USRE36076E - Vehicle antenna system - Google Patents

Vehicle antenna system Download PDF

Info

Publication number
USRE36076E
USRE36076E US08/323,498 US32349894A USRE36076E US RE36076 E USRE36076 E US RE36076E US 32349894 A US32349894 A US 32349894A US RE36076 E USRE36076 E US RE36076E
Authority
US
United States
Prior art keywords
antenna
cellular telephone
external radiator
vehicle
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/323,498
Inventor
Everette T. Bryant
Alex F. Wells
David M. Phemister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Radiall Antenna Technologies Inc
Original Assignee
Larsen Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Larsen Electronics Inc filed Critical Larsen Electronics Inc
Priority to US08/323,498 priority Critical patent/USRE36076E/en
Application granted granted Critical
Publication of USRE36076E publication Critical patent/USRE36076E/en
Assigned to RADIALL ANTENNA TECHNOLOGIES, INC. reassignment RADIALL ANTENNA TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LARSEN ELECTRONICS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3258Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle using the gutter of the vehicle; Means for clamping a whip aerial on the edge of a part of the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • H01Q1/1285Supports; Mounting means for mounting on windscreens with capacitive feeding through the windscreen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3291Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted in or on other locations inside the vehicle or vehicle body
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Details Of Aerials (AREA)
  • Radio Relay Systems (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

. .A mobile antenna system features passive repeater operation to transfer energy between a radio transceiver located inside a vehicle and an external radiator mounted on the outside thereof. By this arrangement, a user of the radio transceiver can gain benefit from the external radiator without the hinderance of a physical, wired connection linking the transceiver to the antenna assembly. In a preferred embodiment, the antenna system operates without any electrical cable extending inside the vehicle from the external radiator..!..Iadd.A mobile cellular antenna system includes an auxiliary antenna that is positioned inside the passenger compartment of a vehicle and is coupled to the radiator on the exterior of the vehicle. This arrangement permits users of portable or transportable cellular telephones with built-in antennas to gain transmission and reception advantage from the exterior antenna while operating from within the passenger compartment. .Iaddend.

