USRE38157E1 - Automotive vehicle HVAC rainhat - Google Patents

Automotive vehicle HVAC rainhat Download PDF

Info

Publication number
USRE38157E1
USRE38157E1 US10/093,278 US9327802A USRE38157E US RE38157 E1 USRE38157 E1 US RE38157E1 US 9327802 A US9327802 A US 9327802A US RE38157 E USRE38157 E US RE38157E
Authority
US
United States
Prior art keywords
rainhat
water dam
opening
cowling
supports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/093,278
Inventor
Dean Jeffrey Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
L&L Products Inc
Original Assignee
L&L Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L&L Products Inc filed Critical L&L Products Inc
Priority to US10/093,278 priority Critical patent/USRE38157E1/en
Application granted granted Critical
Publication of USRE38157E1 publication Critical patent/USRE38157E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/24Devices purely for ventilating or where the heating or cooling is irrelevant
    • B60H1/26Ventilating openings in vehicle exterior; Ducts for conveying ventilating air
    • B60H1/28Ventilating openings in vehicle exterior; Ducts for conveying ventilating air the openings being situated directly in front of vehicle front window

Definitions

  • the field of the present invention is that of rainhats for heating, ventilation, and air-conditioning inlets on automotive vehicles.
  • the fresh air intake should be located in an area of the vehicle such that it cannot suck in any fumes from the engine compartment.
  • the fresh air intake should be positioned in a location that snow or frozen precipitation cannot clog it up.
  • the air intake should be protected so that precipitation and/or leaves or other various debris and does not enter into the heating, air-conditioning and ventilation system.
  • the air intake for most vehicles is placed in the cowling area since the cowling area is opened to the atmosphere, covered by the front hood but yet sealed away from the engine compartment by the molding of the front hood.
  • the cowling typically has a flared opening for the air inlet for the heating, ventilation and air-conditioning system. Air from the air inlet is piped into the interior of the vehicle below the dashboard where it is appropriately heated, cooled and/or filtered to meet the environmental and comfort requirements of the vehicle occupants.
  • the cowling is covered, it is exposed to the environment and rain falling down the windshield does enter the cowling area until it is diverted to the sides away from the cowling.
  • a rainhat is provided.
  • the rainhat included a tubular-shaped member having a bottom flat flange.
  • the tubular shaped member was inserted over a flared opening of the cowling and was spot welded thereto.
  • the area of contact of the rainhat flange with the cowling was sealed to prevent the inflow of water.
  • a screen had to be attached over the tubular shaped member to prevent the ingestion of leaves or other debris into the heating and ventilation system.
  • the screen was weldably attached to an encircling metallic band.
  • the metallic band was either fixed to the tubular shaped member by welding, fasteners or clips.
  • the screen was joined along its sides to the metallic band and typically had a generally flat top end.
  • the screen was usually inserted into the encircling metallic band. This allowed a potential gap between the screen and the top end of the encircling metallic band to be created. The above noted gap could allow for the entry of leaves or other debris which could then become stuck and clog up the air intake opening by being sucked against the screen.
  • the present invention provides the freedom of a single integral rainhat which may be adhesively and sealably connected with an automotive vehicle without the utilization of any welding. Furthermore, in a preferred embodiment, the present invention brings forth a high temperature injection molded polymeric rainhat which can be fabricated in a single drawn injection machine. Furthermore, the present invention provides a rainhat which is cheaper, easier to install and which additionally can be formed in a shape which discourages the entrapment of leaves or other articles which can clog up the openings.
  • the present invention provides a high temperature injection molded polymeric rainhat for a heating, ventilation, and air-conditioning air intake of an automotive vehicle having a cowling with a generally planar surface encircling a flared opening.
  • the rainhat includes a flange for adhesively and sealably joining to a portion of the generally planar cowling encircling the flared opening.
  • a water dam is integrally joined to the flange and is extending therefrom.
  • the water dam has an interior surface closely engaging the flared opening of the cowling and extends upwards beyond a vertical end of the flared opening.
  • the water dam has an extreme upper edge forming an opening.
  • a foreign matter ingestion preventer is also included.
  • the foreign matter ingestion preventer has a plurality of first curvilinear supports extending in a first direction over the water dam upper edge opening. Each first support has opposite ends joined with the water dam, and each first support has a middle portion domed above the opening of the water dam. Each first support has a tapered exterior side.
  • the foreign matter ingestion preventer also has plurality of second supports intersecting with the first curvilinear supports.
  • Each second support has a middle portion being domed above the water dam.
  • Each second support has a tapered exterior side.
  • a surface area of the foreign matter ingestion preventer minus the surface area defined by the transverse dimensions of the first and second supports is generally equal to or greater than the area defined by the opening of the upper edge of the water dam.
  • FIG. 1 is a front elevational view of a high temperature injection molded polymeric rainhat for a heating, ventilation, and air intake for an automotive vehicle according to the present invention which includes a flange, a water dam, and a foreign matter ingestion preventer.
  • FIG. 2 is a side elevational view of the rainhat shown in FIG. 1 .
  • FIG. 3 is a front view similar to that of FIG. 1 with the rainhat being sectioned.
  • FIG. 4 is a side view similar to that of FIG. 2 with the rainhat being sectioned.
  • FIG. 5 is a bottom view of the rainhat aligned with the direction of airflow through the rainhat.
  • FIG. 6 is an enlargement of the intersection between a support extending in a first direction and a support extending in a second direction encircled in FIG. 4 .
  • FIG. 6A is an enlargement of the intersection between a support extending in a first direction and a rafter extending in a second direction encircled in FIG. 4 .
  • FIG. 7 is an enlarged view of the barbed end fastener of the present invention which is encircled in FIG. 1 .
  • FIG. 8 is a sectional view taking along line 8 — 8 of FIG. 2 illustrating the mechanical interlocking and adhesive attachment of the adhesive to the flange of the rainhat.
  • a cowling 8 (FIG. 4) of an automotive vehicle is shown in phantom.
  • the cowling 8 is positioned forward the vehicle windshield underneath the hood which covers the vehicle engine compartment. At least a portion of the cowling 8 provides a generally planar surface 10 .
  • the generally flat surface 10 portion of the cowling encircles a flared opening 12 .
  • the flared opening 12 receives air for the vehicle heating, ventilation and air conditioning system.
  • the high temperature injection molded polymeric rainhat 7 of the present invention is made from a high temperature polymeric substance thermoplastic such as polyamide, poly (phenylene sulphide), poly(butylene terephthalate) or other temperature resistant thermoplastic materials.
  • the material should pass a 205° C. temperature test without significant distortion or degradation of the polymeric material. This will enable the rainhat 7 to pass through the electrocoat curving oven and still maintain its functional integrity.
  • the rainhat 7 material must be capable of passing through a phosphate immersion tank without being damaged.
  • Other important rainhat 7 material characteristics include impact strength, elastic modulus, tensile strength, and elastic strain to failure. Specific requirements for the above characteristics will depend on specific design and attachment methods.
  • the rainhat 7 has a flange 20 . The flange 20 joins the rainhat to the planar surface 10 portion of the cowling which encircles the flared opening
  • the adhesive 22 is formed from a thermosetting formulated adhesive with a synthetic polymer base which may incorporate magnetizable particles but in general does not.
  • the adhesive (1) may provide a strong magnetic field; (2) melts at temperatures encountered in automotive paint ovens (between about 100 and 235° C.) in order to flow over and around the generally planar surface 10 portion of the cowling to be sealed; (3) bonds well to metal of the cowling; and (4) partially expands to fill any opening between the flange 20 and the generally planar surface 10 portion of the cowling encircling the flared opening 12 .
  • the adhesive 22 should pass any specifications determined to be important to the automotive manufacturer that may include, but are not limited to, corrosion resistance, adhesive strength, toxicity, expansion, etc. Most preferably, the adhesive 22 is a hot melt sealant that volumetrically expands to some extend during curing.
  • the adhesive 22 includes as one component a synthetic polymer resin or a blend of resins and preferably includes one or more elastomers.
  • the adhesive 22 contains a polyolefin resin, a combination of ethylene vinyl acetate copolymer (EVA) and an acrylic resin such as ethylene methyl acrylate.
  • a cross-linking or curing agent is also preferably included in the adhesive 22 to cross-link the polyolefin.
  • the cross-linking agent should provide a reasonable shelf life, but should also be fully activated at the temperatures encountered in the curing environment of an automotive paint oven.
  • a tackifier component is also included in the adhesive 22 to provide adhesion and to enhance peel strength.
  • the adhesive 22 further may include ferritic magnetic particles which can provide the magnetic field that retains the rain hat flange 20 in position on the flat surface 10 portion of the cowling.
