Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUSRE36795 E
Tipo de publicaciónConcesión
Número de solicitudUS 08/724,997
Fecha de publicación25 Jul 2000
Fecha de presentación3 Oct 1996
Fecha de prioridad15 Mar 1994
TarifaPagadas
También publicado comoUS5352222
Número de publicación08724997, 724997, US RE36795 E, US RE36795E, US-E-RE36795, USRE36795 E, USRE36795E
InventoresMark A. Rydell
Cesionario originalEverest Medical Corporation
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Surgical scissors with bipolar coagulation feature
US RE36795 E
Resumen
A bipolar electrosurgical scissors for use in open or endoscopic surgery has a pair of opposed blade members pivotally joined to one another and to the distal end of the scissors itself by a rivet which extends through a insulated bushing member. Each of the blade members comprises a blade support and a blade itself, each fabricated from metal, such as stainless steel. The blades are affixed to their associated supports by means of a suitable adhesive or adhesive composite material such as a fiberglass reinforced epoxy exhibiting dielectric properties. Cutting is performed, steel-on-steel, without causing a short circuit between the two blade supports which themselves function as the bipolar electrodes.
Imágenes(1)
Previous page
Next page
Reclamaciones(20)
What is claimed is:
1. A bipolar electrosurgical instrument for cutting and coagulating tissue comprising:
(a) first and second blade members .[.each.]..Iadd., at least one .Iaddend.comprising a laminated assembly of a metal blade defining a shearing surface, a metal blade support and an intermediate electrically insulative bonding/spacing layer for joining said blade to said blade support;
(b) means for pivotally joining said first and second blade members together with their respective shearing surfaces facing one another;
(c) means coupled to .[.at least.]. one of said first and second blade members for imparting a scissors-like movement relative to the other of said first and second blade members; and
(d) means for applying a voltage between the metal blade supports of said first and second blade members.
2. The bipolar electrosurgical instrument as in claim 1 wherein said shearing surfaces of said first and second blade members and said blade support are curved.
3. The bipolar electrosurgical instrument as in claim 2 wherein said intermediate, electrically insulating bonding/spacing layer is an epoxy material.
4. The bipolar electrosurgical instrument as in claim 3 wherein said epoxy material includes a fiberglass-mat of a predetermined thickness therein.
5. The bipolar electrosurgical instrument as in claim 3 wherein said epoxy material includes glass microspheres of a predetermined maximum diameter therein.
6. The bipolar electrosurgical instrument as in claim 3 wherein said metal is stainless steel.
7. A bipolar electrosurgical instrument for cutting and coagulating tissue comprising, in combination:
(a) an elongated tubular member having a proximal end, a distal end and a lumen extending therebetween;
(b) first and second blade members, .[.each.]. .Iadd.at least one .Iaddend.comprising a laminated assembly of a metal blade defining a shearing surface, a metal blade support and an intermediate electrically insulating spacing/bonding layer for joining said blade to said blade support;
(c) means for pivotally joining said first and second blade members to the distal end of said elongated tubular member with their respective shearing surfaces facing one another;
(d) a handle affixed to said proximal end of said tubular member;
(e) means coupled to said handle and extending through said lumen for imparting a scissors-like movement to .[.at least.]. one of said first and second blade members relative to the other; and
(f) means extending through said lumen for applying a voltage between said blade supports of said first and second blade members.
8. The bipolar electrosurgical instrument as in claim 7 wherein said itnermediate electronically insulating bonding layer is an epoxy material.
9. The bipolar electrosurgical instrument as in claim 8 wherein said epoxy material includes a fiberglass-mat of a predetermined thickness therein.
10. The bipolar electrosurgical instrument as in claim 8 wherein said epoxy material includes glass microspheres of a predetermined maximum diameter therein.
11. The bipolar electrosurgical instrument as in claim 7 wherein said first and second blade members are curved. .Iadd.
12. A bipolar electrosurgical instrument for cutting and coagulating tissue comprising:
(a) first and second blade members each comprising a laminated assembly of a metal blade defining a shearing surface, a metal blade support and an intermediate electrically insulative bonding/spacing layer for joining said blade to said blade support;
(b) means for pivotally joining said first and second blade members together with their respective shearing surfaces facing one another;
(c) means coupled to at least one of said first and second blade members for imparting a scissor-like movement relative to the other of said first and second blade members; and
(d) means for applying a voltage between the metal blade supports of said first and second blade members..Iaddend..Iadd.13. A bipolar electrosurgical instrument for cutting and coagulating tissue comprising, in combination:
(a) an elongated tubular member having a proximal end, a distal end and a lumen extending therebetween;
(b) first and second blade members, each comprising a laminated assembly of a metal blade defining a shearing surface, a metal blade support and an intermediate electrically insulating spacing/bonding layer for joining said blade to said blade support;
(c) means for pivotally joining said first and second blade members to the distal end of said elongated tubular member with their respective shearing surfaces facing one another;
(d) a handle affixed to said proximal end of said tubular member;
(e) means coupled to said handle and extending through said lumen for imparting a scissor-like movement to at least one of said first and second blade members relative to the other; and
(f) means extending through said lumen for applying to a voltage between said blade supports of said first and second blade members..Iaddend..Iadd.14. A bipolar electrosurgical instrument for cutting and coagulating tissue, comprising:
(a) first and second blade members each having an inner shearing surface and a conductive portion, at least one of said blade members comprising a laminated assembly of an inner metal blade defining said inner shearing surface, an intermediate electrically insulative layer, and an outer metal conductive layer forming said conductive portion which is electrically insulated from said inner metal blade by said intermediate electrically insulative layer;
(b) means for pivotally joining said first and second blade members with their respective inner shearing surfaces facing one another;
(c) means coupled to at least one of said first and second blade members for imparting a scissors-like movement relative to the other of said first and second blade members; and
(d) means for applying a voltage between said conductive portions of said
first and second blade members..Iaddend..Iadd.15. An endoscopic scissors blade for use in a bipolar endoscopic instrument, said blade comprising:
(a) an inner metal shearing surface;
(b) an intermediate electrically insulative layer;
(c) an outer metal conductive layer which is electrically insulated from said inner metal shearing surface by said intermediate electrically insulative layer; and
(d) means for coupling a source of voltage to said outer metal conductive layer..Iaddend..Iadd.16. An endoscopic scissors blade according to claim 15, further comprising:
(e) means for pivotally mounting said scissors blade; and
(f) means for coupling said scissors blade to a means for imparting a
pivotal movement to said scissors blade..Iaddend..Iadd.17. An endoscopic scissors blade according to claim 15, wherein:
said intermediate electrically insulative layer is a fiberglass blade support and said inner metal shearing surface and said outer metal conductive layer are laminated layers on said fiberglass blade
support..Iaddend..Iadd.18. A bipolar electrosurgical scissors comprising:
(a) a pair of blades, at least one blade of the pair having
(i) an inner metal shearing surface;