Description

This is a continuation of application Ser. No. 07/447,720, filed Dec. 8, 1989, U.S. Pat. No. 5,099,252.
FIELD OF THE INVENTION
The present invention relates to the field of cellular telephony, and more particularly relates to mobile antennas used with cellular telephones.
BACKGROUND AND SUMMARY OF THE INVENTION
Cellular telephony has grown at an exponential rate in recent years. No longer are car phones the exclusive domain of the limousine set. Now they are becoming commonplace in all types of vehicles.
The associated technology has advanced at a dizzying pace as well. No longer are car phones heavy units bolted to the floors of vehicles. Rather, they are now small lightweight units which take a number of forms. So called "mobile" phones usually are permanently installed in a vehicle. These units must be connected to both the vehicle battery and to an external antenna (which is typically mounted on the windshield of the vehicle). "Portable" phones are adapted to be hand carried and include their own battery packs and antennas. A hybrid form of phone, termed a "transportable" can be connected to a vehicle's battery and external antenna, or it may be disconnected and removed from the vehicle, relying on an internal battery pack and its own antenna for operation.
In strong signal areas, all of these units perform well. In fringe areas, however, the associated antennas become more critical. To maintain good communications from a transportable phone at a fringe location, the unit must generally be connected to the vehicle-mounted antenna, rather than rely on its own. If a portable phone is used from a fringe location, it is best to operate the unit outside of the vehicle, with the phone's antenna in the clear. If either a portable or transportable is operated inside the passenger compartment of a vehicle using its built-in antenna, fringe area performance suffers, since the metal surrounding the passenger compartment interferes with transmission of the radio signals.
It will be recognized that it is tedious to connect and disconnect a transportable telephone to a vehicle antenna each time the phone is taken inside or outside a car. However, such action is necessitated in fringe areas. Similarly, it is troublesome for a user of a portable phone to stop the vehicle, get out, and position the portable's own antenna in the clear in order to maintain clear communications. However, this is the present state of the art.
The present invention overcomes these problems. It permits users of transportable and portable telephones to gain the benefit of a vehicle-mounted antenna without requiring that tedious connections be made or broken each time the telephone is moved into or out of a car. The invention even permits portable telephones which have no provision for connection to an external antenna to gain the benefit of an external, vehicle mounted antenna.
In accordance with the present invention, signals are coupled between a vehicle mounted antenna and a cellular telephone by radio rather than by wire. In one embodiment of the invention, this is achieved by providing an on-glass vehicle antenna with an auxiliary antenna inside the vehicle. Signals are passed to and from the external antenna portion of the on-glass antenna by transmission of signals between the telephone's own antenna and the internal auxiliary antenna portion of the on-glass antenna.
It will be recognized that the invention may be likened to so called "passive repeaters." Such repeaters are known in a number of fields, including relay stations to provide cellular telephone coverage in areas that would otherwise be inaccessible to radio signals, such as inside tunnels. In this application, a high gain antenna, typically a parabolic dish, is mounted outside of the tunnel and is directed towards the nearest cellular broadcasting station. This parabolic antenna is connected by coaxial cable or waveguide to one or more antennas inside the tunnel, thereby providing radio coverage inside the tunnel.
While passive repeaters are a well known technology, no one, to applicants' knowledge, has heretofore applied it to the problem of conveniently using portable and transportable telephones from within the passenger compartments of vehicles. Others skilled in this art failed to arrive at the present invention despite massive research and development efforts in the cellular telephony field by industry leaders in the U.S., Europe and Japan. The nonobviousness of the present invention is illustrated by the unanimity with which it has been overlooked.
The above-described features and advantages of the present invention will be more readily apparent from the following detailed description thereof, which proceeds with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic illustration of an antenna system according to one embodiment of the present invention.
FIG. 2 is a schematic illustration of the antenna system of FIG. 1 used in the passenger compartment of a vehicle in conjunction with a portable cellular telephone.
FIG. 3 is an illustration of an antenna system according to a second embodiment of the present invention.
FIG. 4 is an illustration of an antenna system according to a third embodiment of the present invention.
DETAILED DESCRIPTION
To provide a comprehensive disclosure without unduly lengthening this specification, applicants incorporate by reference the disclosures of U.S. Pat. Nos. 4,862,183, 4,804,969, 4,794,319, 4,764,773 (Larsen), 4,658,259 (Blaese), 4,238,799 (Parfitt), 4,089,817, 4,028,704, 2,829,367 and 2,206,820.
As illustrated by the above-referenced patents, vehicle mounted antennas are typically coupled to the radio transceiver units with which they are used by one of two techniques: direct feed or through-the glass coupling (inductive or capacitive). In direct feed systems, there is an electrical connection from the feed line to the antenna. This connection is usually made by a cable that passes through a hole drilled in the vehicle body. Through-the-glass coupling is most commonly used for cellular vehicle antennas since no hole need be drilled in the vehicle.
Through-the-glass coupling systems usually take one of two forms. In the first, a low impedance presented by the transmission line (connecting to the telephone) is transformed up to match a high impedance presented by the external antenna. The Larsen and Parfitt patents illustrate this technique. In the Larsen system, the transformation up to the high impedance is performed on the side of the glass outside the vehicle: the through-the-glass coupling is performed at a low impedance. In the Parfitt system, the transformation up to the high impedance is performed on the side of the glass inside the vehicle; the through-the-glass coupling is performed at a high impedance.