  • the adhesive 22 further includes a multifunctional cross-linking monomer such as trimethylolpropane trimethacrylate or trimethylolpropane triacrylate to increase the cross-linking density of the adhesive 22 .
  • the adhesive 22 has an expansion agent which produces expansion of the adhesive 22 when it is melted in the automotive paint oven to provide a more uniform and reliable seal of rain hat flange to the generally planar portion of the cowling.
  • the adhesive 22 includes a blowing agent which is thermally-activated. The blowing agent should be fully activated at about 100 to about 200° C.
  • the adhesive should have a melt index that allows it to flow sufficiently during the sealing operation.
  • a more detailed explanation of the adhesive can be gained from a review of U.S. patent application Ser. No. 08/590,009 Czaplicki et al., the specification of which is incorporated by reference herein.
  • suitable sealants can be utilized such as those commercially available from L & L Products.
  • Suitable formulated materials include L-4200, L-2100 and L-4141.
  • the adhesive 22 is adhesively joined to a bottom surface 24 of the flange 20 .
  • the flange 20 has a plurality of vertically transverse bores.
  • the adhesive 22 is molded to the flange 20 such that it flows through the bores 26 and forms a head 28 on the opposite flange top surface 30 .
  • the adhesive 22 is therefore also mechanically joined to the flange as well as adhesively joined thereto.
  • the fastener members 36 have a head 38 with compliant barbs 40 .
  • the compliant barbs 40 of the fastener members are extended through predrilled holes (not shown) in the cowling generally planar surface 10 portion and thereafter retain the rainhat 7 in position before the flange 20 is adhesively joined to the cowling planar surface 10 portion.
  • a mound 41 is provided to supply additional adhesive in and adjacent a hole which has a straight depression (not shown) in the cowling planar surface 10 .
  • the rainhat flange 20 has one central forward fastener members 36 . On a rearward side of the flange 20 there are two spaced apart fastener members 36 .
  • the fastener members 36 are inclined slightly forward to accommodate a draw angle 130 of the rainhat 7 .
  • a water dam 50 Integrally joined to the flange 20 and extending vertically upward therefrom is a water dam 50 .
  • the water dam has an interior surface 52 which closely engages the flared opening of the cowling. Any gap between the bottom portion of the rain dam interior surface 52 and the flared opening 12 of the cowling is also sealed by the adhesive 22 , after it has been cured.
  • the rain dam interior surface 52 also extends upward beyond a vertical end 18 of the flared opening.
  • the water dam has an extreme upper knife edge 54 forming an opening 62 .
  • the interior surface of the water dam front end has a central interior stop 56 (FIGS. 4 and 5 ).
  • the interior stop has a downward facing abutting edge 58 to make contact with the vertical end 18 of the flared opening 56 .
  • a rear wall of the water dam on its interior surface may have, as shown, two spaced apart interior stops to make contact with the vertical end 18 of the flared opening.
  • the water dam interior surface 52 near an upper end is tapered at 60 to form the knife edge 54 with an exterior surface 64 of the water dam.
  • the knife edge 54 aids in the prevention of leaves, leave stems or other debris laying on top the knife edge 54 of the rain dam.
  • the opening 62 of the rain dam defines a predefined air inlet which is sufficient for the needs of the heating, ventilation and air conditioning system of the vehicle.
  • the foreign matter ingestion preventer 70 Positioned on top of the water dam is a foreign matter ingestion preventer 70 .
  • the foreign matter ingestion preventer 70 has a plurality of first curvilinear supports 72 extending in a first direction over the water dam opening 62 .
  • Each first support 72 is curvilinear having opposite ends joined with the water dam 50 .
  • Each first support 72 has a middle portion 74 domed above the opening 62 of the water dam. In the first direction there are three spaced apart supports 72 . In other embodiments (not shown) the number of first supports may vary. (See FIGS. 3 and 5, note the middle first support has been removed from FIG. 5 for clarity of illustration).
  • Each of the first supports 72 have an interior side 76 and an exterior side 78 .
  • each first support is tapered and has a generally rounded edge.
  • the exterior side 78 of the first support at an end of the first support is flush with the exterior surface 64 of the upper edge of the rain dam.
  • the interior of each first support optionally extends downwardly into the interior surface 52 of the water dam as shown in FIGS. 3 and 5.
  • the interior edge 80 of the first support does not extend far enough downward to contact the upper end 18 of the flared opening.
  • the first supports are typically 2 millimeters thick with a height of 6 millimeters.
  • first rafters 84 Extending generally parallel to the first supports in the first direction are a plurality of first rafters 84 .
  • first rafters 84 have been removed from FIGS. 3 and 4 for clarity of illustration).
  • the rain hat 7 has twelve first rafters 84 , however more first rafters 94 may be included as desired.
  • Each first rafter 84 has opposite ends joining with the water dam.
  • the first rafters will also be curvilinear in shape with a middle portion 86 being domed above the opening 62 of the water dam.
  • Each first rafter 84 has an interior side 88 .
  • Each first rafter also has an exterior side 90 .
  • the exterior side of each first rafter 90 is tapered in a manner similarly described for the first supports.
  • An interior side 88 of the first rafter are flush with an interior surface 52 of the water dam.
  • each second support 100 has a middle portion 102 extending over the water dam opening 62 with opposite ends joined to the water dam 50 .
  • Each second support has an interior side 106 .
  • Each second support has an exterior side 108 .
  • the exterior side 106 of each second support is tapered and has a generally rounded edge 110 (FIG. 6 ).
  • the second support exterior side 106 is flush with the exterior side 106 is also flush with the exterior side 78 of the first support 72 and of the first rafters exterior side 90 .
  • the second support are 2 millimeters thick with a height of 6 millimeters.
  • the rainhat additionally has second rafter 120 .
  • the second rafters 120 of the rainhat extend in a second direction generally parallel to the second supports 100 .
  • the second rafters have opposite ends joining with the water dam 50 .
  • the second rafters have a curvilinear shape with a middle portion 122 being domed above the opening 62 of the water dam (FIG. 5 ).
  • Each second rafter 120 has an interior side.
  • Each second rafter also has an exterior side 122 .
  • An exterior side 124 of the second rafter is flush with the exterior surface 64 of the water dam.
  • the exterior side 124 of the second rafters is also flush with the first supports 72 and the first rafters at their intersection.
  • the second rafters exterior side 126 (FIG. 6a) is tapered and has a particularly round end shape.
  • the interior side 122 of the second rafters is flush with the interior surface 52 of the water dam.
  • intersection of the first supports 72 and rafters 84 with the second supports 100 are essentially as shown in FIGS. 6 and 6a, for the intersections of the second supports 100 and rafters 120 with the first support 72 .
  • the rainhat 7 can be molded in a single draw mold machine. As shown, the main body of the rainhat 7 flange water dam and foreign matter ingestion preventer is molded in a single draw mold machine
  • the first and second supports 72 , 100 are perpendicular with one another when looked (projected) in a plane perpendicular to the direction of the draw of the mold which is used in forming the rainhat.
  • the draw of the rainhat is generally parallel with the direction 130 of air inflow travel as shown in FIGS. 2 and 3. Slides are typically used to form the fastener member 36 .
  • the surface area of the foreign matter ingestion preventer 70 minus the transverse area of the first support 72 , second support 100 , first rafters 84 and second rafters 120 is equal to or greater than the area of the opening 62 along the rain dam upper edge.
  • the first and second rafters 89 , 120 and supports 72 , 100 have an exterior side edge which are tapered as previously mentioned. It has ben empirically found that the tapering of the first and second supports 72 , 100 and first and second rafters 84 , 120 improves airflow approximately 10%. Still another factor which effects airflow is the tapering of the knife edge 54 of the rain dam. The tapering serves two functions. The first function is the minimization of air friction.
  • the second function is as previously mentioned, it prevents debris from being lodged upon the knife edge 54 . Additionally, leaves or other debris which fall upon the rainhat 7 will have a tendency to become unbalanced and fall off due to the three axis curvilinear features of the foreign matter ingestion preventer 70 .
  • the dome of the foreign matter ingestion preventer allows the supports and rafters to be thicker yet still provide an opening with the low flow resistance required. Thicker supports and rafters are desired due to increased strength, durability, and moldability.
  • the rainhat 7 is typically manually positioned over the flared opening 12 of the cowling.
  • the rainhat 7 is pushed downward allowing the fastener members 36 to enter into the predrilled openings of the cowling 8 .
  • the barbs 40 of the fastener members 36 are contracted by the holes in the cowling planar surface 10 portion. Once past the holes the fastener member barbs 36 again extend to then capture the rainhat 7 to the cowling.
  • the vehicle is then taken into an electrolyte bath.
  • the rising of temperature caused by the paint ovens after the electrolytic bath causes the adhesive 22 to expand and to adhesively and sealably connect the rainhat 7 to the vehicle cowling.
  • the barbed fasteners retain the rainhat 7 in position until the curing and expanding process of the adhesive 22 is complete.

