USRE35010E - Method of compensating for changes in the flow characteristics of a dispensed fluid to maintain the volume of dispensed fluid at a setpoint - Google Patents

Method of compensating for changes in the flow characteristics of a dispensed fluid to maintain the volume of dispensed fluid at a setpoint Download PDF

Info

Publication number
USRE35010E
USRE35010E US08/127,281 US12728193A USRE35010E US RE35010 E USRE35010 E US RE35010E US 12728193 A US12728193 A US 12728193A US RE35010 E USRE35010 E US RE35010E
Authority
US
United States
Prior art keywords
fluid
signal
flow
nozzle
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/127,281
Inventor
Richard P. Price
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson Corp
Original Assignee
Nordson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/494,500 external-priority patent/US5054650A/en
Application filed by Nordson Corp filed Critical Nordson Corp
Priority to US08/127,281 priority Critical patent/USRE35010E/en
Application granted granted Critical
Publication of USRE35010E publication Critical patent/USRE35010E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0225Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work characterised by flow controlling means, e.g. valves, located proximate the outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/085Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to flow or pressure of liquid or other fluent material to be discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0431Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with spray heads moved by robots or articulated arms, e.g. for applying liquid or other fluent material to 3D-surfaces
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0208Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles
    • B05C5/0212Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles only at particular parts of the articles
    • B05C5/0216Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles only at particular parts of the articles by relative movement of article and outlet according to a predetermined path

Definitions

  • the present invention relates to a system for dispensing fluids. More particularly, the invention relates to an apparatus and method for dispensing viscous fluid materials such as lubricants, sealants and adhesives onto a workpiece at a controlled rate of flow which can be adjusted to compensate for changes in the relative speed between the dispenser and the workpiece.
  • viscous fluid materials such as lubricants, sealants and adhesives
  • the shot pump itself should be capable of holding at least as much material as required to be applied to an entire workpiece. Accordingly, the pump and its associated mechanical drive are too bulky and massive to be mounted on the robot arm with the dispensing nozzle.
  • the mechanical components and D.C. drive controls together may weigh up to several hundred pounds. Further, such a system is expensive to maintain and occupies a significant amount of production floor space.
  • Another type of system known in the prior art uses a more compact dispenser having a motor driven metering valve which receives a continuous supply of material by way of a flexible hose.
  • the dispenser is mounted on the robot arm and includes a servomotor or stepper motor which controls the metering valve to adjust the flow in accordance with the speed of the dispensing nozzle as indicated by a toolspeed signal emanating from the robot. Closed-loop control of flow is effected by a feedback signal indicative of material flow deriving, at some point in the system remote from the dispensing nozzle.
  • This feedback signal may be derived by sensing the displacement of the supply pump using an LVDT or potentiometer connected to the crosshead of the pump or by using a positive displacement flowmeter connected in line with the flexible hose which feeds the dispenser.
  • a pressure sensor at the nozzle of the dispenser to shut off under specified conditions as described in European Patent Application No. 85-104,127.7.
  • This reference discloses the use of one or more pressure sensors located in the wall of the dispensing nozzle to derive a pair of signals, one of which is used to indicate the presence of bubbles, the other of which indicates the flow of the liquid.
  • the latter signal can be derived for example from a pair of contacts connected to an elastic pressure-transmitting element which keeps the contacts closed as long as the pressure at the nozzle exceeds a certain value.
  • the flow signal can be used to initiate a shutdown of the system or provide an indication. Similar action can be taken should a bubble be sensed at the nozzle.
  • This type of system also has significant performance limitations. Even though the material being dispensed is metered by a dispenser mounted on the robot arm rather than from a remote metering device such as the shot pump system described above, the response time of the system is still relatively slow. As a consequence, the ability of the system to control bead size is limited, especially during rapid changes in the relative speed between the dispenser nozzle and the workpiece.
  • a preferred embodiment of the invention includes a dispenser for viscous fluids having a servo actuator comprising an electropneumatic servo-valve which operates a double-acting piston actuator.
  • the servo actuator in turn drives a variable fluid metering valve.
  • the dispenser includes a discharge nozzle located downstream of and in close proximity to the fluid metering valve.
  • a pressure sensor disposed at the nozzle and downstream of the needle valve generates a pressure signal which is correlated to the instantaneous flow rate of the dispensed fluid.
  • the dispenser in a closed-loop control system whereby the electro-pneumatic servovalve is driven by a control current derived in accordance with the difference between the pressure signal and a driving signal representing a desired flow.
  • the driving signal is preferably related to a toolspeed signal emanating from the robot carrying the dispenser so that the control current will vary as required to maintain a uniform bead even during relatively rapid changes in the relative speed between the dispenser and the workpiece onto which material is dispensed.
  • such a system includes means for generating a "pressure overrange” signal when the pressure in the nozzle exceeds a predetermined value as may occur for example should the nozzle becomed clogged. Also provided are means for generating a "valve overrange” signal when the valve is fully opened and cannot open further. Such a signal is useful for determining that an insufficient amount of material may be being dispensed.
  • Another preferred embodiment of the invention includes an intelligent controller which monitors the amount of material being dispensed and compares it to a desired set point amount. If a deviation is sensed, the magnitude of the setpoint signal is periodically readjusted to zero out the difference, thereby compensating for changes in the intrinsic viscosity of the fluid.
  • intrinsic refers to changes in viscosity caused by phenomena other than shear effects. For example, intrinsic viscosity changes include variations due to temperature changes.
  • the intelligent controller is programmed to linearize the flow response of the dispenser to the toolspeed signal emanating from the robot thereby compensating for pressure flow non-linearities introduced by non-newtonian viscosity characteristics in the fluid being dispensed.
  • a preferred dispenser assembly includes a frame securable to a robot tool mounting face. One side of the frame supports the servo actuator while the opposite side carries the metering valve assembly which includes the pressure sensor. According to the invention, the metering valve assembly is secured to the frame in a rotatably adjustable manner so that the material supply hose may be routed to avoid interfering with free movement of the dispenser.
  • FIG. 1 is a schematic cross sectional view illustrating a preferred embodiment of a dispensing apparatus constructed according to the invention.
  • FIG. 2 is a block diagram illustrating a preferred embodiment .[.cf.]. .Iadd.of .Iaddend.a system for dispensing fluid materials according to the invention.
  • FIG. 3 is a block diagram illustrating a portion of a second preferred embodiment of a system for dispensing fluid materials according to the invention.
  • FIG. 4 is a flow chart illustrating the operation of the embodiment of FIG. 3.
  • Gun 10 includes a C-shaped frame 11 having a mounting plate 12 adapted to be secured to the tool mounting face 13 of a robot arm by means of one or more cap screws 14 and alignment pins 15.
  • Frame 10 is preferably constructed of a rigid light weight material such as aluminum alloy and further includes, extending outwardly from mounting plate 12, an upper portion 16, and an opposed lower portion 17.
  • the upper portion 16 of frame 11 carries a servo actuator 20 which may consist of any of a number of types of compact, light weight linear actuators offering rapid response.
  • actuator 20 comprises a double-acting air cylinder 22 having a piston rod 23 whose degree of extension is controlled by an electrically actuated pneumatic servo-valve 24 disposed atop air cylinder 22.
  • the lower portion 17 of frame 11 carries a metering valve assembly 26 having a needle valve 27 located between a fluid inlet 28 and a dispensing nozzle 29 which includes a nozzle end 30 having a nozzle inlet 29a and a nozzle outlet 31.
  • Valve 27 includes a valve inlet 27a and a valve outlet 27b.
  • needle valve 27 is located as close to nozzle 29 as practical and includes a valve stem 32 having a generally conical end 33 and a valve seat 34.
  • Valve stem 32 is connected to piston rod 23 so that the position of its conical end 33 relative to valve seat 34 and hence, the flow rate of fluid discharged from nozzle 29 is controlled in accordance with the electrical input of electro-pneumatic servovalve 24.
  • a transducer 36 located just downstream of needle valve 27 generates an electrical signal 37 correlated to the rate of flow of fluid discharged from nozzle 29.
  • signal 37 is preferably used as a feedback signal to control the rate of flow of fluid dispensed from nozzle 29 in accordance with a desired driving signal.
  • the driving signal can vary with the relative speed between nozzle 29 and the workpiece 39 to accurately control the amount of fluid per unit length contained in the bead deposited on the surface of the workpiece 39.
  • Linear actuator 20 may incorporate any of a number of suitable types of fast responding electrically actuated servovalves including jetpipe, nozzle and flapper or spool types. The details of the construction of actuator 20 are within the purview of those skilled in the art, and accordingly, do not constitute the claimed invention.
  • actuator 20 comprises a jet-pipe electropneumatic servovalve 24 which operates a double-acting air cylinder 22.
  • Servo-valve 24 includes a housing 42 which supports a threaded, electrical connector 43 secured thereto by screws 44. Wired to connector 43 by way of leads 45 are a pair of series-connected coils 46 surrounding opposing ends 49 of an armature 50 which is mounted to pivot about pivot point 51.
  • a hollow, inverted U-shaped jet pipe 52 has one leg connectable to a regulated air supply of about 100 PSI nominal pressure through a threaded inlet 53 in air cylinder 22 by way of filter 54.
  • the opposite leg of jet-pipe 52 is secured near its center to armature 50 so that when armature 50 is pivoted clockwise by energizing coils 46 in one polarity, the flow emanating from jet pipe 52 is diverted toward a first port 60.
  • coils 46 are energized in the opposite polarity, armature 50 pivots counter-clockwise to direct the flow from jet pipe 52 toward a second port 61 of air cylinder 22.
  • the degree of the deflection of jet pipe 52 and hence, the pressure in ports 60 and 61 is proportional to the magnitude of the current flowing in coils 46.
  • Armature 50 is spring centered and magnetically biased such that when coils 46 are in a de-energized state, jet pipe 52 is centered in a neutral position as shown so that the pressures in ports 60 and 61 tend to be equally balanced.
  • Magnetic bias is provided by a pair of permanent magnets 63 each of which communicate with the armature field by way of a flux across air gaps 65. This flux is conducted to gaps 65 by way of four magnetically permeable members 66 arranged as shown.
  • Double acting air cylinder 22 includes an aluminum alloy cylinder body 70, the end of which is received in a hole 71 in the upper portion 16 of frame 11.
  • a flange 72 is used to secure the body 70 of air cylinder 22 to the upper portion 16 of frame 11 using cap screws 73.
  • Cylinder body 70 includes first and second ports 60, 61, threaded air supply inlet 53 and filter 54 as well as a cylinder bore 75.
  • Received within bore 75 is a piston 76 provided with a pair of seals 78 as well as piston rod 23 which extends axially from bore.
  • the portion of bore 75 located above piston 76 communicates with first port 60 while the portion beneath piston 76 is connected to second port 61.
  • piston 76 drives needle valve 27 depends upon the differential pressure between ports 60 and 61 which, as explained above, is determined by the deflection of jet pipe 50 due to the current flowing in coils 46.
  • Piston is retained within cylinder bore 75 by a cap 80 through which passes piston rod 23.
  • cap 80 is provided with a seal 81 in the area of piston rod 23 and an external O-ring seal 82 between the outer circumference of cap 80 and the surface of cylinder bore 75.
  • Cap 80 is itself retained in the end of cylinder bore 75 by a snap-ring 83.
  • Metering valve assembly 26 includes a rigid, non-resilient valve body 85 constructed as shown in FIG. 1 preferably of metal.
  • the lower end of valve body 85 includes a passage 84 whose lower end is threaded to accept the flow restricting nozzle 29 of a desired configuration having a discharge outlet 31.
  • Passage 84 is intersected by one or more radial threaded holes, one of which receives transducer 36 and the others of which are sealed by means of plugs 90.
  • valve body 85 Located immediately upstream of passage 84 and as closely adjacent thereto as practicable, valve body 85 houses needle valve 27.
  • both valve stem 32 and valve seat 34 are preferably fabricated of a hard material such as sintered tungsten carbide.
  • a fluid supply inlet 28 enters valve body 85 upstream of needle valve 27. Inlet 28 is threaded so that a hose can be attached to supply under pressure the fluid material to be dispensed.
  • Valve body 85 threads onto the lower end of a bonnet 97 and is sealed with respect thereto by means of an O-ring seal 98.
  • Bonnet 97 includes an internal packing gland 99 which holds a plurality of annular PTFE packing seals 100. Seals 100 are retained in sealing but non-binding compression about valve stem 32 by means of any adjustable gland nut 101.
  • bonnet 97 is threadably received by the extending lower portion 17 of frame 11 and secured thereto at a desired angular orientation by means of a locknut 102.
  • Metering valve assembly 26 is connected to actuator 20 by means of a coupling 105 which is fixedly attached to the upper end of valve stem 32 and threaded onto the lower end of piston rod 23 and held in place by a second locknut 106.
  • Transducer 36 may comprise any suitable transducer capable of generating a signal 37 indicative of the rate of flow of the fluid dispensed from nozzle 30.
  • transducer 36 is a strain gauge pressure transducer operably disposed to sense the instantaneous fluid pressure at a location inside passage 84 immediately downstream of needle valve 27.