In the second type of through-the-glass coupling, a low impedance presented by the transmission line is coupled directly to a low impedance antenna without any impedance transformation. The Blaese patent illustrates this technique.
The present invention is applicable to all of these through-the-glass techniques, as well as to traditional direct feed techniques. For expository convenience, the invention will be illustrated with reference to the Larsen system.
Referring to FIG. 1, an antenna system 10 according to the present invention includes an external radiator 12, an internal auxiliary antenna 14, and some means 16 for coupling energy therebetween. In the illustrated embodiment, the internal auxiliary antenna comprises a dipole dimensioned to present a low resonant impedance in the cellular telephone frequency band. Each leg 14a, 14b of the dipole is connected to an inside capacitive coupling plate 18a, 18b. These inside capacitive coupling plates, in turn, are mounted to an inside surface 20 of a vehicle windshield 22.
On an outside surface 24 of the vehicle windshield 22, opposite the inside coupling plates 18a, 18b, are mounted corresponding outside capacitive coupling plates 22a, 26b. These plates, in turn, are connected to an impedance transformation network 28, which here comprises a series-coupled inductor 30 and capacitor 32. The inductor 30 is tuned to match a high resonant impedance presented by the external radiator 12 to the low impedance coupled through the vehicle windshield from the low impedance internal auxiliary antenna 14.
Referring now to FIG. 2, the antenna 10 of the present invention is shown mounted on the rear windshield of a vehicle 34. Inside the passenger compartment of the vehicle is a portable or transportable telephone 36 with its own antenna 38. Signals broadcast from the telephone antenna 38 are picked up by the internal auxiliary antenna 14 and rebroadcast outside the passenger compartment using the external radiator 12. Similarly, signals received by the external radiator 12 are rebroadcast inside the vehicle by the antenna 14 and received by the telephone antenna 38.
The internal auxiliary antenna may be oriented to achieve vertical or horizontal polarization. Surprisingly, best results are often achieved with horizontal polarization, despite the fact that the telephone antenna with which it is communicating is generally vertically polarized.
In another embodiment of the invention, (FIGS. 3 and 4), the antenna system may be adapted for removable mounting on the top of a vehicle window. A spring-plastic U-shaped clip 50 can slide down over the top edge of a partially-rolled down window 52. The internal auxiliary antenna can be mounted to the inside portion 54 of the clip. The external radiator can be mounted to the outside portion 56 of the clip. Coupling from the internal antenna to the external radiator can be accomplished by a transmission line 58 molded into the plastic clip that connects the two (FIG. 3). Alternatively, a capacitive or inductive coupling arrangement can be used, with one coupling component 26 attached to the outside portion of the clip and the other coupling component 18 attached to the inside portion of the clip (FIG. 4).
It will be recognized that in either of the two foregoing arrangements (i.e. coupling from the internal antenna to the external radiator by a transmission line, or coupling through cooperating components mounted on opposite sides of the glass), no powered circuitry is involved. In other words, the coupling is passive.
If desired, a vehicle may be provided with two or more antenna systems according to the present invention. By using a plurality of such antenna systems, a directional radiation pattern is achieved. Unlike most phased arrays, the directional characteristics here are dependent not only on the spacings of the radiators relative to each other, but also on the location of the portable or transportable telephone's antenna within the array of internal antennas. By moving the telephone within the car, the relative phasings of the signals driving the radiators are altered, changing the net radiation pattern. Thus, by use of a plurality of antenna systems according to the present invention, it is possible to provide a steerable phased array--steerable simply by moving the telephone inside the vehicle.
CONCLUSION
It will be recognized that the foregoing embodiments permit transportable phones to gain the benefit of an external vehicle-mounted antenna without having to connect or disconnect the antenna each time the telephone is moved to or from the vehicle. The invention similarly permits portable phones, which often cannot connect to an external antenna even by cable, to easily utilize an external antenna.
Having described and illustrated the principles of our invention with reference to several embodiments thereof, it will be apparent that the invention can be modified in arrangement and detail without departing from such principles. For example, while the invention has been illustrated with reference to an embodiment in which the internal auxiliary antenna is a dipole and presents a low impedance, in other embodiments other interior antenna configurations may be used, some of which present high impedances. Similarly, while the invention has been illustrated with reference to an embodiment in which an inductor/capacitor matching network is used outside the glass, a variety of other matching arrangements may be used on either side of the glass, or no matching network at all may be required. Of course, the invention may also be applied to direct feed antennas by directly connecting the internal auxiliary antenna to the external radiator, as was noted in connection with the second embodiment. Similarly, if a vehicle is provided with a direct feed radiator mounted on the vehicle trunk, an auxiliary antenna may be positioned within the passenger compartment of the vehicle and connected to the external radiator by cabling.
In view of the variety of embodiments to which the principles of our invention may be applied, it should be recognized that the detailed embodiments are illustrative only and should not be taken as limiting the scope of our invention. Instead, we claim as our invention all such embodiments as may come within the scope and spirit of the following claims and equivalents thereto.