(ii) an intermediate electrically insulative layer;
(iii) an outer metal conductive layer which is electrically insulated from said inner metal shearing surface by said intermediate electrically insulative layer; and
(b) means for coupling a source of voltage to said outer metal conductive layer..Iaddend..Iadd.19. A bipolar electrosurgical scissors according to claim 18, further comprising:
(e) means for pivotally mounting said pair of blades; and
(f) means for coupling one of said scissors blade to a means for imparting a pivotal movement to said scissors blade..Iaddend..Iadd.20. A bipolar electrosurgical scissors according to claim 18, wherein:
said intermediate electrically insulative layer is a fiberglass blade support and said inner metal shearing surface and said outer metal conductive layer are laminated layers on said fiberglass blade support..Iaddend..Iadd.21. A bipolar electrosurgical instrument for cutting and coagulating tissue, comprising:
(a) first and second blade members each comprising a laminated assembly of a metal blade defining a shearing surface, an intermediate electrically insulative layer, and a metal blade support which is electrically insulated from said metal blade by said intermediate electrically insulative layer;
(b) means for pivotally joining said first and second blade members together with their respective shearing surfaces facing one another;
(c) means coupled to at least one of said first and second blade members for imparting a scissor-like movement relative to the others of said first and second blade members; and
(d) means for applying a voltage between the metal blade supports of said first and second blade members..Iaddend..Iadd.22. A bipolar electrosurgical instrument according to claim 21, wherein:
said shearing surfaces of said first and second blade members and said blade support are curved..Iaddend..Iadd.23. A bipolar electrosurgical instrument according to claim 22, wherein:
said metal is stainless steel..Iaddend..Iadd.24. A bipolar electrosurgical instrument for cutting and coagulating tissue, comprising, in combination:
(a) an elongated tubular member having a proximal end, a distal end, and a lumen extending therebetween;
(b) first and second blade members, each comprising a laminated assembly of a metal blade defining an inner shearing surface, an intermediate electrically insulative layer, and a metal blade support which is electrically insulated from said metal blade by said intermediate electrically insulative layer;
(c) means for pivotally joining said first and second blade members together with their respective shearing surfaces facing one another;
(d) a handle affixed to said proximal end of said tubular member;
(e) means coupled to said handle and extending through said lumen for imparting a scissor-like movement to at least one of said first and second blade members relative to the other; and
(f) means extending through said lumen for applying a voltage between said blade supports of said first and second blade members..Iaddend..Iadd.25. A bipolar electrosurgical instrument according to claim 24 wherein:
said inner shearing surfaces of said first and second blade members are
curved..Iaddend..Iadd.26. A bipolar electrosurgical instrument according to claim 24, wherein:
said metal is stainless steel..Iaddend..Iadd.27. A bipolar electrosurgical instrument for cutting and coagulating tissue, comprising, in combination:
(a) an elongated tubular member having a proximal end, a distal end, and a lumen extending therebetween;
(b) first and second blade members each having an inner shearing surface and a conductive portion, at least one of said blade members comprising a laminated assembly of an inner metal blade defining said inner shearing surface, an intermediate electrically insulative layer, and an outer metal conductive layer forming said conductive portion which is electrically insulated from said inner metal blade by said intermediate electrically insulative layer;
(c) means for pivotally joining said first and second blade members with their respective inner shearing surfaces facing one another;
(d) a handle affixed to said proximal end of said tubular member;
(e) means coupled to said handle and extending through said lumen for imparting a scissor-like movement to at least one of said first and second blade members relative to the other; and
(f) means extending through said lumen for applying a voltage between said conductive portions of said first and second blade
members..Iaddend..Iadd. 8. A bipolar electrosurgical instrument according to claim 27, wherein:
each of said first and second blade members comprises a laminated assembly of an inner metal blade defining said inner shearing surface, an intermediate electrically insulative layer, and an outer metal conductive layer forming said conductive portion which is electrically insulated from said inner metal blade by said intermediate electrically insulative layer..Iaddend..Iadd.29. A bipolar electrosurgical scissors comprising:
(a) first and second blade members each comprising an assembly of a metal shearing surface, an electrically conductive electrode, and an intermediate electrically insulative material disposed between and fixed to the metal shearing surface and the electrically conductive electrode;
(b) means coupled to at least one of said first and second blade members for imparting scissor-like movement relative to the other of said first and second blade members; and
(c) means for applying a voltage between the electrically conductive electrodes of said first and second blade members..Iaddend..Iadd.30. A bipolar electrosurgical scissors according to claim 29, wherein:
said metal shearing surfaces of said first and second blade members are curved..Iaddend..Iadd.31. A bipolar electrosurgical scissors according to claim 30, wherein:
said intermediate, electrically insulative material is an epoxy material..Iaddend..Iadd.32. A bipolar electrosurgical scissors according to claim 31, wherein:
said epoxy material includes a fiberglass-mat of a predetermined thickness therein..Iaddend..Iadd.33. A bipolar electrosurgical scissors according to claim 31 wherein:
at least one of said metal shearing surface and said electrically
conductive electrode is made of stainless steel..Iaddend..Iadd.34. A bipolar electrosurgical scissors comprising:
(a) first and second blade members each comprising an assembly of a metal shearing surface, an electrically conductive electrode, and an intermediate electrically insulative layer disposed between and affixed to the metal shearing surface and the electrically conductive electrode, at least one of said first and second blade members having a pivot hole for mounting it relative to the other of said first and second blade members to allow a scissor-like movement of said at least one of said first and second blade members relative to the other of said first and second blade members;
(b) a reciprocating member coupled to said at least one of said first and second blade members and importing scissor-like movement to said at least one of said first and second blade members relative to the other of said first and second blade members; and
(c) first and second electrically conductive members coupled to respective electrically conductive electrodes and applying a voltage between the electrically conductive electrodes of said first and second blade members..Iaddend..Iadd.35. A bipolar electrosurgical scissors according to claim 34, wherein:
said metal shearing surfaces of said first and second blade members are
curved..Iaddend..Iadd.36. A bipolar electrosurgical scissors according to claim 35, wherein:
said intermediate, electrically insulative layer is an epoxy material layer..Iaddend..Iadd.37. A bipolar electrosurgical scissors according to claim 36, wherein:
said epoxy material includes a fiberglass-mat of a predetermined thickness therein..Iaddend..Iadd.38. A bipolar electrosurgical scissors according to claim 36, wherein:
at least one of said metal shearing surface and said electrically conductive electrode is made of stainless steel..Iaddend.
Descripción
BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to the design of a bipolar electrosurgical scissors, and more particularly to a surgical scissors incorporating bipolar electrodes as its blade elements, such that mechanical cutting with subsequent electrocoagulation can be achieved without requiring an instrument exchange.

