USRE39686E1 - Ambient light collecting bow sight - Google Patents

Ambient light collecting bow sight Download PDF

Info

Publication number
USRE39686E1
USRE39686E1 US10/835,580 US83558004A USRE39686E US RE39686 E1 USRE39686 E1 US RE39686E1 US 83558004 A US83558004 A US 83558004A US RE39686 E USRE39686 E US RE39686E
Authority
US
United States
Prior art keywords
light collecting
bow sight
sight
collecting mechanism
fiber optic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/835,580
Inventor
Bahram Khoshnood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=21909396&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE39686(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US10/835,580 priority Critical patent/USRE39686E1/en
Application granted granted Critical
Publication of USRE39686E1 publication Critical patent/USRE39686E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/46Sighting devices for particular applications
    • F41G1/467Sighting devices for particular applications for bows

Definitions

  • the present invention relates generally to bow sights, and more specifically to an ambient light collecting bow sight.
  • the present invention is particularly useful in, although not limited to, assisting hunters and/or competition shooters equipped with bows and/or firearms to target game or objects in low-light environments.
  • the present invention overcomes the above-mentioned disadvantage, and meets the recognized need for such a device by providing an ambient light collecting bow sight, wherein the bow sight is able to effectively harness diminutive amounts of ambient light and magnify it to a useable light source capable of assisting hunters in sighting their targets in low-light environments.
  • the present invention in its preferred form is an ambient light collecting bow sight having a light collecting filament.
  • the present invention is an ambient light collecting bow sight having a light collecting filament, wherein the light collecting filament is preferably a scintillating fiber optic filament of sufficient length to enable extensive wrapping or winding of the fiber optic filament around a preferably translucent bow sight.
  • the repeated wrapping or winding of the lengthy strand of fiber optic filament configures the filament to provide increased surface area with which to harness ambient light.
  • the translucent material from which the actual bow sight is constructed further enables ambient light to pass therethrough and thus to be harnessed by the wrapped filament.
  • a portion of the fiber optic filament is attached to a pin or crosshair of the bow sight, thus functioning as a lit targeting pin.
  • a feature and advantage of the present invention is its ability to provide a lit bow sight.
  • a feature and advantage of the present invention is its ability to be used in extremely low-level light environments.
  • a feature and advantage of the present invention is its ability to effectively harness ambient low-level light and magnify it to a useable light source.
  • a feature and advantage of the present invention is its ability to allow the archer/hunter to sight targets in low-level light environments.
  • a feature and advantage of the present invention is its ability to provide a large ambient light collecting surface area.
  • a feature and advantage of the present invention is its portability.
  • a feature and advantage of the present invention is its ease of use.
  • a feature and advantage of the present invention is its ability to provide a rotatable or adjustable bow sight.
  • FIG. 1 is a front perspective view of an ambient light collecting bow sight according to a preferred embodiment of the present invention.
  • FIG. 2 is a rear perspective view of an ambient light collecting bow sight according to a preferred embodiment of the present invention.
  • FIG. 3 is an exploded view of an ambient light collecting bow sight according to a preferred embodiment of the present invention.
  • FIG. 4 is a front perspective view of an ambient light collecting bow sight according to an alternate embodiment of the present invention.
  • FIG. 5 is a rear perspective view of an ambient light collecting bow sight according to an alternate embodiment of the present invention.
  • FIG. 6 is an exploded view of an ambient light collecting bow sight according to an alternate embodiment of the present invention.
  • FIG. 7 is a front perspective view of an ambient light collecting bow sight according to an alternate embodiment of the present invention.
  • FIG. 8 is a rear perspective view of an ambient light collecting bow sight according to an alternate embodiment of the present invention.
  • FIG. 9 is an exploded view of an ambient light collecting bow sight according to an alternate embodiment of the present invention.
  • FIGS. 1-9 In describing the preferred and alternate embodiments of the present invention, as illustrated in FIGS. 1-9 , specific terminology is employed for the sake of clarity. The invention, however, is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish similar functions.
  • the present invention in its preferred embodiment is an ambient light collecting bow sight 10 having bow sight 20 and light collecting mechanism 80 .
  • bow sight 20 has preferably cylindrical shaft 22 integrally formed to ring 24 .
  • integral formation of shaft 22 is preferred, one skilled in the art would readily recognize that shaft 22 could attach to ring 24 via any attaching means known within the art, such as, for exemplary purposes only, epoxies or resins.
  • Shaft 22 is preferably dimensioned to be received within an aperture B in bow sight support A, wherein bow sight support A is any conventional bow sight support known within the art. It is anticipated that the dimensions and/or shape of shaft 22 could be modified to enable reception by other types or configurations of bow sight supports.
  • Bow sight 20 is preferably formed from a sturdy transparent plastic to allow light to pass therethrough to be harnessed by light collecting mechanism 80 ; however, other suitable non-opaque materials can be used for bow sight 20 .
  • Ring 24 preferably possesses outer wall 26 and inner wall 28 joined to front wall 30 and rear wall 32 , wherein inner wall 28 defines aperture 34 .
  • Outer wall 26 preferably possesses hump 36 , wherein hump 36 has throughhole 36 A formed therethrough for receiving a conventional bow leveler as known within the art.
  • Ring 24 is preferably dimensioned to receive insert 38 , wherein insert 38 preferably possesses outer ring 40 preferably integrally formed to inner ring 42 or attached thereto via any attaching means known within the art, such as, for exemplary purposes only, epoxies or resins.
  • Inner ring 42 is preferably of reduced diameter relative to outer ring 40 , thus forming area 44 , wherein inner ring 42 is preferably dimensioned to be received within aperture 34 of ring 24 .
  • outer and inner rings 40 and 42 respectively, share a common aperture 46 , defined by shared inner wall 48 , wherein inner wall 48 preferably has sighting pin 49 integrally formed thereto or attached thereto via any attaching means known within the art, such as, for exemplary purposes only, epoxies or resins.
  • Area 44 of outer ring 40 preferably has a plurality of throughholes 50 formed therethrough, wherein any one of the plurality of throughholes 50 preferably aligns with any one of threaded holes 52 , 54 or 56 formed on back wall 32 of ring 24 . As such, when inner ring 42 is inserted into aperture 34 of ring 24 , area 44 generally abuts and is substantially flush with back wall 32 of bow sight 20 .
  • Rotation of insert 38 enables sighting pin 49 to be positioned at any desired angle, whereupon the selected position of insert 38 in general is preferably maintained via the insertion of each of screws 58 , 60 and 62 through one throughhole of the plurality of throughholes 50 on area 44 and thereafter into respective threaded holes 52 , 54 and 56 of back wall 32 of ring 24 .
  • Front wall 30 of ring 24 preferably has formed thereon additional threaded holes 64 , 66 and 68 for attachment of insert 38 to front wall 30 for situations requiring a left-hand oriented bow sight 20 .
  • front and back walls 30 and 32 , respectively, of ring 24 preferably each possess three threaded holes formed thereon, it is contemplated in alternate embodiments that front and back walls 30 and 32 , respectively, could define any number of threaded holes, and that holes could be limited to only one of walls 30 or 32 .
  • Outer ring 40 preferably defines indentation 70 defined along outer peripheral wall 70 A of outer ring 40 , wherein indentation 70 preferably enables insertion of a common bow sight leveler into throughhole 36 A of hump 36 of ring 24 when insert 38 is positioned with ring 24 .
  • Light collecting mechanism 80 is preferably a substantially long strand of scintillating ambient light collecting fiber optic filament 82 , preferably wrapped a plurality of times around the circumference of outer wall 42 A of inner ring 42 , wherein outer wall 42 A preferably has formed thereon generally equally spaced retention guards 72 , 74 and 76 that preferably prohibit the coiled/wrapped fiber optic filament 82 from sliding off from outer wall 42 A of inner ring 42 .
