USRE35301E - On-board load cell - Google Patents

On-board load cell Download PDF

Info

Publication number
USRE35301E
USRE35301E US29/270,256 US27025694A USRE35301E US RE35301 E USRE35301 E US RE35301E US 27025694 A US27025694 A US 27025694A US RE35301 E USRE35301 E US RE35301E
Authority
US
United States
Prior art keywords
vehicle
shear
load
load cell
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US29/270,256
Other versions
USD560304S1 (en
Inventor
Keith Reichow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stress Tek Inc
Original Assignee
Stress Tek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stress Tek Inc filed Critical Stress Tek Inc
Priority to US29/270,256 priority Critical patent/USRE35301E/en
Assigned to STRESS-TEK, INC. reassignment STRESS-TEK, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REICHOW, KEITH
Application granted granted Critical
Publication of USRE35301E publication Critical patent/USRE35301E/en
Anticipated expiration legal-status Critical
Assigned to JPMORGAN CHASE BANK, NATIONAL ASSOCIATION, AS AGENT reassignment JPMORGAN CHASE BANK, NATIONAL ASSOCIATION, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STRESS-TEK, INC.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/12Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles having electrical weight-sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/14Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
    • G01G3/1402Special supports with preselected places to mount the resistance strain gauges; Mounting of supports