  • One pressure transducer suitable for this purpose is model A205 manufactured by Sensotec of Columbus, Ohio. The flow of a viscous newtonian fluid at low Reynolds numbers is substantially linearly proportional to the pressure drop across a nozzle or tubular restrictor placed in the flow path. It can be appreciated that a pressure transducer 36 located as described will sense the pressure drop across nozzle 29.
  • transducer 36 generates a pressure signal 37 which represents the instantaneous rate of flow from outlet 31.
  • pressure transducer 37 due to the proximity of needle valve 27 this flow is closely correlated to the flow through needle valve 27. Since flow rate is sensed by pressure transducer 37 and controlled by needle valve 27 both in close proximity to nozzle 29, precise control over flow rate, and hence, the amount of fluid per unit length deposited by gun 10 on workpiece 39 can be achieved by connecting dispensing gun 10 to form a fast responding closed-loop servo control system as described now with particular reference to FIG. 2.
  • Dispensing gun 10 is carried by the tool mounting surface 13 of a robot having a controller (not shown) programmed to guide nozzle 29 over the surface of a workpiece to dispense a bead of fluid thereon in a desired pattern.
  • the metering valve assembly 26 of gun 10 communicates at its fluid inlet 28 with a continuous pressurized supply of fluid.
  • Transducer 36 continuously senses the pressure drop across nozzle 29 to generate a pressure signal 37 correlated to the rate of flow of fluid discharged from the outlet 31 of nozzle end 30.
  • Signal 37 is received and amplified by a preamp 110 which generates an output signal 111 appearing at the minus input 112 of a summing junction 113 as well as at a first input 114 of a comparator 115 whose second input 116 receives a fixed, selectable voltage reference, VREF1 and whose output 117 generates a digital PRESSURE OVERRANGE signal 118 which is received by the robot controller. If the magnitude of output signal 1ll exceeds VREF1, digital PRESSURE OVERRANGE signal assumes a logical 1 value. This can occur for example if needle valve 27 opens too far. In such event, the robot controller can be programmed to present a fault indication, shut down the system or take other appropriate action.
  • Summing junction 113 also includes a plus input 119 which receives a driving signal 122.
  • driving signal 122 is generated an amplifier 1:17 in accordance with a toolspeed signal 128 from the robot.
  • Toolspeed signal 128 is an analog voltage signal available from the robot controller which varies according to the speed of travel of gun 10 relative to workpiece 39. Through the robot controller, the gain of signal 128 can be adjusted by way of a toolspeed multiplier selected to provide a desired flow rate as a function of speed of travel.
  • Amplifier 127 is an operational amplifier whose gain is selected to properly scale toolspeed signal 128 so that driving voltage 122 will be within a range compatible with the rest of the circuit.
  • Amplifier 127 is preferably connected as a precision limiter such that for inputs between zero volts and an adjustable threshold voltage, the voltage of driving signal executes a decisive step in a direction proper to close needle valve 27.
  • the threshold voltage would be adjusted so that when toolspeed signal 128 is about 50 mV or less, needle valve 27 is driven positively closed. This prevents needle valve 27 from leaking by providing a negative bias current to servovalve 24, effective to drive needle valve 27 positively closed at times when toolspeed signal 128 is not present or quite small.
  • Summing junction 113 produces an analog error signal 130 whose magnitude and polarity is equal to the algebraic difference between the output signal Ill of preamp 110 and driving signal 122.
  • Error signal 130 is received by an amplifier 131 whose gain is adjusted for optimum system stiffness.
  • the output signal 132 from amplifier 131 is received by a lead/lag compensation network 134 designed and adjusted according to standard control technique to stabilize closed-loop system response and maximize response speed with minimum overshoot.
  • a second summing junction 135 then adds a dither signal 136 from a dither generator 137 to the output signal 138 of lead/lag network 134.
  • Dither signal 136 is an A.C. signal whose magnitude preferably several percent of the fullscale value of signal 138. Dither signal 136 improves system resolution by overcoming static friction effects.
  • Dither signal 136 accomplishes this by causing air cylinder 22 to oscillate very slightly during system operation, as is commonly practiced in the art.
  • Summing junction 135 provides an analog voltage signal 139 whose magnitude and polarity is determined by the algebraic sum of signal 138 and dither signal 136.
  • Signal 139 is received by a current driver 140 as well as by the first input 141 of a comparator 142 whose second input 143 receives a fixed, selectable voltage reference, VREF2 and whose output 144 generates a digital VALVE OVERRANGE SIGNAL 145. In the event the magnitude of signal 139 exceeds VREF2, digital VALVE OVERRANGE signal assumes a logical 1 state.
  • VALVE OVERRANGE signal 145 is directed to the robot controller which may be programmed to generate a fault indication, shut the system down or otherwise initiate corrective action.
  • Current driver 140 generates an analog control current signal 146 which is applied to the coils 46 of servo-valve 24. This causes jet pipe 52 to be diverted toward first port 60 or second port 61, depending on the magnitude and direction of control current signal 146, to move the piston 76 of air cylinder 22 either downward or upward, respectively. Downward movement of piston 76 tends to close needle valve 27 of metering valve assembly 26 thereby reducing the flow of fluid while upward movement of piston 76 tends to open needle valve 27 thereby increasing the flow of fluid.
  • the system functions as a closed loop servo system responsive to the pressure drop across nozzle 29 as sensed by pressure transducer 36.
  • needle valve 27 With needle valve 27 initially closed, no flow occurs and the pressure drop across nozzle 29 is zero.
  • amplifier 127 Assuming tool speed signal 128 is less than the threshold voltage associated with amplifier 127, amplifier 127 generates a driving signal 122 of the proper polarity and of sufficient magnitude to generate a control current 146 to deflect jet pipe 52 toward first port 60. This holds piston 76 down so that needle valve 27 is held closed under force thereby preventing leakage. This condition is maintained until toolspeed signal 128 rises above the threshold voltage of amplifier 127 indicating that flow should commence. When this occurs, driving signal reverses polarity.
  • pressure signal 137 Since there is initially no flow, pressure signal 137 is at its zero value. Accordingly, an error signal 130 whose magnitude is determined by the difference between pressure signal 37 and driving signal 122 will cause a control current 146 to be applied to coils 46 in such a polarity as to cause jet pipe 52 to deflect toward second port 61. In response, piston 76 moves upward causing needle valve 27 to open by lifting the conical end of valve stem 32 away from valve seat 34. As the pressure signal 37 generated by pressure transducer 36 increases error signal 130 and control current 146 both decrease and jet pipe 52 moves toward its null position. As the pressure drop across nozzle 29 approaches a value corresponding to a desired flow rate jet pipe 52 causes needle valve .[.52.]. .Iadd.27 .Iaddend.to remain open by an amount just sufficient to maintain the pressure drop across nozzle 29 at that value.
  • FIG. 3 illustrates a second preferred embodiment of the invention which is similar to the embodiment described above except for the manner in which driving signal 122 is generated.
  • the system of FIG. 2 is modified by adding a positive displacement flow meter 150 to the fluid supply line connected to the inlet 28 of dispensing gun 10. While it is desirable to locate flow meter 150 as dose to gun 10 as possible it is not required to be mounted with the gun 10 on the robot arm.
  • Flow meter 150 includes an incremental encoder 152 which produces an electrical output signal 153 comprising a series of pulses 155. Each pulse 155 represents a predetermined volume of fluid.
  • Signal 153 is input to a pulse counter 156 which counts pulses 155 and is resettable to zero by a reset signal 158 which is generated by a microprocessor based controller 160 which, if desired may be part of the robot controller (not shown). However, to provide maximum system frequency response, controller 160 should run at high speed and is preferably dedicated principally to performing the operations described below.
  • controller 160 includes all necessary program and data memory as well as an analog to digital converter (A/D) 163 which receives the toolspeed signal 128 from the robot controller.
  • Pulse counter 156 outputs its pulse count 165 to controller 160. Controller 160 also receives from the robot controller (not shown), a digital cycle status signal 168 and a digital job status signal 170.
  • Cycle status signal assumes a logical 1 value whenever dispensing gun 10 should be operating.
  • Job status signal 170 assumes a logical 1 .[.valve.]. .Iadd.value .Iaddend.when a production run is at an end.
  • Controller 160 also communicates by way of an interface 172 with an input/output device 175 such as a keyboard terminal from which control commands and setpoint data are entered.
  • Controller 160 also communicates by way of an output 176 with a digital to analog D/A converter 177 which generates an analog signal 178.
  • Signal 178 is received by amplifier 127 which operates as described above with reference to FIG. 2.
  • Amplifier 127 in turn generates driving signal 122 which is applied to the plus input 119 of summing junction 113 as described above to generate error signal 130.
  • driving signal 122 is derived may be further understood with additional reference now to FIG. 4 which illustrates the software program stored in controller 160 responsible for outputting the required data to D/A converter 177.
  • the program begins running by clearing all data memory and initializing all variables including a set-point representing a desired total volume of fluid to be applied to a single workpiece 39.
  • An appropriate set of pre-programmed flow linearizing factors (FLFs) are also initialized at this point.
  • FLFs are constants which represent factors by which toolspeed signal 128 must be multiplied in order to linearize system flow response such that when a given percentage of the full scale value of toolspeed signal 128 is applied to summing junction 113, the needle valve 27 of metering valve assembly 26 is positioned so that the same percentage of the full scale flow of fluid is discharged from nozzle outlet 31.
  • FLF's are determined empirically from a measured curve of actual flow from outlet 31 of nozzle 30 versus voltage applied at input 119 of summing junction 113. Since the actual flow curve may vary depending on the geometry of needle valve 27 and nozzle 29 including nozzle end 30 as well as the flow characteristics of the particular type of fluid being dispensed and the supply pressure, the program loads a series of FLF's appropriate to account for a particular set of these conditions.
  • the program also sets a flow compensation factor (FCF) to an arbitrarily selected initial value.
  • FCF is a variable which compensates for changes in the flow characteristics which occur over time such as changes in intrinsic viscosity due to changes in temperature or other factors as discussed earlier.
  • the FCF is recomputed once each job cycle that is, once per dispensing operation on a given workpiece 39.
  • the FCF is defined as a factor by which the linearized toolspeed signal must be multiplied so that the total volume of fluid dispensed onto a workpiece 39 is substantially equal to the selected setpoint. Deviation from setpoint cannot be determined at the beginning of the first job cycle because there is no basis for comparison. Accordingly, FCF is preferably initialized at unity. The manner in which FCF is recomputed will be described below.
  • the program resets pulse counter 156 to zero by outputting an appropriate reset signal 158 from controller 160 to counter 158.
  • the program causes controller 160 to read the total pulse count 165.
  • the value of pulse count 165 represents the total volume of fluid dispensed during the previous job cycle. If pulse count is not zero, as will be the case except prior to the first job cycle, the program recomputes the flow compensation factor FCF as a quotient whose dividend is equal to the setpoint and whose divisor is equal to total pulse count 165. After the FCF is recomputed counter 156 is again reset in the manner described above. If pulse count 165 is equal to zero, as it will be at the beginning of the first job cycle, the FCF remains at its initialized .[.valve.]..Iadd.value.Iaddend..
  • the program enters a loop in which it waits for the robot controller signal that a job cycle is in progress.
  • the program continuously reads cycle status signal 168 and tests to determine whether it has assumed a logical 1 value. If not, the program stays in the loop.
  • the program directs controller 160 to read the digital value 180 representing the magnitude of toolspeed signal 128 from the output of A/D converter 163. Based on the magnitude of the digital value, the program selects from a look-up table the corresponding flow linearizing factor FLF from the set of FLF values loaded during initialization.
  • Digital value 180 is then multiplied by the selected FLF value to yield a linearized toolspeed value 181.
  • the program next causes the linearized toolspeed value 181 to be multiplied by the flow compensation factor FCF to yield a corrected digital value 182 which is then output to D/A converter 177 whose output 178 is fed to amplifier 127 to generate driving signal 122.
  • cycle status signal 168 the program again reads cycle status signal 168 to determine whether dispensing should continue. If not, job status signal 168 will not be a logical 1 value, indicating the present cycle has ended. In that case the program causes controller 160 to read job status signal 170 emanating from the robot controller. If job status signal 170 is not a logical 1 value, this indicates that the last workpiece 39 in a given production lot has been finished and the program is stopped. If the production run is not complete, job status signal 170 will remain at a logical 1 value and the program will loop back to the point at which pulse count 165 is read. Although the program described recomputes a flow compensation factor once per job cycle, it should be noted that such periodic adjustments can be made more or less frequently depending on how rapidly the flow characteristics of the dispensed fluid can be expected to undergo significant change.
  • Dispensing gun 10 can be directed by any desired means including manually the invention is particularly well adapted for use with robots. Dispensing gun 10 is light weight, compact and easy to maintain. Further, the dispensing systems of the invention provide for automatic flow rate adjustment in accordance with the relative speed between the dispensing gun 10 on the robot arm and the workpiece.
  • the invention permits close control over the volume per unit length of the dispensed bead of fluid even during rapid acceleration and deceleration as normally occurs as the robot arm changes its direction of movement.
  • the invention also provides means for periodically compensating for perturbations in the flow characteristic of the fluid being dispensed to insure that the volume of fluid dispensed always conforms closely with a desired setpoint.