2. Discussion of the Prior Art

Electrocoagulating instruments include at least one conductive electrode. Radio frequency energy is conducted through this electrode to either a remote conductive body-plate (monopolar) or to a second, closely-spaced conductive electrode (bipolar). Current passing through the gap between the two electrodes will coagulate blood and other body fluids placed between them.

Monopolar electrocautery instruments suffer from the fact that the return path between the active-electrode and the large area body-plate can be unpredictable as the electrical current seeks the return electrode through the path of least resistance. With bipolar electrosurgical instruments, however, because the two electrodes are closely spaced to one another, usually at the distal end of an instrument handle, the return path is very short and only involves the tissue and fluids in the short path between the electrodes.

There is available in the prior art a scissors-type instrument for mechanically snipping tissue during the course of an endoscopic procedure. Such a scissors comprises of pair of blades fabricated from metal and disposed at the distal end of an elongated tubular member whose outside diameter is sufficiently small to allow it to be passed through the working lumen of an endoscope, a laparoscope or other similar devices known in the art. Disposed at the proximal end of the rigid tube is a scissors-type handle having a pair of members, each with a finger-receiving loop therein which are pivotally coupled to one another. An appropriate linkage is made between the handle members and the blades so that manipulation of the handle members will result in an opening and closing of the blades relative to one another. When using a mechanical cutting scissors of this type to excise tissue, when a blood vessel is cut, bleeding results. At that point, it is generally necessary for the surgeon to remove the scissors instrument from the working lumen of the endoscope and then insert an electrocoagulator down the endoscope to the site of the bleeder. This instrument exchange is time-consuming and in a surgical procedure where moments count, it would be desirable to have a scissors-type instrument for cutting but which also incorporates the ability to coagulate blood and other body tissue using RF energy.

There is also available in the prior art monopolar scissors where both of the scissors blades form one pole and with a remote body plate being the second pole. To date, however, there is not available in the marketplace a bipolar electrosurgical scissors where its two blades are electrically isolated from one another and comprise the bipolar electrode pair. With metal-to-metal contact along the sharpened edges of the two blades, an electrical short results. Furthermore, the attempt to use a rivet or screw as the pivot point for the blades is another area where short-circuiting is likely to occur. When such a short exists, the electrical current does not flow through the blood or body tissue to effect coagulation, but instead, follows the short-circuit path from one electrode to the other.

In a copending application, Ser. No. 07/887,212, filed May 26, 1992, there is described a bipolar scissors for insertion into a laparoscope, trocar or endoscope for effecting electrocoagulation of blood and tissue during laparoscopic or other endoscopic surgery. The scissors blades at the distal tip of the instrument perform cutting of the tissue by mechanical shearing action. The two blades are effectively insulated from one another, allowing them to function as bipolar electrodes for electrocoagulating small blood vessels in the surgical field.

The instrument of the aforereferenced application includes a scissors-type handle having first and second pivoting members, each with a finger-receiving loop on one end of each and extending from the opposite end of one is an elongated, rigid tubular member of a size capable of being inserted through the trocar or endoscope. Affixed to the distal end of the rigid tubular member is a first blade composite which comprises a metal blank having a suitable ceramic layer bonded to one major surface thereof, the ceramic being honed to define a sharp cutting edge. Pivotally joined to the first blade by an insulating pivot member is a second blade composite, also having a metal blank with a ceramic substrate bonded to one major surface thereof. When the two blade blanks are pivotally joined together, the ceramic layers are in face-to-face relationship and because the cutting edges thereof are honed, the blades are capable of cutting tissue when made to move in a scissors-like manner with tissue placed between the cutting edges thereof.

Extending through the lumen of the elongated tubular member is a wire or rod which is rigid in the longitudinal direction and which is coupled at its proximal end to one of the handle members and at its other end to one of the scissors blades. By appropriately manipulating the handle members, a snipping action of the blades results.

The instrument further includes means for applying a RF voltage across the gap between the two metal blade blanks which are maintained separated from one another by the ceramic faces bonded to these blanks. As such, the blades of the instrument itself can be used as a bipolar electrocoagulation device, obviating the need for doing an instrument exchange when it is necessary to coagulate blood and tissue following the mechanical cutting thereof.

In copending application Ser. No. 08/092,076, filed Jul. 16, 1993, there is described a bipolar electrosurgical scissors having curved blades in the embodiments of each of the aforereferenced applications, the bipolar blades are constructed by appropriately adhering a specially ground ceramic insulating member defining the sheering surface and cutting edge of the scissors to metal electrodes where it is the ceramic surfaces that interact with one another to perform the cutting function as the blades are opened and closed relative to one another. While that arrangement works well in implementing a bipolar electrosurgical scissors, the cost of manufacture is relatively high because of the difficulty in working with ceramics, especially when constructing electrosurgical scissors having arcuate blades. Those skilled in the art appreciate that ceramic will readily fracture when subjected to bending forces and, hence, it is necessary to produce the requisite ceramic elements for the scissors in a series of grinding operations.

A need therefore exists for a bipolar electrosurgical scissors for use in both open and endoscopic surgical procedures where the shearing surfaces may be surgical steel, but where the blades can also be used in performing bipolar electrocoagulation as the cutting progresses.

SUMMARY OF THE INVENTION

It is accordingly a principal object of the present invention to provide a bipolar, electrocoagulating instrument having metal scissors blades for the mechanical cutting of tissue.

Another object of the present invention is to provide a pair of bipolar scissors having a miniaturized distal blade configuration that allows the instrument to be inserted through a laparoscope, trocar or the working lumen of an endoscope.

Still another object of the present invention is to provide a bipolar-type scissors instrument having metal (stainless steel) cutting surfaces and which utilizes a push rod and pivot combination to cause movement of the scissors blade through manipulation of a scissors-style handle mechanism at the proximal end of the instrument and wherein blade supports for the scissors may be simultaneously energized from a RF source to effect the electrocoagulation of cut tissue.

The foregoing object of the invention is achieved by providing an instrument having a metal blade member with a sheering surface and a honed cutting edge. The blade member is affixed to a metal blade support by an electrically insulating bonding layer which is disposed intermediate the blade member and the blade support. In forming an endoscopic scissors, this blade assembly is pivotally secured to the distal end of an elongated tube. An actuating link extends through the tube to a movable portion of a scissors handle so that when the handle is manipulated, the blades can be made to open and close relative to one another in scissors-like fashion. Also extending through the lumen from electrical terminals on the handle to the metal blade supports are conductors which permit a voltage to be applied between the two blade supports. Because the blade having the sharpened edge and shearing surface is insulated from its blade support, there will be no short circuit between the blade members due to the fact that the conductive shearing surfaces come into contact with one another along their length as the blades are closed on an object to be cut.