Definitions

  • This invention relates generally to the art of load cells used in weighing systems, and more specifically concerns such a load cell used in weighing systems which are located on a vehicle.
  • load cells have proven to be vulnerable to moisture.
  • the strain gauges which are used in the load cells are very sensitive to moisture, even changes in humidity, and prior art on-board load cells have been difficult to protect against moisture, even with the application of state-of-the-art potting and/or sealing methods and materials.
  • the above-described disadvantages result in a relatively high failure rate for conventional on-board load cells, which can impair the safe operation of the vehicle, increases operational expense and is frustrating to the operators of the vehicles.
  • the invention includes an elongated beam which is responsive to shear force, including means for mounting the beam on a vehicle and means for receiving the force of the load of the vehicle, wherein the shear force on the beam as a result of the vehicle load is located in shear areas in the vicinity of each longitudinal end of the beam; and strain measuring means positioned in the shear area for measuring the shear strains on the beam, which are representative of the weight of the vehicle load.
  • FIG. 1 is an isometric view of a vehicle which shows the present invention positioned thereon.
  • FIG. 2 is a top view of the load cell of the present invention.
  • FIG. 3 is an exploded elevational view of the load cell of FIG. 2, showing also a portion of the structure for mounting the load cell on the vehicle and for receiving the load from the vehicle.
  • FIG. 4 is a cross-sectional view taken along lines 4--4 in FIG. 2, showing also the position of the strain gauges for the load cell.
  • FIG. 5 shows the structure for mounting the load cell of FIGS. 2-4 to the frame of the vehicle.
  • a conventional load vehicle such as a logging truck, includes a tractor 12 and a trailer (not shown) which carries the load and is releasably connected to tractor 12.
  • a logging truck application which is a common application for load cells
  • the on-board load cell shown generally at 18 is connected through a mounting structure, as described hereinafter, to the frame 21 of the vehicle along the opposing sides of the vehicle near the drive axles of the tractor portion of the vehicle.
  • the load cells extend longitudinally of the vehicle.
  • a cross beam 20 extends laterally across the vehicle, with its opposing ends being connected to the top surface of the respective opposing load cells.
  • Cross beam 20 supports the load on the vehicle.
  • FIGS. 2-4 show the load cell of the present invention.
  • the load cell comprises an elongated beam 24, substantially square in cross-section, which in the embodiment shown comprises a high strength, high quality steel.
  • the specific beam shown in 26 inches long, and is 2.3 inches square from the center of the bar until approximately 4.5 inches from each end, at which point the height of the bar decreases approximately 0.125 inches.
  • the transition in the upper surface is radiused at 22.
  • the height of the beam is slightly less at the ends of the beam than at the center.
  • the holes are circular, each with a diameter of 1.35 inches, with the center of each hole being located 3.5 inches in from each end.
  • the strain gauges 30-30 Positioned against the end surfaces 27a, 27b of the holes, i.e. the web 29, are the strain gauges 30-30 (FIG. 4), which will be described in more detail hereinafter.
  • openings 31, 33 which extend completely through the beam from the top surface 32 to the lower surface 34 thereof are provided for connection of the beam to its mounting structure.
  • the openings are circular, 1.16 inches in diameter, and have a center located approximately 1.4 inches from the respective ends.
  • Three threaded holes 35, 37, 39 are provided to permit the secure attachment of a cross beam 20 to the top surface 32 of beam 24.
  • the openings are threaded to accept a 1-14 UNF bolt and are 1.25 inches deep.
  • One opening 37 has a center located at the center of the beam 24, while the other two openings 35, 39 are spaced 7.5 inches toward the opposing ends thereof.
  • Bolts 40--40 are used to attach the beam 20 or equivalent platform to the top surface of the beam.
  • FIG. 4 shows a cross-section of the beam through the openings 26--26.
  • strain gauges are placed on the opposing surfaces 27a, 27b of the web 29.
  • the strain gauges are conventional, with one tension gauge and one compression gauge at each end of the beam 24.
  • Electrical leads extend from the gauges through a longitudinal opening 24 in the bar 24 which, referring to FIG. 2 in particular, extends longitudinally of the bar from one end of the bar to the other, approximately mid-height of the bar.
  • the opening 42 is drilled, is approximately 3/16 inches in diameter, and is capped and sealed at both ends.
  • the longitudinal opening 42 intersects a lateral cavity 46, which is slightly off center relative to the length of the bar, and which opens onto a side surface 23 of the bar 24.
  • a connector 48 is secured on side surface 23 over the cavity 46 and provides the electrical connection for the signal output of the load cell.
  • leads from each strain gauge 30--30 in the load cell extend through opening 42 to cavity 46.
  • all of the electrical leads for the load cell specifically, the leads from the strain gauges, are routed internally of the beam 24.
  • the strain gauges are connected into a conventional Wheatstone bridge circuit, including any trimming resistors, in cavity 46, and the output lead from the bridge circuit is connected to the connector 48.
  • the holes 26--26 for the strain gauges 30-30, the longitudinal opening 42 and the cavity 46 are filled with a water-resistent potting material.
  • the holes 26--26 have undercut portions 50--50 near the two side surfaces 23, 25 as shown in FIG. 4, which provide additional sealing and retention improvement for the potting material in holes 26--26, and hence, additional moisture protection.
  • the beam 24 is configured and mounted to measure shear force on the beam in the area labeled "a" in FIG. 2 near each end of the beam, where the holes 26 are located.
  • Area "a” is bounded by the edges of the load platform and the edges of the portion of the mounting structure which abuts against the bottom surface of the beam 24.
  • shear type load cells per se are known, they are usually found in single ended configurations and they have not heretofore been used in a double-ended configuration for on-board weighing applications. As noted above, the direction of the art in on-board applications over the past 15-20 years has been toward the use of bending beam type load cells, such as shown in the '623 and '220 patents noted above.
  • the strain gauges are placed in an area of the beam where there is relatively little bending action, and where the shear forces are concentrated. Further, what bending force there is will typically be cancelled in the bridge circuit, so that the resulting force measured by the strain gauges is substantially shear force only.
  • the shear force is measured over a relatively short distance, so that the load cell itself can be relatively short, if desired, and does not have to be any particular length to operate properly.
  • the vertical displacement of the beam under load is substantially less than that for a bending beam, so that accumulation of snow, ice and other debris beneath the beam will have less of an impact on the accuracy of the reading of the load cell.
  • FIG. 2 shows in addition the cross beam 20, and its attachment by means of three bolts (2 are shown) to the top surface of the load cell, as already discussed.
  • the cross beam 20 is 17 inches wide, leaving 41/2 inches to each side of beam 24 for a 26 inch load cell. Both ends of beam 24 are fixed in position in the present invention.
  • the mounting structure includes two mounting plates 52 and 54, one for each end of the beam.
  • Each mounting plate is an elongated steel plate with a base portion thereof 53 being approximately 1 inch thick, 2.3 inches wide and 2.65 inches long.
  • the base portion is positioned right at the end of the beam; the upper surface of the base portion of the mounting plate abuts the lower surface 34 of the beam 24 and the mounting plate is secured to the beam by bolts.
  • Each mounting plate also has a lip portion 55, which extends from the base portion 53 beneath the beam 24.
  • the lower surface and the side surfaces of the lip portion are a continuation of corresponding surfaces of the base of the mounting plates.
  • the upper surface of the lip portion is approximately 1/8 inch from the lower surface of the beam, so that there is a small separation between the beam and the lip portion.
  • the mounting plates 52 and 54 are welded to a section of angle iron 56 which is approximately 3/8 inch thick and which has a length which is equal to or longer than the length of the beam. In the embodiment shown, dimension "b" of the angle iron 56 is 5 inches and dimension "c" is 5 inches.
  • the vertical surface 57 of the angle iron 54 has a series of openings therein. The angle iron is bolted to the frame 58 of the vehicle through these openings. This arrangement provides the required mounting for the load cell, without having any welds which directly connect the frame of the vehicle to the mounting structure, or which connect the mounting structure to the load cell.
  • an on-board load cell which is arranged and configured so as to measure shear force in a beam.
  • the load cell is configured to minimize the possibility of breakage and cracking of the load cell, as well as being protected against moisture penetration of the strain gauges.

Abstract

A load cell for on-board weighing applications, including an elongated sheer force measuring beam (24) which includes mounting means (52,54,56) for securing the opposing longitudinal ends of the beam (24) to the frame (58) of the vehicle. The load is applied against the upper surface (32) of the beam (24) through a platform (20) or the like. The shear strains caused by the load are concentrated in an area near each end of the beam (24). The strain measuring means (30) are located in holes in the sides of the beam in the shear force areas and measure the shear strains on the beam, which in turn are representative of the weight of the load.