Claims (12)

We claim:
1. A method of operating a radio transceiver inside the passenger compartment of a vehicle the radio transceiver transmitting and receiving signals in a frequency band, the vehicle including a windshield, the method comprising the steps:
when transmitting:
broadcasting a first signal from the transceiver inside the passenger compartment using an antenna connected to the radio transceiver;
receiving the first signal using an internal auxiliary antenna mounted on an inside surface of the windshield but not connected to the radio transceiver, said internal auxiliary antenna being resonant in the frequency band;
coupling the first signal from the internal auxiliary antenna through the windshield and to an external radiator without an electrical cable extending between the internal antenna and the external radiator, the external radiator being mounted on an outside surface of the windshield, the external radiator being resonant in the frequency band; and
reradiating the first signal from the external radiator; and
when receiving:
receiving a second signal using the external radiator;
coupling the second signal from the external radiator through the windshield and to the internal antenna without an electrical cable extending between the external radiator and the internal antenna;
reradiating the second signal inside the passenger compartment using the internal auxiliary antenna; and
receiving the reradiated second signal using the antenna connected to the radio transceiver.
2. The method of claim 1 in which the coupling steps each includes capacitively coupling a signal between the internal auxiliary antenna and the external radiator and through the windshield without an electrical cable extending therebetween.
3. A method of operating a cellular telephone inside the passenger compartment of a vehicle, the cellular telephone transmitting signals to and receiving signals from a cellular system, the method comprising the steps:
when transmitting:
broadcasting a first signal from the telephone inside the passenger compartment using an antenna connected to the cellular telephone;
receiving the first signal using an internal auxiliary antenna located inside the passenger compartment but not connected to the cellular telephone, the internal antenna being tuned for resonance in the cellular telephone frequency band;
coupling the first signal from the internal auxiliary antenna and to an external radiator through an insulating material extending therebetween and without an electrical cable extending between the external radiator and the internal auxiliary antenna, the external radiator being tuned for resonance in the cellular telephone frequency band; and
reradiating the first signal from the external radiator to the cellular system; and
when receiving:
receiving a second signal from the cellular system using the external radiator;
coupling the second signal from the external radiator and to the internal auxiliary antenna through the insulating material extending therebetween and without an electrical cable extending between the external radiator and the internal auxiliary antenna;
reradiating the second signal inside the passenger compartment using the internal auxiliary antenna; and
receiving the reradiated second signal using the antenna connected to the cellular telephone.
4. A vehicle mounted antenna system for use with a cellular telephone comprising:
an external radiator tuned for operation in the cellular telephone frequency band for mounting on the exterior of a vehicle;
means adapted for mounting the radiator on a first surface of an insulating glass window associated with the exterior of the vehicle; and
an internal auxiliary antenna for mounting in a passenger compartment of the vehicle, said internal auxiliary antenna being coupled to the external radiator through the insulating glass window without an electrical cable extending therebetween;
wherein no wired connection links the antenna system with the cellular telephone with which it is used.
5. The antenna system of claim 4 in which the external radiator is oriented vertically and the internal auxiliary antenna is oriented horizontally.
6. An antenna assembly adapted for mounting on a glass surface of a motor vehicle and adapted for use with a portable cellular telephone, characterized by:
an external radiator positioned outside the vehicle and resonant in the cellular telephone frequency band;
an auxiliary radiator coupled with the external-radiator;
the absence of a feedline coupling said antenna assembly with the portable cellular telephone with which it is to be used; and
the absence of a feedline coupling the external radiator to the auxiliary radiator;
wherein a user of the portable cellular telephone can gain benefit from the external radiator without the hindrance of a physical, wired connection between the telephone and the antenna assembly.
7. In a method of transmitting cellular telephone signals using a portable cellular telephone and a vehicle mounted antenna assembly, the portable cellular telephone being positioned inside a vehicle, the vehicle mounted antenna assembly including an external radiator that is positioned outside the vehicle and is mounted on an exterior glass surface thereof, the method including coupling cellular telephone signals to the external radiator from the portable cellular telephone, an improvement comprising:
coupling the cellular telephone signals to the antenna assembly from the portable cellular telephone through an auxiliary antenna coupled to the external radiator, without an electrical cable extending between the portable cellular telephone and the antenna assembly, and without an electrical cable extending from the external radiator to inside the vehicle, wherein a user of the portable cellular telephone can gain benefit from the antenna assembly without the hindrance of a physical, wired connection between the telephone and the antenna assembly, and wherein no wired connection needs to be established from the external radiator to inside the vehicle.
8. The method of claim 7 which further includes:
providing an internal auxiliary antenna, said internal auxiliary antenna being resonant in the cellular telephone frequency band;
positioning the internal auxiliary antenna inside the vehicle;
coupling cellular telephone signals to the internal auxiliary antenna from an antenna of the cellular telephone without an electrical cable extending between the cellular telephone and the internal auxiliary antenna, and
coupling cellular telephone signals to the external radiator from the internal auxiliary antenna without an electrical cable extending therebetween.
9. The method of claim 8 in which the coupling of cellular telephone signals to the external radiator from the internal auxiliary antenna is effected by capacitive coupling. .Iadd.
10. A method of operating a radio transceiver inside the passenger compartment of a vehicle, the radio transceiver transmitting and receiving signals in a frequency band, the vehicle including a windshield, the method comprising the steps:
when transmitting:
broadcasting a first signal from the transceiver inside the passenger compartment using an antenna connected to the radio transceiver;
receiving the first signal using an internal auxiliary antenna mounted inside the passenger compartment but not connected to the radio transceiver, said internal auxiliary antenna being resonant in the frequency band;
coupling the first signal from the internal auxiliary antenna through the windshield and to an external radiator without an electrical cable extending around or through the windshield, the external radiator being mounted on an outside surface of the windshield, the external radiator being resonant in the frequency band; and
reradiating the first signal from the external radiator; and
when receiving:
receiving a second signal using the external radiator;
coupling the second signal from the external radiator through the windshield and to the internal antenna without an electrical cable extending around or through the windshield;
reradiating the second signal inside the passenger compartment using the internal auxiliary antenna; and
receiving the reradiated second signal using the antenna connected to the radio transceiver. .Iaddend..Iadd.
11. The method of claim 10 in which the coupling steps each includes capacitively coupling a signal between first and second sides of the windshield. .Iaddend..Iadd.12. A method of operating a cellular telephone inside the passenger compartment of a vehicle, the cellular telephone transmitting signals to and receiving signals from a cellular system, the method comprising the steps:
when transmitting:
broadcasting a first signal from the telephone inside the passenger compartment using an antenna connected to the cellular telephone;
receiving the first signal using an internal auxiliary antenna located inside the passenger compartment but not connected to the cellular telephone, the internal antenna being tuned for resonance in the cellular telephone frequency band;
coupling the first signal from the internal auxiliary antenna and to an external radiator through an insulating material extending therebetween and without an electrical cable extending around or through the insulating material, the external radiator being tuned for resonance in the cellular telephone frequency band; and
reradiating the first signal from the external radiator to the cellular system; and
when receiving:
receiving a second signal from the cellular system using the external radiator;
coupling the second signal from the external radiator and to the internal auxiliary antenna through the insulating material extending therebetween and without an electrical cable extending between, around or through the insulating material;
reradiating the second signal inside the passenger compartment using the internal auxiliary antenna; and
receiving the reradiated second signal using the antenna connected to the cellular telephone. .Iaddend..Iadd.13. A vehicle mounted antenna system for use with a cellular telephone comprising:
an external radiator tuned for operation in the cellular telephone frequency band for mounting on the exterior of a vehicle;
means adapted for mounting the radiator on a first surface of an insulating glass window associated with the exterior of the vehicle; and
an internal auxiliary antenna for mounting in a passenger compartment of the vehicle, said internal auxiliary antenna being coupled to the external radiator through the insulating glass window without an electrical cable extending around or through the window:
wherein no wired connection links the antenna system with the cellular
telephone with which it is used. .Iaddend..Iadd.14. An antenna assembly adapted for mounting on a glass surface of a motor vehicle and adapted for use with a portable cellular telephone, characterized by:
an external radiator positioned outside the vehicle and resonant in the cellular telephone frequency band;
an auxiliary radiator positioned inside the vehicle coupled with the external radiator;
the absence of a feedline coupling said antenna assembly with the portable cellular telephone with which it is to be used; and
the absence of a feedline extending between the outside of the vehicle and the inside of the vehicle, coupling the external radiator to the auxiliary radiator;
wherein a user of the portable cellular telephone can gain benefit from the external radiator without the hindrance of a physical, wired connection between the telephone and the antenna assembly. .Iaddend.
US08/323,498 1989-12-08 1994-10-13 Vehicle antenna system Expired - Lifetime USRE36076E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/323,498 USRE36076E (en) 1989-12-08 1994-10-13 Vehicle antenna system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/447,720 US5099252A (en) 1989-12-08 1989-12-08 Mobile cellular antenna system
US07/626,628 US5155494A (en) 1989-12-08 1990-12-12 Vehicle antenna system
US08/323,498 USRE36076E (en) 1989-12-08 1994-10-13 Vehicle antenna system

