiphilic rheology modifier crosslinked with an amphiphilic crosslinker
US10987290B2 (en) 2017-10-20 2021-04-27 The Procter And Gamble Company Aerosol foam skin cleanser
WO2019177925A1 (en) 2018-03-16 2019-09-19 Lubrizol Advanced Materials, Inc. Foaming cleanser compositions containing a non-polar oil and amphiphilic polymer

Similar Documents

Publication Publication Date Title
US4514552A (en) Alkali soluble latex thickeners
USRE33156E (en) Alkali soluble latex thickeners
CA1297215C (en) Nonionic associative thickeners
EP0197635B1 (en) Acrylic emulsion copolymers for thickening aqueous systems and copolymerizable surfactant monomers for use therein
US4764554A (en) Thickeners for emulsion paints
US5874495A (en) Polymers useful as PH responsive thickeners and monomers therefor
AU612275B2 (en) Thickening agent to modify rheological properties of aqueous compositions thickened and/or containing white or coloured pigments
EP0705852B1 (en) High performance alkali - swellable rheological additives for aqueous systems
EP0398576B1 (en) Multi-stage polymer particle having a hydrophobically-modified ionically soluble stage
US4521565A (en) Aqueous dispersion
US5266646A (en) Multi-stage polymer particles having a hydrophobically-modified, ionically-soluble stage
JPH0649153A (en) Copolymer containing crotonic acid ester, its preparation and its application
JP2002518530A (en) Alkali-soluble latex thickener
AU617532B2 (en) Organic dispersion polymers based on ethylenically unsaturated monomers which contain water-soluble graft polymers containing vinyl alcohol units having a polyurethane grafting base, processes for their preparation and their use
EP0335410B1 (en) Water swellable resin composition
EP0452399B1 (en) Propoxylated alkali-soluble thickeners
US5451641A (en) Multi-stage polymer particles having a hydrophobically-modified, ionically-soluble stage
US5191051A (en) Propoxylated alkali-soluble thickeners
EP0421787A2 (en) Method of coating a substrate with an ambient temperature-drying aqueous elastomeric composition
AU608418B2 (en) Polyacrylate dispersions prepared with a water-soluble conjugated unsaturated monomer in the absence of a protective colloid
WO2009090204A1 (en) Associative thickeners
CN1089956A (en) A kind of novel method for preparing the polyurethane-acrylate copolymer emulsion
US20040171732A1 (en) Water based resin composition method for producing the same and its applications
US4256867A (en) Novel vinyl ethers, process for their preparation, and their use for the preparation of polymers
GB2108976A (en) Aqueous coating composition

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
LAPS Lapse for failure to pay maintenance fees