Abstract

Changes in the flow characteristics of a fluid being dispensed from a nozzle under .[.then.]. .Iadd.the .Iaddend.control of a metering valve are compensated for in order to maintain the volume of fluid dispensed over a predetermined time interval substantially equal to a selected setpoint. The volume of fluid delivered to the metering valve during a predetermined interval is measured and a correction factor based on the difference between the measured volume and the setpoint is calculated. The correction factor is used to generate a driving signal from which a control signal applied to the metering valve is generated.

Description

This is a division of application Ser. No. 07/243,238, filed Sep. 7, 1988, now U.S. Pat. No. 4,922,852 which, in turn, is a file wrapper continuation of application Ser. No. 06/924,940, filed Oct. .[.23.]. .Iadd.30.Iaddend., 1986.Iadd.abandoned.Iaddend..
FIELD OF THE INVENTION
The present invention relates to a system for dispensing fluids. More particularly, the invention relates to an apparatus and method for dispensing viscous fluid materials such as lubricants, sealants and adhesives onto a workpiece at a controlled rate of flow which can be adjusted to compensate for changes in the relative speed between the dispenser and the workpiece.
BACKGROUND OF THE DISCLOSURE
When dispensing viscous fluids such as certain lubricants, adhesives sealants and the like, it is often necessary to apply the material to the surface of a workpiece in a bead containing a desired amount of material per unit length. In high production processes or where the bead of material must be positioned with accuracy, robot arms are often used to apply the material by rapidly guiding a dispensing nozzle in a programmed pattern over the surface of the workpiece. Depending on the application, the fluid being dispensed may either be projected some distance from the nozzle in a high velocity stream or extruded from the nozzle at lower velocity with the nozzle located closer to the workpiece. In either case, the amount of material applied per unit of lineal distance along the bead will vary according to both the flow rate of material discharged from the dispensing nozzle and the speed of the nozzle with respect to the workpiece.
For example, in the automotive industry it is necessary to apply a uniform bead of sealant around the periphery of the inside surface of automobile doors before joining the inside panel to the door. Along long, straight portions of the pattern, a robot arm can move the nozzle quickly. However, where the desired bead pattern changes direction abruptly, such as around the corners of a door panel, the robot arm must be slowed down to achieve a required bead positioning accuracy. It can be appreciated that if the flow rate of the dispensed fluid material is held fixed, the amount of material in the applied bead will increase as the robot arm is decelerated to negotiate changes in direction and will decrease as the robot arm is accelerated.
In the prior art, one attempt to deal with this problem has been to apply a toolspeed signal emanating from the robot controller to a voltage-controlled D.C. motor drive to control the speed of a ball screw mechanism driving the plunger of a shot pump filled with fluid. The shot pump is connected to the dispensing nozzle on the robot arm by way of a length of flexible hose. The toolspeed signal applied to the D.C. drive varies with the speed of the nozzle relative to the workpiece. As the rate of travel of the shot pump plunger changes, so too does the flow rate from the nozzle. Thus, the rate at which fluid is dispensed is controlled in open-loop fashion according to the speed of the nozzle.
Such a system suffers a number of deficiencies. First, it is inherently slow to respond Therefore, only limited control of bead size is possible. In addition to the delays associated with the response of the D.C. drive and mechanical system driving the plunger, the flexible hose connected between the shot pump and the nozzle carried by the robot arm introduces significant response lag into the system. With a hose only 10 feet long, and depending on supply pressure and the characteristics of the fluid being dispensed, it may take a second or more for a change in pressure at the shot pump to be reflected in a corresponding change in flow at the nozzle. Thus, very precise control of bead size is difficult particularly during rapid changes in the speed of the robot arm. In addition to these performance limitations, such systems have other practical disadvantages. The shot pump itself should be capable of holding at least as much material as required to be applied to an entire workpiece. Accordingly, the pump and its associated mechanical drive are too bulky and massive to be mounted on the robot arm with the dispensing nozzle. The mechanical components and D.C. drive controls together may weigh up to several hundred pounds. Further, such a system is expensive to maintain and occupies a significant amount of production floor space.
Another type of system known in the prior art uses a more compact dispenser having a motor driven metering valve which receives a continuous supply of material by way of a flexible hose. The dispenser is mounted on the robot arm and includes a servomotor or stepper motor which controls the metering valve to adjust the flow in accordance with the speed of the dispensing nozzle as indicated by a toolspeed signal emanating from the robot. Closed-loop control of flow is effected by a feedback signal indicative of material flow deriving, at some point in the system remote from the dispensing nozzle. This feedback signal may be derived by sensing the displacement of the supply pump using an LVDT or potentiometer connected to the crosshead of the pump or by using a positive displacement flowmeter connected in line with the flexible hose which feeds the dispenser. In addition to this main control loop, such a system can incorporate a pressure sensor at the nozzle of the dispenser to shut off under specified conditions as described in European Patent Application No. 85-104,127.7. This reference discloses the use of one or more pressure sensors located in the wall of the dispensing nozzle to derive a pair of signals, one of which is used to indicate the presence of bubbles, the other of which indicates the flow of the liquid. The patent states that the latter signal can be derived for example from a pair of contacts connected to an elastic pressure-transmitting element which keeps the contacts closed as long as the pressure at the nozzle exceeds a certain value. In the event a clog develops in the flow channel, the flow signal can be used to initiate a shutdown of the system or provide an indication. Similar action can be taken should a bubble be sensed at the nozzle.
This type of system also has significant performance limitations. Even though the material being dispensed is metered by a dispenser mounted on the robot arm rather than from a remote metering device such as the shot pump system described above, the response time of the system is still relatively slow. As a consequence, the ability of the system to control bead size is limited, especially during rapid changes in the relative speed between the dispenser nozzle and the workpiece.
SUMMARY OF THE INVENTION
It is an objective of the invention to provide a system for dispensing viscous fluid materials having improved speed of response to permit more rapid and precise control of the flow of material being dispensed.
It is a further objective of the invention to provide such a dispensing system which is relatively compact and light weight as to be well suited for use with robots programmed to define a desired pattern according to which a bead of material is to be applied to a workpiece.
It is a further objective of the invention to provide a dispensing system capable of precisely controlling the amount of material applied to a workpiece per unit of lineal distance along a bead pattern despite rapid changes in the relative speed between the robot and the workpiece.
It is yet a further objective of the invention to provide such a fluid dispensing system which provides for linearizing the flow response of the system by accounting for the dynamic flow characteristics of the fluid as it is dispensed.
It is a still further objective of the invention to provide such a fluid dispensing system which periodically corrects for changes in the intrinsic viscosity of the fluid being dispensed in order to dispense a desired amount of material to each workpiece in a lot.
It is yet another object of the invention to provide an apparatus for dispensing fluids which provides for selectively locating the angular orientation of the fluid material supply hose to avoid interfering with free movement of the dispenser.
To these ends, a preferred embodiment of the invention includes a dispenser for viscous fluids having a servo actuator comprising an electropneumatic servo-valve which operates a double-acting piston actuator. The servo actuator in turn drives a variable fluid metering valve. The dispenser includes a discharge nozzle located downstream of and in close proximity to the fluid metering valve. A pressure sensor disposed at the nozzle and downstream of the needle valve generates a pressure signal which is correlated to the instantaneous flow rate of the dispensed fluid.
Continuous precise control over flow is achieved utilizing the dispenser in a closed-loop control system whereby the electro-pneumatic servovalve is driven by a control current derived in accordance with the difference between the pressure signal and a driving signal representing a desired flow. In robotic applications, the driving signal is preferably related to a toolspeed signal emanating from the robot carrying the dispenser so that the control current will vary as required to maintain a uniform bead even during relatively rapid changes in the relative speed between the dispenser and the workpiece onto which material is dispensed.
Advantageously, such a system includes means for generating a "pressure overrange" signal when the pressure in the nozzle exceeds a predetermined value as may occur for example should the nozzle becomed clogged. Also provided are means for generating a "valve overrange" signal when the valve is fully opened and cannot open further. Such a signal is useful for determining that an insufficient amount of material may be being dispensed.
Another preferred embodiment of the invention includes an intelligent controller which monitors the amount of material being dispensed and compares it to a desired set point amount. If a deviation is sensed, the magnitude of the setpoint signal is periodically readjusted to zero out the difference, thereby compensating for changes in the intrinsic viscosity of the fluid. As used herein, the term "intrinsic" refers to changes in viscosity caused by phenomena other than shear effects. For example, intrinsic viscosity changes include variations due to temperature changes. Preferably, the intelligent controller is programmed to linearize the flow response of the dispenser to the toolspeed signal emanating from the robot thereby compensating for pressure flow non-linearities introduced by non-newtonian viscosity characteristics in the fluid being dispensed.
A preferred dispenser assembly includes a frame securable to a robot tool mounting face. One side of the frame supports the servo actuator while the opposite side carries the metering valve assembly which includes the pressure sensor. According to the invention, the metering valve assembly is secured to the frame in a rotatably adjustable manner so that the material supply hose may be routed to avoid interfering with free movement of the dispenser.
These and other advantages will be readily apparent from the following detailed description of a preferred embodiment of the invention and from the accompanying drawings wherein like reference numerals designate like items.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic cross sectional view illustrating a preferred embodiment of a dispensing apparatus constructed according to the invention.
FIG. 2 is a block diagram illustrating a preferred embodiment .[.cf.]. .Iadd.of .Iaddend.a system for dispensing fluid materials according to the invention.
FIG. 3 is a block diagram illustrating a portion of a second preferred embodiment of a system for dispensing fluid materials according to the invention.
FIG. 4 is a flow chart illustrating the operation of the embodiment of FIG. 3.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to FIG. 1 a preferred embodiment of a dispensing gun 10 constructed according to the invention is shown. Gun 10 includes a C-shaped frame 11 having a mounting plate 12 adapted to be secured to the tool mounting face 13 of a robot arm by means of one or more cap screws 14 and alignment pins 15. Frame 10 is preferably constructed of a rigid light weight material such as aluminum alloy and further includes, extending outwardly from mounting plate 12, an upper portion 16, and an opposed lower portion 17. The upper portion 16 of frame 11 carries a servo actuator 20 which may consist of any of a number of types of compact, light weight linear actuators offering rapid response. Preferably, actuator 20 comprises a double-acting air cylinder 22 having a piston rod 23 whose degree of extension is controlled by an electrically actuated pneumatic servo-valve 24 disposed atop air cylinder 22. The lower portion 17 of frame 11 carries a metering valve assembly 26 having a needle valve 27 located between a fluid inlet 28 and a dispensing nozzle 29 which includes a nozzle end 30 having a nozzle inlet 29a and a nozzle outlet 31. Valve 27 includes a valve inlet 27a and a valve outlet 27b. For best control, needle valve 27 is located as close to nozzle 29 as practical and includes a valve stem 32 having a generally conical end 33 and a valve seat 34. Valve stem 32 is connected to piston rod 23 so that the position of its conical end 33 relative to valve seat 34 and hence, the flow rate of fluid discharged from nozzle 29 is controlled in accordance with the electrical input of electro-pneumatic servovalve 24. A transducer 36 located just downstream of needle valve 27 generates an electrical signal 37 correlated to the rate of flow of fluid discharged from nozzle 29. As will be described in further detail below, signal 37 is preferably used as a feedback signal to control the rate of flow of fluid dispensed from nozzle 29 in accordance with a desired driving signal. In robotic applications, the driving signal can vary with the relative speed between nozzle 29 and the workpiece 39 to accurately control the amount of fluid per unit length contained in the bead deposited on the surface of the workpiece 39.
Linear actuator 20 may incorporate any of a number of suitable types of fast responding electrically actuated servovalves including jetpipe, nozzle and flapper or spool types. The details of the construction of actuator 20 are within the purview of those skilled in the art, and accordingly, do not constitute the claimed invention. In the preferred embodiment illustrated in FIG. 1, actuator 20 comprises a jet-pipe electropneumatic servovalve 24 which operates a double-acting air cylinder 22. Servo-valve 24 includes a housing 42 which supports a threaded, electrical connector 43 secured thereto by screws 44. Wired to connector 43 by way of leads 45 are a pair of series-connected coils 46 surrounding opposing ends 49 of an armature 50 which is mounted to pivot about pivot point 51. A hollow, inverted U-shaped jet pipe 52 has one leg connectable to a regulated air supply of about 100 PSI nominal pressure through a threaded inlet 53 in air cylinder 22 by way of filter 54. The opposite leg of jet-pipe 52 is secured near its center to armature 50 so that when armature 50 is pivoted clockwise by energizing coils 46 in one polarity, the flow emanating from jet pipe 52 is diverted toward a first port 60. Similarly, when coils 46 are energized in the opposite polarity, armature 50 pivots counter-clockwise to direct the flow from jet pipe 52 toward a second port 61 of air cylinder 22. In either polarity, the degree of the deflection of jet pipe 52 and hence, the pressure in ports 60 and 61 is proportional to the magnitude of the current flowing in coils 46. Armature 50 is spring centered and magnetically biased such that when coils 46 are in a de-energized state, jet pipe 52 is centered in a neutral position as shown so that the pressures in ports 60 and 61 tend to be equally balanced. Magnetic bias is provided by a pair of permanent magnets 63 each of which communicate with the armature field by way of a flux across air gaps 65. This flux is conducted to gaps 65 by way of four magnetically permeable members 66 arranged as shown.
Double acting air cylinder 22 includes an aluminum alloy cylinder body 70, the end of which is received in a hole 71 in the upper portion 16 of frame 11. A flange 72 is used to secure the body 70 of air cylinder 22 to the upper portion 16 of frame 11 using cap screws 73. Cylinder body 70 includes first and second ports 60, 61, threaded air supply inlet 53 and filter 54 as well as a cylinder bore 75. Received within bore 75 is a piston 76 provided with a pair of seals 78 as well as piston rod 23 which extends axially from bore. The portion of bore 75 located above piston 76 communicates with first port 60 while the portion beneath piston 76 is connected to second port 61. The force with which piston 76 drives needle valve 27 depends upon the differential pressure between ports 60 and 61 which, as explained above, is determined by the deflection of jet pipe 50 due to the current flowing in coils 46. Piston is retained within cylinder bore 75 by a cap 80 through which passes piston rod 23. To prevent air leakage cap 80 is provided with a seal 81 in the area of piston rod 23 and an external O-ring seal 82 between the outer circumference of cap 80 and the surface of cylinder bore 75. Cap 80 is itself retained in the end of cylinder bore 75 by a snap-ring 83.
Metering valve assembly 26 includes a rigid, non-resilient valve body 85 constructed as shown in FIG. 1 preferably of metal. The lower end of valve body 85 includes a passage 84 whose lower end is threaded to accept the flow restricting nozzle 29 of a desired configuration having a discharge outlet 31. Passage 84 is intersected by one or more radial threaded holes, one of which receives transducer 36 and the others of which are sealed by means of plugs 90. Located immediately upstream of passage 84 and as closely adjacent thereto as practicable, valve body 85 houses needle valve 27. For long life, both valve stem 32 and valve seat 34 are preferably fabricated of a hard material such as sintered tungsten carbide. A fluid supply inlet 28 enters valve body 85 upstream of needle valve 27. Inlet 28 is threaded so that a hose can be attached to supply under pressure the fluid material to be dispensed.