It has been found convenient in the manufacture of the scissors of the present invention to employ a partially cured epoxy, an epoxy impregnated fiberglass mat or a slurry of glass beads and epoxy as the bonding layer for joining the blades to their respective supports while maintaining a desired spacing therebetween. The partially cured epoxy can be die-cut to size so as to conform in shape to the interface between the blade support and the blade member. When the laminated structure is clamped together and then subjected to a heating operation, the epoxy spacer layer fully cures and creates a strong bond between the blade and its blade support, while still maintaining electrical isolation therebetween.

DESCRIPTION OF THE DRAWINGS

The foregoing features, objects and advantages of the invention will become apparent to those skilled in the art from the following detailed description of a preferred embodiment, especially when considered in conjunction with the accompanying drawings in which like numerals in the several views refer to corresponding parts.

FIG. 1 is a perspective view of an endoscopic electrosurgical scissors constructed in accordance with the present invention; and

FIG. 2 is a greatly enlarged top view of the distal end portion of the scissors of FIG. 1.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1, there is indicated generally by numeral 10 a bipolar electrosurgical scissors for endoscopic surgery constructed in accordance with the present invention. It is seen to include an elongated tubular barrel 12 having a proximal end 14, a distal end 16 and with a lumen extending therebetween. The O.D. of the barrel is sufficiently small to be passed through the working lumen of an endoscope (laparoscope). Affixed to the proximal end 14 of the bipolar scissors 10 is a rotatable knob 18 appropriately mounted in the stationary portion 20 of a scissors handle assembly 22 so that the knob 18 can be rotated, the barrel 12 turning with it. Those desiring further details on the construction and internal workings of the handle assembly 22 are referred to applicant's earlier patent application Ser. No. 08/013,852, filed Feb. 5, 1993. That application describes in detail how manipulation of the scissors handle 22 causes blades 24 and 26 connected to the distal end 16 of the tube 12 to move in scissors-like action relative to one another. Because the novel features of the present invention center on the construction of the blades 24 and 26, there is no need to further describe the details of the handle construction.

Referring to FIG. 2, there is shown a greatly enlarged top plan view of the distal end portion of the scissors viewed along the line 2--2 in FIG. 1. Blade 24 is seen to comprise a conductive metal blade support 28, preferably fabricated from stainless steel. While the blade support 28 is illustrated as having an arcuate profile when observed from the top as in FIG. 2, it can just as well be straight. Attached to the blade support by means of a dielectric bonding agent 30 is a metal blade 32 having an arcuate shearing surface 34 and a honed cutting edge.

In adhering the cutting blade 34 to the blade support 28, it has been found convenient to employ a suitable epoxy, such as AF 125 sold by the 3M Company because of its desired dielectric characteristics. The epoxy bonding/spacing layer 30 may be obtained in a partially cured state so that it is rigid enough to hold its own shape, but can easily be die-cut to a desired size and shape characteristic. The partially cured epoxy layer is then applied against the concave surface of the blade support 28 and because in the partially cured state, the material is tacky, it will adhere to it. Next, the blade 34, itself, is pressed against the other side of the partially cured epoxy bonding layer 30 and when appropriately aligned, a suitable clamp is used to hold the assembly together. The assembly may then be placed in an oven or otherwise heated to the point where the epoxy layer becomes fully cured and hard. When the assembly is removed from the oven and the clamp is removed, it is found that a very strong bond holds the blade 34 to the support 28. The two are electrically insulated from one another, however, by the epoxy bonding layer.

To ensure that clamping and heating does not alter the width of the insulating gap, a fiberglass mat of the desired thickness can be impregnated with a B-stage type epoxy or glass beads of a diameter corresponding to the desired gap width can be mixed with the B-stage epoxy before it is interposed between the blade and its support and prior to the clamping and heat curing thereof.

The other scissors blade 26 is manufactured in much the same fashion. It includes a blade support 36 and a blade member 38 bonded together by a dielectric bonding/spacing layer 40. The dielectric bonding/spacing layer is again preferably an epoxy or a glass-filled epoxy material adhered to the convex surface of the blade support 36.

The proximal end portions 42 and 44 of the blade supports 28 and 36 each have a circular aperture extending therethrough as at 46 and fitted into each of the apertures is an insulating bushing half 48-50 allowing a steel rivet 52 to pivotally secure the blades 24 and 26 to an insulating hub 54 without creating an electrical short circuit between the blade supports 28 and 36. The hub member 54 fits within the distal end 16 of the tubular barrel 12 and is appropriately bonded or swagged so as not to come loose.

The mechanism for actuating the blades 24 and 26 in a scissors-like motion is similar to that described in applicant's earlier copending application Ser. No. 08/013,852, which is herein incorporated by reference. In that arrangement, first and second conductive rods 56 and 58 extend through the lumen of the barrel 12 from the scissors handle members to a pair of conductive links 60 and 62. The links are pivotally secured to the distal ends of the rods 58 and 60 and to the blade halves 24 and 26 by means of conductive metal rivets 64 and 66. The rivets 64 and 66 pass through apertures formed in the distal end portions of the blade halves 24 and 26 at locations that are off of center so that a lever arm is created for moving the blades as the conductive rods 56 and 58 are reciprocally, longitudinally displaced by actuation of the scissors handle 22. A slip-ring connection is provided in the handle portion 20 for allowing conductors in the insulated electrical cord 68 (FIG. 1) to join to the conductive rods 56 and 58 while still permitting the barrel 12 to be rotated upon turning the knob 18 and without twisting the conductors in lead 68. In this fashion, a predetermined RF voltage may be applied across the blade supports 28 and 36 by way of the lead 68, the conductive rods 56 and 58, the links 60 and 62 and the rivets 64 and 66. Because of the insulating layers 30 and 40 used in bonding the sharpened blades 32 and 38 to the blade supports 28 and 36, those two blades can touch one another along their entire length as the cutting motion takes place without creating an electrical short circuit therebetween. When it is desired to cauterize tissue, the RF voltage is applied to the electrosurgical scissors, thereby making the blade supports the active bipolar electrodes. When the two blade supports are brought into contact with tissue, a current flows from the first blade support, through the tissue to the second blade support, thereby effecting cauterization.

The present invention obviates the need for providing a somewhat fragile ceramic layer to define the shearing surface and cutting edges of the blades. The stainless steel blade supports and the blades themselves can be readily bent to create a curved blade without the need for expensive grinding operations heretofore necessary in creating curved ceramic pieces.