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US07/447,720 Continuation US5099252A (en) 1989-12-08 1989-12-08 Mobile cellular antenna system
US07/626,628 Reissue US5155494A (en) 1989-12-08 1990-12-12 Vehicle antenna system

Publications (1)

Publication Number Publication Date
USRE36076E true USRE36076E (en) 1999-02-02

Family

ID=23777470

Family Applications (3)

Application Number Title Priority Date Filing Date
US07/447,720 Expired - Lifetime US5099252A (en) 1989-12-08 1989-12-08 Mobile cellular antenna system
US07/626,628 Ceased US5155494A (en) 1989-12-08 1990-12-12 Vehicle antenna system
US08/323,498 Expired - Lifetime USRE36076E (en) 1989-12-08 1994-10-13 Vehicle antenna system

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US07/447,720 Expired - Lifetime US5099252A (en) 1989-12-08 1989-12-08 Mobile cellular antenna system
US07/626,628 Ceased US5155494A (en) 1989-12-08 1990-12-12 Vehicle antenna system

Country Status (7)

Country Link
US (3) US5099252A (en)
EP (1) EP0431640B1 (en)
AT (1) ATE98055T1 (en)
CA (1) CA2031598C (en)
DE (2) DE431640T1 (en)
DK (1) DK0431640T3 (en)
ES (1) ES2029216T1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010014585A1 (en) * 2000-02-14 2001-08-16 Yazaki Corporation Vehicle compartment radio LAN system
US6317089B1 (en) * 1999-12-23 2001-11-13 Wilson Electronics, Inc. Hand-held transceiver antenna system
US6421018B1 (en) * 2001-05-31 2002-07-16 Andrew Corporation Bowtie inductive coupler
US20040176027A1 (en) * 2003-03-04 2004-09-09 O'neill Frank P. Repeater system for strong signal environments
US20090189458A1 (en) * 2008-01-23 2009-07-30 Toyota Jidosha Kabushiki Kaisha Vehicle power supply apparatus and vehicle window member
US8175521B2 (en) 2003-03-04 2012-05-08 Bandwidth Wireless Limited Liability Company Repeater system for strong signal environments