Valve body 85 threads onto the lower end of a bonnet 97 and is sealed with respect thereto by means of an O-ring seal 98. Bonnet 97 includes an internal packing gland 99 which holds a plurality of annular PTFE packing seals 100. Seals 100 are retained in sealing but non-binding compression about valve stem 32 by means of any adjustable gland nut 101. To attach metering valve assembly 26 to frame 11, bonnet 97 is threadably received by the extending lower portion 17 of frame 11 and secured thereto at a desired angular orientation by means of a locknut 102. Metering valve assembly 26 is connected to actuator 20 by means of a coupling 105 which is fixedly attached to the upper end of valve stem 32 and threaded onto the lower end of piston rod 23 and held in place by a second locknut 106.
Transducer 36 may comprise any suitable transducer capable of generating a signal 37 indicative of the rate of flow of the fluid dispensed from nozzle 30. Preferably, transducer 36 is a strain gauge pressure transducer operably disposed to sense the instantaneous fluid pressure at a location inside passage 84 immediately downstream of needle valve 27. One pressure transducer suitable for this purpose is model A205 manufactured by Sensotec of Columbus, Ohio. The flow of a viscous newtonian fluid at low Reynolds numbers is substantially linearly proportional to the pressure drop across a nozzle or tubular restrictor placed in the flow path. It can be appreciated that a pressure transducer 36 located as described will sense the pressure drop across nozzle 29. This is so because the outlet 31 of nozzle 29 is at atmospheric pressure and there is very little pressure drop across passage 84 in relation to the pressure drop across nozzle 30. Thus, transducer 36 generates a pressure signal 37 which represents the instantaneous rate of flow from outlet 31. As previously noted, due to the proximity of needle valve 27 this flow is closely correlated to the flow through needle valve 27. Since flow rate is sensed by pressure transducer 37 and controlled by needle valve 27 both in close proximity to nozzle 29, precise control over flow rate, and hence, the amount of fluid per unit length deposited by gun 10 on workpiece 39 can be achieved by connecting dispensing gun 10 to form a fast responding closed-loop servo control system as described now with particular reference to FIG. 2.
Dispensing gun 10 is carried by the tool mounting surface 13 of a robot having a controller (not shown) programmed to guide nozzle 29 over the surface of a workpiece to dispense a bead of fluid thereon in a desired pattern. The metering valve assembly 26 of gun 10 communicates at its fluid inlet 28 with a continuous pressurized supply of fluid. Transducer 36 continuously senses the pressure drop across nozzle 29 to generate a pressure signal 37 correlated to the rate of flow of fluid discharged from the outlet 31 of nozzle end 30. Signal 37 is received and amplified by a preamp 110 which generates an output signal 111 appearing at the minus input 112 of a summing junction 113 as well as at a first input 114 of a comparator 115 whose second input 116 receives a fixed, selectable voltage reference, VREF1 and whose output 117 generates a digital PRESSURE OVERRANGE signal 118 which is received by the robot controller. If the magnitude of output signal 1ll exceeds VREF1, digital PRESSURE OVERRANGE signal assumes a logical 1 value. This can occur for example if needle valve 27 opens too far. In such event, the robot controller can be programmed to present a fault indication, shut down the system or take other appropriate action. Summing junction 113 also includes a plus input 119 which receives a driving signal 122. In the embodiment of FIG. 2, driving signal 122 is generated an amplifier 1:17 in accordance with a toolspeed signal 128 from the robot. Toolspeed signal 128 is an analog voltage signal available from the robot controller which varies according to the speed of travel of gun 10 relative to workpiece 39. Through the robot controller, the gain of signal 128 can be adjusted by way of a toolspeed multiplier selected to provide a desired flow rate as a function of speed of travel. Amplifier 127 is an operational amplifier whose gain is selected to properly scale toolspeed signal 128 so that driving voltage 122 will be within a range compatible with the rest of the circuit. Amplifier 127 is preferably connected as a precision limiter such that for inputs between zero volts and an adjustable threshold voltage, the voltage of driving signal executes a decisive step in a direction proper to close needle valve 27. Typically, the threshold voltage would be adjusted so that when toolspeed signal 128 is about 50 mV or less, needle valve 27 is driven positively closed. This prevents needle valve 27 from leaking by providing a negative bias current to servovalve 24, effective to drive needle valve 27 positively closed at times when toolspeed signal 128 is not present or quite small. Summing junction 113 produces an analog error signal 130 whose magnitude and polarity is equal to the algebraic difference between the output signal Ill of preamp 110 and driving signal 122. Error signal 130 is received by an amplifier 131 whose gain is adjusted for optimum system stiffness. The output signal 132 from amplifier 131 is received by a lead/lag compensation network 134 designed and adjusted according to standard control technique to stabilize closed-loop system response and maximize response speed with minimum overshoot. A second summing junction 135 then adds a dither signal 136 from a dither generator 137 to the output signal 138 of lead/lag network 134. Dither signal 136 is an A.C. signal whose magnitude preferably several percent of the fullscale value of signal 138. Dither signal 136 improves system resolution by overcoming static friction effects. Dither signal 136 accomplishes this by causing air cylinder 22 to oscillate very slightly during system operation, as is commonly practiced in the art. Summing junction 135 provides an analog voltage signal 139 whose magnitude and polarity is determined by the algebraic sum of signal 138 and dither signal 136. Signal 139 is received by a current driver 140 as well as by the first input 141 of a comparator 142 whose second input 143 receives a fixed, selectable voltage reference, VREF2 and whose output 144 generates a digital VALVE OVERRANGE SIGNAL 145. In the event the magnitude of signal 139 exceeds VREF2, digital VALVE OVERRANGE signal assumes a logical 1 state. Such a condition may arise for example if the supply of fluid to dispensing gun 10 is cutoff or if supply pressure is inadequate to meet the demand imposed by driving signal 122. Like PRESSURE OVERRANGE signal 118, VALVE OVERRANGE signal 145 is directed to the robot controller which may be programmed to generate a fault indication, shut the system down or otherwise initiate corrective action.
Current driver 140 generates an analog control current signal 146 which is applied to the coils 46 of servo-valve 24. This causes jet pipe 52 to be diverted toward first port 60 or second port 61, depending on the magnitude and direction of control current signal 146, to move the piston 76 of air cylinder 22 either downward or upward, respectively. Downward movement of piston 76 tends to close needle valve 27 of metering valve assembly 26 thereby reducing the flow of fluid while upward movement of piston 76 tends to open needle valve 27 thereby increasing the flow of fluid.
In operation, the system functions as a closed loop servo system responsive to the pressure drop across nozzle 29 as sensed by pressure transducer 36. With needle valve 27 initially closed, no flow occurs and the pressure drop across nozzle 29 is zero. Assuming tool speed signal 128 is less than the threshold voltage associated with amplifier 127, amplifier 127 generates a driving signal 122 of the proper polarity and of sufficient magnitude to generate a control current 146 to deflect jet pipe 52 toward first port 60. This holds piston 76 down so that needle valve 27 is held closed under force thereby preventing leakage. This condition is maintained until toolspeed signal 128 rises above the threshold voltage of amplifier 127 indicating that flow should commence. When this occurs, driving signal reverses polarity. Since there is initially no flow, pressure signal 137 is at its zero value. Accordingly, an error signal 130 whose magnitude is determined by the difference between pressure signal 37 and driving signal 122 will cause a control current 146 to be applied to coils 46 in such a polarity as to cause jet pipe 52 to deflect toward second port 61. In response, piston 76 moves upward causing needle valve 27 to open by lifting the conical end of valve stem 32 away from valve seat 34. As the pressure signal 37 generated by pressure transducer 36 increases error signal 130 and control current 146 both decrease and jet pipe 52 moves toward its null position. As the pressure drop across nozzle 29 approaches a value corresponding to a desired flow rate jet pipe 52 causes needle valve .[.52.]. .Iadd.27 .Iaddend.to remain open by an amount just sufficient to maintain the pressure drop across nozzle 29 at that value.
In some dispensing applications, the flow characteristics of the fluid supplied to dispensing gun 10 may be subject to change over time. For example if gun 10 is supplied fluid from a drum, the viscosity of the fluid can vary with changes in temperature as the drum sits in a warm production area after having been moved from a cold warehouse. Viscosity may also vary from one drum of fluid to the next or from the top of a given drum to the bottom. Without some means for compensating for such changes, the amount of material dispensed onto a workpiece 39 would be subject to undesirable variations. Also, when dispensing non-newtonian fluids, the overall instantaneous viscosity of the fluid varies with shear rate in a non-linear fashion. Thus, absent correction, shear induced by the geometry of nozzle 29 will result in a non-linear flow rate versus pressure signal 37 flow characteristic. This in turn would render the flow rate venus applied toolspeed signal 128 response nonlinear. According to the invention, these problems are effectively addressed by deriving driving signal 122 in an alternate fashion as described now with additional reference to FIGS. 3 and 4.
FIG. 3 illustrates a second preferred embodiment of the invention which is similar to the embodiment described above except for the manner in which driving signal 122 is generated. As illustrated in FIG. 3, the system of FIG. 2 is modified by adding a positive displacement flow meter 150 to the fluid supply line connected to the inlet 28 of dispensing gun 10. While it is desirable to locate flow meter 150 as dose to gun 10 as possible it is not required to be mounted with the gun 10 on the robot arm. Flow meter 150 includes an incremental encoder 152 which produces an electrical output signal 153 comprising a series of pulses 155. Each pulse 155 represents a predetermined volume of fluid. Signal 153 is input to a pulse counter 156 which counts pulses 155 and is resettable to zero by a reset signal 158 which is generated by a microprocessor based controller 160 which, if desired may be part of the robot controller (not shown). However, to provide maximum system frequency response, controller 160 should run at high speed and is preferably dedicated principally to performing the operations described below. In addition to a microprocessor and associated hardware, controller 160 includes all necessary program and data memory as well as an analog to digital converter (A/D) 163 which receives the toolspeed signal 128 from the robot controller. Pulse counter 156 outputs its pulse count 165 to controller 160. Controller 160 also receives from the robot controller (not shown), a digital cycle status signal 168 and a digital job status signal 170. Cycle status signal assumes a logical 1 value whenever dispensing gun 10 should be operating. Job status signal 170 assumes a logical 1 .[.valve.]. .Iadd.value .Iaddend.when a production run is at an end. Controller 160 also communicates by way of an interface 172 with an input/output device 175 such as a keyboard terminal from which control commands and setpoint data are entered. Controller 160 also communicates by way of an output 176 with a digital to analog D/A converter 177 which generates an analog signal 178. Signal 178 is received by amplifier 127 which operates as described above with reference to FIG. 2. Amplifier 127 in turn generates driving signal 122 which is applied to the plus input 119 of summing junction 113 as described above to generate error signal 130. The manner in which driving signal 122 is derived may be further understood with additional reference now to FIG. 4 which illustrates the software program stored in controller 160 responsible for outputting the required data to D/A converter 177.
The program begins running by clearing all data memory and initializing all variables including a set-point representing a desired total volume of fluid to be applied to a single workpiece 39. An appropriate set of pre-programmed flow linearizing factors (FLFs) are also initialized at this point. The FLF's are constants which represent factors by which toolspeed signal 128 must be multiplied in order to linearize system flow response such that when a given percentage of the full scale value of toolspeed signal 128 is applied to summing junction 113, the needle valve 27 of metering valve assembly 26 is positioned so that the same percentage of the full scale flow of fluid is discharged from nozzle outlet 31. FLF's are determined empirically from a measured curve of actual flow from outlet 31 of nozzle 30 versus voltage applied at input 119 of summing junction 113. Since the actual flow curve may vary depending on the geometry of needle valve 27 and nozzle 29 including nozzle end 30 as well as the flow characteristics of the particular type of fluid being dispensed and the supply pressure, the program loads a series of FLF's appropriate to account for a particular set of these conditions.
The program also sets a flow compensation factor (FCF) to an arbitrarily selected initial value. The FCF is a variable which compensates for changes in the flow characteristics which occur over time such as changes in intrinsic viscosity due to changes in temperature or other factors as discussed earlier. The FCF is recomputed once each job cycle that is, once per dispensing operation on a given workpiece 39. The FCF is defined as a factor by which the linearized toolspeed signal must be multiplied so that the total volume of fluid dispensed onto a workpiece 39 is substantially equal to the selected setpoint. Deviation from setpoint cannot be determined at the beginning of the first job cycle because there is no basis for comparison. Accordingly, FCF is preferably initialized at unity. The manner in which FCF is recomputed will be described below.
During initialization, the program resets pulse counter 156 to zero by outputting an appropriate reset signal 158 from controller 160 to counter 158. Next, the program causes controller 160 to read the total pulse count 165. The value of pulse count 165 represents the total volume of fluid dispensed during the previous job cycle. If pulse count is not zero, as will be the case except prior to the first job cycle, the program recomputes the flow compensation factor FCF as a quotient whose dividend is equal to the setpoint and whose divisor is equal to total pulse count 165. After the FCF is recomputed counter 156 is again reset in the manner described above. If pulse count 165 is equal to zero, as it will be at the beginning of the first job cycle, the FCF remains at its initialized .[.valve.]..Iadd.value.Iaddend..
Next, the program enters a loop in which it waits for the robot controller signal that a job cycle is in progress. In the wait loop, the program continuously reads cycle status signal 168 and tests to determine whether it has assumed a logical 1 value. If not, the program stays in the loop. By changing status signal 168 from a logical zero value to a logical 1 value, the robot controller indicates that dispensing should commence. At that point, the program directs controller 160 to read the digital value 180 representing the magnitude of toolspeed signal 128 from the output of A/D converter 163. Based on the magnitude of the digital value, the program selects from a look-up table the corresponding flow linearizing factor FLF from the set of FLF values loaded during initialization. Digital value 180 is then multiplied by the selected FLF value to yield a linearized toolspeed value 181. To adjust driving signal 122 so that the actual volume of fluid to be dispensed during the job cycle conforms to the setpoint despite changes in the flow characteristics of the fluid, such as changes in viscosity, the program next causes the linearized toolspeed value 181 to be multiplied by the flow compensation factor FCF to yield a corrected digital value 182 which is then output to D/A converter 177 whose output 178 is fed to amplifier 127 to generate driving signal 122.
Next, the program again reads cycle status signal 168 to determine whether dispensing should continue. If not, job status signal 168 will not be a logical 1 value, indicating the present cycle has ended. In that case the program causes controller 160 to read job status signal 170 emanating from the robot controller. If job status signal 170 is not a logical 1 value, this indicates that the last workpiece 39 in a given production lot has been finished and the program is stopped. If the production run is not complete, job status signal 170 will remain at a logical 1 value and the program will loop back to the point at which pulse count 165 is read. Although the program described recomputes a flow compensation factor once per job cycle, it should be noted that such periodic adjustments can be made more or less frequently depending on how rapidly the flow characteristics of the dispensed fluid can be expected to undergo significant change.
The advantages realized by the invention are numerous. Most notably, the dispensing systems described provide rapid and precise control of fluid flow rate. Such systems have been found to have an upper 3 dB frequency response cutoff point exceeding 10 hertz.
While the dispensing gun 10 can be directed by any desired means including manually the invention is particularly well adapted for use with robots. Dispensing gun 10 is light weight, compact and easy to maintain. Further, the dispensing systems of the invention provide for automatic flow rate adjustment in accordance with the relative speed between the dispensing gun 10 on the robot arm and the workpiece.
Thus, the invention permits close control over the volume per unit length of the dispensed bead of fluid even during rapid acceleration and deceleration as normally occurs as the robot arm changes its direction of movement. The invention also provides means for periodically compensating for perturbations in the flow characteristic of the fluid being dispensed to insure that the volume of fluid dispensed always conforms closely with a desired setpoint.
While the above descriptions constitute preferred embodiments of the apparatus and method of the invention, it is to be understood that the invention is not limited thereby and that in light of the present disclosure of the invention various alternative embodiments will be apparent to persons skilled in the art. Accordingly, it is to be understood that changes can be made to the embodiments described without departing from the full legal scope of the invention which is particularly pointed out and distinctly claimed in the claims set forth below.