The use of a partially cured epoxy dielectric adhesive in the early stages of fabrication for adhering the blade to its support and then later fully curing the epoxy layer also greatly simplifies the steps needed to manufacture an electrosurgical scissors having bipolar electrodes.

This invention has been described herein in considerable detail in order to comply with the Patent Statutes and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use such specialized components as are required. However, it is to be understood that the invention can be carried out by specifically different equipment and devices, and that various modifications, both as to the equipment details and operating procedures, can be accomplished without departing from the scope of the invention itself. For example, while an endoscopic scissors has been used in explaining the invention, it is equally applicable to a scissors designed for open surgery. Hence, the scope of the invention is to be determined from the appended claims.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US2031682 *18 Nov 193225 Feb 1936Wappler Frederick CharlesMethod and means for electrosurgical severance of adhesions
US3920021 *15 May 197418 Nov 1975Siegfried HiltebrandtCoagulating devices
US4016881 *27 May 197512 Abr 1977Centre De Recherche Industrielle Du QuebecInstrument for use in laparoscopic tubal cauterization
US4128099 *20 Sep 19775 Dic 1978Richard Wolf GmbhSingle-pole coagulation forceps
US4347842 *15 Feb 19807 Sep 1982Mark BealeDisposable electrical surgical suction tube and instrument
US4644651 *18 Nov 198524 Feb 1987Jacobsen Research Corp.Instrument for gripping or cutting
US4819633 *29 Jul 198711 Abr 1989Richard Wolf GmbhCoagulation forceps
US4862890 *29 Feb 19885 Sep 1989Everest Medical CorporationElectrosurgical spatula blade with ceramic substrate
US4953559 *14 Nov 19884 Sep 1990Consiglio Nazionale Delle RicercheCatheter for endocardial biopsy, which can also be used for identifying the point of origin of ventricular arrhythmia
US5015227 *3 Abr 199014 May 1991Valleylab Inc.Apparatus for providing enhanced tissue fragmentation and/or hemostasis
US5026370 *2 Jul 198625 Jun 1991Lottick Edward AElectrocautery instrument
US5035248 *23 Abr 198730 Jul 1991Zinnecker Hal PPolyolefin sheath and silicone O-ring for medical instrument
US5082000 *29 Nov 199021 Ene 1992Applied Medical Technology, Inc.Biopsy forceps with calde controlled jaws
US5085659 *21 Nov 19904 Feb 1992Everest Medical CorporationBiopsy device with bipolar coagulation capability
US5133727 *10 May 199028 Jul 1992Symbiosis CorporationRadial jaw biopsy forceps
US5147356 *16 Abr 199115 Sep 1992Microsurge, Inc.Surgical instrument
US5147357 *18 Mar 199115 Sep 1992Rose Anthony TMedical instrument
US5160343 *9 Sep 19913 Nov 1992Dexide, Inc.Surgical instruments handle and forceps assembly
US5171256 *4 Abr 199115 Dic 1992Symbiosis CorporationSingle acting disposable laparoscopic scissors
US5171311 *23 Sep 199115 Dic 1992Everest Medical CorporationPercutaneous laparoscopic cholecystectomy instrument
US5174300 *7 Feb 199229 Dic 1992Symbiosis CorporationEndoscopic surgical instruments having rotatable end effectors
US5176677 *17 Nov 19895 Ene 1993Sonokinetics GroupEndoscopic ultrasonic rotary electro-cauterizing aspirator
US5197963 *2 Dic 199130 Mar 1993Everest Medical CorporationElectrosurgical instrument with extendable sheath for irrigation and aspiration
US5197964 *12 Nov 199130 Mar 1993Everest Medical CorporationBipolar instrument utilizing one stationary electrode and one movable electrode
US5207675 *15 Jul 19914 May 1993Jerome CanadySurgical coagulation device
US5217458 *9 Abr 19928 Jun 1993Everest Medical CorporationBipolar biopsy device utilizing a rotatable, single-hinged moving element
US5217460 *22 Mar 19918 Jun 1993Knoepfler Dennis JMultiple purpose forceps
US5258006 *21 Ago 19922 Nov 1993Everest Medical CorporationBipolar electrosurgical forceps
US5312434 *21 Dic 199217 May 1994Lawrence CrainichMedical instrument
US5324289 *1 May 199228 Jun 1994Hemostatic Surgery CorporationHemostatic bi-polar electrosurgical cutting apparatus and methods of use
US5330471 *1 May 199219 Jul 1994Hemostatic Surgery CorporationBi-polar electrosurgical endoscopic instruments and methods of use
US5540685 *5 May 199530 Jul 1996Everest Medical CorporationBipolar electrical scissors with metal cutting edges and shearing surfaces
US5743906 *12 Sep 199628 Abr 1998Everest Medical CorporationEndoscopic bipolar biopsy forceps
US5766166 *21 Feb 199616 Jun 1998Enable Medical CorporationBipolar Electrosurgical scissors
EP0517244A1 *5 Jun 19929 Dic 1992Hemostatic Surgery CorporationHemostatic bi-polar electrosurgical cutting apparatus
EP0518230A1 *5 Jun 199216 Dic 1992Hemostatic Surgery CorporationBi-polar electrosurgical endoscopic instruments
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US63582686 Mar 200019 Mar 2002Robert B. HuntSurgical instrument
US6387094 *30 Jun 200014 May 2002Karl Storz Gmbh & Co. KgMedical instrument for dissecting tissue
US644751127 Feb 199710 Sep 2002Symbiosis CorporationBipolar endoscopic surgical scissor blades and instrument incorporating the same
US64510189 Jun 200017 Sep 2002Sherwood Services AgLaparoscopic bipolar electrosurgical instrument
US646470420 Jun 200115 Oct 2002Sherwood Services AgBipolar electrosurgical instrument with replaceable electrodes
US65062089 Oct 200114 Ene 2003Robert B. HuntSurgical instrument
US651148022 Oct 199928 Ene 2003Sherwood Services AgOpen vessel sealing forceps with disposable electrodes
US668252817 Sep 200227 Ene 2004Sherwood Services AgEndoscopic bipolar electrosurgical forceps
US67266861 Abr 200227 Abr 2004Sherwood Services AgBipolar electrosurgical instrument for sealing vessels
US6932810 *14 Nov 200123 Ago 2005Sherwood Services AgApparatus and method for sealing and cutting tissue
US706369725 Jul 200320 Jun 2006Symbiosis CorporationBipolar endoscopic surgical scissor blades and instrument incorporating the same
US765500718 Dic 20062 Feb 2010Covidien AgMethod of fusing biomaterials with radiofrequency energy
US768680410 Ene 200630 Mar 2010Covidien AgVessel sealer and divider with rotating sealer and cutter