Description

DESCRIPTION
1. Technical Field
This invention relates generally to the art of load cells used in weighing systems, and more specifically concerns such a load cell used in weighing systems which are located on a vehicle.
2. Background Art
Weighing systems for on-board applications have typically used a bending beam type load cell, such as shown in U.S. Pat No. 4,249,623 to McCauley and U.S. Pat. No. 3,661,220 to Harris. However, these load cells have in use experienced difficulties with breakage and cracking in particular areas of the load cell. Further, debris, including snow, ice, and mud, frequently accumulates in the area directly beneath the lower surface of the load cell beam, inhibiting the bending of the load cell, which in turn impairs the accuracy of the reading.
Still further, such load cells have proven to be vulnerable to moisture. The strain gauges which are used in the load cells are very sensitive to moisture, even changes in humidity, and prior art on-board load cells have been difficult to protect against moisture, even with the application of state-of-the-art potting and/or sealing methods and materials. The above-described disadvantages result in a relatively high failure rate for conventional on-board load cells, which can impair the safe operation of the vehicle, increases operational expense and is frustrating to the operators of the vehicles.
To solve or reduce these problems, applicant has developed a double ended shear beam-type load cell for use in on-board weighing applications.
DISCLOSURE OF THE INVENTION
Accordingly, the invention includes an elongated beam which is responsive to shear force, including means for mounting the beam on a vehicle and means for receiving the force of the load of the vehicle, wherein the shear force on the beam as a result of the vehicle load is located in shear areas in the vicinity of each longitudinal end of the beam; and strain measuring means positioned in the shear area for measuring the shear strains on the beam, which are representative of the weight of the vehicle load.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an isometric view of a vehicle which shows the present invention positioned thereon.
FIG. 2 is a top view of the load cell of the present invention.
FIG. 3 is an exploded elevational view of the load cell of FIG. 2, showing also a portion of the structure for mounting the load cell on the vehicle and for receiving the load from the vehicle.
FIG. 4 is a cross-sectional view taken along lines 4--4 in FIG. 2, showing also the position of the strain gauges for the load cell.
FIG. 5 shows the structure for mounting the load cell of FIGS. 2-4 to the frame of the vehicle.
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, a conventional load vehicle, such as a logging truck, includes a tractor 12 and a trailer (not shown) which carries the load and is releasably connected to tractor 12. Although the embodiment disclosed herein is specific to a logging truck application, which is a common application for load cells, it should be understood that the present invention is also useful in other on-board vehicle applications, such as for suspension and fifth wheel load monitoring. The on-board load cell shown generally at 18 is connected through a mounting structure, as described hereinafter, to the frame 21 of the vehicle along the opposing sides of the vehicle near the drive axles of the tractor portion of the vehicle. In the embodiment shown, the load cells extend longitudinally of the vehicle. The details of the mounting structure, by which the load cells are connected to the frame of the vehicle, is described in succeeding paragraphs and shown in FIG. 5. In a logging truck application, a cross beam 20 extends laterally across the vehicle, with its opposing ends being connected to the top surface of the respective opposing load cells. Cross beam 20 supports the load on the vehicle.
FIGS. 2-4 show the load cell of the present invention. The load cell comprises an elongated beam 24, substantially square in cross-section, which in the embodiment shown comprises a high strength, high quality steel. The specific beam shown in 26 inches long, and is 2.3 inches square from the center of the bar until approximately 4.5 inches from each end, at which point the height of the bar decreases approximately 0.125 inches. The transition in the upper surface is radiused at 22. Thus, the height of the beam is slightly less at the ends of the beam than at the center. In both side surfaces 23, 25 of the beam 24, in the vicinity of each end of the beam, are holes 26--26 to house the strain gauges for the load cell. In the embodiment shown, the holes are circular, each with a diameter of 1.35 inches, with the center of each hole being located 3.5 inches in from each end. Positioned against the end surfaces 27a, 27b of the holes, i.e. the web 29, are the strain gauges 30-30 (FIG. 4), which will be described in more detail hereinafter.
Two openings 31, 33 which extend completely through the beam from the top surface 32 to the lower surface 34 thereof are provided for connection of the beam to its mounting structure. In the embodiment shown, the openings are circular, 1.16 inches in diameter, and have a center located approximately 1.4 inches from the respective ends.
Three threaded holes 35, 37, 39 are provided to permit the secure attachment of a cross beam 20 to the top surface 32 of beam 24. In the embodiment shown, the openings are threaded to accept a 1-14 UNF bolt and are 1.25 inches deep. One opening 37 has a center located at the center of the beam 24, while the other two openings 35, 39 are spaced 7.5 inches toward the opposing ends thereof. Bolts 40--40 are used to attach the beam 20 or equivalent platform to the top surface of the beam.