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910020966A (en) * 1990-05-22 1991-12-20 엔. 쿠퍼 저숀 Unexcited Antennas for Cell Phones
US5181043A (en) * 1990-05-22 1993-01-19 Alliance Research Corporation Passive repeater for cellular phones
US5059971A (en) * 1990-07-09 1991-10-22 Blaese Herbert R Cordless antenna
GB2266997A (en) * 1992-05-07 1993-11-17 Wallen Manufacturing Limited Radio antenna.
SE9302870L (en) * 1993-09-06 1994-10-10 Allgon Ab The antenna coupling device
US5463405A (en) * 1994-05-20 1995-10-31 Valor Enterprises, Inc. Cellular telephone coupling network
US5742255A (en) * 1994-07-12 1998-04-21 Maxrad, Inc. Aperture fed antenna assembly for coupling RF energy to a vertical radiator
US5451966A (en) * 1994-09-23 1995-09-19 The Antenna Company Ultra-high frequency, slot coupled, low-cost antenna system
US5600333A (en) * 1995-01-26 1997-02-04 Larsen Electronics, Inc. Active repeater antenna assembly
DE19507721C2 (en) * 1995-03-07 1997-10-02 Aeg Identifikationssys Gmbh Transponder arrangement for electromagnetic interrogation systems
GB9505488D0 (en) * 1995-03-17 1995-05-03 Rover Group Telephone signal booster
US5596316A (en) * 1995-03-29 1997-01-21 Prince Corporation Passive visor antenna
FI954552A (en) * 1995-09-26 1997-03-27 Nokia Mobile Phones Ltd Device for connecting a radio telephone to an external antenna
US6172651B1 (en) 1995-10-25 2001-01-09 Larsen Electronics, Inc. Dual-band window mounted antenna system for mobile communications
SE9600321D0 (en) 1996-01-30 1996-01-30 Bjoern Heed Antenna
US6223019B1 (en) 1996-03-14 2001-04-24 Sirius Satellite Radio Inc. Efficient high latitude service area satellite mobile broadcasting systems
US6031492A (en) * 1996-06-10 2000-02-29 Ericsson Inc. Mobile cradle antenna and heat sink enhancement
US5794138A (en) * 1997-02-26 1998-08-11 Cd Radio Inc. Satellite broadcast system receiver
US6023616A (en) * 1998-03-10 2000-02-08 Cd Radio Inc. Satellite broadcast receiver system
SE511431C2 (en) * 1998-01-09 1999-09-27 Allgon Ab Antenna device mainly for use in a vehicle
JP2000114609A (en) * 1998-10-07 2000-04-21 Fujitsu Ltd Adiabatic bath and constant temperature bath and cryostat
DE19858299A1 (en) * 1998-12-17 2000-06-29 Daimler Chrysler Ag Antenna system for a data communication device in a vehicle
US6069588A (en) * 1999-02-11 2000-05-30 Ericsson Inc. Systems and methods for coaxially coupling an antenna to a radiotelephone through a window and amplifying signals adjacent and inside the window
US6215449B1 (en) 1999-02-11 2001-04-10 Ericsson Inc. Systems and methods for coaxially coupling an antenna through an insulator
DE19939321A1 (en) * 1999-08-19 2001-04-05 Bosch Gmbh Robert Combined rod and planar antenna
US7064651B2 (en) * 2000-04-12 2006-06-20 Goetz Joseph R Automatic vehicle theft prevention system
SE0101181D0 (en) * 2001-03-30 2001-03-30 Ericsson Telefon Ab L M Antenna arrangement
US7091843B1 (en) 2002-11-05 2006-08-15 Rajiv Singh Lal Functional and ornamental vehicle accessories
USD535984S1 (en) 2003-01-06 2007-01-30 Rajiv S. Lal Ring-shaped vehicle accessory
TWI289385B (en) * 2005-01-07 2007-11-01 Neuro Solution Corp FM radio receiver
TWI274684B (en) * 2005-01-07 2007-03-01 Neuro Solution Corp Adapter device for car radio
JP2007053723A (en) * 2005-07-19 2007-03-01 Mitsumi Electric Co Ltd Antenna assembly
DE102006025176C5 (en) * 2006-05-30 2023-02-23 Continental Automotive Technologies GmbH Antenna module for a vehicle
DE102007029952B4 (en) * 2007-06-28 2022-09-22 Bayerische Motoren Werke Aktiengesellschaft Information transmission device
EP2099092A1 (en) * 2008-03-04 2009-09-09 Bury Sp.z.o.o A method of transmission of a satellite positioning signal from an external antenna to an unexposed receiver, especially in mechanical vehicles, and a device, which is adapted to use this method
US8289217B2 (en) * 2010-06-04 2012-10-16 GM Global Technology Operations LLC In-vehicle antenna system and method
US8525746B2 (en) 2010-06-04 2013-09-03 Gm Global Technology Operations, Llc In-vehicle antenna system and method
US20140327583A1 (en) * 2013-05-01 2014-11-06 Travis Sparks Range extending system for subterranean rf devices
EP3228014B1 (en) * 2014-12-05 2020-02-05 Murata Manufacturing Co., Ltd. System, method, and module for rf-signal coverage for automotive vehicles
DE102016217498B4 (en) 2016-09-14 2019-03-07 Volkswagen Aktiengesellschaft Space-neutral coupling antenna