US768682721 Oct 200530 Mar 2010Covidien AgMagnetic closure mechanism for hemostat
US770873519 Jul 20054 May 2010Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US774461518 Jul 200629 Jun 2010Covidien AgApparatus and method for transecting tissue on a bipolar vessel sealing instrument
US775390929 Abr 200413 Jul 2010Covidien AgElectrosurgical instrument which reduces thermal damage to adjacent tissue
US77669109 Nov 20063 Ago 2010Tyco Healthcare Group LpVessel sealer and divider for large tissue structures
US77714256 Feb 200610 Ago 2010Covidien AgVessel sealer and divider having a variable jaw clamping mechanism
US777603613 Mar 200317 Ago 2010Covidien AgBipolar concentric electrode assembly for soft tissue fusion
US77760377 Jul 200617 Ago 2010Covidien AgSystem and method for controlling electrode gap during tissue sealing
US778987829 Sep 20067 Sep 2010Covidien AgIn-line vessel sealer and divider
US779902613 Nov 200321 Sep 2010Covidien AgCompressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US779902826 Sep 200821 Sep 2010Covidien AgArticulating bipolar electrosurgical instrument
US78112838 Oct 200412 Oct 2010Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US781987229 Sep 200626 Oct 2010Covidien AgFlexible endoscopic catheter with ligasure
US782879827 Mar 20089 Nov 2010Covidien AgLaparoscopic bipolar electrosurgical instrument
US783768513 Jul 200523 Nov 2010Covidien AgSwitch mechanisms for safe activation of energy on an electrosurgical instrument
US78461585 May 20067 Dic 2010Covidien AgApparatus and method for electrode thermosurgery
US784616129 Sep 20067 Dic 2010Covidien AgInsulating boot for electrosurgical forceps
US785781218 Dic 200628 Dic 2010Covidien AgVessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US787785219 Sep 20081 Feb 2011Tyco Healthcare Group LpMethod of manufacturing an end effector assembly for sealing tissue
US787785319 Sep 20081 Feb 2011Tyco Healthcare Group LpMethod of manufacturing end effector assembly for sealing tissue
US78790358 Nov 20061 Feb 2011Covidien AgInsulating boot for electrosurgical forceps
US788753517 Ago 200415 Feb 2011Covidien AgVessel sealing wave jaw
US788753619 Ago 200915 Feb 2011Covidien AgVessel sealing instrument
US789687812 Mar 20091 Mar 2011Coviden AgVessel sealing instrument
US790982317 Ene 200622 Mar 2011Covidien AgOpen vessel sealing instrument
US792271812 Oct 200612 Abr 2011Covidien AgOpen vessel sealing instrument with cutting mechanism
US792295328 Sep 200612 Abr 2011Covidien AgMethod for manufacturing an end effector assembly
US793164914 Feb 200726 Abr 2011Tyco Healthcare Group LpVessel sealing instrument with electrical cutting mechanism
US793505214 Feb 20073 May 2011Covidien AgForceps with spring loaded end effector assembly
US794704119 Ago 200924 May 2011Covidien AgVessel sealing instrument
US795114917 Oct 200631 May 2011Tyco Healthcare Group LpAblative material for use with tissue treatment device
US795115022 Feb 201031 May 2011Covidien AgVessel sealer and divider with rotating sealer and cutter
US795116518 Ago 200331 May 2011Boston Scientific Scimed, Inc.Endoscopic medical instrument and related methods of use
US795533221 Sep 20057 Jun 2011Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US796396510 May 200721 Jun 2011Covidien AgBipolar electrosurgical instrument for sealing vessels
US80168279 Oct 200813 Sep 2011Tyco Healthcare Group LpApparatus, system, and method for performing an electrosurgical procedure
US80340521 Nov 201011 Oct 2011Covidien AgApparatus and method for electrode thermosurgery
US807074625 May 20076 Dic 2011Tyco Healthcare Group LpRadiofrequency fusion of cardiac tissue
US811410716 Abr 200714 Feb 2012Applied Medical Resources CorporationLaparoscopic scissor blades
US812374329 Jul 200828 Feb 2012Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US812862430 May 20066 Mar 2012Covidien AgElectrosurgical instrument that directs energy delivery and protects adjacent tissue
US81424733 Oct 200827 Mar 2012Tyco Healthcare Group LpMethod of transferring rotational motion in an articulating surgical instrument
US814748917 Feb 20113 Abr 2012Covidien AgOpen vessel sealing instrument
US816297315 Ago 200824 Abr 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US819243321 Ago 20075 Jun 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US819747910 Dic 200812 Jun 2012Tyco Healthcare Group LpVessel sealer and divider
US819763315 Mar 201112 Jun 2012Covidien AgMethod for manufacturing an end effector assembly
US82111057 May 20073 Jul 2012Covidien AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US822141612 Sep 200817 Jul 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with thermoplastic clevis
US823599223 Sep 20087 Ago 2012Tyco Healthcare Group LpInsulating boot with mechanical reinforcement for electrosurgical forceps
US823599324 Sep 20087 Ago 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with exohinged structure
US823602523 Sep 20087 Ago 2012Tyco Healthcare Group LpSilicone insulated electrosurgical forceps
US82412825 Sep 200814 Ago 2012Tyco Healthcare Group LpVessel sealing cutting assemblies
US824128317 Sep 200814 Ago 2012Tyco Healthcare Group LpDual durometer insulating boot for electrosurgical forceps
US82412845 Ene 200914 Ago 2012Covidien AgVessel sealer and divider with non-conductive stop members
US825199623 Sep 200828 Ago 2012Tyco Healthcare Group LpInsulating sheath for electrosurgical forceps
US82573527 Sep 20104 Sep 2012Covidien AgBipolar forceps having monopolar extension
US825738715 Ago 20084 Sep 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US82679354 Abr 200718 Sep 2012Tyco Healthcare Group LpElectrosurgical instrument reducing current densities at an insulator conductor junction
US826793623 Sep 200818 Sep 2012Tyco Healthcare Group LpInsulating mechanically-interfaced adhesive for electrosurgical forceps
US827744718 Nov 20092 Oct 2012Covidien AgSingle action tissue sealer
US827747511 May 20092 Oct 2012Applied Medical Resources CorporationLaparoscopic scissors
US829822816 Sep 200830 Oct 2012Coviden AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US829823224 Mar 200930 Oct 2012Tyco Healthcare Group LpEndoscopic vessel sealer and divider for large tissue structures