FIG. 4 shows a cross-section of the beam through the openings 26--26. In the embodiment shown, strain gauges are placed on the opposing surfaces 27a, 27b of the web 29. The strain gauges are conventional, with one tension gauge and one compression gauge at each end of the beam 24. Electrical leads (not shown) extend from the gauges through a longitudinal opening 24 in the bar 24 which, referring to FIG. 2 in particular, extends longitudinally of the bar from one end of the bar to the other, approximately mid-height of the bar. The opening 42 is drilled, is approximately 3/16 inches in diameter, and is capped and sealed at both ends.
The longitudinal opening 42 intersects a lateral cavity 46, which is slightly off center relative to the length of the bar, and which opens onto a side surface 23 of the bar 24. A connector 48 is secured on side surface 23 over the cavity 46 and provides the electrical connection for the signal output of the load cell. Thus, leads from each strain gauge 30--30 in the load cell extend through opening 42 to cavity 46. Thus, all of the electrical leads for the load cell, specifically, the leads from the strain gauges, are routed internally of the beam 24. The strain gauges are connected into a conventional Wheatstone bridge circuit, including any trimming resistors, in cavity 46, and the output lead from the bridge circuit is connected to the connector 48.
The holes 26--26 for the strain gauges 30-30, the longitudinal opening 42 and the cavity 46 are filled with a water-resistent potting material. The holes 26--26 have undercut portions 50--50 near the two side surfaces 23, 25 as shown in FIG. 4, which provide additional sealing and retention improvement for the potting material in holes 26--26, and hence, additional moisture protection.
The beam 24 is configured and mounted to measure shear force on the beam in the area labeled "a" in FIG. 2 near each end of the beam, where the holes 26 are located. Area "a" is bounded by the edges of the load platform and the edges of the portion of the mounting structure which abuts against the bottom surface of the beam 24.
Although shear type load cells per se are known, they are usually found in single ended configurations and they have not heretofore been used in a double-ended configuration for on-board weighing applications. As noted above, the direction of the art in on-board applications over the past 15-20 years has been toward the use of bending beam type load cells, such as shown in the '623 and '220 patents noted above.
In the present invention, the strain gauges are placed in an area of the beam where there is relatively little bending action, and where the shear forces are concentrated. Further, what bending force there is will typically be cancelled in the bridge circuit, so that the resulting force measured by the strain gauges is substantially shear force only. The shear force is measured over a relatively short distance, so that the load cell itself can be relatively short, if desired, and does not have to be any particular length to operate properly. Thus, there is flexibility in installation on vehicles. Further, the vertical displacement of the beam under load is substantially less than that for a bending beam, so that accumulation of snow, ice and other debris beneath the beam will have less of an impact on the accuracy of the reading of the load cell.
The mounting structure for the load cell on the vehicle is shown in FIGS. 3 and 5. FIG. 2 shows in addition the cross beam 20, and its attachment by means of three bolts (2 are shown) to the top surface of the load cell, as already discussed. In the embodiment shown, the cross beam 20 is 17 inches wide, leaving 41/2 inches to each side of beam 24 for a 26 inch load cell. Both ends of beam 24 are fixed in position in the present invention.
The mounting structure includes two mounting plates 52 and 54, one for each end of the beam. Each mounting plate is an elongated steel plate with a base portion thereof 53 being approximately 1 inch thick, 2.3 inches wide and 2.65 inches long. The base portion is positioned right at the end of the beam; the upper surface of the base portion of the mounting plate abuts the lower surface 34 of the beam 24 and the mounting plate is secured to the beam by bolts. Each mounting plate also has a lip portion 55, which extends from the base portion 53 beneath the beam 24. The lower surface and the side surfaces of the lip portion are a continuation of corresponding surfaces of the base of the mounting plates. The upper surface of the lip portion is approximately 1/8 inch from the lower surface of the beam, so that there is a small separation between the beam and the lip portion.
The mounting plates 52 and 54 are welded to a section of angle iron 56 which is approximately 3/8 inch thick and which has a length which is equal to or longer than the length of the beam. In the embodiment shown, dimension "b" of the angle iron 56 is 5 inches and dimension "c" is 5 inches. The vertical surface 57 of the angle iron 54 has a series of openings therein. The angle iron is bolted to the frame 58 of the vehicle through these openings. This arrangement provides the required mounting for the load cell, without having any welds which directly connect the frame of the vehicle to the mounting structure, or which connect the mounting structure to the load cell.
Thus, an on-board load cell has been described which is arranged and configured so as to measure shear force in a beam. The load cell is configured to minimize the possibility of breakage and cracking of the load cell, as well as being protected against moisture penetration of the strain gauges.
Although a preferred embodiment of the invention has been disclosed herein for purposes of illustration, it should be understood that modifications and substitutions can be incorporated in the invention without departing from the spirit of the invention as defined by the claims which follow.