Abstract

In a preferred embodiment, the present invention provides a high temperature injection molded polymeric rainhat for a heating, ventilation, and air-conditioning air intake of an automotive vehicle is provided. The rainhat includes a flange for adhesively and sealably joining to a portion of the generally planar automotive vehicle cowling encircling a flared air inlet opening. A water dam joined to the flange extends beyond an end of the flared opening. The water dam has an extreme upper edge forming an opening. A foreign matter ingestion preventer has a plurality of first curvilinear supports extending in a first direction over the water dam upper edge opening. Each first support has opposite ends joined with the water dam, and each first support has a middle portion domed above the opening of the water dam. Each first support has a tapered exterior side. The foreign matter ingestion preventer also has plurality of second supports intersecting with the first curvilinear supports. Each second support has a middle portion being domed above the water dam. Each second support has a tapered exterior side. A surface area of the foreign matter ingestion preventer minus the surface area defined by the transverse dimensions of the first and second supports is generally equal to or greater than the area defined by the opening of the upper edge of the water dam.

Description

FIELD OF THE INVENTION
The field of the present invention is that of rainhats for heating, ventilation, and air-conditioning inlets on automotive vehicles.
BACKGROUND OF THE INVENTION
Virtually all vehicles manufactured today have a heating and ventilation system for the interior of the vehicle. Additionally, virtually all vehicles manufactured in North America also come equipped with an air-conditioning system. To facilitate the environmental health and comfort of the vehicle occupants, fresh air must be brought into the vehicle interior. Several technical challenges are presented in bringing in fresh air into the vehicle. First, the fresh air intake should be located in an area of the vehicle such that it cannot suck in any fumes from the engine compartment. Secondly, the fresh air intake should be positioned in a location that snow or frozen precipitation cannot clog it up. Additionally, the air intake should be protected so that precipitation and/or leaves or other various debris and does not enter into the heating, air-conditioning and ventilation system.
Most vehicles place the engine in the front end of the vehicle. Behind the engine compartment is a sealed interior of the vehicle which is provided by a fire wall. Above the fire wall and inclined rearwardly from the top of the fire wall is the windshield. Extending forwardly from the base of the windshield and on top of the fire wall is a generally flat region called the cowling. The cowling is covered by the rear portion of the front hood which also extends across the engine compartment. The lower portion of the hood has a seal molding which seals the engine compartment from the remainder of the cowling. However, the engine hood is spaced away from the windshield allowing air to enter into the cowling area from behind the front hood. Typically, the air intake for most vehicles is placed in the cowling area since the cowling area is opened to the atmosphere, covered by the front hood but yet sealed away from the engine compartment by the molding of the front hood. The cowling typically has a flared opening for the air inlet for the heating, ventilation and air-conditioning system. Air from the air inlet is piped into the interior of the vehicle below the dashboard where it is appropriately heated, cooled and/or filtered to meet the environmental and comfort requirements of the vehicle occupants. Although the cowling is covered, it is exposed to the environment and rain falling down the windshield does enter the cowling area until it is diverted to the sides away from the cowling. To prevent the water which accumulates in the cowling area from entering into the inlet for the heating, ventilation and air-conditioning system, a rainhat is provided. Prior to the present invention, the rainhat included a tubular-shaped member having a bottom flat flange. The tubular shaped member was inserted over a flared opening of the cowling and was spot welded thereto. The area of contact of the rainhat flange with the cowling was sealed to prevent the inflow of water. After the tubular shaped member was weldably attached to the flared opening of the cowling, a screen had to be attached over the tubular shaped member to prevent the ingestion of leaves or other debris into the heating and ventilation system. The screen was weldably attached to an encircling metallic band. The metallic band was either fixed to the tubular shaped member by welding, fasteners or clips. The screen was joined along its sides to the metallic band and typically had a generally flat top end.
Prior rainhats suffered from several problems. The first problem was the cost. The prior rainhat had a tubular shaped member, a metal band, three clips and a wire mesh screen. The screen (and encircling metallic band) could not be placed on the tubular shaped member until the tubular shaped member was assembled into the vehicle since the spot welding guns had to be inserted within the tubular shaped member during the fabrication process. Additionally, it was not uncommon for the spot welds to break. When the spot weld breaks, typically a portion of the tubular shaped member or of the flared opening is torn leaving a crack which gives a potential for the ingestion of rain water into the heating, ventilation and air-conditioning system air intake. To protect the ends of the screen, the screen was usually inserted into the encircling metallic band. This allowed a potential gap between the screen and the top end of the encircling metallic band to be created. The above noted gap could allow for the entry of leaves or other debris which could then become stuck and clog up the air intake opening by being sucked against the screen.
It is desirable to provide a rainhat which can be affixed with the flared opening of the cowling without the expense of a welding operation. It is also desirable to provide a rainhat which is cheaper to manufacture. It is still another desire to provide a rainhat which is lighter allowing the vehicle to have an increase in gas mileage and thereby increase the environmental efficiency of the vehicle.
To meet the above-noted desires, the revelation of the present invention is brought forth. The present invention provides the freedom of a single integral rainhat which may be adhesively and sealably connected with an automotive vehicle without the utilization of any welding. Furthermore, in a preferred embodiment, the present invention brings forth a high temperature injection molded polymeric rainhat which can be fabricated in a single drawn injection machine. Furthermore, the present invention provides a rainhat which is cheaper, easier to install and which additionally can be formed in a shape which discourages the entrapment of leaves or other articles which can clog up the openings.
In a preferred embodiment, the present invention provides a high temperature injection molded polymeric rainhat for a heating, ventilation, and air-conditioning air intake of an automotive vehicle having a cowling with a generally planar surface encircling a flared opening. The rainhat includes a flange for adhesively and sealably joining to a portion of the generally planar cowling encircling the flared opening.
A water dam is integrally joined to the flange and is extending therefrom. The water dam has an interior surface closely engaging the flared opening of the cowling and extends upwards beyond a vertical end of the flared opening. The water dam has an extreme upper edge forming an opening. A foreign matter ingestion preventer is also included. The foreign matter ingestion preventer has a plurality of first curvilinear supports extending in a first direction over the water dam upper edge opening. Each first support has opposite ends joined with the water dam, and each first support has a middle portion domed above the opening of the water dam. Each first support has a tapered exterior side. The foreign matter ingestion preventer also has plurality of second supports intersecting with the first curvilinear supports. Each second support has a middle portion being domed above the water dam. Each second support has a tapered exterior side. A surface area of the foreign matter ingestion preventer minus the surface area defined by the transverse dimensions of the first and second supports is generally equal to or greater than the area defined by the opening of the upper edge of the water dam.
It is an object of the present invention to provide an injection molded rainhat for the air intake of an automotive heating, ventilation and air-conditioning system.
The above-noted objects and other advantages of the present invention will become more apparent to those skilled in the art as the invention is further explained in the accompanying detailed description and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a front elevational view of a high temperature injection molded polymeric rainhat for a heating, ventilation, and air intake for an automotive vehicle according to the present invention which includes a flange, a water dam, and a foreign matter ingestion preventer.
FIG. 2 is a side elevational view of the rainhat shown in FIG. 1.
FIG. 3 is a front view similar to that of FIG. 1 with the rainhat being sectioned.
FIG. 4 is a side view similar to that of FIG. 2 with the rainhat being sectioned.
FIG. 5 is a bottom view of the rainhat aligned with the direction of airflow through the rainhat.
FIG. 6 is an enlargement of the intersection between a support extending in a first direction and a support extending in a second direction encircled in FIG. 4.
FIG. 6A is an enlargement of the intersection between a support extending in a first direction and a rafter extending in a second direction encircled in FIG. 4.
FIG. 7 is an enlarged view of the barbed end fastener of the present invention which is encircled in FIG. 1.
FIG. 8 is a sectional view taking along line 88 of FIG. 2 illustrating the mechanical interlocking and adhesive attachment of the adhesive to the flange of the rainhat.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to FIGS. 1-4, a cowling 8 (FIG. 4) of an automotive vehicle is shown in phantom. The cowling 8 is positioned forward the vehicle windshield underneath the hood which covers the vehicle engine compartment. At least a portion of the cowling 8 provides a generally planar surface 10. The generally flat surface 10 portion of the cowling encircles a flared opening 12. The flared opening 12 receives air for the vehicle heating, ventilation and air conditioning system.
The high temperature injection molded polymeric rainhat 7 of the present invention is made from a high temperature polymeric substance thermoplastic such as polyamide, poly (phenylene sulphide), poly(butylene terephthalate) or other temperature resistant thermoplastic materials. The material should pass a 205° C. temperature test without significant distortion or degradation of the polymeric material. This will enable the rainhat 7 to pass through the electrocoat curving oven and still maintain its functional integrity. In addition, the rainhat 7 material must be capable of passing through a phosphate immersion tank without being damaged. A particularly preferred material commonly known as Nylon sold under the trademark Zytel, and is manufactured by Dupont located in Wilmington, Del. Other important rainhat 7 material characteristics include impact strength, elastic modulus, tensile strength, and elastic strain to failure. Specific requirements for the above characteristics will depend on specific design and attachment methods. The rainhat 7 has a flange 20. The flange 20 joins the rainhat to the planar surface 10 portion of the cowling which encircles the flared opening.
To provide a semi-structural bond to adhesively and sealably join the flange 20 to the planar surface 10 portion of the cowling, the flange 20 has connected therewith an adhesive 22 (FIG. 8). The adhesive 22 is formed from a thermosetting formulated adhesive with a synthetic polymer base which may incorporate magnetizable particles but in general does not. The adhesive (1) may provide a strong magnetic field; (2) melts at temperatures encountered in automotive paint ovens (between about 100 and 235° C.) in order to flow over and around the generally planar surface 10 portion of the cowling to be sealed; (3) bonds well to metal of the cowling; and (4) partially expands to fill any opening between the flange 20 and the generally planar surface 10 portion of the cowling encircling the flared opening 12. In addition, the adhesive 22 should pass any specifications determined to be important to the automotive manufacturer that may include, but are not limited to, corrosion resistance, adhesive strength, toxicity, expansion, etc. Most preferably, the adhesive 22 is a hot melt sealant that volumetrically expands to some extend during curing.