Claims (20)

What is claimed is:
1. A method of compensating for changes in the flow characteristics of a fluid being dispensed from a nozzle under the control of a metering valve in order to maintain the volume of fluid dispensed over a predetermined time interval at a desired setpoint, said method comprising the steps of:
(a) measuring the volume of fluid delivered to the metering valve during at least one said interval;
(b) calculating a correction factor correlated to the difference between said measured volume and said setpoint,
(c) multiplying a signal by said factor to generate a driving signal, and
(d) controlling said valve in accordance with at least said driving signal to maintain the volume of fluid dispensed at said desired setpoint.
2. The method of claim 1 wherein said controlling step includes the step of applying a signal correlated to said driving signal to a closed-loop feedback system coupled to said metering valve.
3. The method of claim 1 wherein said correction factor comprises a quotient whose dividend is said setpoint and whose divisor is said measured volume of fluid.
4. A method for compensating for changes in the flow characteristics of a fluid being dispensed from a nozzle, said method comprising the steps of:
(a) delivering the fluid under pressure to a metering valve located upstream of the nozzle, said metering valve being operable to modulate the flow of fluid to the nozzle in response to a control signal;
(b) measuring the volume of fluid delivered to said metering valve over an interval of time and generating a corresponding measurement signal, and
(c) adjusting the control signal in accordance with the difference between said measurement signal and a setpoint representing a desired volume of fluid to be dispensed during said interval so that said valve maintains the volume of fluid dispensed at said setpoint.
5. The method of claim 4 wherein said adjusting step comprises the steps of:
calculating a correction factor correlated to the difference between said measurement signal and said setpoint;
multiplying a driving signal by said correction factor, and
generating Said control signal from at least said driving signal.
6. The method of claim 5 wherein said generating step comprises the step of algebraically combining the difference between said driving signal with a signal correlated to the flow rate of the fluid dispensed from the nozzle.
7. The method of claim 6 further comprising the step of:
generating said driving signal in accordance with at least a toolspeed signal of a robot for effecting relative movement between the nozzle and a workpiece.
8. The step of claim 7 wherein said signal correlated to the flow rate of the fluid dispensed from the nozzle comprises a signal representing the pressure drop across said nozzle.
9. The method of claim 4 wherein said interval is a job cycle.
10. The method of claim 4 further comprising the steps of:
locating said valve and said nozzle in sufficiently close proximity to one another that very little fluid pressure drop occurs between said valve and said nozzle;
sensing, at a location between said valve and said nozzle, a parameter correlated to the rate of flow of the fluid discharged from the nozzle and generating a corresponding flow rate signal, and
generating said control signal from at least said flow rate signal and a driving signal.
11. The method of claim 10 further comprising the steps of:
calculating a correction factor correlated to the difference between said measurement signal and said setpoint;
multiplying a driving signal by said correction factor, and
generating said control signal from at least said driving signal. .Iadd.
12. A method of compensating for dynamic flow characteristics of a non-newtonian fluid being dispensed from a nozzle onto a workpiece, the nozzle being in fluid communication with a metering valve responsive to a control signal, and the dynamic flow characteristics representing flow non-linearities introduced by the non-newtonian fluid, said method comprising the steps of:
generating the control signal to produce a desired flow of the fluid through the nozzle, said control signal being correlated to at least a flow rate of the non-newtonian fluid; and
linearizing said control signal to reduce the flow non-linearities introduced by the non-newtonian fluid. .Iaddend. .Iadd.
13. The method of claim 12 wherein said step of linearizing said control signal further comprises the steps of:
determining flow linearizing factors based on known flows of the non-newtonian fluid from the nozzle as a function of the control signal for a given set of conditions;
selecting a first flow linearizing factor;
altering said control signal as a function of said first flow linearizing factor. .Iaddend. .Iadd.14. The method of claim 13 wherein the step of determining said flow linearizing factors further comprises the step of determining a series of flow linearizing factors based on known flows of the non-newtonian fluid from the nozzle as a function of said control
signal for given sets of conditions. .Iaddend. .Iadd.15. The method of claim 14 wherein said step of generating said control signal further comprises the steps of:
providing a tool speed signal correlated to relative motion between the nozzle and the workpiece;
selecting said first flow linearizing factor as a function of the tool speed signal; and
multiplying said tool speed signal by said first flow linearizing factor to produce a linearized tool speed value. .Iaddend. .Iadd.16. The method of claim 15 wherein the step of generating said control signal further comprises the steps of:
producing a feedback signal representing a fluid pressure correlated to a flow rate of the non-newtonian fluid; and
producing said control signal as a function of said feedback signal and said linearized tool speed value, thereby compensating said control signal as a function of the flow non-linearities introduced by the non-newtonian fluid and causing the metering valve to dispense the desired flow of the
non-newtonian fluid. .Iaddend. .Iadd.17. A method of compensating for dynamic flow characteristics and intrinsic viscosity changes of a fluid being dispensed from a nozzle onto a workpiece, the nozzle being in fluid communication with a metering valve responsive to a control signal, and wherein the intrinsic viscosity changes are caused by phenomena other than shear effects, and the dynamic flow characteristics representing pressure flow non-linearities introduced by non-newtonian viscosity characteristics in the fluid, the method comprising the steps of:
generating the control signal to provide a desired flow of the fluid through the nozzle, said control signal being correlated to at least a flow rate of the fluid; and
modifying said control signal to reduce the pressure flow non-linearities introduced by the dynamic flow characteristics and to compensate for the
intrinsic viscosity changes of the fluid. .Iaddend. .Iadd.18. The method of claim 17 wherein the step of modifying said control signal further comprises the steps of:
providing a tool speed signal correlated to relative motion between the nozzle and the workpiece;
altering said tool speed signal as a function of the dynamic flow characteristics of the fluid to produce a linearized tool speed value; and
adjusting said linearized tool speed value as a function of the intrinsic viscosity changes of the fluid to produce a driving signal. .Iaddend. .Iadd.19. The method of claim 18 wherein said step of generating the control signal further comprises the steps of:
producing a feedback signal representing a fluid pressure correlated to a flow rate of the fluid; and
producing said control signal as a function of said feedback signal, said driving signal and effects of the dynamic flow characteristics and the intrinsic viscosity changes thereby causing the metering valve to dispense
the desired flow of fluid. .Iaddend. .Iadd.20. The method of claim 18 wherein said step of adjusting said tool speed signal further comprises the steps of:
selecting a flow linearizing factor based on a known flow of fluid from the nozzle as a function of said control signal for a given set of conditions.; and
multiplying said tool speed signal by said flow linearizing factor to produce said linearized tool speed value. .Iaddend. .Iadd.21. The method of claim 20 wherein said step of adjusting said linearized tool speed value further comprises the steps of:
measuring a first volume of fluid delivered to the metering valve during an interval of time;
calculating a flow compensation factor as a function of a difference between the first volume of fluid and a reference; and
multiplying said linearized tool speed value by said flow compensation
factor to produce said driving signal. .Iaddend. .Iadd.22. A method of compensating for intrinsic viscosity changes of a fluid being dispensed from a nozzle onto a workpiece, the nozzle in fluid communication with a metering valve responsive to a control signal, and wherein the intrinsic viscosity changes are caused by phenomena other than shear effects, said method comprising the steps of:
supplying the fluid under a pressure to the metering valve;
providing a tool speed signal representing a varying relative speed between the nozzle and the workpiece;
adjusting said tool speed signal as a function of the intrinsic viscosity changes of the fluid to produce a driving signal;
producing a feedback signal representing a fluid pressure correlated to a flow rate of the fluid; and
producing the control signal as a function of said feedback signal and said driving signal to cause the metering valve to dispense a desired flow of
fluid. .Iaddend. .Iadd.23. The method of claim 22 wherein said step of adjusting the tool speed signal further comprises the steps of:
measuring a first volume of fluid delivered to the metering valve during an interval of time;
calculating a flow compensation factor as a function of a difference between the first volume of fluid and a reference; and
adjusting said tool speed signal as a function of said flow compensation factor. .Iaddend. .Iadd.24. The method of claim 23 wherein said step of adjusting the tool speed signal further comprises the step of multiplying said tool speed signal by said flow compensation factor. .Iaddend.
.Iadd. . A method of compensating for effects of pressure flow non-linearities of a fluid being dispensed from a nozzle onto a workpiece, the nozzle in fluid communication with a metering valve responsive to a control signal, said method comprising the steps of:
supplying the fluid under a pressure to the metering valve;
providing a tool speed signal representing a relative speed between the nozzle and the workpiece;
determining a flow factor as a function of the effects of the pressure flow non-linearities of the fluid;
adjusting said tool speed signal as a function of the flow factor to produce a driving signal;
producing a feedback signal representing a fluid pressure correlated to a flow rate of the fluid; and
producing the control signal as a function of said feedback signal and said driving signal to cause the metering valve to dispense a desired flow of fluid. .Iaddend.
US08/127,281 1986-10-30 1993-09-27 Method of compensating for changes in the flow characteristics of a dispensed fluid to maintain the volume of dispensed fluid at a setpoint Expired - Lifetime USRE35010E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/127,281 USRE35010E (en) 1986-10-30 1993-09-27 Method of compensating for changes in the flow characteristics of a dispensed fluid to maintain the volume of dispensed fluid at a setpoint

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US92494086A 1986-10-30 1986-10-30
US07/243,238 US4922852A (en) 1986-10-30 1988-09-07 Apparatus for dispensing fluid materials
US07/494,500 US5054650A (en) 1986-10-30 1990-03-08 Method of compensating for changes in the flow characteristics of a dispensed fluid to maintain the volume of dispensed fluid at a setpoint
US08/127,281 USRE35010E (en) 1986-10-30 1993-09-27 Method of compensating for changes in the flow characteristics of a dispensed fluid to maintain the volume of dispensed fluid at a setpoint

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US07/243,238 Division US4922852A (en) 1986-10-30 1988-09-07 Apparatus for dispensing fluid materials
US07/494,500 Reissue US5054650A (en) 1986-10-30 1990-03-08 Method of compensating for changes in the flow characteristics of a dispensed fluid to maintain the volume of dispensed fluid at a setpoint

Publications (1)

Publication Number Publication Date
USRE35010E true USRE35010E (en) 1995-08-08

Family

ID=26935698

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/243,238 Expired - Lifetime US4922852A (en) 1986-10-30 1988-09-07 Apparatus for dispensing fluid materials
US08/127,281 Expired - Lifetime USRE35010E (en) 1986-10-30 1993-09-27 Method of compensating for changes in the flow characteristics of a dispensed fluid to maintain the volume of dispensed fluid at a setpoint

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/243,238 Expired - Lifetime US4922852A (en) 1986-10-30 1988-09-07 Apparatus for dispensing fluid materials

Country Status (1)