Claims (3)

    I claim: .[.1. A load cell adapted to be mounted on a vehicle for on-board weighing of vehicle loads, wherein the load cell is capable of withstanding high bending loads, including side-loads, in addition to the vehicle load, the load cell comprising:
  1. wherein the webs are rectangular in cross-section..]..Iadd.10. A load cell adapted to be mounted on a vehicle for on-board weighing of vehicle loads, wherein the load cell is capable of withstanding high bending loads, including side-loads, in addition to the vehicle load, the load cell comprising:
    an elongated beam configured to be responsive to shear force, including means for mounting the beam to the frame of the vehicle at each longitudinal end of the beam and means for receiving the force of the vehicle load, wherein the beam is configured and arranged such that the shear strain on the beam is greatest in shear areas which are located in the vicinity of each longitudinal end of the beam, the shear areas being longitudinally bounded along the beam by said means for receiving the force of the load and said means for mounting the beam at the longitudinal ends thereof, wherein the beam includes holes, having bottom surfaces, in side surfaces of the beam in the shear areas of the beam, wherein the beam is characterized by a lack of flexure isolation means; and
    strain measuring means located on the bottom surfaces of said holes for measuring the shear strains on the beam caused by the vehicle load, the measured shear strain being representative of the weight of the vehicle load, wherein the holes in the beam which are at the same end thereof are in registry and wherein the holes have such a depth that the thickness of the web between the respective bottom surfaces of the holes is small relative to the width of said beam..Iaddend..Iadd.11. An apparatus of claim 10, including a cavity in said beam which is adapted to contain selected circuitry to process the signals from the strain measuring means and further including a small diameter opening which extends substantially the entire length of the beam, connecting said holes for strain measuring means and said cavity, so that any electrical connections can be routed
  2. internally of the load cell..Iaddend..Iadd.12. An apparatus of claim 10, wherein the holes are relatively small compared to the length of said beam and are sealed with water resistant material so as to protect the strain measuring means from moisture..Iaddend..Iadd.13. An apparatus of claim 12, including an undercut in the side surface of the holes, which tends to improve the sealing of the holes..Iaddend..Iadd.14. A load cell adapted to be mounted on a vehicle for on-board weighing of vehicle loads, wherein the load cell is capable of withstanding high bending loads, including side-loads, in addition to the vehicle load, the load cell comprising:
    an elongated beam configured to be responsive to shear force, including means for mounting the beam on a vehicle and means for receiving the force of the vehicle load, wherein the beam is configured and arranged such that the shear strain on the beam is greatest in shear areas which are located in the vicinity of each longitudinal end of the beam, wherein the shear areas are webs defined between two opposed, inwardly directed openings in the longitudinal sides of the beam, wherein the webs are rectangular in cross-section, and wherein the beam is characterized by a lack of flexure isolation means; and
    strain measuring means positioned in the shear areas for measuring the shear strains on the beam caused by the vehicle load, the measured shear strain being representative of the weight of the vehicle load..Iaddend..Iadd.15. A load cell adapted to be mounted on a vehicle for on-board weighing of vehicle loads, wherein the load cell is capable of withstanding high bending loads, including side-loads, in addition to the vehicle load, the load cell comprising:
    an elongated beam configured to be responsive to shear force, including means for mounting the beam to the frame of the vehicle and means for receiving the force of the vehicle load, wherein the beam is configured and arranged such that the shear strain on the beam is greatest in shear areas which are located in the vicinity of each longitudinal end of the beam, wherein said beam includes holes, having bottom surfaces, which extend inwardly from side surfaces of the beam in the shear areas of the beam, the holes which are at the same end of the beam being substantially in registry, such that a web is defined between the bottom surfaces of the holes, and wherein the beam is characterized by a lack of flexure isolation means; and
    strain measuring means located on opposing surfaces of the web for measuring the shear strains on the beam caused by the vehicle load, the measured shear strain being representative of the weight of the vehicle load..Iaddend..Iadd.16. An apparatus of claim 15, wherein the holes are relatively small compared to the length of said beam and are sealed with water resistent material so as to protect the strain measuring means from moisture..Iaddend..Iadd.17. An apparatus of claim 16, including an undercut in the side surface of the holes, which tends to improve the sealing of the holes..Iaddend..Iadd.18. An apparatus of claim 15, including means for mounting the beam to the frame of the vehicle at each longitudinal end of the beam and wherein the shear areas are longitudinally bounded along the beam by said receiving means and said mounting means..Iaddend..Iadd.19. An apparatus of claim 15, wherein the strain measuring means are located on opposing surfaces of the
  3. web..Iaddend..Iadd.20. A load cell adapted to be mounted on a vehicle for on-board weighing of vehicle loads, wherein the load cell is capable of withstanding high bending loads, including side loads, in addition to the vehicle load, the load cell comprising:
    an elongated beam configured to be responsive to shear force, including means for mounting the beam on a vehicle and means for receiving the force of the vehicle load, wherein the beam is configured and arranged such that the shear strain on the beam is greatest in shear areas which are located in the vicinity of each longitudinal end of the beam, wherein the shear areas include webs defined between two opposed inwardly directed openings in the longitudinal sides of the beam, and wherein the beam is characterized by a lack of flexure isolation means; and
    at least one strain measuring means positioned on each of the webs for measuring the shear strains on the beam caused by the vehicle load, the measured shear strain being representative of the weight of the vehicle load..Iaddend.
US29/270,256 1985-09-17 1994-07-05 On-board load cell Expired - Lifetime USRE35301E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US29/270,256 USRE35301E (en) 1985-09-17 1994-07-05 On-board load cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/776,911 US4666003A (en) 1985-09-17 1985-09-17 On-board load cell
US29/270,256 USRE35301E (en) 1985-09-17 1994-07-05 On-board load cell

Publications (1)

Publication Number Publication Date
USRE35301E true USRE35301E (en) 1996-07-23

Family

ID=25108715

Family Applications (2)

Application Number Title Priority Date Filing Date
US06/776,911 Ceased US4666003A (en) 1985-09-17 1985-09-17 On-board load cell
US29/270,256 Expired - Lifetime USRE35301E (en) 1985-09-17 1994-07-05 On-board load cell

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US06/776,911 Ceased US4666003A (en) 1985-09-17 1985-09-17 On-board load cell

Country Status (2)