The adhesive 22 includes as one component a synthetic polymer resin or a blend of resins and preferably includes one or more elastomers. In one embodiment, where magnetic particles are, the adhesive 22 contains a polyolefin resin, a combination of ethylene vinyl acetate copolymer (EVA) and an acrylic resin such as ethylene methyl acrylate.
A cross-linking or curing agent is also preferably included in the adhesive 22 to cross-link the polyolefin. The cross-linking agent should provide a reasonable shelf life, but should also be fully activated at the temperatures encountered in the curing environment of an automotive paint oven. A tackifier component is also included in the adhesive 22 to provide adhesion and to enhance peel strength.
The adhesive 22 further may include ferritic magnetic particles which can provide the magnetic field that retains the rain hat flange 20 in position on the flat surface 10 portion of the cowling. In a more referred embodiment, the adhesive 22 further includes a multifunctional cross-linking monomer such as trimethylolpropane trimethacrylate or trimethylolpropane triacrylate to increase the cross-linking density of the adhesive 22. Additionally the adhesive 22 has an expansion agent which produces expansion of the adhesive 22 when it is melted in the automotive paint oven to provide a more uniform and reliable seal of rain hat flange to the generally planar portion of the cowling. Furthermore, the adhesive 22 includes a blowing agent which is thermally-activated. The blowing agent should be fully activated at about 100 to about 200° C.
The adhesive should have a melt index that allows it to flow sufficiently during the sealing operation. A more detailed explanation of the adhesive can be gained from a review of U.S. patent application Ser. No. 08/590,009 Czaplicki et al., the specification of which is incorporated by reference herein. However, other suitable sealants can be utilized such as those commercially available from L & L Products. Suitable formulated materials include L-4200, L-2100 and L-4141.
Referring additionally to FIG. 8, the adhesive 22 is adhesively joined to a bottom surface 24 of the flange 20. The flange 20 has a plurality of vertically transverse bores. The adhesive 22 is molded to the flange 20 such that it flows through the bores 26 and forms a head 28 on the opposite flange top surface 30. The adhesive 22 is therefore also mechanically joined to the flange as well as adhesively joined thereto.
Referring additionally to FIG. 7, integral with the flange 20 and extending downward therefrom are three elongated fastener members 36. The fastener members 36 have a head 38 with compliant barbs 40. The compliant barbs 40 of the fastener members are extended through predrilled holes (not shown) in the cowling generally planar surface 10 portion and thereafter retain the rainhat 7 in position before the flange 20 is adhesively joined to the cowling planar surface 10 portion. A mound 41 is provided to supply additional adhesive in and adjacent a hole which has a straight depression (not shown) in the cowling planar surface 10. The rainhat flange 20 has one central forward fastener members 36. On a rearward side of the flange 20 there are two spaced apart fastener members 36. The fastener members 36 are inclined slightly forward to accommodate a draw angle 130 of the rainhat 7.
Integrally joined to the flange 20 and extending vertically upward therefrom is a water dam 50. The water dam has an interior surface 52 which closely engages the flared opening of the cowling. Any gap between the bottom portion of the rain dam interior surface 52 and the flared opening 12 of the cowling is also sealed by the adhesive 22, after it has been cured. The rain dam interior surface 52 also extends upward beyond a vertical end 18 of the flared opening. The water dam has an extreme upper knife edge 54 forming an opening 62. The interior surface of the water dam front end has a central interior stop 56 (FIGS. 4 and 5). The interior stop has a downward facing abutting edge 58 to make contact with the vertical end 18 of the flared opening 56. A rear wall of the water dam on its interior surface may have, as shown, two spaced apart interior stops to make contact with the vertical end 18 of the flared opening. The water dam interior surface 52 near an upper end is tapered at 60 to form the knife edge 54 with an exterior surface 64 of the water dam. The knife edge 54 aids in the prevention of leaves, leave stems or other debris laying on top the knife edge 54 of the rain dam. The opening 62 of the rain dam defines a predefined air inlet which is sufficient for the needs of the heating, ventilation and air conditioning system of the vehicle.
Positioned on top of the water dam is a foreign matter ingestion preventer 70. The foreign matter ingestion preventer 70 has a plurality of first curvilinear supports 72 extending in a first direction over the water dam opening 62. Each first support 72 is curvilinear having opposite ends joined with the water dam 50. Each first support 72 has a middle portion 74 domed above the opening 62 of the water dam. In the first direction there are three spaced apart supports 72. In other embodiments (not shown) the number of first supports may vary. (See FIGS. 3 and 5, note the middle first support has been removed from FIG. 5 for clarity of illustration). Each of the first supports 72 have an interior side 76 and an exterior side 78. The exterior side 78 of each first support is tapered and has a generally rounded edge. The exterior side 78 of the first support at an end of the first support is flush with the exterior surface 64 of the upper edge of the rain dam. The interior of each first support optionally extends downwardly into the interior surface 52 of the water dam as shown in FIGS. 3 and 5. The interior edge 80 of the first support does not extend far enough downward to contact the upper end 18 of the flared opening. The first supports are typically 2 millimeters thick with a height of 6 millimeters.
Extending generally parallel to the first supports in the first direction are a plurality of first rafters 84. (Note: Some first rafters 84 have been removed from FIGS. 3 and 4 for clarity of illustration). As shown in FIG. 5, the rain hat 7 has twelve first rafters 84, however more first rafters 94 may be included as desired. Each first rafter 84 has opposite ends joining with the water dam. Typically the first rafters will also be curvilinear in shape with a middle portion 86 being domed above the opening 62 of the water dam. Each first rafter 84 has an interior side 88. Each first rafter also has an exterior side 90. The exterior side of each first rafter 90 is tapered in a manner similarly described for the first supports. An interior side 88 of the first rafter are flush with an interior surface 52 of the water dam.
Extending from side to side are two curvilinear second supports 100 (FIGS. 3, 4 and 5). In other embodiments (not shown) the number of second supports may vary. The second supports are generally perpendicular with the first supports. Each second support 100 has a middle portion 102 extending over the water dam opening 62 with opposite ends joined to the water dam 50. Each second support has an interior side 106. Each second support has an exterior side 108. The exterior side 106 of each second support is tapered and has a generally rounded edge 110 (FIG. 6). The second support exterior side 106 is flush with the exterior side 106 is also flush with the exterior side 78 of the first support 72 and of the first rafters exterior side 90. The second support are 2 millimeters thick with a height of 6 millimeters.
The rainhat additionally has second rafter 120. (Note: Some of the second rafters have been removed from FIGS. 3 and 4 for clarity of illustration). The second rafters 120 of the rainhat extend in a second direction generally parallel to the second supports 100. The second rafters have opposite ends joining with the water dam 50. The second rafters have a curvilinear shape with a middle portion 122 being domed above the opening 62 of the water dam (FIG. 5). Each second rafter 120 has an interior side. Each second rafter also has an exterior side 122. An exterior side 124 of the second rafter is flush with the exterior surface 64 of the water dam. The exterior side 124 of the second rafters is also flush with the first supports 72 and the first rafters at their intersection. The second rafters exterior side 126 (FIG. 6a) is tapered and has a particularly round end shape. The interior side 122 of the second rafters is flush with the interior surface 52 of the water dam.
The intersection of the first supports 72 and rafters 84 with the second supports 100 are essentially as shown in FIGS. 6 and 6a, for the intersections of the second supports 100 and rafters 120 with the first support 72.
The rainhat 7 can be molded in a single draw mold machine. As shown, the main body of the rainhat 7 flange water dam and foreign matter ingestion preventer is molded in a single draw mold machine The first and second supports 72, 100 are perpendicular with one another when looked (projected) in a plane perpendicular to the direction of the draw of the mold which is used in forming the rainhat. The draw of the rainhat is generally parallel with the direction 130 of air inflow travel as shown in FIGS. 2 and 3. Slides are typically used to form the fastener member 36.
The surface area of the foreign matter ingestion preventer 70 minus the transverse area of the first support 72, second support 100, first rafters 84 and second rafters 120 is equal to or greater than the area of the opening 62 along the rain dam upper edge. To further aid airflow and to minimize fluid friction, the first and second rafters 89, 120 and supports 72, 100 have an exterior side edge which are tapered as previously mentioned. It has ben empirically found that the tapering of the first and second supports 72, 100 and first and second rafters 84, 120 improves airflow approximately 10%. Still another factor which effects airflow is the tapering of the knife edge 54 of the rain dam. The tapering serves two functions. The first function is the minimization of air friction. The second function is as previously mentioned, it prevents debris from being lodged upon the knife edge 54. Additionally, leaves or other debris which fall upon the rainhat 7 will have a tendency to become unbalanced and fall off due to the three axis curvilinear features of the foreign matter ingestion preventer 70. The dome of the foreign matter ingestion preventer allows the supports and rafters to be thicker yet still provide an opening with the low flow resistance required. Thicker supports and rafters are desired due to increased strength, durability, and moldability.
In operation, the rainhat 7 is typically manually positioned over the flared opening 12 of the cowling. The rainhat 7 is pushed downward allowing the fastener members 36 to enter into the predrilled openings of the cowling 8. The barbs 40 of the fastener members 36 are contracted by the holes in the cowling planar surface 10 portion. Once past the holes the fastener member barbs 36 again extend to then capture the rainhat 7 to the cowling. The vehicle is then taken into an electrolyte bath. The rising of temperature caused by the paint ovens after the electrolytic bath causes the adhesive 22 to expand and to adhesively and sealably connect the rainhat 7 to the vehicle cowling. The barbed fasteners retain the rainhat 7 in position until the curing and expanding process of the adhesive 22 is complete.
While the present invention was illustrated and described with respect to a preferred embodiment, such description is exemplary only and not limiting in nature. Other aspects, objects, and advantages of this invention may be obtained from the study of the drawings, and the disclosure. It is well understood by those skilled in the art that various changes and modifications can be made in the invention without departing from the spirit and scope thereof, which is limited only by the appended claims.