Country Link
US (2) US4922852A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034825A1 (en) * 1996-03-18 1997-09-25 Kenneth Walter Bullivant Automatic calibration process and apparatus
US5687092A (en) * 1995-05-05 1997-11-11 Nordson Corporation Method of compensating for changes in flow characteristics of a dispensed fluid
US5823389A (en) * 1996-12-26 1998-10-20 Fanuc Robotics North America, Inc. Apparatus and method for dispensing fluid material
US5906682A (en) * 1995-10-13 1999-05-25 Nordson Corporation Flip chip underfill system and method
US6132515A (en) 1998-03-12 2000-10-17 Cosmos Factory, Inc. Liquid precursor delivery system
US6173864B1 (en) 1999-04-23 2001-01-16 Nordson Corporation Viscous material dispensing system and method with feedback control
US6283329B1 (en) 1998-02-10 2001-09-04 Jesco Products Company, Inc. Apparatus for applying a foamable resin
US6315161B1 (en) 1998-02-10 2001-11-13 Jesco Products Company, Inc. Method and apparatus for applying a foamable resin
US6329013B1 (en) * 1996-02-23 2001-12-11 Scranex Automation Ab Method for dispensing a viscous solution
US6360143B1 (en) 2001-04-27 2002-03-19 Fanuc Robotics North America Error recovery methods for controlling robotic systems
US6460420B1 (en) * 2000-04-13 2002-10-08 Sandia National Laboratories Flowmeter for pressure-driven chromatography systems
US20020189947A1 (en) * 2001-06-13 2002-12-19 Eksigent Technologies Llp Electroosmotic flow controller
US6517891B1 (en) 2000-10-31 2003-02-11 Nordson Corporation Control system for metering pump and method
US20030052007A1 (en) * 2001-06-13 2003-03-20 Paul Phillip H. Precision flow control system
US6541063B1 (en) 1999-11-04 2003-04-01 Speedline Technologies, Inc. Calibration of a dispensing system
US20040102871A1 (en) * 2002-11-27 2004-05-27 Kimberly-Clark Worldwide, Inc. System and method for controlling the dispense rate of particulate material
US20040148763A1 (en) * 2002-12-11 2004-08-05 Peacock David S. Dispensing system and method
US20040186621A1 (en) * 2003-03-19 2004-09-23 Nordson Corporation Method of implementing multiple pump speeds for dispensing a viscous material
US20050035146A1 (en) * 2002-11-26 2005-02-17 Cybio Ag Apparatus for dispensing liquids
US20050048195A1 (en) * 2003-08-26 2005-03-03 Akihiro Yanagita Dispensing system and method of controlling the same
US20050158467A1 (en) * 2003-07-08 2005-07-21 Buckley Ian J. Variable fluid dispenser
US20050244569A1 (en) * 2004-04-29 2005-11-03 Nordson Corporation Automatic tolerance determination system for material application inspection operation
US20060096530A1 (en) * 2004-11-09 2006-05-11 Klein Richard G Closed loop adhesive registration system
US20060263513A1 (en) * 2005-05-17 2006-11-23 Nordson Corporation Fluid dispenser with positive displacement pump
US20070110896A1 (en) * 2002-09-23 2007-05-17 Computrol, Inc. Closure sealant dispenser
US20100049357A1 (en) * 2002-09-23 2010-02-25 Computrol, Inc. Rotary Machine with Separately Controllable Stations
US20100065286A1 (en) * 2008-04-21 2010-03-18 Hosfield Robert L Ultra-High Pressure Fire-Fighting System
US20100108256A1 (en) * 2008-11-05 2010-05-06 Western Digital Technologies, Inc. Closed loop control of adhesive dot characteristics
US20120085282A1 (en) * 2009-06-19 2012-04-12 Tazmo Co., Ltd. Substrate coating device
US8164293B2 (en) 2009-09-08 2012-04-24 Hoffman Enclosures, Inc. Method of controlling a motor
US8301306B1 (en) * 2010-07-20 2012-10-30 Blasters, Llc Control system for machine that cleans drums of ready mixed concrete trucks
US8297369B2 (en) 2009-09-08 2012-10-30 Sta-Rite Industries, Llc Fire-extinguishing system with servo motor-driven foam pump
US20150182986A1 (en) * 2013-12-26 2015-07-02 Sumitomo Heavy Industries, Ltd. Coating apparatus
US10066353B2 (en) * 2011-10-31 2018-09-04 United Parcel Service Of America, Inc. Automated dispensing of travel path applicants
US10072388B2 (en) * 2011-10-31 2018-09-11 United Parcel Service Of America, Inc. Automated dispensing of travel path applicants
US20220288617A1 (en) * 2021-03-11 2022-09-15 Ford Global Technologies, Llc Method and apparatus for adaptive control and real-time edge tracking of adhesive and sealer dispensing
WO2023055422A1 (en) * 2021-09-30 2023-04-06 Artel, Inc. Pipettable replacement fluid for mimicking pipettability of target fluid and related method

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4922852A (en) * 1986-10-30 1990-05-08 Nordson Corporation Apparatus for dispensing fluid materials
US5065695A (en) * 1989-06-16 1991-11-19 Nordson Corporation Apparatus for compensating for non-linear flow characteristics in dispensing a coating material
JP2532950B2 (en) * 1989-09-13 1996-09-11 富士写真フイルム株式会社 Method and device for constant fluid discharge
US5074443A (en) * 1989-12-20 1991-12-24 Nordson Corporation Adaptor for liquid dispensing syringe
US5104689A (en) * 1990-09-24 1992-04-14 International Business Machines Corporation Method and apparatus for automated solder deposition at multiple sites
DE4032692A1 (en) * 1990-10-15 1992-04-23 Kloeckner Ferromatik Desma DEVICE FOR SPRAYING LIQUID MEDIA
US5182938A (en) * 1991-02-22 1993-02-02 Nordson Corporation Method and apparatus for detecting bubbles in pressurized liquid dispensing systems
US5207352A (en) * 1991-04-19 1993-05-04 Nordson Corporation Method and apparatus for dispensing high viscosity fluid materials
US5232155A (en) * 1991-05-17 1993-08-03 Ingersoll-Rand Company Integrity sensor for fluid jet nozzle
US5622747A (en) * 1991-09-18 1997-04-22 National Semiconductor Corporation Method for dispensing a layer of photoresist on a wafer without spinning the wafer
US5196064A (en) * 1991-12-19 1993-03-23 Intel Corporation Replaceable fluid dispensing nozzle
FR2687333A1 (en) * 1992-02-14 1993-08-20 Tecnoma LIQUID SPRAY NOZZLE.
US5312016A (en) * 1992-11-04 1994-05-17 Johnstone Pump Company Mastic applicator system
CA2102823A1 (en) * 1992-11-20 1994-05-21 James E. Devries Method of monitoring and/or dispensing materials onto a substrate
US5373221A (en) * 1993-07-30 1994-12-13 Fanuc Robotics North America, Inc. Method and system for estimating robot tool center point speed
US5478700A (en) * 1993-12-21 1995-12-26 International Business Machines Corporation Method for applying bonding agents to pad and/or interconnection sites in the manufacture of electrical circuits using a bonding agent injection head
US5475614A (en) * 1994-01-13 1995-12-12 Micro-Trak Systems, Inc. Method and apparatus for controlling a variable fluid delivery system
US5499745A (en) * 1994-02-18 1996-03-19 Nordson Corporation Apparatus for mixing and dispensing two chemically reactive materials
US5487781A (en) * 1994-05-17 1996-01-30 Johnstone Pump Company Mastic applicator system
US5598972A (en) * 1995-07-19 1997-02-04 University Of Northern Iowa Foundation Optical spray paint optimization system and method
US5891526A (en) * 1995-12-01 1999-04-06 International Business Machines Corporation Apparatus for mixing a multi-component encapsulant and injecting it through a heated nozzle onto a part to be encapsulated
US5916524A (en) 1997-07-23 1999-06-29 Bio-Dot, Inc. Dispensing apparatus having improved dynamic range
USRE38281E1 (en) 1996-07-26 2003-10-21 Biodot, Inc. Dispensing apparatus having improved dynamic range
US5868840A (en) * 1996-12-30 1999-02-09 The University Of Northern Iowa Foundation Paint gun incorporating a laser device
US5857625A (en) * 1996-12-30 1999-01-12 The University Of Northern Iowa Foundation Paint gun incorporating a laser device
US5979794A (en) * 1997-05-13 1999-11-09 Ingersoll-Rand Company Two-part stream dispensing for high viscosity materials
US5915591A (en) * 1997-09-10 1999-06-29 Illinois Tool Works Inc. Electric solenoid valve for hot melt adhesive and method therefor
US6293157B1 (en) * 1998-01-02 2001-09-25 Graco Minnesota Inc. Compensation of coriolis meter motion induced signal
US7470547B2 (en) * 2003-07-31 2008-12-30 Biodot, Inc. Methods and systems for dispensing sub-microfluidic drops
US20020159919A1 (en) * 1998-01-09 2002-10-31 Carl Churchill Method and apparatus for high-speed microfluidic dispensing using text file control
US6063339A (en) * 1998-01-09 2000-05-16 Cartesian Technologies, Inc. Method and apparatus for high-speed dot array dispensing
US6004124A (en) * 1998-01-26 1999-12-21 Stratasys, Inc. Thin-wall tube liquifier
US6539286B1 (en) * 1998-01-26 2003-03-25 Micron Technology, Inc. Fluid level sensor
US6551557B1 (en) * 1998-07-07 2003-04-22 Cartesian Technologies, Inc. Tip design and random access array for microfluidic transfer
SE9803048D0 (en) 1998-09-09 1998-09-09 Siemens Elema Ab Dispenser unit for non-gaseous flowable material
US6068202A (en) * 1998-09-10 2000-05-30 Precision Valve & Automotion, Inc. Spraying and dispensing apparatus
AT406788B (en) 1998-11-06 2000-09-25 Lisec Peter METHOD FOR APPLYING SPACERS FOR INSULATING GLASS DISC MADE OF THERMOPLASTIC MATERIAL
US6715506B1 (en) 1998-12-28 2004-04-06 Musashi Engineering, Inc. Method and device for injecting a fixed quantity of liquid
US6589791B1 (en) * 1999-05-20 2003-07-08 Cartesian Technologies, Inc. State-variable control system
US6692572B1 (en) 1999-09-13 2004-02-17 Precision Valve & Automation, Inc. Active compensation metering system
US7006896B1 (en) 1999-10-13 2006-02-28 Graco Minnesota Inc. Sealant dispensing correction method
JP4399072B2 (en) * 1999-12-03 2010-01-13 ノードソン株式会社 Liquid material discharge device
ITTV20010008A1 (en) * 2001-01-17 2002-07-17 Hip Srl High Ind Performance S SPLMING HEAD PARTICULARLY FOR THERMOPLASTIC MATERIAL
CN1285838C (en) * 2001-05-16 2006-11-22 Esec贸易公司 Pressure sensor
WO2003017745A2 (en) * 2001-08-23 2003-03-06 Sciperio, Inc. Architecture tool and methods of use
US20030041903A1 (en) * 2001-09-05 2003-03-06 Tsunou Chang Method of dispensing adhesive and sealant
DE10239351B4 (en) * 2002-08-28 2006-07-27 Amtec Kistler Gmbh Device for applying a coating agent
DE10250531A1 (en) * 2002-10-29 2004-05-19 ITW Oberflächentechnik GmbH & Co. KG Spray coating device for coating liquid
GB2400164B (en) * 2003-04-04 2006-04-19 Carver Plc Improvements in or relating to fluid control
KR100557500B1 (en) * 2003-06-24 2006-03-07 엘지.필립스 엘시디 주식회사 Liquid crystal dispensing system which can read information of liqid crystal container and method of dispensing liquid crystal material using thereof
EP1654072A4 (en) * 2003-07-14 2007-10-03 Nordson Corp Apparatus and method for dispensing discrete amounts of viscous material
US6942736B2 (en) 2003-08-25 2005-09-13 Michael Chinander Automatically controlled flow applicator
US20060043102A1 (en) * 2004-08-31 2006-03-02 Keller Marc L Method and apparatus for applying solvent
US7455882B2 (en) * 2004-09-13 2008-11-25 The Gillette Company Method of applying adhesive to electrochemical cell components
KR100624458B1 (en) * 2005-01-17 2006-09-19 삼성전자주식회사 Handheld centrifuge
US7507295B2 (en) * 2005-03-22 2009-03-24 Nordson Corporation Adhesive dispenser
WO2008089449A2 (en) 2007-01-19 2008-07-24 Biodot, Inc. Systems and methods for high speed array printing and hybridization
US8127711B2 (en) * 2007-07-05 2012-03-06 Nordson Corporation Mounting systems for an adhesive application system and methods for applying adhesive
US8460754B2 (en) * 2009-12-21 2013-06-11 3M Innovative Properties Company Needle coating and in-line curing of a coated workpiece
US9186695B2 (en) 2010-04-01 2015-11-17 B&H Manufacturing Company, Inc. Extrusion application system
US8844679B2 (en) 2010-11-29 2014-09-30 Lincoln Industrial Corporation Pump having venting and non-venting piston return
US9388940B2 (en) 2010-11-29 2016-07-12 Lincoln Industrial Corporation Variable speed stepper motor driving a lubrication pump system
US9222618B2 (en) 2010-11-29 2015-12-29 Lincoln Industrial Corporation Stepper motor driving a lubrication pump providing uninterrupted lubricant flow
US9068566B2 (en) 2011-01-21 2015-06-30 Biodot, Inc. Piezoelectric dispenser with a longitudinal transducer and replaceable capillary tube
FR2981133B1 (en) * 2011-10-10 2013-10-25 In Lhc METHOD OF DETECTING FAILURE OF SERVOVALVE AND SERVOVALVE APPLYING.
DE102011117836A1 (en) * 2011-11-08 2013-05-08 Focke & Co. (Gmbh & Co. Kg) Valve, in particular glue valve
US9387504B2 (en) * 2013-01-17 2016-07-12 Nordson Corporation Cartridge dispenser
CA2909078A1 (en) * 2013-04-08 2014-10-16 3M Innovative Properties Company Coating system and method
US9671065B2 (en) 2013-10-17 2017-06-06 Lincoln Industrial Corporation Pump having wear and wear rate detection
CN106715065B (en) * 2014-05-02 2022-06-17 建筑机器人有限责任公司 Mortar conveying system
WO2017008027A1 (en) 2015-07-09 2017-01-12 Nordson Corporation System for conveying and dispensing heated food material
US20170368763A1 (en) * 2016-06-28 2017-12-28 Ford Motor Company Applicator and Method for Applying a Lubricant/Sealer
CN206382185U (en) * 2017-01-13 2017-08-08 合肥鑫晟光电科技有限公司 A kind of Beverage bottle cover for spot gluing equipment
ES2724462B2 (en) * 2018-03-05 2020-05-20 Fecoatec S L AUTOMATIC SYRUP SPRAY DEVICE WITH NEEDLE POSITION DETECTION SYSTEM
US11000997B2 (en) 2018-07-23 2021-05-11 Xerox Corporation System and method for preserving valve member travel in a multi-nozzle extruder