  • Retention guard 72 preferably possesses throughhole 72 A formed therethrough for receiving and retaining first end 82 A of fiber optic filament 80 , wherein opposing second end 82 B of fiber optic filament 80 is preferably fed through throughhole 48 A formed at the base of sighting pin 49 and thereafter secured to the tip of sighting pin 49 via insertion of end 82 B through retaining throughhole 49 A formed on sighting pin 49 .
  • fiber optic filament 82 is preferably enclosed or generally encased within the confines created by outer wall 42 A of inner ring 42 butting up against inner wall 28 of ring 24 .
  • a generally long wrapped strand of fiber optic filament 82 is preferably utilized as light collecting mechanism 80 , wherein the plurality of coils and/or wrappings of fiber optic filament 82 around outer wall 42 A of inner ring 40 promote a greater surface area in which to capture ambient light passing through transparent ring 24 .
  • fiber optic filament 82 preferably emits green, yellow and/or amber light upon harnessing the ambient light, wherein different colors of fiber optic filaments are known within the art and may be utilized in alternate embodiments.
  • the present invention according to an alternate embodiment is an ambient light collecting bow sight 210 having bow sight 220 and light collecting mechanism 280 .
  • bow sight 220 preferably has generally D-shaped ring 222 , wherein D-shaped ring 222 preferably has first wall 224 and curved second wall 226 , and wherein first wall 224 preferably has front surface 228 , back surface 230 and side walls 232 and 234 .
  • Side wall 232 of first wall 224 preferably has substantially rectangular shaped shaft 236 integrally formed therewith or attached thereto via any attaching means known within the art, such as, for exemplary purposes only, epoxies or resins.
  • Shaft 236 is preferably dimensioned to be received within an aperture BB in bow sight support AA, wherein bow sight support AA is any conventional bow sight support known within the art.
  • bow sight 220 is preferably formed from a sturdy transparent plastic so as to allow light to pass therethrough to be harnessed by light collecting mechanism 280 ; however, other suitable non-opaque materials can be used.
  • generally barrel-shaped filament support 290 having substantially rectangular shaped support arms 296 and 298 opposingly attached thereto, is attached to back surface 230 of first wall 224 preferably via the insertion of screws 300 and 302 through throughholes 292 and 294 of support arms 296 and 298 , respectively, and into holes 230 A and 230 B of back wall 230 , wherein filament support 290 preferably supports light collecting mechanism 280 .
  • Light collecting mechanism 280 preferably includes three generally long coiled strands of scintillating ambient light collecting fiber optic filaments 282 , 284 and 286 .
  • Each of filaments 282 , 284 and 286 is preferably wound around filament support 290 , wherein generally equally spaced flanges 293 and 295 encircle filament support 290 and function to substantially separate filaments 282 , 284 and 286 from one another.
  • Filament support 290 is preferably formed from a sturdy transparent plastic so as to allow light to pass therethrough to be harnessed by the coiled fiber optic filaments 282 , 284 and 286 ; however, other suitable non-opaque materials can be used.
  • Filaments 282 , 284 and 286 wrapped around filament support 290 are preferably substantially shielded by a semi-circular shaped encasement 238 , wherein encasement 238 is also preferably formed from a sturdy transparent plastic so as to allow light to pass therethrough to be harnessed by the coiled fiber optic filaments 282 , 284 and 286 of light collecting mechanism 280 ; however, other suitable non-opaque materials can also be utilized.
  • Ends 282 A, 284 A and 286 A of filaments 282 , 284 and 286 preferably extend from filament support 290 , through first wall 224 and into preferably three generally hollow sighting pins 240 , 242 and 244 , respectively.
  • ends 282 A, 284 A and 286 A of fiber optic filaments 282 , 284 and 286 are visible from the ends of hollow sighting pins 240 , 242 and 244 , respectively, and serve as lit sighting pins upon the capture of ambient light by fiber optic filaments 282 , 284 and 286 , respectively.
  • long coiled strands of fiber optic filaments 282 , 284 and 286 are preferably utilized as light collecting mechanism 280 , wherein the multiple coiling of fiber optic filaments 282 , 284 and 286 around filament support 290 and within encasement 238 promotes a maximized surface area in which to capture ambient light passing through transparent encasement 238 and how sight 210 in general. As such, light from all directions can be harnessed from all around fiber optic filaments 282 , 284 and 286 , thus increasing or magnifying the output of useful light therefrom.
  • fiber optic filaments 282 , 284 and 286 preferably emit green, yellow and/or amber light upon harnessing the ambient light, wherein different colors of fiber optic filaments are known within the art and could be utilized in alternate embodiments.
  • the present invention according to an alternate embodiment is an ambient light collecting bow sight 110 having bow sight 120 and light collecting mechanism 180 .
  • bow sight 120 preferably has generally D-shaped ring 122 , wherein D-shaped ring 122 preferably has first wall 124 and curved second wall 126 , and wherein first wall 124 preferably has front surface 128 , back surface 130 and side walls 132 and 134 .
  • Side wall 132 of first wall 124 preferably has substantially Z-shaped shaped shaft 136 integrally formed thereto or attached thereto via any attaching means known within the art, such as, for exemplary purposes only, epoxies or resins.
  • Shaft 136 is preferably dimensioned to be received within an aperture BB in bow sight support AA, wherein bow sight support AA is any conventional bow sight support known within the art.
  • shaft 136 can be any suitable shape and that aperture BB in bow sight support AA can be modified and dimensioned accordingly to properly receive shaft 136 of bow sight 120 .
  • Bow sight 120 is preferably formed from a sturdy transparent plastic to enable the passage of light therethrough and to enable the light to be harnessed by light collecting mechanism 180 ; however, other suitable non-opaque materials can be utilized for bow sight 120 .
  • Back surface 130 of first wall 124 preferably has encasement 138 attached thereto via any known attaching means, wherein encasement 138 houses light collecting mechanism 180 .
  • Light collecting mechanism 180 preferably includes three long coiled strands of scintillating ambient light collecting fiber optic filaments 182 , 184 and 186 , wherein ends 182 A, 184 A and 186 A of filaments 182 , 184 and 186 , respectively, preferably extend from encasement 138 , through first wall 124 and into preferably three hollow sighting pins 140 , 142 and 144 , respectively.
  • ends 182 A, 184 A and 186 A of fiber optic filaments 182 , 184 and 186 are visible from the ends of hollow sighting pins 140 , 142 and 144 , respectively, and serve as lit sighting pins upon the capture of ambient light by fiber optic filaments 182 , 184 and 186 , respectively.
  • encasement 138 is preferably formed from a sturdy transparent plastic so as to allow light to pass therethrough and to be harnesses by coiled fiber optic filaments 182 , 184 and 186 of light collecting mechanism 180 .
  • long coiled strands of fiber optic filaments 182 , 184 and 186 are preferably employed as light collecting mechanism 180 , wherein the multiple coiling of fiber optic filaments 182 , 184 and 186 within encasement 138 promote a maximized surface area in which to capture ambient light passing through transparent encasement 138 and bow sight 110 .
  • light from a plurality of directions can be harnessed by fiber optic filaments 182 , 184 and 186 , thus increasing, magnifying and enhancing the output of useful light from light collecting mechanism 180 .
  • fiber optic filaments 182 , 184 and 186 preferably emit green, yellow and/or amber light upon harnessing the ambient light, wherein different colors of fiber optic filaments are known within the art and may alternatively be utilized.
  • bow sight 110 and/or bow sight 210 could possess more or less than three coiled strands of fiber optic filament and thus more or less than three hollow sighting pins.
  • bow sight 10 could possess more than one coiled/wrapped strand of fiber optic filament and thus more than one sighting pin.
  • bow sights 10 , 110 and 210 could be structured in any fashion and/or possess any type of encasement that could house multiple coils/wraps of fiber optic filaments, wherein the ends of the fiber optic filaments could then be fed through or attached to the sighting pin.
  • insert 38 of bow sight 10 could be rotatable via other rotating means, such as, for exemplary purposes only, ridge-and-channel mechanisms or bearings.