Claims (46)

What is claimed is:
1. A high temperature injection molded polymeric rainhat for a heating, ventilation, and air-conditioning air intake of an automotive vehicle, the vehicle having a cowling with a generally planar surface, the planar surface encircling a flared opening in the cowling, the rainhat comprising:
a flange for adhesively and sealably joining to a portion of the generally planar surface encircling the flared opening;
a water dam integrally joined to the flange and extending therefrom, the water dam having an interior surface closely engaging the flared opening of the cowling and extending upwards beyond a vertical end of the flared opening, and the water dam having an extreme upper edge forming an opening; and
a foreign matter ingestion preventer, the foreign matter ingestion preventer having at least one first curvilinear support extending in a first direction over the water dam upper edge opening, each first support having opposite ends joined with the water dam, and each first support having a middle portion being domed above the opening of the water dam upper edge, each first support having the interior side and an exterior side with the exterior side being tapered, the foreign matter ingestion preventer having at least one second curvilinear support intersecting with the first curvilinear support, the second curvilinear support extending in a second direction over the flared opening, and each second support having opposite ends joined with the water dam, and each second support having a middle portion being doomed above the opening of the water dam, each second support having an interior side and an exterior side with the exterior side being tapered, wherein a surface area of the foreign matter ingestion preventer minus the surface area defined by the transverse dimensions of the supports is generally equal to or greater than the area defined by the opening of the upper edge of the water dam.
2. A high temperature injection molded polymeric rainhat as described in claim 1 with a plurality of first supports.
3. A high temperatures injection molded polymeric rainhat as described in claim 2 with a plurality of second supports.
4. A high temperature injection molded polymeric rainhat as described in claim 1, wherein there is an axis of travel of airflow through the rainhat and the first and second supports form a rectangular image on a plane which is perpendicular to the axis of travel of airflow through the rainhat.
5. A high temperature injection molded polymeric rainhat as describe in claim 1, further including first rafters generally parallel to the first support, the first rafters extending in a first direction over the opening of the water dam edge, each first rafter having opposite ends joining with the water dam, with a middle portion being domed above the opening of the water dam upper edge and each first rafter having an interior side and an exterior side, with the exterior side being tapered, the first rafters intersecting with the second curvilinear supports wherein the area of the foreign matter ingestion preventer minus the surface defined by the transverse dimensions of the area of the first and second supports and first rafters is equal or greater to the area defined by the opening of the upper edge of the water dam.
6. A high temperature injection molded polymeric rainhat as described in claim 1, further including second rafters generally parallel to the second support, the second rafters extending in a second direction over the flared opening of the water dam upper edge, each second rafter having opposite ends joining with the water dam, with a middle portion being domed above the opening of the water dam upper edge and each second rafter having an interior side and an exterior side, with the exterior side being tapered, the second rafters intersecting with the first curvilinear supports and wherein the area of the foreign matter ingestion preventer minus the surface defined by the transverse dimension of the area of the first and second supports and second rafters is equal to or greater to the area defined by the opening of the upper edge of the water dam.
7. A high temperature injection molded polymeric rainhat as described in claim 1, wherein the supports exterior surface is flush with the exterior surface of the upper edge of the rain dam.
8. A high temperature injection molded polymeric rainhat as described in claim 1, wherein an interior of the water dam has interior stops to make contact with an upper edge of the flared opening.
9. A high temperature injection molded polymeric rainhat as described in claim 1, wherein the flange has descending therefrom a plurality of elongated fastener members with compliant barbed heads for insertion into prepared holes in the cowling to connect the rainhat with the cowling before the rainhat is adhesively joined to the cowling.
10. A high temperature injection molded polymeric rainhat as described in claim 1, wherein the first and second rafters have an exterior which is flush with the exterior surface of the water dam.
11. A high temperature injection molded polymeric rainhat as described in claim 1, wherein the first and second rafters have an interior which is flush with an interior surface of the water dam.
12. A high temperature injection molded polymeric rainhat as described in claim 1, wherein an interior surface of the water dam is tapered to an interior surface of the water dam to form an upper edge.
13. A high temperature injection molded polymeric rainhat as described in claim 1, wherein a heat expanding sealant is adhesively and mechanically joined to the flange.
14. A high temperature injection molded polymeric rainhat as described in claim 1, wherein the rainhat is molded from Nylon.
15. A high temperature injection molded polymeric rainhat as described in claim 1, wherein the rainhat flange, water dam and foreign matter injection preventer are made in a single draw injection mold machine.
16. A high temperature injection molded polymeric rainhat for a heating, ventilation, and air-conditioning air intake of an automotive vehicle, the vehicle having a cowling with a generally planar surface, the planar surface encircling a flared opening in the cowling, the rainhat comprising:
a flange for adhesively and sealably joining to a portion of the cowling generally planar surface encircling the flared opening, the flange has descending therefrom a plurality of elongated fastener members with compliant barbed heads for insertion into prepared holes in the cowling to connect the rainhat with the cowling;
a heat expanding sealant adhesively and mechanically joined to the flange;
a water dam integrally joined to the flange and extending therefrom, the water dam having an interior surface closely engaging the flared opening of the cowling and extending upwards beyond a vertical end of the flared opening, and the water dam having an extreme upper knife edge forming an opening and an interior surface of the water dam is tapered to an exterior surface of the water dam to form the upper knife edge, and an interior surface of the water dam has interior stops to make contact with an upper edge of the cowling flared opening; and
a foreign matter ingestion preventer, the foreign matter ingestion preventer having a plurality of first curvilinear supports extending in a first direction over the water dam upper edge opening, each first support having opposite ends joined with the water dam, and each first support having a middle portion being domed above the opening of the water dam upper edge, each first support having the interior side and an exterior side with the exterior side being tapered, and the first supports exterior side being flush with the exterior surface of the water dam the foreign matter ingestion preventer having a plurality of second curvilinear supports intersecting with the first curvilinear supports, the second curvilinear supports extending in a second direction over the water dam, and each second support having opposite ends joined with the water dam, and each second support having a middle portion being domed above the opening of the water dam, each second support having an interior side and an exterior side with the exterior side being tapered and the second supports exterior side being flush with the exterior surface of the water dam, the foreign matter ingestion preventer further including first rafters generally parallel to the first supports, the first rafters extending in a first direction over the opening of the water dam, each first rafter having opposite ends joining with the water dam, each first rafter having a middle portion being domed above the opening of the water dam, each first rafter having opposite ends joining with the water dam, each first rafter having a middle portion being domed above the opening of the water dam and each first rafter having an interior side and an exterior side with the exterior side of the first rafter being tapered and the first rafter has ends flush with the exterior surface of the water dam, and the first rafter interior side being flush with an interior surface of the water dam, and the foreign matter ingestion preventer further including second rafters generally parallel to the second supports, the second rafters extending in a second direction over the opening of the water dam, each second rafter having opposite ends joining with the water dam, each second rafter having a middle portion being domed above the opening of the water dam and each second rafter having an interior side and an exterior side and the ends of the second rafter being flush with the interior and exterior surfaces respectively of the water dam, and the second rafter exterior side being tapered, the second rafters intersecting with the first curvilinear supports and rafters, and wherein the area of the foreign matter ingestion preventer minus the surface defined by the transverse dimensions of the area of the first and second supports and first and second rafters is equal or greater to the area defined by the opening of the water dam.