Citations (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE203236C (en) *
US2851997A (en) * 1956-10-09 1958-09-16 Lear Inc Multi-stage hydraulic amplifier valve
US3015768A (en) * 1959-01-14 1962-01-02 Bailey Meter Co Positioning motor control system
US3410301A (en) * 1966-09-22 1968-11-12 Richdel Solenoid or timer operated pilot valve for main valve control
US3434690A (en) * 1965-07-20 1969-03-25 Joseph D Troncale Sr Electrically operated fluid control valve
US3464627A (en) * 1966-06-21 1969-09-02 Sopromi Soc Proc Modern Inject Electromagnetic fuel-injection valve
US3555970A (en) * 1968-08-08 1971-01-19 Bell Aerospace Corp Pressure regulator for servo valve having dynamic load adaptive response
US3643699A (en) * 1970-05-18 1972-02-22 Textron Inc Torque motor operated valve
US3666141A (en) * 1970-05-25 1972-05-30 Cincinnati Milacron Inc Method and apparatus for iterative control of shot size and cushion size
US3724720A (en) * 1971-08-05 1973-04-03 Tron Corp K Digital mass flow control system
GB1325091A (en) * 1970-02-03 1973-08-01 Nissan Motor Hydraulic pressure regulating valve
US3757823A (en) * 1971-11-02 1973-09-11 Applied Power Ind Inc Valve
US3779426A (en) * 1971-05-19 1973-12-18 Ralphs C I C Ltd Adhesive applicator
DE2327263A1 (en) * 1972-06-01 1974-01-31 Nordson Corp DEVICE FOR DISPENSING MOLTEN THERMOPLASTIC MATERIAL
US3817150A (en) * 1972-12-29 1974-06-18 Sli Ind Hydraulic actuator with mechanical feedback
US3901266A (en) * 1972-08-17 1975-08-26 Lucas Industries Ltd Pressure control valves
US3924840A (en) * 1972-09-18 1975-12-09 Gen Electric Viscosity control for a plastic molding machine
US3945399A (en) * 1974-04-11 1976-03-23 Atos Oleodinamica S.P.A. Electrically modulated hydraulic-pressure regulating valve
US3961608A (en) * 1972-11-11 1976-06-08 Robert Bosch G.M.B.H. Valve for controlling the flow of combustion gases in a combustion engine
US4013037A (en) * 1975-03-27 1977-03-22 Airprint Systems, Inc. Apparatus for controllably applying liquids to a moving surface
US4066188A (en) * 1976-08-10 1978-01-03 Nordson Corporation Thermoplastic adhesive dispenser having an internal heat exchanger
US4084539A (en) * 1976-09-24 1978-04-18 Copar Corporation Voltage to air pressure transducer
US4133511A (en) * 1977-01-26 1979-01-09 Frieseke & Hoepfner Gmbh Electro-hydraulic regulating valve system
US4164001A (en) * 1978-04-04 1979-08-07 Patnaude Edmond J Speed compensating control system
US4166246A (en) * 1978-01-23 1979-08-28 Nordson Corporation Digital control system for automatically compensating for conveyer movement changes
US4232517A (en) * 1978-03-13 1980-11-11 Toyota Jidosha Kogyo Kabushiki Kaisha Exhaust gas control actuator
GB2049228A (en) * 1979-04-21 1980-12-17 Hehl Karl Proportional valve for hydraulic installations
DE2924264A1 (en) * 1979-06-15 1980-12-18 Wabco Steuerungstech DEVICE FOR ADJUSTING THE PRESSURE OF A PRESSURE MEDIUM
US4246969A (en) * 1979-02-07 1981-01-27 John McLoughlin Chemical injection system for fire fighting
US4249478A (en) * 1979-03-23 1981-02-10 Rolf Gruener Controller for curtain coater
EP0029236A1 (en) * 1979-11-19 1981-05-27 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Apparatus for the thermal spraying of metal and ceramic powders
GB2074240A (en) * 1980-04-03 1981-10-28 Gd Spa Distributor device for viscous materials
US4301944A (en) * 1978-12-28 1981-11-24 Lestradet M C J Spreader devices having a controlled output
GB2080574A (en) * 1980-07-04 1982-02-03 Barmag Barmer Maschf A flow valve with a hydraulically adjustable throttle valve
US4315317A (en) * 1979-12-04 1982-02-09 The United States Of America As Represented By The Secretary Of Agriculture Pesticide spray monitoring system for spray vehicles
US4360132A (en) * 1980-05-15 1982-11-23 Nordson Corporation Safety control for automatic dispensing gun
DE3143169C1 (en) * 1981-10-30 1983-01-13 Drei Bond GmbH, 8057 Eching Device for metering a viscous fluid
US4392366A (en) * 1981-04-28 1983-07-12 Milliken Research Corporation Flow controller
DE8227606U1 (en) * 1982-10-01 1984-01-05 Siemann, Bernd, 5205 St Augustin DEVICE FOR PROCESSING MELT GLUE
EP0098719A2 (en) * 1982-07-02 1984-01-18 Vickers Incorporated Hydraulic valve with dual feedback control
US4430886A (en) * 1982-01-15 1984-02-14 Nordson Corporation Method and apparatus for sensing clogged nozzle
EP0104547A2 (en) * 1982-09-23 1984-04-04 Robert Bosch Gmbh Ventilating, particularly air-conditioning device for a vehicle
US4464976A (en) * 1979-11-05 1984-08-14 The Bendix Corporation Two-stage pneumatic servomotor
US4465212A (en) * 1980-05-09 1984-08-14 Nordson Corporation Liquid dispensing device
US4472967A (en) * 1981-04-28 1984-09-25 Milliken Research Corporation Flow controller
US4478775A (en) * 1979-04-05 1984-10-23 Sekisui Kagaku Kogyo Kabushiki Kaisha Method of extruding and shaping thermoplastic material
US4500937A (en) * 1982-11-12 1985-02-19 Nordson Corporation Control circuit for a solenoid driver for a dispenser
US4535283A (en) * 1983-04-18 1985-08-13 Gosudarstvenny Nauchno-Issledovatelsky Institut Teploenergeticheskogo Priborostroenia Device for conversion of non-electrical quantity into electrical signal
EP0163069A1 (en) * 1984-04-16 1985-12-04 ASEA GmbH Method and apparatus for determining an unhindered and bubble-free flow of a liquid under pressure
US4592741A (en) * 1982-12-29 1986-06-03 Vincent Michel J Medical apparatus designed for the aspiration of phneumothorax
WO1986003855A1 (en) * 1984-12-21 1986-07-03 Hydrolux S.A.R.L. Two-way flow regulating valve
US4613325A (en) * 1982-07-19 1986-09-23 Abrams Lawrence M Flow rate sensing device
US4613059A (en) * 1985-05-15 1986-09-23 Nordson Corporation Pressure pulse masking circuit for a pressure monitor in a dispensing system
US4614300A (en) * 1982-04-19 1986-09-30 E. I. Du Pont De Nemours And Company Computerized spray machine
US4654813A (en) * 1984-03-09 1987-03-31 Southern Gas Association Electronic square root error indicator
US4662540A (en) * 1984-02-16 1987-05-05 Robotics Incorporated Apparatus for dispensing medium to high viscosity liquids with liquid flow detector and alarm
US4666732A (en) * 1985-02-22 1987-05-19 Asea Gmbh Process for the control and adjustment of the flow of a viscous liquid in an apparatus which automatically emits the viscous liquid in the form of a seam
US4667852A (en) * 1983-09-29 1987-05-26 Bernd Siemann Apparatus for preparing and dispensing thermoplastic resin
US4678100A (en) * 1985-06-17 1987-07-07 Loctite Corporation Variable flow rate dispensing valve assembly
US4700205A (en) * 1986-01-17 1987-10-13 Metromedia Company Hydraulic servomechanism for controlling the pressure of writing fluid in an ink jet printing system
US4711379A (en) * 1985-04-03 1987-12-08 Nordson Corporation Proportional flow control dispensing gun
US4822647A (en) * 1986-04-23 1989-04-18 Honda Giken Kogyo Kabushiki Kaisha Coating agent to coating robot, including a method and arrangement for protecting the apparatus from damage due to improper pressures in a supply line
US4878598A (en) * 1987-04-30 1989-11-07 California Fresno Transportation, Inc. Method and apparatus for dispensing a substance to a work area
US4922852A (en) * 1986-10-30 1990-05-08 Nordson Corporation Apparatus for dispensing fluid materials
US4988015A (en) * 1986-10-30 1991-01-29 Nordson Corporation Method for dispensing fluid materials
US5054650A (en) * 1986-10-30 1991-10-08 Nordson Corporation Method of compensating for changes in the flow characteristics of a dispensed fluid to maintain the volume of dispensed fluid at a setpoint
US5144102A (en) * 1990-09-15 1992-09-01 Pierburg Gmbh Fluid pressure switch adapted for low fluid pressure and throughputs
US5207352A (en) * 1991-04-19 1993-05-04 Nordson Corporation Method and apparatus for dispensing high viscosity fluid materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2510307A1 (en) * 1981-07-24 1983-01-28 Hitachi Ltd SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SUCH A DEVICE

Patent Citations (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE203236C (en) *
US2851997A (en) * 1956-10-09 1958-09-16 Lear Inc Multi-stage hydraulic amplifier valve
US3015768A (en) * 1959-01-14 1962-01-02 Bailey Meter Co Positioning motor control system
US3434690A (en) * 1965-07-20 1969-03-25 Joseph D Troncale Sr Electrically operated fluid control valve
US3464627A (en) * 1966-06-21 1969-09-02 Sopromi Soc Proc Modern Inject Electromagnetic fuel-injection valve
US3410301A (en) * 1966-09-22 1968-11-12 Richdel Solenoid or timer operated pilot valve for main valve control
US3555970A (en) * 1968-08-08 1971-01-19 Bell Aerospace Corp Pressure regulator for servo valve having dynamic load adaptive response
GB1325091A (en) * 1970-02-03 1973-08-01 Nissan Motor Hydraulic pressure regulating valve
US3643699A (en) * 1970-05-18 1972-02-22 Textron Inc Torque motor operated valve
US3666141A (en) * 1970-05-25 1972-05-30 Cincinnati Milacron Inc Method and apparatus for iterative control of shot size and cushion size
US3779426A (en) * 1971-05-19 1973-12-18 Ralphs C I C Ltd Adhesive applicator
US3724720A (en) * 1971-08-05 1973-04-03 Tron Corp K Digital mass flow control system
US3757823A (en) * 1971-11-02 1973-09-11 Applied Power Ind Inc Valve
DE2327263A1 (en) * 1972-06-01 1974-01-31 Nordson Corp DEVICE FOR DISPENSING MOLTEN THERMOPLASTIC MATERIAL
US3827603A (en) * 1972-06-01 1974-08-06 Nordson Corp Thermoplastic applicator system in which the pump back-pressure controls the dispensing outlet
US3901266A (en) * 1972-08-17 1975-08-26 Lucas Industries Ltd Pressure control valves
US3924840A (en) * 1972-09-18 1975-12-09 Gen Electric Viscosity control for a plastic molding machine
US3961608A (en) * 1972-11-11 1976-06-08 Robert Bosch G.M.B.H. Valve for controlling the flow of combustion gases in a combustion engine
US3817150A (en) * 1972-12-29 1974-06-18 Sli Ind Hydraulic actuator with mechanical feedback
US3945399A (en) * 1974-04-11 1976-03-23 Atos Oleodinamica S.P.A. Electrically modulated hydraulic-pressure regulating valve
US4013037A (en) * 1975-03-27 1977-03-22 Airprint Systems, Inc. Apparatus for controllably applying liquids to a moving surface
US4066188A (en) * 1976-08-10 1978-01-03 Nordson Corporation Thermoplastic adhesive dispenser having an internal heat exchanger
US4084539A (en) * 1976-09-24 1978-04-18 Copar Corporation Voltage to air pressure transducer
US4133511A (en) * 1977-01-26 1979-01-09 Frieseke & Hoepfner Gmbh Electro-hydraulic regulating valve system
US4166246A (en) * 1978-01-23 1979-08-28 Nordson Corporation Digital control system for automatically compensating for conveyer movement changes
US4232517A (en) * 1978-03-13 1980-11-11 Toyota Jidosha Kogyo Kabushiki Kaisha Exhaust gas control actuator
US4164001A (en) * 1978-04-04 1979-08-07 Patnaude Edmond J Speed compensating control system
US4301944A (en) * 1978-12-28 1981-11-24 Lestradet M C J Spreader devices having a controlled output
US4246969A (en) * 1979-02-07 1981-01-27 John McLoughlin Chemical injection system for fire fighting
US4249478A (en) * 1979-03-23 1981-02-10 Rolf Gruener Controller for curtain coater
US4478775A (en) * 1979-04-05 1984-10-23 Sekisui Kagaku Kogyo Kabushiki Kaisha Method of extruding and shaping thermoplastic material
GB2049228A (en) * 1979-04-21 1980-12-17 Hehl Karl Proportional valve for hydraulic installations
DE2924264A1 (en) * 1979-06-15 1980-12-18 Wabco Steuerungstech DEVICE FOR ADJUSTING THE PRESSURE OF A PRESSURE MEDIUM
US4464976A (en) * 1979-11-05 1984-08-14 The Bendix Corporation Two-stage pneumatic servomotor
EP0029236A1 (en) * 1979-11-19 1981-05-27 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Apparatus for the thermal spraying of metal and ceramic powders
US4315317A (en) * 1979-12-04 1982-02-09 The United States Of America As Represented By The Secretary Of Agriculture Pesticide spray monitoring system for spray vehicles
DE3109303A1 (en) * 1980-04-03 1982-03-04 G.D S.p.A., 40100 Bologna DISTRIBUTION DEVICE FOR VISCOSE FABRICS
GB2074240A (en) * 1980-04-03 1981-10-28 Gd Spa Distributor device for viscous materials
US4465212A (en) * 1980-05-09 1984-08-14 Nordson Corporation Liquid dispensing device
US4360132A (en) * 1980-05-15 1982-11-23 Nordson Corporation Safety control for automatic dispensing gun
GB2080574A (en) * 1980-07-04 1982-02-03 Barmag Barmer Maschf A flow valve with a hydraulically adjustable throttle valve
US4472967A (en) * 1981-04-28 1984-09-25 Milliken Research Corporation Flow controller
US4392366A (en) * 1981-04-28 1983-07-12 Milliken Research Corporation Flow controller
DE3143169C1 (en) * 1981-10-30 1983-01-13 Drei Bond GmbH, 8057 Eching Device for metering a viscous fluid
US4430886A (en) * 1982-01-15 1984-02-14 Nordson Corporation Method and apparatus for sensing clogged nozzle
US4614300A (en) * 1982-04-19 1986-09-30 E. I. Du Pont De Nemours And Company Computerized spray machine
EP0098719A2 (en) * 1982-07-02 1984-01-18 Vickers Incorporated Hydraulic valve with dual feedback control
US4613325A (en) * 1982-07-19 1986-09-23 Abrams Lawrence M Flow rate sensing device
EP0104547A2 (en) * 1982-09-23 1984-04-04 Robert Bosch Gmbh Ventilating, particularly air-conditioning device for a vehicle
DE8227606U1 (en) * 1982-10-01 1984-01-05 Siemann, Bernd, 5205 St Augustin DEVICE FOR PROCESSING MELT GLUE
US4500937A (en) * 1982-11-12 1985-02-19 Nordson Corporation Control circuit for a solenoid driver for a dispenser
US4592741A (en) * 1982-12-29 1986-06-03 Vincent Michel J Medical apparatus designed for the aspiration of phneumothorax
US4535283A (en) * 1983-04-18 1985-08-13 Gosudarstvenny Nauchno-Issledovatelsky Institut Teploenergeticheskogo Priborostroenia Device for conversion of non-electrical quantity into electrical signal
US4667852A (en) * 1983-09-29 1987-05-26 Bernd Siemann Apparatus for preparing and dispensing thermoplastic resin
US4662540A (en) * 1984-02-16 1987-05-05 Robotics Incorporated Apparatus for dispensing medium to high viscosity liquids with liquid flow detector and alarm
US4654813A (en) * 1984-03-09 1987-03-31 Southern Gas Association Electronic square root error indicator
EP0163069A1 (en) * 1984-04-16 1985-12-04 ASEA GmbH Method and apparatus for determining an unhindered and bubble-free flow of a liquid under pressure
WO1986003855A1 (en) * 1984-12-21 1986-07-03 Hydrolux S.A.R.L. Two-way flow regulating valve
US4724864A (en) * 1984-12-21 1988-02-16 Hans Schwelm Two-way flow control valve
US4666732A (en) * 1985-02-22 1987-05-19 Asea Gmbh Process for the control and adjustment of the flow of a viscous liquid in an apparatus which automatically emits the viscous liquid in the form of a seam
US4711379A (en) * 1985-04-03 1987-12-08 Nordson Corporation Proportional flow control dispensing gun
US4613059A (en) * 1985-05-15 1986-09-23 Nordson Corporation Pressure pulse masking circuit for a pressure monitor in a dispensing system
US4678100A (en) * 1985-06-17 1987-07-07 Loctite Corporation Variable flow rate dispensing valve assembly
US4700205A (en) * 1986-01-17 1987-10-13 Metromedia Company Hydraulic servomechanism for controlling the pressure of writing fluid in an ink jet printing system
US4822647A (en) * 1986-04-23 1989-04-18 Honda Giken Kogyo Kabushiki Kaisha Coating agent to coating robot, including a method and arrangement for protecting the apparatus from damage due to improper pressures in a supply line
US4922852A (en) * 1986-10-30 1990-05-08 Nordson Corporation Apparatus for dispensing fluid materials
US4988015A (en) * 1986-10-30 1991-01-29 Nordson Corporation Method for dispensing fluid materials
US5054650A (en) * 1986-10-30 1991-10-08 Nordson Corporation Method of compensating for changes in the flow characteristics of a dispensed fluid to maintain the volume of dispensed fluid at a setpoint
US4878598A (en) * 1987-04-30 1989-11-07 California Fresno Transportation, Inc. Method and apparatus for dispensing a substance to a work area
US5144102A (en) * 1990-09-15 1992-09-01 Pierburg Gmbh Fluid pressure switch adapted for low fluid pressure and throughputs
US5207352A (en) * 1991-04-19 1993-05-04 Nordson Corporation Method and apparatus for dispensing high viscosity fluid materials