Abstract

An ambient light collecting bow sight having a light collecting filament, wherein the light collecting filament is preferably a scintillating fiber optic filament of sufficient length to enable extensive wrapping or winding of the fiber optic filament around a preferably translucent bow sight. The multiple wrapping or winding of an extensive strand of fiber optic filament provides the filament with more surface area in which to harness ambient light passing through the translucent bow-sight. A portion of the fiber optic filament is attached to a pin or crosshair of the bow sight, thus functioning as a lit targeting pin.

Description

TECHNICAL FIELD
The present invention relates generally to bow sights, and more specifically to an ambient light collecting bow sight. The present invention is particularly useful in, although not limited to, assisting hunters and/or competition shooters equipped with bows and/or firearms to target game or objects in low-light environments.
BACKGROUND OF THE INVENTION
Effective and successful use of a bow is dependent upon a multitude of variables, including establishment of proper trajectory, string tension, drawback and even the weight of the bow. More importantly, however, the precision of a bowshot is largely dependent upon proper targeting or aiming and the ability to sight one's target. As such, many archers/hunters have employed the use of bow sights to assist in such targeting. Unfortunately, however, because most hunting expeditions are usually conducted in low-level light conditions/environments, such as a dense forest, most conventionally available bow sights are unable to effectively assist the hunter in sighting his target.
Although attempts have been made to cure the deficiencies and inadequacies of conventional sighting pins and/or crosshairs, simple bow sights of this sort are of limited use because they fail to provide the archer/hunter with the requisite amount of light needed to sight a target within the bow sight. Furthermore, while bow sights with small light collecting filaments are known, they too serve limited use as they are typically unable to harness enough ambient light to make use of the bow sight worthwhile.
Therefore, it is readily apparent that there is a need for an ambient light collecting bow sight, wherein the bow sight is able to effectively harness diminutive amounts of ambient light and magnify it to a useable light source capable of assisting hunters in sighting their targets in low-light environments.
BRIEF SUMMARY OF THE INVENTION
Briefly described, in a preferred embodiment, the present invention overcomes the above-mentioned disadvantage, and meets the recognized need for such a device by providing an ambient light collecting bow sight, wherein the bow sight is able to effectively harness diminutive amounts of ambient light and magnify it to a useable light source capable of assisting hunters in sighting their targets in low-light environments.
According to its major aspects and broadly stated, the present invention in its preferred form is an ambient light collecting bow sight having a light collecting filament.
More specifically, the present invention is an ambient light collecting bow sight having a light collecting filament, wherein the light collecting filament is preferably a scintillating fiber optic filament of sufficient length to enable extensive wrapping or winding of the fiber optic filament around a preferably translucent bow sight. The repeated wrapping or winding of the lengthy strand of fiber optic filament configures the filament to provide increased surface area with which to harness ambient light. The translucent material from which the actual bow sight is constructed further enables ambient light to pass therethrough and thus to be harnessed by the wrapped filament. A portion of the fiber optic filament is attached to a pin or crosshair of the bow sight, thus functioning as a lit targeting pin.
A feature and advantage of the present invention is its ability to provide a lit bow sight.
A feature and advantage of the present invention is its ability to be used in extremely low-level light environments.
A feature and advantage of the present invention is its ability to effectively harness ambient low-level light and magnify it to a useable light source.
A feature and advantage of the present invention is its ability to allow the archer/hunter to sight targets in low-level light environments.
A feature and advantage of the present invention is its ability to provide a large ambient light collecting surface area.
A feature and advantage of the present invention is its portability.
A feature and advantage of the present invention is its ease of use.
A feature and advantage of the present invention is its ability to provide a rotatable or adjustable bow sight.
These and other objects, features and advantages of the invention will become more apparent to one skilled in the art from the following description and claims when read in light of the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be better understood by reading the Detailed Description of the Preferred and Alternate Embodiments with reference to the accompanying drawing figures, in which like reference numerals denote similar structure and refer to like elements throughout, and in which:
FIG. 1 is a front perspective view of an ambient light collecting bow sight according to a preferred embodiment of the present invention.
FIG. 2 is a rear perspective view of an ambient light collecting bow sight according to a preferred embodiment of the present invention.
FIG. 3 is an exploded view of an ambient light collecting bow sight according to a preferred embodiment of the present invention.
FIG. 4 is a front perspective view of an ambient light collecting bow sight according to an alternate embodiment of the present invention.
FIG. 5 is a rear perspective view of an ambient light collecting bow sight according to an alternate embodiment of the present invention.
FIG. 6 is an exploded view of an ambient light collecting bow sight according to an alternate embodiment of the present invention.
FIG. 7 is a front perspective view of an ambient light collecting bow sight according to an alternate embodiment of the present invention.
FIG. 8 is a rear perspective view of an ambient light collecting bow sight according to an alternate embodiment of the present invention.
FIG. 9 is an exploded view of an ambient light collecting bow sight according to an alternate embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED AND ALTERNATIVE EMBODIMENTS
In describing the preferred and alternate embodiments of the present invention, as illustrated in FIGS. 1-9, specific terminology is employed for the sake of clarity. The invention, however, is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish similar functions.
Referring now to FIGS. 1-3, the present invention in its preferred embodiment is an ambient light collecting bow sight 10 having bow sight 20 and light collecting mechanism 80.
Specifically, bow sight 20 has preferably cylindrical shaft 22 integrally formed to ring 24. Although integral formation of shaft 22 is preferred, one skilled in the art would readily recognize that shaft 22 could attach to ring 24 via any attaching means known within the art, such as, for exemplary purposes only, epoxies or resins. Shaft 22 is preferably dimensioned to be received within an aperture B in bow sight support A, wherein bow sight support A is any conventional bow sight support known within the art. It is anticipated that the dimensions and/or shape of shaft 22 could be modified to enable reception by other types or configurations of bow sight supports. Bow sight 20 is preferably formed from a sturdy transparent plastic to allow light to pass therethrough to be harnessed by light collecting mechanism 80; however, other suitable non-opaque materials can be used for bow sight 20.
Ring 24 preferably possesses outer wall 26 and inner wall 28 joined to front wall 30 and rear wall 32, wherein inner wall 28 defines aperture 34. Outer wall 26 preferably possesses hump 36, wherein hump 36 has throughhole 36A formed therethrough for receiving a conventional bow leveler as known within the art.
Ring 24 is preferably dimensioned to receive insert 38, wherein insert 38 preferably possesses outer ring 40 preferably integrally formed to inner ring 42 or attached thereto via any attaching means known within the art, such as, for exemplary purposes only, epoxies or resins. Inner ring 42 is preferably of reduced diameter relative to outer ring 40, thus forming area 44, wherein inner ring 42 is preferably dimensioned to be received within aperture 34 of ring 24. Preferably, outer and inner rings 40 and 42, respectively, share a common aperture 46, defined by shared inner wall 48, wherein inner wall 48 preferably has sighting pin 49 integrally formed thereto or attached thereto via any attaching means known within the art, such as, for exemplary purposes only, epoxies or resins.
Area 44 of outer ring 40 preferably has a plurality of throughholes 50 formed therethrough, wherein any one of the plurality of throughholes 50 preferably aligns with any one of threaded holes 52, 54 or 56 formed on back wall 32 of ring 24. As such, when inner ring 42 is inserted into aperture 34 of ring 24, area 44 generally abuts and is substantially flush with back wall 32 of bow sight 20. Rotation of insert 38 enables sighting pin 49 to be positioned at any desired angle, whereupon the selected position of insert 38 in general is preferably maintained via the insertion of each of screws 58, 60 and 62 through one throughhole of the plurality of throughholes 50 on area 44 and thereafter into respective threaded holes 52, 54 and 56 of back wall 32 of ring 24. Front wall 30 of ring 24 preferably has formed thereon additional threaded holes 64, 66 and 68 for attachment of insert 38 to front wall 30 for situations requiring a left-hand oriented bow sight 20. Although front and back walls 30 and 32, respectively, of ring 24 preferably each possess three threaded holes formed thereon, it is contemplated in alternate embodiments that front and back walls 30 and 32, respectively, could define any number of threaded holes, and that holes could be limited to only one of walls 30 or 32.
Outer ring 40 preferably defines indentation 70 defined along outer peripheral wall 70A of outer ring 40, wherein indentation 70 preferably enables insertion of a common bow sight leveler into throughhole 36A of hump 36 of ring 24 when insert 38 is positioned with ring 24.