17. A high temperature injection molded polymeric rainhat as described in claim 14, wherein there is an axis of travel of airflow through the rainhat and the first and second supports project a rectangular image on a plane which is perpendicular to the axis of travel of airflow through the rainhat.
18. A high temperature injection molded polymeric rainhat as described in claim 1 wherein the rainhat flange, water dam and foreign matter injection preventer are made in a single draw injection mold machine.
19. A single integral rainhat comprising:
a flange for adhesively and sealably joining to a portion of an automotive vehicle having a cowling;
a water dam integrally joined to the flange and extending therefrom, the dam further having an interior surface for closely engaging an automotive vehicle cowling, and an extreme upper edge forming an opening;
a foreign matter ingestion preventer joined with the water dam having a plurality of first curvilinear supports extending in a first direction over the water dam upper edge opening and a plurality of second curvilinear supports intersecting with the first curvilinear supports.
20. A rainhat as described in claim 19, wherein a surface area of the foreign matter ingestion preventer minus a surface area defined by the transverse dimensions of the first and the second supports is generally equal to or greater than an area defined by the opening of the upper edge of the water dam.
21. A rainhat as described in claim 20, wherein each first curvilinear support of the foreign matter ingestion preventer comprises:
opposite ends joined with the water dam, a middle portion domed above the opening of the water dam, and a tapered exterior side.
22. A rainhat as described in claim 20, wherein each second support of the foreign matter ingestion preventer comprises:
opposite ends joined with the water dam, a middle portion domed above the opening of the water dam, and a tapered exterior side.
23. A rainhat as described in claim 20, wherein there is an axis of travel of airflow through the rainhat and the first and second supports project a rectangular image on a plane which is perpendicular to the axis of travel of airflow through the rainhat.
24. A rainhat as described in claim 24 wherein the flange adhesively and sealably joins to a portion of an automotive vehicle cowling having a generally planar surface encircling a flared opening, the cowling flared opening having a vertical end.
25. A rainhat as described in claim 24 wherein the water dam interior surface closely engages the flared opening of the cowling and extends upwards beyond the cowling vertical end.
26. A rainhat as described in claim 19 wherein the rainhat is formed from a high temperature injection molded polymeric material.
27. A rainhat as described in claim 27 wherein the rainhat flange, water dam and foreign matter injection preventer are made in a single draw injection mold machine.
28. A rainhat as described in claim 19, wherein a heat expanding sealant is adhesively and mechanically joined to the flange.
29. A rainhat as described in claim 26, wherein the rainhat is molded from Nylon.
30. A single integral rainhat for a heating, ventilation, and air-conditioning air intake of an automotive vehicle, the vehicle having a cowling, the rainhat comprising:
a flange for adhesively and sealably joining to a portion of cowling;
a water dam integrally joined to the flange and extending therefrom, the water dam having an interior surface closely engaging the cowling and the water dam having an extreme upper edge forming an opening; and
a foreign matter ingestion preventer, the foreign matter ingestion preventer having a plurality of first curvilinear supports extending in a first direction over the water dam upper edge opening and a plurality of second supports intersecting with the first curvilinear supports.
31. A rainhat as described in claim 30, wherein a surface area of the foreign matter ingestion preventer minus a surface area defined by the transverse dimensions of the first and the second supports is generally equal to or greater than an area defined by the opening of the upper edge of the water dam.
32. A rainhat as described in claim 31, wherein each first curvilinear support of the foreign matter ingestion preventer comprises:
opposite ends joined with the water dam, a middle portion domed above the opening of the water dam, and a tapered exterior side.
33. A rainhat as described in claim 31, wherein each second support of the foreign matter ingestion preventer comprises:
opposite ends joined with the water dam, a middle portion domed above the opening of the water dam, and a tapered exterior side.
34. A rainhat as described in claim 31, wherein there is an axis of travel of airflow through the rainhat and the first and second supports project a rectangular image on a plane which is perpendicular to the axis of travel of airflow through the rainhat.
35. A rainhat as described in claim 30 wherein the cowling has a generally planar surface encircling a flared opening, the cowling flared opening having a vertical end.
36. A rainhat as described in claim 35 wherein the flange adhesively and sealably joins to a portion of the cowling generally planar surface encircling the flared opening.
37. A rainhat as described in claim 35 wherein the water dam interior surface closely engages the flared opening of the cowling and extends upwards beyond the cowling vertical end.
38. A rainhat as described in claim 31 wherein the rainhat is formed from a high temperature injection molded polymeric material.
39. A single integral rainhat for a heating, ventilation, and air-conditioning air intake of an automotive vehicle, the vehicle having a cowling, the rainhat comprising:
a flange for adhesively and sealably joining to a portion of cowling;
a heat expanding sealant adhesively and mechanically joined to the flange;
a water dam integrally joined to the flange and extending therefrom, the water dam having an interior surface closely engaging the cowling and the water dam having an extreme upper edge forming an opening; and
a foreign matter ingestion preventer for discouraging the entrapment of leaves or other articles which can clog up air intake openings, the foreign matter ingestion preventer having a plurality of first curvilinear supports extending in a first direction over the water dam upper edge opening and a plurality of second curvilinear supports intersecting with the first curvilinear supports.
40. A rainhat as described in claim 39, wherein a surface area of the foreign matter ingestion preventer minus a surface area defined by the transverse dimensions of the first and the second supports is generally equal to or greater than an area defined by the opening of the upper edge of the water dam.
41. A rainhat as described in claim 40, wherein each first curvilinear support of the foreign matter ingestion preventer comprises:
opposite ends joined with the water dam, a middle portion domed above the opening of the water dam, and a tapered exterior side.
42. A rainhat as described in claim 40, wherein each second support of the foreign matter ingestion preventer comprises:
opposite ends joined with the water dam, a middle portion domed above the opening of the water dam, and a tapered exterior side.
43. A rainhat as described in claim 40, wherein there is an axis of travel of airflow through the rainhat and the first and second supports project a rectangular image on a plane which is perpendicular to the axis of travel of airflow through the rainhat.
44. A rainhat as described in claim 39 wherein the cowling has a generally planar surface encircling a flared opening, the cowling flared opening having a vertical end and wherein the water dam interior surface closely engages the flared opening of the cowling and extends upwards beyond the cowling vertical end.
45. A rainhat as described in claim 39 wherein the rainhat is formed from a high temperature injection molded polymeric material.
46. A rainhat as described in claim 45 wherein the rainhat flange, water dam and foreign matter injection preventer are made in a single draw injection mold machine.
US10/093,278 1998-10-21 2002-03-07 Automotive vehicle HVAC rainhat Expired - Lifetime USRE38157E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/093,278 USRE38157E1 (en) 1998-10-21 2002-03-07 Automotive vehicle HVAC rainhat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/176,357 US6033300A (en) 1998-10-21 1998-10-21 Automotive vehicle HVAC rainhat
US10/093,278 USRE38157E1 (en) 1998-10-21 2002-03-07 Automotive vehicle HVAC rainhat