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Brochure by ASEA Robotics, Inc., Industrial Robot System for Gluing and Sealing, date unknown. *
Brochure by Omega Pressure and Strain Measurement Handbook, p. A 22. *
Brochure by Omega Pressure and Strain Measurement Handbook, p. A-22.
Pub. by Badger Meter, Inc. Research Control Valves, "The Small Valves for Small Flows", date unknown, pp. 1-8.
Pub. by Badger Meter, Inc. Research Control Valves, The Small Valves for Small Flows , date unknown, pp. 1 8. *
Pub. by J. F. Blackburn et al. "Fluid Power Control", the MIT Press & Wiley, 1960, pp. 401-432.
Pub. by J. F. Blackburn et al. Fluid Power Control , the MIT Press & Wiley, 1960, pp. 401 432. *
Technical Bulletin #141 by Moog, Inc. Controls Division, Jun. 1978, pp. 1-7.
Technical Bulletin 141 by Moog, Inc. Controls Division, Jun. 1978, pp. 1 7. *

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687092A (en) * 1995-05-05 1997-11-11 Nordson Corporation Method of compensating for changes in flow characteristics of a dispensed fluid
US6541304B1 (en) 1995-10-13 2003-04-01 Nordson Corporation Method of dispensing a viscous material
US5906682A (en) * 1995-10-13 1999-05-25 Nordson Corporation Flip chip underfill system and method
US20030137080A1 (en) * 1995-10-13 2003-07-24 Nordson Corporation Flip chip underfill system and method
US6955946B2 (en) 1995-10-13 2005-10-18 Nordson Corporation Flip chip underfill system and method
US6329013B1 (en) * 1996-02-23 2001-12-11 Scranex Automation Ab Method for dispensing a viscous solution
US5775532A (en) * 1996-03-18 1998-07-07 Bullivant; Kenneth Walter Automatic calibration process and apparatus for materials feeding
WO1997034825A1 (en) * 1996-03-18 1997-09-25 Kenneth Walter Bullivant Automatic calibration process and apparatus
US5823389A (en) * 1996-12-26 1998-10-20 Fanuc Robotics North America, Inc. Apparatus and method for dispensing fluid material
US6315161B1 (en) 1998-02-10 2001-11-13 Jesco Products Company, Inc. Method and apparatus for applying a foamable resin
US6283329B1 (en) 1998-02-10 2001-09-04 Jesco Products Company, Inc. Apparatus for applying a foamable resin
US6132515A (en) 1998-03-12 2000-10-17 Cosmos Factory, Inc. Liquid precursor delivery system
US6173864B1 (en) 1999-04-23 2001-01-16 Nordson Corporation Viscous material dispensing system and method with feedback control
US6541063B1 (en) 1999-11-04 2003-04-01 Speedline Technologies, Inc. Calibration of a dispensing system
US6814810B2 (en) 1999-11-04 2004-11-09 Speedline Technologies, Inc. Apparatus for calibrating a dispensing system
US6460420B1 (en) * 2000-04-13 2002-10-08 Sandia National Laboratories Flowmeter for pressure-driven chromatography systems
US6517891B1 (en) 2000-10-31 2003-02-11 Nordson Corporation Control system for metering pump and method
US6712906B2 (en) 2000-10-31 2004-03-30 Nordson Corporation Control system for metering pump and method
US6360143B1 (en) 2001-04-27 2002-03-19 Fanuc Robotics North America Error recovery methods for controlling robotic systems
US7927477B2 (en) 2001-06-13 2011-04-19 Ab Sciex Llc Precision flow control system
US20020189947A1 (en) * 2001-06-13 2002-12-19 Eksigent Technologies Llp Electroosmotic flow controller
US20040163957A1 (en) * 2001-06-13 2004-08-26 Neyer David W. Flow control systems
US20030052007A1 (en) * 2001-06-13 2003-03-20 Paul Phillip H. Precision flow control system
US8685218B2 (en) 2001-06-13 2014-04-01 Ab Sciex Llc Precision flow control system
US7465382B2 (en) 2001-06-13 2008-12-16 Eksigent Technologies Llc Precision flow control system
US7695603B2 (en) 2001-06-13 2010-04-13 Eksigent Technologies, Llc Electroosmotic flow controller
US20090090174A1 (en) * 2001-06-13 2009-04-09 Paul Phillip H Precision Flow Control System
US7597790B2 (en) 2001-06-13 2009-10-06 Eksigent Technologies, Llc Flow control systems
US20100049357A1 (en) * 2002-09-23 2010-02-25 Computrol, Inc. Rotary Machine with Separately Controllable Stations
US8261631B2 (en) 2002-09-23 2012-09-11 Computrol, Inc. Rotary machine with separately controllable stations
US20070110896A1 (en) * 2002-09-23 2007-05-17 Computrol, Inc. Closure sealant dispenser
US7553452B2 (en) * 2002-11-26 2009-06-30 Cybio Ag Procedure for channel adjustment of a multi-channel metering apparatus
US20050035146A1 (en) * 2002-11-26 2005-02-17 Cybio Ag Apparatus for dispensing liquids
US7103445B2 (en) * 2002-11-27 2006-09-05 Kimberly-Clark Worldwide, Inc. System and method for controlling the dispense rate of particulate material
US20040102871A1 (en) * 2002-11-27 2004-05-27 Kimberly-Clark Worldwide, Inc. System and method for controlling the dispense rate of particulate material
US20040148763A1 (en) * 2002-12-11 2004-08-05 Peacock David S. Dispensing system and method
US20040186621A1 (en) * 2003-03-19 2004-09-23 Nordson Corporation Method of implementing multiple pump speeds for dispensing a viscous material
US7592033B2 (en) * 2003-07-08 2009-09-22 Computrol, Inc Variable fluid dispenser
US20050158467A1 (en) * 2003-07-08 2005-07-21 Buckley Ian J. Variable fluid dispenser
US20050048196A1 (en) * 2003-08-26 2005-03-03 Akihiro Yanagita Control and system for dispensing fluid material
US20050048195A1 (en) * 2003-08-26 2005-03-03 Akihiro Yanagita Dispensing system and method of controlling the same
US20050244569A1 (en) * 2004-04-29 2005-11-03 Nordson Corporation Automatic tolerance determination system for material application inspection operation
US20090294472A1 (en) * 2004-07-08 2009-12-03 Computrol, Inc. Fluid Dispensing Actuator
US7954451B2 (en) 2004-11-09 2011-06-07 Nordson Corporation Closed loop adhesive registration system
US20060096530A1 (en) * 2004-11-09 2006-05-11 Klein Richard G Closed loop adhesive registration system
US7364775B2 (en) 2004-11-09 2008-04-29 Nordson Corporation Closed loop adhesive registration system
US20080149030A1 (en) * 2004-11-09 2008-06-26 Nordson Corporation Closed loop adhesive registration system
US20060263513A1 (en) * 2005-05-17 2006-11-23 Nordson Corporation Fluid dispenser with positive displacement pump
US7575633B2 (en) 2005-05-17 2009-08-18 Nordson Corporation Fluid dispenser with positive displacement pump
US20100065286A1 (en) * 2008-04-21 2010-03-18 Hosfield Robert L Ultra-High Pressure Fire-Fighting System
US20100108256A1 (en) * 2008-11-05 2010-05-06 Western Digital Technologies, Inc. Closed loop control of adhesive dot characteristics
US20120085282A1 (en) * 2009-06-19 2012-04-12 Tazmo Co., Ltd. Substrate coating device
US8770141B2 (en) * 2009-06-19 2014-07-08 Tazmo Co., Ltd. Substrate coating device with control section that synchronizes substrate moving velocity and delivery pump
US8297369B2 (en) 2009-09-08 2012-10-30 Sta-Rite Industries, Llc Fire-extinguishing system with servo motor-driven foam pump
US8164293B2 (en) 2009-09-08 2012-04-24 Hoffman Enclosures, Inc. Method of controlling a motor
US8301306B1 (en) * 2010-07-20 2012-10-30 Blasters, Llc Control system for machine that cleans drums of ready mixed concrete trucks
US10066353B2 (en) * 2011-10-31 2018-09-04 United Parcel Service Of America, Inc. Automated dispensing of travel path applicants
US10072388B2 (en) * 2011-10-31 2018-09-11 United Parcel Service Of America, Inc. Automated dispensing of travel path applicants
US10822758B2 (en) 2011-10-31 2020-11-03 United Parcel Service Of America, Inc. Automated dispensing of travel path applicants
US11339547B2 (en) 2011-10-31 2022-05-24 United Parcel Service Of America, Inc. Automated dispensing of travel path applicants
US20150182986A1 (en) * 2013-12-26 2015-07-02 Sumitomo Heavy Industries, Ltd. Coating apparatus
US20220288617A1 (en) * 2021-03-11 2022-09-15 Ford Global Technologies, Llc Method and apparatus for adaptive control and real-time edge tracking of adhesive and sealer dispensing
US11826768B2 (en) * 2021-03-11 2023-11-28 Ford Global Technologies, Llc Method and apparatus for adaptive control and real-time edge tracking of adhesive and sealer dispensing
WO2023055422A1 (en) * 2021-09-30 2023-04-06 Artel, Inc. Pipettable replacement fluid for mimicking pipettability of target fluid and related method

Also Published As

Publication number Publication date
US4922852A (en) 1990-05-08

Similar Documents

Publication Publication Date Title
USRE35010E (en) Method of compensating for changes in the flow characteristics of a dispensed fluid to maintain the volume of dispensed fluid at a setpoint
US5054650A (en) Method of compensating for changes in the flow characteristics of a dispensed fluid to maintain the volume of dispensed fluid at a setpoint
US4988015A (en) Method for dispensing fluid materials
EP0529686B1 (en) Method of compensating for changes in the flow characteristic of a fluid being dispensed from a nozzle
EP0360809B1 (en) Apparatus and method for dispensing fluid materials using position-dependent velocity feedback
US4987854A (en) Apparatus for gas-aided dispensing of liquid materials
US5114752A (en) Method for gas-aided dispensing of liquid materials
CA2017843C (en) Method and apparatus for compensating for non-linear flow characteristics in dispensing a coating material
US8028651B2 (en) Dosing system for a coating plant
US6527862B2 (en) Flow controller
US5598973A (en) Fluid flow control device
EP0668111A2 (en) Two-component dispensing system
JPS61228511A (en) Regulation or control for flow rate of viscous fluid
US20040089234A1 (en) System for spraying a fluid material
US20030041903A1 (en) Method of dispensing adhesive and sealant
EP0854756A1 (en) Liquid control for spray painting applications
CA1292153C (en) Apparatus and method for dispensing fluid materials using position dependent velocity feedback
JPH05133402A (en) Flow rate control device
JPS61238360A (en) Apparatus for controlling flow amount
JPH08131910A (en) Controlling machine for discharge flow rate
JPH0394860A (en) Automatic controller for discharge pressure of sealer

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12