Light collecting mechanism 80 is preferably a substantially long strand of scintillating ambient light collecting fiber optic filament 82, preferably wrapped a plurality of times around the circumference of outer wall 42A of inner ring 42, wherein outer wall 42A preferably has formed thereon generally equally spaced retention guards 72, 74 and 76 that preferably prohibit the coiled/wrapped fiber optic filament 82 from sliding off from outer wall 42A of inner ring 42. Retention guard 72 preferably possesses throughhole 72A formed therethrough for receiving and retaining first end 82A of fiber optic filament 80, wherein opposing second end 82B of fiber optic filament 80 is preferably fed through throughhole 48A formed at the base of sighting pin 49 and thereafter secured to the tip of sighting pin 49 via insertion of end 82B through retaining throughhole 49A formed on sighting pin 49. Moreover, when insert 38 is brought into contact with ring 24 such that inner ring 42 of insert 38 recesses within aperture 34 of ring 24, fiber optic filament 82 is preferably enclosed or generally encased within the confines created by outer wall 42A of inner ring 42 butting up against inner wall 28 of ring 24.
A generally long wrapped strand of fiber optic filament 82 is preferably utilized as light collecting mechanism 80, wherein the plurality of coils and/or wrappings of fiber optic filament 82 around outer wall 42A of inner ring 40 promote a greater surface area in which to capture ambient light passing through transparent ring 24. As such, light from all directions is harnessed from all around fiber optic filament 82, thus increasing, magnifying and generally enhancing the output of useful light from light collecting mechanism 80. Furthermore, fiber optic filament 82 preferably emits green, yellow and/or amber light upon harnessing the ambient light, wherein different colors of fiber optic filaments are known within the art and may be utilized in alternate embodiments.
Referring now to FIGS. 4-6, the present invention according to an alternate embodiment is an ambient light collecting bow sight 210 having bow sight 220 and light collecting mechanism 280.
Specifically, bow sight 220 preferably has generally D-shaped ring 222, wherein D-shaped ring 222 preferably has first wall 224 and curved second wall 226, and wherein first wall 224 preferably has front surface 228, back surface 230 and side walls 232 and 234. Side wall 232 of first wall 224 preferably has substantially rectangular shaped shaft 236 integrally formed therewith or attached thereto via any attaching means known within the art, such as, for exemplary purposes only, epoxies or resins. Shaft 236 is preferably dimensioned to be received within an aperture BB in bow sight support AA, wherein bow sight support AA is any conventional bow sight support known within the art. Furthermore, bow sight 220 is preferably formed from a sturdy transparent plastic so as to allow light to pass therethrough to be harnessed by light collecting mechanism 280; however, other suitable non-opaque materials can be used.
Preferably, generally barrel-shaped filament support 290, having substantially rectangular shaped support arms 296 and 298 opposingly attached thereto, is attached to back surface 230 of first wall 224 preferably via the insertion of screws 300 and 302 through throughholes 292 and 294 of support arms 296 and 298, respectively, and into holes 230A and 230B of back wall 230, wherein filament support 290 preferably supports light collecting mechanism 280.
Light collecting mechanism 280 preferably includes three generally long coiled strands of scintillating ambient light collecting fiber optic filaments 282, 284 and 286. Each of filaments 282, 284 and 286 is preferably wound around filament support 290, wherein generally equally spaced flanges 293 and 295 encircle filament support 290 and function to substantially separate filaments 282, 284 and 286 from one another. Filament support 290 is preferably formed from a sturdy transparent plastic so as to allow light to pass therethrough to be harnessed by the coiled fiber optic filaments 282, 284 and 286; however, other suitable non-opaque materials can be used. Filaments 282, 284 and 286 wrapped around filament support 290 are preferably substantially shielded by a semi-circular shaped encasement 238, wherein encasement 238 is also preferably formed from a sturdy transparent plastic so as to allow light to pass therethrough to be harnessed by the coiled fiber optic filaments 282, 284 and 286 of light collecting mechanism 280; however, other suitable non-opaque materials can also be utilized.
Ends 282A, 284A and 286A of filaments 282, 284 and 286 preferably extend from filament support 290, through first wall 224 and into preferably three generally hollow sighting pins 240, 242 and 244, respectively. As such, ends 282A, 284A and 286A of fiber optic filaments 282, 284 and 286, respectively, are visible from the ends of hollow sighting pins 240, 242 and 244, respectively, and serve as lit sighting pins upon the capture of ambient light by fiber optic filaments 282, 284 and 286, respectively.
Generally, long coiled strands of fiber optic filaments 282, 284 and 286 are preferably utilized as light collecting mechanism 280, wherein the multiple coiling of fiber optic filaments 282, 284 and 286 around filament support 290 and within encasement 238 promotes a maximized surface area in which to capture ambient light passing through transparent encasement 238 and how sight 210 in general. As such, light from all directions can be harnessed from all around fiber optic filaments 282, 284 and 286, thus increasing or magnifying the output of useful light therefrom. Furthermore, fiber optic filaments 282, 284 and 286 preferably emit green, yellow and/or amber light upon harnessing the ambient light, wherein different colors of fiber optic filaments are known within the art and could be utilized in alternate embodiments.
Referring now to FIGS. 7-9, the present invention according to an alternate embodiment is an ambient light collecting bow sight 110 having bow sight 120 and light collecting mechanism 180.
Specifically, bow sight 120 preferably has generally D-shaped ring 122, wherein D-shaped ring 122 preferably has first wall 124 and curved second wall 126, and wherein first wall 124 preferably has front surface 128, back surface 130 and side walls 132 and 134. Side wall 132 of first wall 124 preferably has substantially Z-shaped shaped shaft 136 integrally formed thereto or attached thereto via any attaching means known within the art, such as, for exemplary purposes only, epoxies or resins. Shaft 136 is preferably dimensioned to be received within an aperture BB in bow sight support AA, wherein bow sight support AA is any conventional bow sight support known within the art. It is contemplated in alternate embodiments that shaft 136 can be any suitable shape and that aperture BB in bow sight support AA can be modified and dimensioned accordingly to properly receive shaft 136 of bow sight 120. Bow sight 120 is preferably formed from a sturdy transparent plastic to enable the passage of light therethrough and to enable the light to be harnessed by light collecting mechanism 180; however, other suitable non-opaque materials can be utilized for bow sight 120.
Back surface 130 of first wall 124 preferably has encasement 138 attached thereto via any known attaching means, wherein encasement 138 houses light collecting mechanism 180. Light collecting mechanism 180 preferably includes three long coiled strands of scintillating ambient light collecting fiber optic filaments 182, 184 and 186, wherein ends 182A, 184A and 186A of filaments 182, 184 and 186, respectively, preferably extend from encasement 138, through first wall 124 and into preferably three hollow sighting pins 140, 142 and 144, respectively. As such, ends 182A, 184A and 186A of fiber optic filaments 182, 184 and 186, respectively, are visible from the ends of hollow sighting pins 140, 142 and 144, respectively, and serve as lit sighting pins upon the capture of ambient light by fiber optic filaments 182, 184 and 186, respectively. Moreover, encasement 138 is preferably formed from a sturdy transparent plastic so as to allow light to pass therethrough and to be harnesses by coiled fiber optic filaments 182, 184 and 186 of light collecting mechanism 180.
Generally, long coiled strands of fiber optic filaments 182, 184 and 186 are preferably employed as light collecting mechanism 180, wherein the multiple coiling of fiber optic filaments 182, 184 and 186 within encasement 138 promote a maximized surface area in which to capture ambient light passing through transparent encasement 138 and bow sight 110. As such, light from a plurality of directions can be harnessed by fiber optic filaments 182, 184 and 186, thus increasing, magnifying and enhancing the output of useful light from light collecting mechanism 180. Furthermore, fiber optic filaments 182, 184 and 186 preferably emit green, yellow and/or amber light upon harnessing the ambient light, wherein different colors of fiber optic filaments are known within the art and may alternatively be utilized.
In an alternate embodiment, bow sight 110 and/or bow sight 210 could possess more or less than three coiled strands of fiber optic filament and thus more or less than three hollow sighting pins.
In another alternate embodiment, bow sight 10 could possess more than one coiled/wrapped strand of fiber optic filament and thus more than one sighting pin.
In an alternate embodiment, bow sights 10, 110 and 210 could be structured in any fashion and/or possess any type of encasement that could house multiple coils/wraps of fiber optic filaments, wherein the ends of the fiber optic filaments could then be fed through or attached to the sighting pin.
In yet another alternate embodiment, insert 38 of bow sight 10 could be rotatable via other rotating means, such as, for exemplary purposes only, ridge-and-channel mechanisms or bearings.
Having thus described exemplary embodiments of the present invention, it should be noted by those skilled in the art that the within disclosures are exemplary only, and that various other alternatives, adaptations, and modifications may be made within the scope of the present invention. Accordingly, the present invention is not limited to the specific embodiments illustrated herein, but is limited only by the following claims.