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2206820A (en) * 1938-12-07 1940-07-02 Galvin Mfg Corp Antenna system
US2559613A (en) * 1946-03-04 1951-07-10 Farnsworth Res Corp Television distribution system
US2829367A (en) * 1953-02-26 1958-04-01 Robert F Rychlik Television lead-in coupler
FR1203227A (en) * 1958-08-27 1960-01-15 Lambert Ets Radio antenna
FR1227757A (en) * 1959-06-18 1960-08-24 Device for adapting a radio antenna to a motor vehicle
US3364487A (en) * 1964-12-01 1968-01-16 Rosario J. Maheux Portable radio receiver antenna coupler set
US3657652A (en) * 1969-12-17 1972-04-18 Itt Inter-compartment coupling device
US4001834A (en) * 1975-04-08 1977-01-04 Aeronutronic Ford Corporation Printed wiring antenna and arrays fabricated thereof
US4028704A (en) * 1975-08-18 1977-06-07 Beam Systems Israel Ltd. Broadband ferrite transformer-fed whip antenna
US4089817A (en) * 1976-10-12 1978-05-16 Stephen A. Denmar Antenna system
US4238799A (en) * 1978-03-27 1980-12-09 Avanti Research & Development, Inc. Windshield mounted half-wave communications antenna assembly
US4621243A (en) * 1984-12-30 1986-11-04 Harada Kogyo Kabushiki Kaisha Transmission channel coupler for antenna
US4658259A (en) * 1985-03-06 1987-04-14 Blaese Herbert R On-glass antenna
DE3537107A1 (en) * 1985-10-18 1987-04-23 Licentia Gmbh Radio transmission arrangement on receivers inside vehicles
US4692770A (en) * 1985-10-16 1987-09-08 Alliance Research Corporation Vehicle window mount for portable antenna
US4764773A (en) * 1985-07-30 1988-08-16 Larsen Electronics, Inc. Mobile antenna and through-the-glass impedance matched feed system
US4779098A (en) * 1987-01-22 1988-10-18 Blaese Herbert R Modified on-glass antenna with decoupling members
US4794319A (en) * 1986-07-03 1988-12-27 Alliance Research Corporation Glass mounted antenna
JPS6436128A (en) * 1987-07-30 1989-02-07 Miharu Communication Method for receiving fm broadcast in mobile body
US4804969A (en) * 1988-03-04 1989-02-14 Blaese Herbert R Portable antenna
JPS6477230A (en) * 1987-06-15 1989-03-23 Sumitomo Electric Industries Indoor radio communication system
US4825217A (en) * 1987-10-19 1989-04-25 Tae Lim Electronics Co., Ltd. Car phone antenna assembly
US4839660A (en) * 1983-09-23 1989-06-13 Orion Industries, Inc. Cellular mobile communication antenna
US4850035A (en) * 1986-04-22 1989-07-18 Ant Nachrichtentechnik Gmbh Method and apparatus for regulating a single sideband up converter
US4862183A (en) * 1987-01-22 1989-08-29 Blaese Herbert R Current fed antenna with improved radiator
US5017934A (en) * 1988-03-04 1991-05-21 Blaese Herbert R Portable antenna
US5023622A (en) * 1989-07-13 1991-06-11 Blaese Herbert R On-glass antenna with center-fed dipole operation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2081211A7 (en) * 1970-03-18 1971-12-03 Saint Gobain
FI84000C (en) * 1989-11-15 1991-09-25 Nokia Mobile Phones Ltd Antenna system for vehicles

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2206820A (en) * 1938-12-07 1940-07-02 Galvin Mfg Corp Antenna system
US2559613A (en) * 1946-03-04 1951-07-10 Farnsworth Res Corp Television distribution system
US2829367A (en) * 1953-02-26 1958-04-01 Robert F Rychlik Television lead-in coupler
FR1203227A (en) * 1958-08-27 1960-01-15 Lambert Ets Radio antenna
FR1227757A (en) * 1959-06-18 1960-08-24 Device for adapting a radio antenna to a motor vehicle
US3364487A (en) * 1964-12-01 1968-01-16 Rosario J. Maheux Portable radio receiver antenna coupler set
US3657652A (en) * 1969-12-17 1972-04-18 Itt Inter-compartment coupling device
US4001834A (en) * 1975-04-08 1977-01-04 Aeronutronic Ford Corporation Printed wiring antenna and arrays fabricated thereof
US4028704A (en) * 1975-08-18 1977-06-07 Beam Systems Israel Ltd. Broadband ferrite transformer-fed whip antenna
US4089817A (en) * 1976-10-12 1978-05-16 Stephen A. Denmar Antenna system
US4238799A (en) * 1978-03-27 1980-12-09 Avanti Research & Development, Inc. Windshield mounted half-wave communications antenna assembly
US4839660A (en) * 1983-09-23 1989-06-13 Orion Industries, Inc. Cellular mobile communication antenna
US4621243A (en) * 1984-12-30 1986-11-04 Harada Kogyo Kabushiki Kaisha Transmission channel coupler for antenna
US4658259A (en) * 1985-03-06 1987-04-14 Blaese Herbert R On-glass antenna
US4764773A (en) * 1985-07-30 1988-08-16 Larsen Electronics, Inc. Mobile antenna and through-the-glass impedance matched feed system
US4692770A (en) * 1985-10-16 1987-09-08 Alliance Research Corporation Vehicle window mount for portable antenna
DE3537107A1 (en) * 1985-10-18 1987-04-23 Licentia Gmbh Radio transmission arrangement on receivers inside vehicles
US4850035A (en) * 1986-04-22 1989-07-18 Ant Nachrichtentechnik Gmbh Method and apparatus for regulating a single sideband up converter
US4794319A (en) * 1986-07-03 1988-12-27 Alliance Research Corporation Glass mounted antenna
US4779098A (en) * 1987-01-22 1988-10-18 Blaese Herbert R Modified on-glass antenna with decoupling members
US4862183A (en) * 1987-01-22 1989-08-29 Blaese Herbert R Current fed antenna with improved radiator
JPS6477230A (en) * 1987-06-15 1989-03-23 Sumitomo Electric Industries Indoor radio communication system
JPS6436128A (en) * 1987-07-30 1989-02-07 Miharu Communication Method for receiving fm broadcast in mobile body
US4825217A (en) * 1987-10-19 1989-04-25 Tae Lim Electronics Co., Ltd. Car phone antenna assembly
US4804969A (en) * 1988-03-04 1989-02-14 Blaese Herbert R Portable antenna
US5017934A (en) * 1988-03-04 1991-05-21 Blaese Herbert R Portable antenna
US5023622A (en) * 1989-07-13 1991-06-11 Blaese Herbert R On-glass antenna with center-fed dipole operation