US830358215 Sep 20086 Nov 2012Tyco Healthcare Group LpElectrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US830358610 Feb 20096 Nov 2012Covidien AgSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US831772615 Jun 201027 Nov 2012Boston Scientific Scimed, Inc.Biopsy forceps assemblies
US831778728 Ago 200827 Nov 2012Covidien LpTissue fusion jaw angle improvement
US83337654 Jun 201218 Dic 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US834894829 Jul 20108 Ene 2013Covidien AgVessel sealing system using capacitive RF dielectric heating
US836107128 Ago 200829 Ene 2013Covidien AgVessel sealing forceps with disposable electrodes
US836107219 Nov 201029 Ene 2013Covidien AgInsulating boot for electrosurgical forceps
US836670927 Dic 20115 Feb 2013Covidien AgArticulating bipolar electrosurgical instrument
US838275426 Ene 200926 Feb 2013Covidien AgElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
US839409512 Ene 201112 Mar 2013Covidien AgInsulating boot for electrosurgical forceps
US839409611 Abr 201112 Mar 2013Covidien AgOpen vessel sealing instrument with cutting mechanism
US840919726 Abr 20062 Abr 2013Boston Scientific Miami CorporationMethods of cutting tissue using a medical instrument
US842550430 Nov 201123 Abr 2013Covidien LpRadiofrequency fusion of cardiac tissue
US84546024 May 20124 Jun 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US846995621 Jul 200825 Jun 2013Covidien LpVariable resistor jaw
US84699577 Oct 200825 Jun 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US846999317 Feb 200425 Jun 2013Boston Scientific Scimed, Inc.Endoscopic instruments
US848610720 Oct 200816 Jul 2013Covidien LpMethod of sealing tissue using radiofrequency energy
US849665616 Ene 200930 Jul 2013Covidien AgTissue sealer with non-conductive variable stop members and method of sealing tissue
US851807013 Sep 201227 Ago 2013Applied Medical Resources CorporationLaparoscopic scissors
US852389330 Sep 20113 Sep 2013Applied Medical Resources CorporationLaparoscopic scissors
US852389810 Ago 20123 Sep 2013Covidien LpEndoscopic electrosurgical jaws with offset knife
US853531225 Sep 200817 Sep 2013Covidien LpApparatus, system and method for performing an electrosurgical procedure
US854071111 Jul 200724 Sep 2013Covidien AgVessel sealer and divider
US85510881 Abr 20098 Oct 2013Applied Medical Resources CorporationElectrosurgical system
US855109130 Mar 20118 Oct 2013Covidien AgVessel sealing instrument with electrical cutting mechanism
US85625981 Abr 200922 Oct 2013Applied Medical Resources CorporationElectrosurgical system
US856841131 Mar 200929 Oct 2013Applied Medical Resources CorporationElectrosurgical system
US85684447 Mar 201229 Oct 2013Covidien LpMethod of transferring rotational motion in an articulating surgical instrument
US85798941 Abr 200912 Nov 2013Applied Medical Resources CorporationElectrosurgical system
US859150616 Oct 201226 Nov 2013Covidien AgVessel sealing system
US859729631 Ago 20123 Dic 2013Covidien AgBipolar forceps having monopolar extension
US859729729 Ago 20063 Dic 2013Covidien AgVessel sealing instrument with multiple electrode configurations
US862301723 Jul 20097 Ene 2014Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and overratchet safety
US86232769 Feb 20097 Ene 2014Covidien LpMethod and system for sterilizing an electrosurgical instrument
US86367619 Oct 200828 Ene 2014Covidien LpApparatus, system, and method for performing an endoscopic electrosurgical procedure
US864171315 Sep 20104 Feb 2014Covidien AgFlexible endoscopic catheter with ligasure
US864734127 Oct 200611 Feb 2014Covidien AgVessel sealer and divider for use with small trocars and cannulas
US866868919 Abr 201011 Mar 2014Covidien AgIn-line vessel sealer and divider
US867285923 Oct 201218 Mar 2014Boston Scientific Scimed, Inc.Biopsy forceps assemblies
US867911423 Abr 201025 Mar 2014Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US86966679 Ago 201215 Abr 2014Covidien LpDual durometer insulating boot for electrosurgical forceps
US872167026 Ago 201313 May 2014Applied Medical Resources CorporationLaparoscopic scissors
US873444319 Sep 200827 May 2014Covidien LpVessel sealer and divider for large tissue structures
US874090120 Ene 20103 Jun 2014Covidien AgVessel sealing instrument with electrical cutting mechanism
US876474828 Ene 20091 Jul 2014Covidien LpEnd effector assembly for electrosurgical device and method for making the same
US878441728 Ago 200822 Jul 2014Covidien LpTissue fusion jaw angle improvement
US879527428 Ago 20085 Ago 2014Covidien LpTissue fusion jaw angle improvement
US885218322 Ene 20107 Oct 2014Microline Surgical Inc.Scissor tip for bipolar high frequency endoscope
US88522288 Feb 20127 Oct 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US88585544 Jun 201314 Oct 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US888276624 Ene 200611 Nov 2014Covidien AgMethod and system for controlling delivery of energy to divide tissue
US889888826 Ene 20122 Dic 2014Covidien LpSystem for manufacturing electrosurgical seal plates
US89159101 Abr 200923 Dic 2014Applied Medical Resources CorporationElectrosurgical system
US893997327 Nov 201327 Ene 2015Covidien AgSingle action tissue sealer
US894512510 Sep 20103 Feb 2015Covidien AgCompressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US894512627 Nov 20133 Feb 2015Covidien AgSingle action tissue sealer
US894512723 Ene 20143 Feb 2015Covidien AgSingle action tissue sealer
US896831425 Sep 20083 Mar 2015Covidien LpApparatus, system and method for performing an electrosurgical procedure
US902304323 Sep 20085 May 2015Covidien LpInsulating mechanically-interfaced boot and jaws for electrosurgical forceps
US90284938 Mar 201212 May 2015Covidien LpIn vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US903969420 Oct 201126 May 2015Just Right Surgical, LlcRF generator system for surgical vessel sealing
US909534718 Sep 20084 Ago 2015Covidien AgElectrically conductive/insulative over shoe for tissue fusion
US910767219 Jul 200618 Ago 2015Covidien AgVessel sealing forceps with disposable electrodes
US91138989 Sep 201125 Ago 2015Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US911390329 Oct 201225 Ago 2015Covidien LpEndoscopic vessel sealer and divider for large tissue structures