Claims (22)

1. A bow sight, comprising:
a bow sight housing, said bow sight housing having at least one sight pin; and
at least one light collecting mechanism carried by coiled a plurality of revolutions around said bow sight housing, wherein said at least one light collecting mechanism is coiled a plurality of revolutions wherein a portion of the said light collecting mechanism is in communication with said at least one sight pin.
2. The bow sight of claim 1, wherein said at least one light collecting mechanism defines a plurality of coil shapes.
3. The bow sight of claim 1, wherein said bow sight housing encases said at least one light collecting mechanism.
4. The bow sight of claim 1, wherein said at least one light collecting mechanism is at least one fiber optic filament.
5. The bow sight of claim 4, wherein said at least one fiber optic filament is carried in a coil fashion by said bow sight housing.
6. The bow sight of claim 4 further comprising a support, wherein said at least one fiber optic filament is coiled a plurality of revolutions around said support, said at least one fiber optic filament is at least partially carried by said at least one sight pin, and said support is substantially encased within said bow sight housing.
7. The bow sight of claim 1, wherein said bow sight housing further comprises at least one removable encasement.
8. The bow sight of claim 7, wherein said at least one light collecting mechanism is at least one fiber optic filament.
9. The bow sight of claim 8, wherein said at least one fiber optic filament is coiled a plurality of revolutions within said at least one encasement.
10. The bow sight of claim 8 further comprising a support, wherein said at least one fiber optic filament is coiled a plurality of revolutions around said support, and wherein said support is housed within said at least one encasement.
11. The bow sight of claim 1, wherein said bow sight housing is rotatable.
12. A light collecting bow sight assembly, comprising:
a bow sight, said bow sight being rotatable and having at least one sight pin;
at least one light collector adaptable to said bow sight and coiled a plurality of revolutions wherein a portion of the light collecting mechanisms is in communication with said sight pin; and
at least one encasement for housing said at least one light collector upon adapting said at least one light collector to said bow sight.
13. The light collecting bow sight assembly of claim 12, wherein said at least one light collector is at least one optical filament.
14. The light collecting bow sight assembly of claim 13, wherein said at least one optical filament is coiled a plurality of revolutions within said bow sight and is at least partially carried by said at least one sight pin.
15. The light collecting bow sight assembly of claim 13, wherein said at least one fiber optic filament is coiled a plurality of revolutions within said encasement.
16. The light collecting bow sight assembly of claim 15 further comprising a support, wherein said at least one fiber optic filament is coiled a plurality of revolutions around said support, and wherein said support is housed within said at least one encasement.
17. A method of providing an ambient light collecting bow sight, comprising the steps of:
a. obtaining a bow sight comprising an interior portion and an exterior portion, wherein at least one sight pin is carried by said interior portion;
ab. coiling at least one fiber optic filament a plurality of revolutions around said exterior portion of said bow sight, wherein a portion of the light collecting mechanismsaid at least one fiber optic filament is in communication with said at least one sight pin around a support; and,
b. positioning one end of said at least one fiber optic filament within a bow sight .
18. The method of claim 17, wherein said at least one fiber optic filament is a plurality of fiber optic filaments.
19. A bow sight, comprising:
a bow sight housing, said bow sight housing having at least one sight pin;
a first light collecting mechanism carried by said bow sight housing, wherein said first light collecting mechanism is coiled a plurality of revolutions wherein a portion of the light collecting mechanism is in communication with said sight pin;
a second light collecting mechanism carried by said bow sight housing, wherein said second light collecting mechanism is coiled a plurality of revolutions, and wherein said second light collecting mechanism is concentrically disposed to said first light collecting mechanism; and,
a third light collecting mechanism carried by said bow sight housing, wherein said third light collecting mechanism is coiled a plurality of revolutions, and wherein said third light collecting mechanism is concentrically disposed to said second light collecting mechanism.
20. The bow sight of claim 19, wherein said first light collecting mechanism emits a first colored light, said second light collecting mechanism emits a second colored light, and said third light collecting mechanism emits a third colored light.
21. The bow sight of claim 19, further comprising a cylindrical support carried by said bow sight housing, wherein said first light collecting mechanism, said second light collecting mechanism and said third light collecting mechanism are coiled a plurality of revolutions around said cylindrical support.
22. The bow sight of claim 19, wherein said first light collecting mechanism, said second light collecting mechanism and said third light collecting mechanism are fiber optic filaments.
US10/835,580 2002-01-02 2004-04-29 Ambient light collecting bow sight Expired - Lifetime USRE39686E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/835,580 USRE39686E1 (en) 2002-01-02 2004-04-29 Ambient light collecting bow sight

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/040,151 US6601308B2 (en) 2002-01-02 2002-01-02 Ambient light collecting bow sight
US10/835,580 USRE39686E1 (en) 2002-01-02 2004-04-29 Ambient light collecting bow sight

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/040,151 Reissue US6601308B2 (en) 2002-01-02 2002-01-02 Ambient light collecting bow sight