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/176,357 Reissue US6033300A (en) 1998-10-21 1998-10-21 Automotive vehicle HVAC rainhat

Publications (1)

Publication Number Publication Date
USRE38157E1 true USRE38157E1 (en) 2003-06-24

Family

ID=22644027

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/176,357 Ceased US6033300A (en) 1998-10-21 1998-10-21 Automotive vehicle HVAC rainhat
US10/093,278 Expired - Lifetime USRE38157E1 (en) 1998-10-21 2002-03-07 Automotive vehicle HVAC rainhat

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/176,357 Ceased US6033300A (en) 1998-10-21 1998-10-21 Automotive vehicle HVAC rainhat

Country Status (1)

Country Link
US (2) US6033300A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040147834A1 (en) * 2003-01-17 2004-07-29 Mednovus, Inc. Security screening method and apparatus
US20050003752A1 (en) * 2003-06-03 2005-01-06 L&L Products, Inc. HVAC protection system for automotive vehicles
US6939219B1 (en) * 2004-04-01 2005-09-06 Randell P. Pollen Powered ventilator
US20060022670A1 (en) * 2004-07-31 2006-02-02 Mednovus, Inc. Magnetic resonance screening portal with combination sensing
US20070057786A1 (en) * 2005-09-13 2007-03-15 Mednovus, Inc. Ferromagnetic threat warning system
US7239134B2 (en) 2003-01-17 2007-07-03 Mednovus, Inc. Screening method and apparatus
US7392929B1 (en) 2004-07-26 2008-07-01 Zephyros, Inc. Weldable synthetic material
US20080254214A1 (en) * 2006-10-26 2008-10-16 Zephyros, Inc. Adhesive materials, adhesive parts formed therewith and their uses
US7625275B1 (en) 2006-01-26 2009-12-01 Ford Global Technologies, Llc Aerodynamic rain-hat for vehicle air intake
US20130005232A1 (en) * 2011-07-01 2013-01-03 Ford Global Technologies, Llc Louvered rain-hat for the fresh air inlet of a vehicle
US10800228B2 (en) * 2018-04-12 2020-10-13 Ford Global Technologies, Llc Leaf screen and method of making the leaf screen with co-molded seal and bump stop

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103341A (en) 1997-12-08 2000-08-15 L&L Products Self-sealing partition
US6131897A (en) 1999-03-16 2000-10-17 L & L Products, Inc. Structural reinforcements
US6358584B1 (en) 1999-10-27 2002-03-19 L&L Products Tube reinforcement with deflecting wings and structural foam
US6668457B1 (en) * 1999-12-10 2003-12-30 L&L Products, Inc. Heat-activated structural foam reinforced hydroform
CA2399457C (en) * 2000-02-11 2009-09-15 L&L Products, Inc. Structural reinforcement system for automotive vehicles
US6467834B1 (en) 2000-02-11 2002-10-22 L&L Products Structural reinforcement system for automotive vehicles
US6296298B1 (en) 2000-03-14 2001-10-02 L&L Products, Inc. Structural reinforcement member for wheel well
US6482486B1 (en) 2000-03-14 2002-11-19 L&L Products Heat activated reinforcing sleeve
US6422575B1 (en) 2000-03-14 2002-07-23 L&L Products, Inc. Expandable pre-formed plug
US6820923B1 (en) 2000-08-03 2004-11-23 L&L Products Sound absorption system for automotive vehicles
US6634698B2 (en) 2000-08-14 2003-10-21 L&L Products, Inc. Vibrational reduction system for automotive vehicles
US6561571B1 (en) 2000-09-29 2003-05-13 L&L Products, Inc. Structurally enhanced attachment of a reinforcing member
US6471285B1 (en) 2000-09-29 2002-10-29 L&L Products, Inc. Hydroform structural reinforcement system
US6419305B1 (en) 2000-09-29 2002-07-16 L&L Products, Inc. Automotive pillar reinforcement system
GB0106911D0 (en) 2001-03-20 2001-05-09 L & L Products Structural foam
GB2375328A (en) * 2001-05-08 2002-11-13 L & L Products Reinforcing element for hollow structural member
US6502821B2 (en) 2001-05-16 2003-01-07 L&L Products, Inc. Automotive body panel damping system
US6855652B2 (en) 2001-08-24 2005-02-15 L&L Products, Inc. Structurally reinforced panels
US6729425B2 (en) 2001-09-05 2004-05-04 L&L Products, Inc. Adjustable reinforced structural assembly and method of use therefor
US6786533B2 (en) 2001-09-24 2004-09-07 L&L Products, Inc. Structural reinforcement system having modular segmented characteristics
US6793274B2 (en) * 2001-11-14 2004-09-21 L&L Products, Inc. Automotive rail/frame energy management system
US7318873B2 (en) 2002-03-29 2008-01-15 Zephyros, Inc. Structurally reinforced members
US6969551B2 (en) 2002-04-17 2005-11-29 L & L Products, Inc. Method and assembly for fastening and reinforcing a structural member
US7169344B2 (en) * 2002-04-26 2007-01-30 L&L Products, Inc. Method of reinforcing at least a portion of a structure
US7077460B2 (en) 2002-04-30 2006-07-18 L&L Products, Inc. Reinforcement system utilizing a hollow carrier
GB0211287D0 (en) * 2002-05-17 2002-06-26 L & L Products Inc Improved baffle precursors
GB0211268D0 (en) * 2002-05-17 2002-06-26 L & L Products Inc Hole plugs
GB0211775D0 (en) * 2002-05-23 2002-07-03 L & L Products Inc Multi segment parts
US6920693B2 (en) * 2002-07-24 2005-07-26 L&L Products, Inc. Dynamic self-adjusting assembly for sealing, baffling or structural reinforcement
US7004536B2 (en) * 2002-07-29 2006-02-28 L&L Products, Inc. Attachment system and method of forming same
US20040034982A1 (en) * 2002-07-30 2004-02-26 L&L Products, Inc. System and method for sealing, baffling or reinforcing
US6923499B2 (en) * 2002-08-06 2005-08-02 L & L Products Multiple material assembly for noise reduction
US6883858B2 (en) * 2002-09-10 2005-04-26 L & L Products, Inc. Structural reinforcement member and method of use therefor
US6692347B1 (en) 2002-09-27 2004-02-17 L&L Products, Inc. Filter housing assembly for transportation vehicles
US7105112B2 (en) * 2002-11-05 2006-09-12 L&L Products, Inc. Lightweight member for reinforcing, sealing or baffling
GB0300159D0 (en) 2003-01-06 2003-02-05 L & L Products Inc Improved reinforcing members
US7313865B2 (en) 2003-01-28 2008-01-01 Zephyros, Inc. Process of forming a baffling, sealing or reinforcement member with thermoset carrier member
JP4406540B2 (en) * 2003-03-28 2010-01-27 シャープ株式会社 Thin film transistor substrate and manufacturing method thereof
US7111899B2 (en) * 2003-04-23 2006-09-26 L & L Products, Inc. Structural reinforcement member and method of use therefor
GB2401349A (en) * 2003-05-08 2004-11-10 L & L Products Reinforcement for a vehicle panel
US7041193B2 (en) * 2003-05-14 2006-05-09 L & L Products, Inc. Method of adhering members and an assembly formed thereby
US20050016807A1 (en) * 2003-07-21 2005-01-27 L&L Products, Inc. Crash box
US7469459B2 (en) * 2003-09-18 2008-12-30 Zephyros, Inc. System and method employing a porous container for sealing, baffling or reinforcing
US20050102815A1 (en) * 2003-11-03 2005-05-19 L&L Products, Inc. Reinforced members formed with absorbent mediums
US20050127145A1 (en) * 2003-11-20 2005-06-16 L&L Products, Inc. Metallic foam
US20050166532A1 (en) * 2004-01-07 2005-08-04 L&L Products, Inc. Structurally reinforced panels
US20050172486A1 (en) * 2004-02-05 2005-08-11 L&L Products, Inc. Member for sealing, baffling or reinforcing and method of forming same
GB2415658A (en) * 2004-06-21 2006-01-04 L & L Products Inc An overmoulding process
US20060021697A1 (en) * 2004-07-30 2006-02-02 L&L Products, Inc. Member for reinforcing, sealing or baffling and reinforcement system formed therewith
US20050012280A1 (en) * 2004-08-13 2005-01-20 L&L Products, Inc. Sealing member, sealing method and system formed therewith
US7374219B2 (en) * 2004-09-22 2008-05-20 Zephyros, Inc. Structural reinforcement member and method of use therefor
US20060065483A1 (en) * 2004-09-29 2006-03-30 L&L Products, Inc. Baffle with flow-through medium
US20060090343A1 (en) * 2004-10-28 2006-05-04 L&L Products, Inc. Member for reinforcing, sealing or baffling and reinforcement system formed therewith
US7494179B2 (en) * 2005-04-26 2009-02-24 Zephyros, Inc. Member for baffling, reinforcement or sealing
US7503620B2 (en) * 2005-05-12 2009-03-17 Zephyros, Inc. Structural reinforcement member and method of use therefor
US7926179B2 (en) * 2005-08-04 2011-04-19 Zephyros, Inc. Reinforcements, baffles and seals with malleable carriers
GB0600901D0 (en) * 2006-01-17 2006-02-22 L & L Products Inc Improvements in or relating to reinforcement of hollow profiles
FR2919565B1 (en) * 2007-07-31 2009-12-25 Peugeot Citroen Automobiles Sa AUTOMOTIVE VEHICLE AWNING, ASSOCIATED PIPING METHOD AND DEFLECTOR.
GB0806434D0 (en) * 2008-04-09 2008-05-14 Zephyros Inc Improvements in or relating to structural adhesives
GB0916205D0 (en) 2009-09-15 2009-10-28 Zephyros Inc Improvements in or relating to cavity filling
US9096039B2 (en) 2010-03-04 2015-08-04 Zephyros, Inc. Structural composite laminates
CN105637007A (en) 2013-07-26 2016-06-01 泽费罗斯股份有限公司 Thermosetting adhesive films including a fibrous carrier
GB201417985D0 (en) 2014-10-10 2014-11-26 Zephyros Inc Improvements in or relating to structural adhesives
DE102015014646A1 (en) * 2015-11-12 2017-05-18 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Water tank cover for a motor vehicle
US20170136853A1 (en) * 2015-11-17 2017-05-18 Ford Global Technologies, Llc Air box cover with integral air flow straightener pattern
FR3092037B1 (en) * 2019-01-28 2021-01-01 Psa Automobiles Sa Air intake equipped with a deflector for a motor vehicle air conditioning unit