Country Link
US (2) US4666003A (en)
CA (1) CA1245677A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811738A (en) * 1996-11-08 1998-09-22 Larry D. Santi Trunnion-mounted weight measurement apparatus
US6302424B1 (en) 1999-12-09 2001-10-16 Holland Hitch Company Force-sensing fifth wheel
US6495774B1 (en) 1999-04-29 2002-12-17 Brian L. Pederson Load cell holding means
US20040226755A1 (en) * 2003-05-13 2004-11-18 Pottebaum James R. Vehicle load weighing system and load cells for such systems
US6924441B1 (en) 1999-09-29 2005-08-02 Hill-Rom Services, Inc. Load cell apparatus
US7176391B2 (en) 2004-09-13 2007-02-13 Hill-Rom Services, Inc. Load cell to frame interface for hospital bed
US20070062738A1 (en) * 2005-03-31 2007-03-22 Keith Reichow Suspension system with neutral axis weigh system
US20110253462A1 (en) * 2010-04-15 2011-10-20 Keith Reichow Load cell assemblies for off-center loads and associated methods of use and manufacture
US8717181B2 (en) 2010-07-29 2014-05-06 Hill-Rom Services, Inc. Bed exit alert silence with automatic re-enable
US20150107913A1 (en) * 2012-05-02 2015-04-23 Shekel Scales Co. (2008) Ltd. Load cell device
US9068878B2 (en) 2013-08-23 2015-06-30 Trimble Navigation Limited Vehicle weight sensor based on wheel rim strain measurements
US9875633B2 (en) 2014-09-11 2018-01-23 Hill-Rom Sas Patient support apparatus
US10292605B2 (en) 2012-11-15 2019-05-21 Hill-Rom Services, Inc. Bed load cell based physiological sensing systems and methods
US11092476B2 (en) * 2017-12-28 2021-08-17 Spartan Enterrises, Inc. Scale and monitoring system for rubber recycling processes and other uses which may be used to optimize collection, freight and downstream recycling processes
US11428589B2 (en) 2017-10-16 2022-08-30 Saf-Holland, Inc. Displacement sensor utilizing ronchi grating interference

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3544885A1 (en) * 1985-12-18 1987-06-19 Pfister Gmbh FORCE MEASURING DEVICE
US4775018A (en) * 1987-02-03 1988-10-04 Kroll William P Load cell assembly
US5232064A (en) * 1991-11-27 1993-08-03 Intercomp Company Weighing scale assembly
US5228527A (en) * 1991-11-27 1993-07-20 Intercomp Company Force measurement assembly
US5327791A (en) * 1992-01-16 1994-07-12 Walker Robert R Vehicle beam load measuring system
CA2061071C (en) * 1992-02-12 1995-08-22 Gary Tyhy On-board weighing system for a vehicle
US5199518A (en) * 1992-02-19 1993-04-06 Sheldon Woodle Load cell
US5230392A (en) * 1992-04-16 1993-07-27 Remy Tremblay Load weighing apparatus
GB9209259D0 (en) * 1992-04-29 1992-06-17 Bloxwich Eng Fifth wheel coupling
JP2858726B2 (en) * 1994-02-25 1999-02-17 矢崎総業株式会社 Mounting structure of sensing element for vehicle load measurement
DE4402529A1 (en) * 1993-02-17 1994-08-18 Fischer Georg Verkehrstechnik Arrangement of measuring equipment on a semi-trailer
DE4402525C2 (en) * 1993-02-17 1998-10-29 Fischer Georg Verkehrstechnik Arrangement of measuring means on a semitrailer vehicle having a tractor unit and a semitrailer
US5600104A (en) * 1993-10-20 1997-02-04 Structural Instrumentation, Inc. Load cell having reduced sensitivity to non-symmetrical beam loading
US5831221A (en) * 1994-10-13 1998-11-03 Future Sysems, Inc. Caster mounted weighing system
US5823278A (en) * 1994-10-13 1998-10-20 Future Systems, Inc. Caster mounted weighing system
US6118083A (en) * 1996-11-08 2000-09-12 Creative Microsystems Weight measurement apparatus for vehicles
US6417465B1 (en) * 1999-11-17 2002-07-09 Versa Corporation Ground-conforming portable truck scale
US6670560B2 (en) * 2000-10-02 2003-12-30 Siemens Vdo Automotive Corporation Sensor integrated bracket for weight classification
NL1018289C2 (en) * 2001-06-14 2002-04-08 Geesink Bv Refuse collection vehicle with weighing cells, has superstructure load on cells directed along chassis bar neutral axes
US6726288B2 (en) * 2002-05-14 2004-04-27 Leroy G. Hagenbuch Tailgate assembly for an off-road truck
ES2249946B1 (en) * 2003-06-19 2007-10-01 Antonio Aguado, S.A. SUPPORT FOR EXTENSIOMETRIC TRUCK SELF-WEIGHT BANDS.
US7241956B1 (en) * 2004-10-12 2007-07-10 Stimpson Jon L Weight measurement system for steel mill transfer cars
US20070181350A1 (en) * 2006-02-09 2007-08-09 Stemco Lp On-board truck scale
US8354602B2 (en) * 2010-01-21 2013-01-15 Halliburton Energy Services, Inc. Method and system for weighting material storage units based on current output from one or more load sensors
DE102014018472B4 (en) * 2014-12-12 2020-10-22 Fliegl Agro-Center GmbH Weighing device and weighing system for vehicle trailers
AU2017219614B2 (en) * 2016-02-19 2019-08-29 Vishay Transducers, Ltd. Load cell assembly
MX2019009693A (en) 2017-02-14 2020-08-13 Saf Holland Inc Fifth wheel mounting bracket with isolation areas assisting in force measurement.
US10173689B1 (en) 2018-01-19 2019-01-08 Thor Tech, Inc. Recreational vehicle and integrated body control and weight sensing system
US10486711B2 (en) 2018-01-19 2019-11-26 Thor Tech, Inc. Integrated body control and weight sensing system
US11440556B2 (en) 2019-12-12 2022-09-13 Thor Tech, Inc. Trailed vehicles, mobile devices, and weight sensing system user interfaces comprised therein
USD961611S1 (en) 2020-06-30 2022-08-23 Thor Tech, Inc. Electronic device with graphical user interface