Publications (1)

Publication Number Publication Date
USRE39686E1 true USRE39686E1 (en) 2007-06-12

Family

ID=21909396

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/040,151 Ceased US6601308B2 (en) 2002-01-02 2002-01-02 Ambient light collecting bow sight
US10/835,580 Expired - Lifetime USRE39686E1 (en) 2002-01-02 2004-04-29 Ambient light collecting bow sight

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/040,151 Ceased US6601308B2 (en) 2002-01-02 2002-01-02 Ambient light collecting bow sight

Country Status (1)

Country Link
US (2) US6601308B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080168671A1 (en) * 2007-01-16 2008-07-17 Christopher Rager Bow sight structures
US20090100735A1 (en) * 2007-05-22 2009-04-23 Schick Darin W Optical sight
US20090199418A1 (en) * 2006-01-27 2009-08-13 Truglo, Inc. Illuminated Sighting Device
US20100024228A1 (en) * 2008-07-30 2010-02-04 C. S. Gibbs Corporation Archery Bow Sight and Method
US20100157292A1 (en) * 2008-12-23 2010-06-24 Asia Optical Co., Inc. Sight
US20100281701A1 (en) * 2006-07-07 2010-11-11 Abbas Ben Afshari Sight with enhanced visibility
US8171648B2 (en) 2008-10-16 2012-05-08 Gregory E. Summers Producing and using archery sights
US8245409B2 (en) 2010-05-04 2012-08-21 Trijicon, Inc. Bow sight
US8448341B2 (en) 2010-05-04 2013-05-28 Trijicon, Inc. Bow-sight mount
US20160102942A1 (en) * 2013-03-17 2016-04-14 Yigal Abo Firearm aiming device

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6418633B1 (en) * 2000-06-30 2002-07-16 Trophy Ridge, Llc Vertical in-line bow sight
US7036234B2 (en) * 2000-06-30 2006-05-02 Trophy Ridge, Llc Bow sight having vertical, in-line sight pins, and methods
US6725854B1 (en) * 2001-01-26 2004-04-27 Abbas Ben Afshari Illuminated sight pin
US7200943B2 (en) * 2001-11-20 2007-04-10 Abbas Ben Afshari Bow sight with vertically aligned pins
US7464477B2 (en) * 2001-11-20 2008-12-16 Abbas Ben Afshari Bow sight with angled pins
US6601308B2 (en) 2002-01-02 2003-08-05 Bahram Khoshnood Ambient light collecting bow sight
US6802131B1 (en) * 2002-09-05 2004-10-12 Raytheon Company Side-illuminated target structure having uniform ring illumination
US6802129B1 (en) * 2002-09-06 2004-10-12 Wirth Reinhold F Archery sight, an optic assembly, and optic adjustment mechanisms for use in an archery sight
US6807742B2 (en) * 2002-09-06 2004-10-26 Trijicon, Inc. Reflex sight with multiple power sources for reticle
US7089698B2 (en) * 2003-01-15 2006-08-15 Abbas Ben Afshari Method and apparatus for charging efflorescent material utilizing ultra violet light
US20050138824A1 (en) * 2003-12-24 2005-06-30 Afshari Abbas B. Fiber optic sight pin
US6904688B1 (en) * 2004-01-15 2005-06-14 Donald J. Henry Sight protective cover system
US7100292B2 (en) * 2004-04-23 2006-09-05 Abbas Ben Afshari Fiber optic indicator marking for bow sight
US20050241163A1 (en) * 2004-04-28 2005-11-03 Algurt Cudney Sight for armament
US7308891B2 (en) * 2004-11-11 2007-12-18 Sop Services, Inc. Products and processes for archery and firearm sights
US7082690B1 (en) * 2005-01-13 2006-08-01 Bahram Khoshnood Ambient light collecting sight pin for a bow sight
US7373723B1 (en) * 2005-09-07 2008-05-20 Tupper Jr John M Bow sight
US7325319B2 (en) * 2005-09-14 2008-02-05 Smith Jon C Arrow-mounted sight
US7328515B2 (en) * 2006-03-24 2008-02-12 H-T Archery Products Llc Archery bow sights and archery bows including same
US7603784B2 (en) * 2007-03-14 2009-10-20 Erhard Rory J Rotating pin sight
US8006395B2 (en) * 2007-06-18 2011-08-30 Kingsbury Klint M Multi-spot adjustable reflex bow and subsonic weapon sight
US20090293855A1 (en) * 2008-05-28 2009-12-03 Danielson Lewis A Aiming Device and Method for Archery Bow
US7997261B2 (en) * 2008-07-22 2011-08-16 Scaniffe Michael J Compound bow accessory
US8752303B2 (en) 2010-03-05 2014-06-17 Donald Priebe Sighting system
US8099874B2 (en) * 2010-03-05 2012-01-24 Donald Priebe Sighting system
US8619238B2 (en) * 2010-03-09 2013-12-31 Leupold & Stevens, Inc. Rangefinder for shooting device and method of aligning rangefinder to shooting device sight
US8161656B1 (en) 2010-12-09 2012-04-24 Gregory E. Summers Archery scope
US20160109209A1 (en) 2014-10-16 2016-04-21 Ricky C. Ferguson Lens for sighting device
US9429393B2 (en) * 2014-12-12 2016-08-30 Hoyt Archery, Inc. Illuminated archery bow sight apparatus
US9797684B2 (en) 2015-07-08 2017-10-24 Gregory E. Summers Archery scope
US10663257B2 (en) * 2016-05-19 2020-05-26 Joshua W. Dale Bow sight
US9772165B1 (en) * 2017-01-18 2017-09-26 Ernest Scott Johnson Dual bow sighting apparatus

Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977974A (en) * 1975-10-06 1976-08-31 Union Carbide Corporation Suspended sludge scraper for arcuate sedimentation zone
US3997974A (en) 1976-01-19 1976-12-21 Larson Marlow W Archery bow sighting mechanism
US4177572A (en) 1978-06-28 1979-12-11 Hindes Ted E Lighted sight pin for archery bows
US4220983A (en) 1978-12-18 1980-09-02 Schroeder Gary P Illuminated bowsight
JPS5928327A (en) * 1982-08-09 1984-02-15 Nippon Telegr & Teleph Corp <Ntt> Forming method of single crystal semiconductor film
JPS5965479A (en) * 1982-10-05 1984-04-13 Nec Corp Thin film transistor and manufacture thereof
JPS59182517A (en) * 1983-03-31 1984-10-17 Fujitsu Ltd Semiconductor sensor
US4534820A (en) * 1981-10-19 1985-08-13 Nippon Telegraph & Telephone Public Corporation Method for manufacturing crystalline film
US4535544A (en) 1982-07-06 1985-08-20 Jones Thomas F Sighting apparatus
JPS63190386A (en) * 1986-10-03 1988-08-05 Seiko Epson Corp Thin-film transistor and manufacture thereof
US4875144A (en) 1987-09-14 1989-10-17 Wainwright Harry L Fabric with illuminated changing display
JPH02140915A (en) * 1988-11-22 1990-05-30 Seiko Epson Corp Manufacture of semiconductor device
JPH02222546A (en) * 1989-02-23 1990-09-05 Nec Corp Manufacture of mos field-effect transistor
US4977677A (en) 1989-11-20 1990-12-18 Troescher Jr Robert H Targeting device
JPH03185736A (en) * 1989-12-14 1991-08-13 Canon Inc Manufacture of semiconductor device
EP0459763A1 (en) * 1990-05-29 1991-12-04 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistors
JPH0437168A (en) * 1990-06-01 1992-02-07 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH04111361A (en) * 1990-08-30 1992-04-13 Nippon Steel Corp Thin-film semiconductor device
JPH04165679A (en) * 1990-10-29 1992-06-11 Semiconductor Energy Lab Co Ltd Insulating gate type semiconductor device
US5121547A (en) 1991-07-22 1992-06-16 Littlejohn Bert K Pendulum bow sight with telescopic scope
US5164805A (en) * 1988-08-22 1992-11-17 Massachusetts Institute Of Technology Near-intrinsic thin-film SOI FETS
US5168631A (en) 1991-05-20 1992-12-08 Sherman James R Sight
US5174269A (en) 1990-07-30 1992-12-29 Toxonic, Inc. Archery bow sighting device
JPH0555581A (en) * 1991-08-26 1993-03-05 Semiconductor Energy Lab Co Ltd Thin-film semiconductor element and its manufacture
EP0532314A1 (en) * 1991-09-10 1993-03-17 Sharp Kabushiki Kaisha A semiconductor device and a process for fabricating same
JPH05175506A (en) * 1991-12-26 1993-07-13 Sharp Corp Thin film transistor and manufacture thereof
US5231765A (en) 1992-06-26 1993-08-03 Sherman James R Illuminated sight having a light collector serving a fiber optic
US5253423A (en) 1992-10-08 1993-10-19 James Sullivan, Jr. Cross hair pendulum bow sight
US5255440A (en) 1992-02-05 1993-10-26 Rogers Karl G Archery alignment method
JPH0613610A (en) * 1992-04-06 1994-01-21 Semiconductor Energy Lab Co Ltd Insulated gate type semiconductor device and its manufacturing method
US5341791A (en) 1993-07-09 1994-08-30 Gary J. Shafer Bow sight apparatus
JPH07161996A (en) * 1993-12-13 1995-06-23 Sharp Corp Insulated-gate field-effect device and its manufacture
US5442861A (en) 1993-12-23 1995-08-22 Lorocco; Paul M. Sight pin and holder for archery bow
US5560113A (en) 1994-06-27 1996-10-01 New Archery Products Corp. Bowsight
US5579033A (en) 1992-05-20 1996-11-26 International Business Machines Corporation Pointing device for retrofitting onto the keyboard of an existing computer system
US5634278A (en) 1995-09-20 1997-06-03 Tommy E. Hefner Bow sight
US5649526A (en) 1995-11-21 1997-07-22 Ellig; Mike Bow sight pin
US5671724A (en) 1994-12-09 1997-09-30 Priebe; Donald F. Bow sight
US5731613A (en) * 1994-08-19 1998-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a monocrystalline layer composed of carbon, oxygen, hydrogen and nitrogen atoms
US5791060A (en) 1995-11-13 1998-08-11 Godsey; Samuel W. Sighting device for an archery bow
US5850700A (en) 1996-08-09 1998-12-22 Capson; Ronald Eye alignment apparatus for archery
US5862603A (en) 1997-07-11 1999-01-26 Ellig; Michael Sighting indicia
US5956854A (en) 1996-12-26 1999-09-28 Tru-Glo, Inc. Day/night weapon sight
US5975069A (en) 1997-04-29 1999-11-02 Hamm; Harold M Archery bow sight apparatus
US5996569A (en) 1997-04-25 1999-12-07 Wilson; Keith W. Transparent rear bow sight
US6000141A (en) 1997-12-19 1999-12-14 Scout Mountain Equipment, Inc. Archery bow sight
US6073352A (en) 1998-03-19 2000-06-13 Laser Technology, Inc. Laser bow sight apparatus
US6199286B1 (en) 1996-06-03 2001-03-13 Robert L. Reed, Jr. Weaponry sight device
US6311405B1 (en) 1995-06-26 2001-11-06 Toxonics Manufacturing Inc. Fiber optic pin sight for a bow
US6418633B1 (en) 2000-06-30 2002-07-16 Trophy Ridge, Llc Vertical in-line bow sight
US6601308B2 (en) 2002-01-02 2003-08-05 Bahram Khoshnood Ambient light collecting bow sight

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977974A (en) * 1975-10-06 1976-08-31 Union Carbide Corporation Suspended sludge scraper for arcuate sedimentation zone
US3997974A (en) 1976-01-19 1976-12-21 Larson Marlow W Archery bow sighting mechanism
US4177572A (en) 1978-06-28 1979-12-11 Hindes Ted E Lighted sight pin for archery bows
US4220983A (en) 1978-12-18 1980-09-02 Schroeder Gary P Illuminated bowsight
US4534820A (en) * 1981-10-19 1985-08-13 Nippon Telegraph & Telephone Public Corporation Method for manufacturing crystalline film
US4535544A (en) 1982-07-06 1985-08-20 Jones Thomas F Sighting apparatus
JPS5928327A (en) * 1982-08-09 1984-02-15 Nippon Telegr & Teleph Corp <Ntt> Forming method of single crystal semiconductor film
JPS5965479A (en) * 1982-10-05 1984-04-13 Nec Corp Thin film transistor and manufacture thereof
JPS59182517A (en) * 1983-03-31 1984-10-17 Fujitsu Ltd Semiconductor sensor
JPS63190386A (en) * 1986-10-03 1988-08-05 Seiko Epson Corp Thin-film transistor and manufacture thereof
US4875144A (en) 1987-09-14 1989-10-17 Wainwright Harry L Fabric with illuminated changing display
US5164805A (en) * 1988-08-22 1992-11-17 Massachusetts Institute Of Technology Near-intrinsic thin-film SOI FETS
JPH02140915A (en) * 1988-11-22 1990-05-30 Seiko Epson Corp Manufacture of semiconductor device
JPH02222546A (en) * 1989-02-23 1990-09-05 Nec Corp Manufacture of mos field-effect transistor
US4977677A (en) 1989-11-20 1990-12-18 Troescher Jr Robert H Targeting device
JPH03185736A (en) * 1989-12-14 1991-08-13 Canon Inc Manufacture of semiconductor device
US5523240A (en) * 1990-05-29 1996-06-04 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor with a halogen doped blocking layer
EP0459763A1 (en) * 1990-05-29 1991-12-04 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistors
JPH0437168A (en) * 1990-06-01 1992-02-07 Fujitsu Ltd Semiconductor device and manufacture thereof
US5174269A (en) 1990-07-30 1992-12-29 Toxonic, Inc. Archery bow sighting device
JPH04111361A (en) * 1990-08-30 1992-04-13 Nippon Steel Corp Thin-film semiconductor device
JPH04165679A (en) * 1990-10-29 1992-06-11 Semiconductor Energy Lab Co Ltd Insulating gate type semiconductor device
US5168631A (en) 1991-05-20 1992-12-08 Sherman James R Sight
US5121547A (en) 1991-07-22 1992-06-16 Littlejohn Bert K Pendulum bow sight with telescopic scope
JPH0555581A (en) * 1991-08-26 1993-03-05 Semiconductor Energy Lab Co Ltd Thin-film semiconductor element and its manufacture
EP0532314A1 (en) * 1991-09-10 1993-03-17 Sharp Kabushiki Kaisha A semiconductor device and a process for fabricating same
JPH05175506A (en) * 1991-12-26 1993-07-13 Sharp Corp Thin film transistor and manufacture thereof
US5255440A (en) 1992-02-05 1993-10-26 Rogers Karl G Archery alignment method
JPH0613610A (en) * 1992-04-06 1994-01-21 Semiconductor Energy Lab Co Ltd Insulated gate type semiconductor device and its manufacturing method
US5579033A (en) 1992-05-20 1996-11-26 International Business Machines Corporation Pointing device for retrofitting onto the keyboard of an existing computer system
US5231765A (en) 1992-06-26 1993-08-03 Sherman James R Illuminated sight having a light collector serving a fiber optic
US5253423A (en) 1992-10-08 1993-10-19 James Sullivan, Jr. Cross hair pendulum bow sight
US5341791A (en) 1993-07-09 1994-08-30 Gary J. Shafer Bow sight apparatus
JPH07161996A (en) * 1993-12-13 1995-06-23 Sharp Corp Insulated-gate field-effect device and its manufacture
US5442861A (en) 1993-12-23 1995-08-22 Lorocco; Paul M. Sight pin and holder for archery bow
US6016608A (en) 1993-12-23 2000-01-25 Lorocco; Paul M. Sighting devices for projectile type weapons
US5560113A (en) 1994-06-27 1996-10-01 New Archery Products Corp. Bowsight
US5731613A (en) * 1994-08-19 1998-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a monocrystalline layer composed of carbon, oxygen, hydrogen and nitrogen atoms
US5671724A (en) 1994-12-09 1997-09-30 Priebe; Donald F. Bow sight
US6311405B1 (en) 1995-06-26 2001-11-06 Toxonics Manufacturing Inc. Fiber optic pin sight for a bow
US5634278A (en) 1995-09-20 1997-06-03 Tommy E. Hefner Bow sight
US5791060A (en) 1995-11-13 1998-08-11 Godsey; Samuel W. Sighting device for an archery bow
US5649526A (en) 1995-11-21 1997-07-22 Ellig; Mike Bow sight pin
US6199286B1 (en) 1996-06-03 2001-03-13 Robert L. Reed, Jr. Weaponry sight device
US5850700A (en) 1996-08-09 1998-12-22 Capson; Ronald Eye alignment apparatus for archery
US5956854A (en) 1996-12-26 1999-09-28 Tru-Glo, Inc. Day/night weapon sight
US5996569A (en) 1997-04-25 1999-12-07 Wilson; Keith W. Transparent rear bow sight
US5975069A (en) 1997-04-29 1999-11-02 Hamm; Harold M Archery bow sight apparatus
US5862603A (en) 1997-07-11 1999-01-26 Ellig; Michael Sighting indicia
US6000141A (en) 1997-12-19 1999-12-14 Scout Mountain Equipment, Inc. Archery bow sight
US6073352A (en) 1998-03-19 2000-06-13 Laser Technology, Inc. Laser bow sight apparatus
US6418633B1 (en) 2000-06-30 2002-07-16 Trophy Ridge, Llc Vertical in-line bow sight
US6601308B2 (en) 2002-01-02 2003-08-05 Bahram Khoshnood Ambient light collecting bow sight