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2888274A (en) * 1956-09-24 1959-05-26 Gen Motors Corp Automotive fender air duct structures
US3062125A (en) * 1960-03-28 1962-11-06 Henneberger Leo Ventilators
CA861234A (en) * 1967-11-18 1971-01-19 Brown Roy Automobile air intake shields
US4466654A (en) * 1979-11-19 1984-08-21 Nissan Motor Company, Limited Automotive vehicle cowl construction
US4819550A (en) * 1987-07-28 1989-04-11 Mazda Motor Corporation Air intake structure of an automobile
US5108146A (en) * 1991-07-22 1992-04-28 Molmec, Inc. Cowl grill to windshield lip seal
US5368620A (en) * 1992-09-01 1994-11-29 Kansei Corporation Device for cleaning surrounding air fed to passenger compartment of motor vehicle
US6185098B1 (en) * 2000-01-31 2001-02-06 Chatsworth Products, Inc. Co-location server cabinet
USD448468S1 (en) * 2000-11-21 2001-09-25 Juergen Koessler Roof vent
US6439991B1 (en) * 2001-09-05 2002-08-27 Airlette Mfg. Corporation One piece louver vent

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2888274A (en) * 1956-09-24 1959-05-26 Gen Motors Corp Automotive fender air duct structures
US3062125A (en) * 1960-03-28 1962-11-06 Henneberger Leo Ventilators
CA861234A (en) * 1967-11-18 1971-01-19 Brown Roy Automobile air intake shields
US4466654A (en) * 1979-11-19 1984-08-21 Nissan Motor Company, Limited Automotive vehicle cowl construction
US4819550A (en) * 1987-07-28 1989-04-11 Mazda Motor Corporation Air intake structure of an automobile
US5108146A (en) * 1991-07-22 1992-04-28 Molmec, Inc. Cowl grill to windshield lip seal
US5368620A (en) * 1992-09-01 1994-11-29 Kansei Corporation Device for cleaning surrounding air fed to passenger compartment of motor vehicle
US6185098B1 (en) * 2000-01-31 2001-02-06 Chatsworth Products, Inc. Co-location server cabinet
USD448468S1 (en) * 2000-11-21 2001-09-25 Juergen Koessler Roof vent
US6439991B1 (en) * 2001-09-05 2002-08-27 Airlette Mfg. Corporation One piece louver vent

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040147834A1 (en) * 2003-01-17 2004-07-29 Mednovus, Inc. Security screening method and apparatus
US7106056B2 (en) * 2003-01-17 2006-09-12 Mednovus, Inc. Security screening method and apparatus
US7239134B2 (en) 2003-01-17 2007-07-03 Mednovus, Inc. Screening method and apparatus
US7275985B2 (en) 2003-06-03 2007-10-02 Zephyros, Inc. HVAC protection system for automotive vehicles
US20050003752A1 (en) * 2003-06-03 2005-01-06 L&L Products, Inc. HVAC protection system for automotive vehicles
US6955593B2 (en) 2003-06-03 2005-10-18 L & L Products, Inc. HVAC protection system for automotive vehicles
US6939219B1 (en) * 2004-04-01 2005-09-06 Randell P. Pollen Powered ventilator
US7392929B1 (en) 2004-07-26 2008-07-01 Zephyros, Inc. Weldable synthetic material
US20060022670A1 (en) * 2004-07-31 2006-02-02 Mednovus, Inc. Magnetic resonance screening portal with combination sensing
US20070057786A1 (en) * 2005-09-13 2007-03-15 Mednovus, Inc. Ferromagnetic threat warning system
US7625275B1 (en) 2006-01-26 2009-12-01 Ford Global Technologies, Llc Aerodynamic rain-hat for vehicle air intake
US20080254214A1 (en) * 2006-10-26 2008-10-16 Zephyros, Inc. Adhesive materials, adhesive parts formed therewith and their uses
US8236128B2 (en) 2006-10-26 2012-08-07 Zephyros, Inc. Adhesive materials, adhesive parts formed therewith and their uses
US20130005232A1 (en) * 2011-07-01 2013-01-03 Ford Global Technologies, Llc Louvered rain-hat for the fresh air inlet of a vehicle
US10035405B2 (en) * 2011-07-01 2018-07-31 Ford Global Technologies, Llc Louvered rain-hat for the fresh air inlet of a vehicle
US10800228B2 (en) * 2018-04-12 2020-10-13 Ford Global Technologies, Llc Leaf screen and method of making the leaf screen with co-molded seal and bump stop

Also Published As

Publication number Publication date
US6033300A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
USRE38157E1 (en) Automotive vehicle HVAC rainhat
US6692347B1 (en) Filter housing assembly for transportation vehicles
US7316447B2 (en) Integrated motor vehicle cowl vent and seal
US7523798B2 (en) Support structure of cooling air intake duct for intercooler of vehicle
US7740307B2 (en) Motor vehicle component and methods for its manufacture
US7275556B2 (en) Low permeation weldable fuel tank assembly
US6955593B2 (en) HVAC protection system for automotive vehicles
US6273496B1 (en) Overmoulded metal/plastic composite front panel for motor vehicle
US6206438B1 (en) Grill for vehicle front end
US7571957B2 (en) Component integration panel system with closed box section
CN101564982B (en) Car door sealing strip
US7011780B2 (en) Method for producing a monolithic front air deflector
CN103029755A (en) Vehicle front structure
US6578727B2 (en) Mounting for a fuel tank on a motor vehicle
US20140265446A1 (en) Vehicle cowl
EP3213964A1 (en) Bumper made using a resistive implant welding process
CN205098088U (en) Magnetism binding clip and including its vehicle
US6945592B1 (en) Sealer tape and clip assembly
JP4181098B2 (en) Vehicle cowl structure
CN206563113U (en) One kind ventilation stop valve and its bonnet
EP1317358B1 (en) A plastics material fuel tank for a motor vehicle
CN101716924A (en) Automobile windshield defrosting air pipe
CN218236078U (en) Gearbox filter belt assembly
US6112468A (en) Door weatherstripping for motor vehicle and method of manufacturing the same
US20230271487A1 (en) Thermoplastic hardtop roof

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12