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565196A (en) * 1969-06-06 1971-02-23 B L H Electronics Inc Mobile electrical weighing platform
US3602866A (en) * 1968-12-18 1971-08-31 Erwin J Saxl Force transducer
US3661220A (en) * 1971-11-01 1972-05-09 Electro Dev Corp Weighing device for logging trucks or the like
US3734216A (en) * 1970-09-21 1973-05-22 Conrail Ab Weighing device
US3857452A (en) * 1974-02-14 1974-12-31 Tri Coastal Ind Inc Dump truck load-sensing assembly
US3990032A (en) * 1975-12-08 1976-11-02 Colt Industries Operating Corporation Vehicle weighing system
US4249623A (en) * 1979-10-24 1981-02-10 Structural Instrumentation, Inc. Load cell for on-board weighing systems
US4305475A (en) * 1980-01-14 1981-12-15 Quest Corporation Weigh block assembly
US4364279A (en) * 1980-12-31 1982-12-21 Allegany Technology, Inc. Shear beam load cell system
US4420985A (en) * 1979-05-08 1983-12-20 Raskin Seymour H Force measurement device
US4459863A (en) * 1982-08-09 1984-07-17 Safelink Ab Shear beam load cell
US4503921A (en) * 1983-09-06 1985-03-12 The Alliance Machine Company Weighing system
US4516646A (en) * 1982-03-05 1985-05-14 Aktiebolaget Bofors Shear beam load cell with built-in bearing elements
US4516645A (en) * 1981-10-23 1985-05-14 Quest Corporation Load checking arrangement for a center-loaded type load cell
US4549622A (en) * 1983-06-20 1985-10-29 Superior Scale Co. Ltd. Heavy duty weigh scale
US4581948A (en) * 1984-02-07 1986-04-15 World Wide Weighing, Inc. Load cell assembly for use in a vehicle platform scale

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3602866A (en) * 1968-12-18 1971-08-31 Erwin J Saxl Force transducer
US3565196A (en) * 1969-06-06 1971-02-23 B L H Electronics Inc Mobile electrical weighing platform
US3734216A (en) * 1970-09-21 1973-05-22 Conrail Ab Weighing device
US3661220A (en) * 1971-11-01 1972-05-09 Electro Dev Corp Weighing device for logging trucks or the like
US3857452A (en) * 1974-02-14 1974-12-31 Tri Coastal Ind Inc Dump truck load-sensing assembly
US3990032A (en) * 1975-12-08 1976-11-02 Colt Industries Operating Corporation Vehicle weighing system
US4420985A (en) * 1979-05-08 1983-12-20 Raskin Seymour H Force measurement device
US4249623A (en) * 1979-10-24 1981-02-10 Structural Instrumentation, Inc. Load cell for on-board weighing systems
US4305475A (en) * 1980-01-14 1981-12-15 Quest Corporation Weigh block assembly
US4364279A (en) * 1980-12-31 1982-12-21 Allegany Technology, Inc. Shear beam load cell system
US4516645A (en) * 1981-10-23 1985-05-14 Quest Corporation Load checking arrangement for a center-loaded type load cell
US4516646A (en) * 1982-03-05 1985-05-14 Aktiebolaget Bofors Shear beam load cell with built-in bearing elements
US4459863A (en) * 1982-08-09 1984-07-17 Safelink Ab Shear beam load cell
US4549622A (en) * 1983-06-20 1985-10-29 Superior Scale Co. Ltd. Heavy duty weigh scale
US4503921A (en) * 1983-09-06 1985-03-12 The Alliance Machine Company Weighing system
US4581948A (en) * 1984-02-07 1986-04-15 World Wide Weighing, Inc. Load cell assembly for use in a vehicle platform scale