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ARROWTRADE (magazine), "Bow Tech" Jan. (2004), p. 4, ARROWTRADE, Braham, MN.
Bahram Khoshnood, Impact Archery, flyer/advertisement, 1 page, Tennessee, U.S.A., 1999.
BOWHUNTING, "bowhuntingmag.com", Sep. (2004).
Cobra Bowhunting Products, "2003 Product Catalog", Cobra Manufacturing Co., Inc., Bixby, OK.
Inside Archery (magazine), "Vital Bow Gear", Jun. (2004), p. 61.
Photograph of Muratec F60 Cartridge carrying a label 1011436. (no date). *
Photograph of Xerox 7020/7021 Cartridge carrying a label 1011439. (no date). *
Trophy Ridge, "2003 Catalog", Trophy Ridge, LLC, Belgrade, MT.
TRUGLO, "2001 Catalog", TRUGLO, Inc., McKinney, TX.
TRUGLO, "2003 Catalog", TRUGLO, Inc., McKinney, TX.
Vital Bow Gear, "http://www.vitalbowgear.com/tombstone.cfm".

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7739825B2 (en) * 2006-01-27 2010-06-22 Truglo, Inc. Illuminated sighting device
US20090199418A1 (en) * 2006-01-27 2009-08-13 Truglo, Inc. Illuminated Sighting Device
US20100281701A1 (en) * 2006-07-07 2010-11-11 Abbas Ben Afshari Sight with enhanced visibility
US20080168671A1 (en) * 2007-01-16 2008-07-17 Christopher Rager Bow sight structures
US7578067B2 (en) 2007-01-16 2009-08-25 Bear Archery, Inc. Bow sight structures
US20110199677A1 (en) * 2007-05-22 2011-08-18 Schick Darin W Optical sight
US7676137B2 (en) * 2007-05-22 2010-03-09 Trijicon, Inc. Optical sight
US8364002B2 (en) 2007-05-22 2013-01-29 Trijicon, Inc. Optical sight
US20090100735A1 (en) * 2007-05-22 2009-04-23 Schick Darin W Optical sight
US8009958B1 (en) 2007-05-22 2011-08-30 Trijicon, Inc. Optical sight
US8254746B2 (en) 2007-05-22 2012-08-28 Trijicon, Inc. Optical sight
US20100024228A1 (en) * 2008-07-30 2010-02-04 C. S. Gibbs Corporation Archery Bow Sight and Method
US7832109B2 (en) * 2008-07-30 2010-11-16 Field Logic, Inc. Archery bow sight and method
US8176644B1 (en) 2008-10-16 2012-05-15 Gregory E. Summers Producing and using archery sights
US8171648B2 (en) 2008-10-16 2012-05-08 Gregory E. Summers Producing and using archery sights
US8087198B2 (en) * 2008-12-23 2012-01-03 Asia Optical Co., Inc. Combined illuminated reticle switch and focus knob for sight
US20100157292A1 (en) * 2008-12-23 2010-06-24 Asia Optical Co., Inc. Sight
US8245409B2 (en) 2010-05-04 2012-08-21 Trijicon, Inc. Bow sight
US8448341B2 (en) 2010-05-04 2013-05-28 Trijicon, Inc. Bow-sight mount
US20160102942A1 (en) * 2013-03-17 2016-04-14 Yigal Abo Firearm aiming device
US20180045487A1 (en) * 2013-03-17 2018-02-15 Yigal Abo Firearm aiming device
US10408569B2 (en) * 2013-03-17 2019-09-10 Yigal Abo Firearm aiming device

Also Published As

Publication number Publication date
US6601308B2 (en) 2003-08-05
US20030121163A1 (en) 2003-07-03

Similar Documents

Publication Publication Date Title
USRE39686E1 (en) Ambient light collecting bow sight
US7082690B1 (en) Ambient light collecting sight pin for a bow sight
US5996569A (en) Transparent rear bow sight
US7290345B2 (en) Bow sight with controlled light intensity sight pin
US7698824B2 (en) High performance sights
US7739825B2 (en) Illuminated sighting device
US5862603A (en) Sighting indicia
US8713807B2 (en) Sighting device with selectable pin lighting
US7503321B2 (en) Illuminated sight pin
US6216351B1 (en) Day and night weapon sights
US6981329B1 (en) Fiber optic peep sight
US5148603A (en) Illuminated rear peep sight for a projectile device
US5887352A (en) Gun sight system
US5894672A (en) Enhanced sight marker apparatus
US20160169622A1 (en) Illuminated archery bow sight apparatus
US4454857A (en) Peep sight for a bow
US6371004B1 (en) Laser beam apparatus for adjusting telescopic gun sights
JPH10509791A (en) Sight
US5325598A (en) Variable aperture peep sight for bows
US20030019118A1 (en) Transparent rear bow sights
US5065538A (en) Nocturnal rifle sight organization
US10203179B2 (en) Motorized weapon gyroscopic stabilizer
US7140596B2 (en) Bolt launcher
US11549792B2 (en) Detachable tracking device for a hunting arrow
GB2032070A (en) Cartridges

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11