US911390520 Jun 201325 Ago 2015Covidien LpVariable resistor jaw
US911394022 Feb 201225 Ago 2015Covidien LpTrigger lockout and kickback mechanism for surgical instruments
US91444556 Jun 201129 Sep 2015Just Right Surgical, LlcLow power tissue sealing device and method
US914932325 Ene 20106 Oct 2015Covidien AgMethod of fusing biomaterials with radiofrequency energy
US917992912 May 201410 Nov 2015Applied Medical Resources CorporationLaparoscopic scissors
US91987172 Feb 20151 Dic 2015Covidien AgSingle action tissue sealer
US91987248 Abr 20111 Dic 2015Covidien LpMicrowave tissue dissection and coagulation
US924798821 Jul 20152 Feb 2016Covidien LpVariable resistor jaw
US92655522 Dic 201423 Feb 2016Covidien LpMethod of manufacturing electrosurgical seal plates
US931429520 Oct 201119 Abr 2016Covidien LpDissection scissors on surgical device
US93205636 Feb 201226 Abr 2016Applied Medical Resources CorporationElectrosurgical instruments and connections thereto
US934553514 Oct 201424 May 2016Covidien LpApparatus, system and method for performing an electrosurgical procedure
US936424716 Ago 201314 Jun 2016Covidien LpEndoscopic electrosurgical jaws with offset knife
US937525425 Sep 200828 Jun 2016Covidien LpSeal and separate algorithm
US93752705 Nov 201328 Jun 2016Covidien AgVessel sealing system
US93752715 Nov 201328 Jun 2016Covidien AgVessel sealing system
US94630675 Nov 201311 Oct 2016Covidien AgVessel sealing system
US949222120 Oct 201115 Nov 2016Covidien LpDissection scissors on surgical device
US949222511 Feb 201415 Nov 2016Covidien AgVessel sealer and divider for use with small trocars and cannulas
US95390539 May 201410 Ene 2017Covidien LpVessel sealer and divider for large tissue structures
US954977511 Mar 201424 Ene 2017Covidien AgIn-line vessel sealer and divider
US955484110 Abr 201431 Ene 2017Covidien LpDual durometer insulating boot for electrosurgical forceps
US956610811 Nov 201314 Feb 2017Applied Medical Resources CorporationElectrosurgical system
US95791454 Feb 201428 Feb 2017Covidien AgFlexible endoscopic catheter with ligasure
US95857163 Jun 20147 Mar 2017Covidien AgVessel sealing instrument with electrical cutting mechanism
US960365221 Ago 200828 Mar 2017Covidien LpElectrosurgical instrument including a sensor
US96491495 May 201516 May 2017Just Right Surgical, LlcRF generator system for surgical vessel sealing
US96556741 Oct 201423 May 2017Covidien LpApparatus, system and method for performing an electrosurgical procedure
US968185721 May 201320 Jun 2017Boston Scientific Scimed, Inc.Endoscopic instruments and methods of manufacture
US973735724 Sep 201322 Ago 2017Covidien AgVessel sealer and divider
US97439459 Oct 201529 Ago 2017Applied Medical Resources CorporationLaparoscopic scissors
US975056122 Feb 20165 Sep 2017Covidien LpSystem for manufacturing electrosurgical seal plates
US20040199160 *25 Jul 20037 Oct 2004Symbiosis CorporationBipolar endoscopic surgical scissor blades and instrument incorporating the same
US20050043758 *18 Ago 200324 Feb 2005Scimed Life Systems, Inc.Endoscopic medical instrument and related methods of use
US20050101965 *14 Nov 200112 May 2005Sherwood Services AgApparatus and method for sealing and cutting tissue
US20060195084 *26 Abr 200631 Ago 2006Boston Scientific Miami CorporationBipolar endoscopic surgical scissor blades and instrument incorporating the same
US20070244497 *16 Abr 200718 Oct 2007Applied Medical Resources CorporationLaparoscopic scissor blades
US20080167651 *21 Dic 200710 Jul 2008Tetzlaff Philip MVessel sealing instrument
US20090281561 *11 May 200912 Nov 2009Applied Medical Resources CorporationLaparoscopic scissors
US20100057071 *25 Ago 20094 Mar 2010Francis AmoahElectrosurgical instrument and system
US20100094287 *9 Oct 200815 Abr 2010Tyco Heathcare Group LpApparatus, System, and Method for Performing an Endoscopic Electrosurgical Procedure
US20100312240 *22 Ene 20109 Dic 2010Microline Surgical Inc.Scissor tip for bipolar high frequency endoscope
US20110196368 *17 Feb 201111 Ago 2011Covidien AgOpen Vessel Sealing Instrument
USD49918115 May 200330 Nov 2004Sherwood Services AgHandle for a vessel sealer and divider
USD64924915 Feb 200722 Nov 2011Tyco Healthcare Group LpEnd effectors of an elongated dissecting and dividing instrument
USD68022012 Ene 201216 Abr 2013Coviden IPSlider handle for laparoscopic device
USD74825929 Dic 201426 Ene 2016Applied Medical Resources CorporationElectrosurgical instrument
USD7619617 May 201519 Jul 2016Karl Storz Gmbh & Co. KgForceps insert for laparoscopic procedures
USD77533217 Jun 201527 Dic 2016Karl Storz Gmbh & Co. KgNeedle holder
USD78953511 Dic 201513 Jun 2017Karl Storz Gmbh & Co. KgShaft instrument for shaving tissue
USD79132111 Dic 20154 Jul 2017Karl Storz Gmbh & Co. KgShaft instrument for shaving tissue
USRE448347 Dic 20128 Abr 2014Covidien AgInsulating boot for electrosurgical forceps
Clasificaciones
Clasificación de EE.UU.606/45, 606/50, 606/48
Clasificación internacionalA61B18/14, A61B18/18
Clasificación cooperativaA61B2018/00107, A61B2018/1432, A61B18/1402, A61B2018/126, A61B2018/1861, A61B18/1445, A61B2017/2945, A61B2018/00083, A61B2018/1412, A61B2017/0088
Clasificación europeaA61B18/14F2
Eventos legales
FechaCódigoEventoDescripción
12 Abr 2002ASAssignment
Owner name: GYRUS MEDICAL, INC., MINNESOTA
Free format text: CHANGE OF NAME;ASSIGNOR:EVEREST MEDICAL CORPORATION;REEL/FRAME:012802/0936
Effective date: 20010405
20 Jun 2002FPAYFee payment
Year of fee payment: 8
20 Jun 2002SULPSurcharge for late payment
Year of fee payment: 7
17 Ago 2005ASAssignment
Owner name: THE GOVERNOR AND COMPANY OF THE BANK OF SCOTLAND,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GYRUS MEDICAL, INC.;REEL/FRAME:016408/0631
Effective date: 20050721
18 Ago 2005ASAssignment
Owner name: THE GOVERNOR AND COMPANY OF THE BANK OF SCOTLAND,
Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF DOCUMENT ERRONEOUSLY RECORDED AS AN ASSIGNMENT TO RECORDATION OF GRANT OF SECURITY INTEREST PREVIOUSLY RECORDED ON REEL 016408 FRAME 0631;ASSIGNOR:GYRUS MEDICAL, INC.;REEL/FRAME:016418/0162
Effective date: 20050721
13 Mar 2006FPAYFee payment
Year of fee payment: 12
3 May 2011DIAdverse decision in interference