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ARRL Handbook for Radio Amateurs, American Radio Relay League, 1991, Ed. 68, pp. 28 34. *
ARRL Handbook for Radio Amateurs, American Radio Relay League, 1991, Ed. 68, pp. 28-34.
Fink, Electronic Engineers Handbook, McGraw Hill Book Company, 1st Ed., 1975, p. 3 3. *
Fink, Electronic Engineers' Handbook, McGraw-Hill Book Company, 1st Ed., 1975, p. 3-3.
Johnson, Transmission Lines and Networks, McGraw Hill Book Company, 1950, p. 239. *
Johnson, Transmission Lines and Networks, McGraw-Hill Book Company, 1950, p. 239.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317089B1 (en) * 1999-12-23 2001-11-13 Wilson Electronics, Inc. Hand-held transceiver antenna system
US20010014585A1 (en) * 2000-02-14 2001-08-16 Yazaki Corporation Vehicle compartment radio LAN system
US6922545B2 (en) * 2000-02-14 2005-07-26 Yazaki Corporation Vehicle compartment radio LAN system
US6421018B1 (en) * 2001-05-31 2002-07-16 Andrew Corporation Bowtie inductive coupler
US20040176027A1 (en) * 2003-03-04 2004-09-09 O'neill Frank P. Repeater system for strong signal environments
US6993287B2 (en) 2003-03-04 2006-01-31 Four Bars Clarity, Llc Repeater system for strong signal environments
US8175521B2 (en) 2003-03-04 2012-05-08 Bandwidth Wireless Limited Liability Company Repeater system for strong signal environments
US8346158B2 (en) 2003-03-04 2013-01-01 Bandwidth Wireless Limited Liability Company Repeater system for strong signal environments
US20090189458A1 (en) * 2008-01-23 2009-07-30 Toyota Jidosha Kabushiki Kaisha Vehicle power supply apparatus and vehicle window member
US8115342B2 (en) * 2008-01-23 2012-02-14 Toyota Jidosha Kabushiki Kaisha Vehicle power supply apparatus and vehicle window member

Also Published As

Publication number Publication date
ES2029216T1 (en) 1992-08-01
CA2031598C (en) 1995-07-18
DK0431640T3 (en) 1994-11-07
ATE98055T1 (en) 1993-12-15
US5155494A (en) 1992-10-13
EP0431640B1 (en) 1993-12-01
CA2031598A1 (en) 1991-06-09
DE69004940D1 (en) 1994-01-13
DE69004940T2 (en) 1994-03-24
EP0431640A2 (en) 1991-06-12
EP0431640A3 (en) 1991-09-04
DE431640T1 (en) 1992-06-11
US5099252A (en) 1992-03-24

Similar Documents

Publication Publication Date Title
USRE36076E (en) Vehicle antenna system
US5600333A (en) Active repeater antenna assembly
CA1287916C (en) Near-isotropic low-profile microstrip radiator especially suited for use as a mobile vehicle antenna
CA1244935A (en) On-glass antenna
US8457700B2 (en) GPS mast module and mobile radio installation
US5880695A (en) Antenna system for wireless comunication systems
CN101048914B (en) Terminal and associated transducer assembly and method for selectively transducing in at least two frequency bands
CN109755727B (en) Antenna assembly and mobile terminal
US6232926B1 (en) Dual coupled vehicle glass mount antenna system
US5283589A (en) Window mountable UHF mobile antenna system
US5343214A (en) Cellular mobile communications antenna
CN100456558C (en) Combined antenna formed by horizontal directivity antenna and zenithal directivity antenna
US20020140611A1 (en) Antenna arrangement
KR20210147725A (en) V2X communication system for Vehicle
US20170346156A1 (en) Through glass integrated antenna
US6317089B1 (en) Hand-held transceiver antenna system
KR100500024B1 (en) Antenna system for a mobile communication station, such station, and a method of radio communication
JPH0374846B2 (en)
USRE33743E (en) On-glass antenna
US5298907A (en) Balanced polarization diversified cellular antenna
EP0899811B1 (en) All-around vehicle antenna-apparatus
US5697583A (en) Radio frequency coupler for communication between adjacent railway cars
US7106263B2 (en) Window-integrated antenna for LMS and diversitary FM reception in mobile motor vehicles
WO2017205551A1 (en) Through-glass-antenna
WO2009085406A1 (en) H-j antenna

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: RADIALL ANTENNA TECHNOLOGIES, INC., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LARSEN ELECTRONICS, INC.;REEL/FRAME:010377/0230

Effective date: 19991006

FEPP Fee payment procedure

Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS SMALL BUSINESS (ORIGINAL EVENT CODE: LSM2); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8