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Botek (2 sheets). *
Maywood Instruments (2 drawings). *
Sensortronics (drawing and specification) 4 pages. *
Sensortronics (drawing and specification)--4 pages.
Strainometrics. *
Transducers, Inc. (brochure). *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811738A (en) * 1996-11-08 1998-09-22 Larry D. Santi Trunnion-mounted weight measurement apparatus
US6495774B1 (en) 1999-04-29 2002-12-17 Brian L. Pederson Load cell holding means
US6924441B1 (en) 1999-09-29 2005-08-02 Hill-Rom Services, Inc. Load cell apparatus
US6302424B1 (en) 1999-12-09 2001-10-16 Holland Hitch Company Force-sensing fifth wheel
US6739611B2 (en) 1999-12-09 2004-05-25 The Holland Group, Inc. Force-sensing fifth wheel
US20040226755A1 (en) * 2003-05-13 2004-11-18 Pottebaum James R. Vehicle load weighing system and load cells for such systems
US7009118B2 (en) 2003-05-13 2006-03-07 Dynamic Datum Llc Vehicle load weighing system and load cells for such systems
US7176391B2 (en) 2004-09-13 2007-02-13 Hill-Rom Services, Inc. Load cell to frame interface for hospital bed
US20070107948A1 (en) * 2004-09-13 2007-05-17 Metz Darrell L Load cell to frame interface for hospital bed
US7335839B2 (en) 2004-09-13 2008-02-26 Hill-Rom Services, Inc. Load cell interface for a bed having a stud receiver with a roller axis parallel with an axis of a load cell stud
US20070062738A1 (en) * 2005-03-31 2007-03-22 Keith Reichow Suspension system with neutral axis weigh system
US7506538B2 (en) * 2005-03-31 2009-03-24 Stress Tek, Inc. Suspension system with neutral axis weigh system
US20110253462A1 (en) * 2010-04-15 2011-10-20 Keith Reichow Load cell assemblies for off-center loads and associated methods of use and manufacture
US8841566B2 (en) * 2010-04-15 2014-09-23 Stress-Tek, Inc. Load cell assemblies for measuring off-center loads
US20150226599A1 (en) * 2010-04-15 2015-08-13 Stress-Tek, Inc. Load cell assemblies for off-center loads and associated methods of use and manufacture
US9726535B2 (en) * 2010-04-15 2017-08-08 Stress-Tek, Inc. Load cell assemblies for off-center loads and associated methods of use and manufacture
US8717181B2 (en) 2010-07-29 2014-05-06 Hill-Rom Services, Inc. Bed exit alert silence with automatic re-enable
US20150107913A1 (en) * 2012-05-02 2015-04-23 Shekel Scales Co. (2008) Ltd. Load cell device
US10641643B2 (en) 2012-05-02 2020-05-05 Shekel Scales Co. (2008) Ltd. Load cell assembly having a flexural arrangement
US9766113B2 (en) * 2012-05-02 2017-09-19 Shekel Scales Co. (2008) Ltd. Load cell device having a flexural arrangement
US10292605B2 (en) 2012-11-15 2019-05-21 Hill-Rom Services, Inc. Bed load cell based physiological sensing systems and methods
US9068878B2 (en) 2013-08-23 2015-06-30 Trimble Navigation Limited Vehicle weight sensor based on wheel rim strain measurements
US10276021B2 (en) 2014-09-11 2019-04-30 Hill-Rom Sas Patient support apparatus having articulated mattress support deck with load sensors
US9875633B2 (en) 2014-09-11 2018-01-23 Hill-Rom Sas Patient support apparatus
US11428589B2 (en) 2017-10-16 2022-08-30 Saf-Holland, Inc. Displacement sensor utilizing ronchi grating interference
US11092476B2 (en) * 2017-12-28 2021-08-17 Spartan Enterrises, Inc. Scale and monitoring system for rubber recycling processes and other uses which may be used to optimize collection, freight and downstream recycling processes

Also Published As

Publication number Publication date
CA1245677A (en) 1988-11-29
US4666003A (en) 1987-05-19

Similar Documents

Publication Publication Date Title
USRE35301E (en) On-board load cell
CA2081824C (en) Vehicle beam load measuring system
US4095659A (en) Deflection-restrained load cell for on-board vehicle weighing systems
CA2190040C (en) Trunnion-mounted weight measurement apparatus
AU2019257377B2 (en) Load cell assembly
US6118083A (en) Weight measurement apparatus for vehicles
CA2047434C (en) Apparatus and method for weighing rail-supported vehicles
US4249623A (en) Load cell for on-board weighing systems
US4280576A (en) Low profile tension mounted load cell industrial scale
US20040221662A1 (en) Wheel action force detector for detecting axle forces absent brake torque
US5199518A (en) Load cell
US4884644A (en) Vehicle on-board transducer for use with dual axle equalizer hanger systems
US5083624A (en) Deflection transducer for measuring vehicle loads and a system for mounting same
US5861581A (en) Equalizer hanger system for on-board weighing
KR102244449B1 (en) Sensor module structure for axle-mounted car celebration
CN1139790C (en) Track scales
US5190116A (en) Deflection transducer for measuring vehicle loads and a system for mounting same
EP0423440B1 (en) Weigh-in-motion scale for vehicles
US20060070463A1 (en) On-board scale sensor with mechanical amplification and improved output signal apparatus and method
WO1991002226A1 (en) Force measurement device for trailer couplings
CA1221990A (en) Scale assembly with improved platform
US4969529A (en) Vehicle on-board transducer for use with dual axle equalizer hanger systems
US4148369A (en) Vehicle weighing system transducer
US4170268A (en) Apparatus for weighing railway supported vehicles
CN109211383B (en) Frame type track weighing sensor

Legal Events

Date Code Title Description
AS Assignment

Owner name: STRESS-TEK, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REICHOW, KEITH;REEL/FRAME:007099/0961

Effective date: 19940630

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: JPMORGAN CHASE BANK, NATIONAL ASSOCIATION, AS AGEN

Free format text: SECURITY INTEREST;ASSIGNOR:STRESS-TEK, INC.;REEL/FRAME:037481/0127

Effective date: 20151230