USRE39884E1 - Coated milling insert and method of making it - Google Patents

Coated milling insert and method of making it Download PDF

Info

Publication number
USRE39884E1
USRE39884E1 US11/483,381 US48338196A USRE39884E US RE39884 E1 USRE39884 E1 US RE39884E1 US 48338196 A US48338196 A US 48338196A US RE39884 E USRE39884 E US RE39884E
Authority
US
United States
Prior art keywords
layer
insert
tic
cemented carbide
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US11/483,381
Inventor
{dot over (A)}ke Östlund
Jeanette Persson
Björn Ljungberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik Intellectual Property AB
Original Assignee
Sandvik Intellectual Property AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Intellectual Property AB filed Critical Sandvik Intellectual Property AB
Application granted granted Critical
Publication of USRE39884E1 publication Critical patent/USRE39884E1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a coated cutting tool (cemented carbide insert) particularly useful for wet and dry milling of low and medium alloyed steels, with raw surfaces such as cast skin, forged skin, hot or cold rolled skin or pre-machined surfaces.
  • the cutting edge When milling low and medium alloyed steels with cemented carbide tools, the cutting edge is worn according to different wear mechanisms, such as chemical wear, abrasive wear, adhesive wear and by edge chipping caused by cracks formed along the cutting edge, the comb cracks.
  • the comb crack formation is particularly severe when wet milling is employed (using coolant). Coolant and work piece material may penetrate and widen the comb cracks and the edge will start to chip. A chipped edge will generate a bad surface finish of the machined component.
  • a coated cemented carbide insert when cutting in steels with raw surface zones, must consist of a tough carbide and have very good coating adhesion.
  • the adhesive wear is generally the dominating wear type.
  • thin (1-3 ⁇ m) CVD- or PVD-coatings have to be used.
  • Measures can be taken to improve the cutting performance with respect to a specific wear type. However, very often such action will have a negative effect on other wear properties.
  • Swedish patent application 9501286-0 which corresponds to U.S. Ser. No. 08/616,012, herein incorporated by reference discloses a coated cutting insert particularly useful for dry milling of grey cast iron.
  • the insert is characterized by a straight WC-Co cemented carbide grade and a coating including a layer of TiC x N y O z with columnar grains and a top layer of fine grained textured ⁇ -Al 2 O 3 .
  • Swedish patent application 9502640-7 which corresponds to U.S. Ser. No. 08/675,034, herein incorporated by reference, discloses a coated turning insert particularly useful for intermittent turning in low alloyed steel.
  • the insert is characterized by a WC-Co cemented carbide body having a highly W-alloyed Co-binder phase and a coating including a layer of TiC x N y O z with columnar grains and a top layer of a fine grained, textured ⁇ -Al 2 O 3 .
  • Swedish patent application 9503056-5 which corresponds to U.S. Ser. No. 08/703,965, herein incorporated by reference, discloses a coated turning cutting tool particularly useful for cutting in hot and cold forged low alloyed steel.
  • the insert is characterized by a WC-Co cemented carbide body having a highly W-alloyed Co-binder phase and a coating including a layer of TiC x N y O z with columnar grains and a top layer of a fine grained, ⁇ -Al 2 O 3 .
  • a cutting tool insert for milling low and medium alloyed steels with or without raw surfaces during wet or dry conditions comprising a cemented carbide body and a coating wherein said cemented carbide body comprises WC, 8.6-9.5 wt-% Co and 0.2-1.8 wt-% cubic carbides of Ta, Ti and Nb, with Ti present on a level corresponding to a technical impurity, and a highly W-alloyed binder phase with a CW-ratio of 0.78-0.93 and said coating comprises
  • a milling insert comprising a cemented carbide body and a coating comprising a WC-Co-based cemented carbide body with a highly W-alloyed binder phase with a CW-ratio of 0.78-0.93 with
  • the FIGURE is a micrograph in 10,000 ⁇ magnification of a coated insert according to the present invention in which
  • the milling cutting insert according to the invention is: a cemented carbide body with a highly W-alloyed binder phase and with a well-balanced chemical composition and grain size of the WC, a columnar TiC x N y O z -layer, a ⁇ -Al 2 O 3 -layer, a TiN-layer and optionally followed by smoothening, the cutting edges by brushing the edges with, e.g., a SiC based brush.
  • a milling tool insert is provided with a cemented carbide body with a composition of 8.6-9.5 wt % Co, preferably 8.7-9.5 wt % Co, most preferably 8.8-9.4 wt % Co, 0.2-1.8 wt % cubic carbides, preferably 0.4-1.8 wt % cubic carbides, most preferably 0.5-1.7 wt % cubic carbides of the metals Ta, Nb and Ti and balance WC.
  • the cemented carbide may also contain other carbides from elements from group IVb, Vb or VIb of the periodic table.
  • the content of Ti is preferably on a level corresponding to a technical impurity.
  • the average grain size of the WC is in the range of about 1.5-2 ⁇ m, preferably about 1.7 ⁇ m.
  • the cobalt binder phase is highly alloyed with W.
  • the CW-value is a function of the W content in the Co binder phase. A low CW-value corresponds to a high W-content in the binder phase.
  • the cemented carbide body has a CW-ratio of 0.78-0.93, preferably 0.80-0.91, and most preferably 0.82-0.90.
  • the cemented carbide may contain small amounts, ⁇ 1 volume %, of ⁇ -phase (M 6 C), without any detrimental effect. From the CW-value, it follows that no free graphite is allowed in the cemented carbide body according to the present invention.
  • the cement carbide body may contain a thin (about 5-25 ⁇ m) surface zone depleted in cubic carbides and often enriched in binder phase according to prior art such as disclosed in U.S. Pat. No. 4,610,931.
  • the cemented carbide may contain carbonitride or even nitride.
  • the coating comprises
  • a cemented carbide milling tool in accordance with the invention inserts of style SEKN 1204 AZ with the composition 9.1 wt-% Co, 1.25 wt-% TaC, 0.30 wt-% NbC and balance WC, with a binder phase highly alloyed with W, corresponding to a CW-ratio of 0.86 were coated with a 0.5 ⁇ m equiaxed TiCN-layer (with a high nitrogen content corresponding to an estimated C/N-ratio of 0.05) followed by a 4 ⁇ m thick TiCN-layer with columnar grains by using MTCVD-technique (temperature 885-850° C. and CH 3 CN as the carbon/nitrogen source).
  • a 1.0 ⁇ m thick layer of Al 2 O 3 was deposited using a temperature 970° C. and a concentration of H 2 S dopant of 0.4% as disclosed in EP-A-523 021 which corresponds to U.S. Pat. No. 5,674,564.
  • a thin (0.3 ⁇ m) layer of TiN was deposited on top, according to known CVD-technique. XRD-measurement showed that the Al 2 O 3 -layer consisted of 100% ⁇ -phase.
  • the cemented carbide body had a WC grain size in average of 1.65 ⁇ m.
  • the coated inserts were brushed by a nylon straw brush containing SiC grains.
  • a strongly competitive cemented carbide grade in style SEKN 1204 from an external leading carbide producer was selected for comparison in a wet milling test.
  • the carbide had a composition of 9.0 wt-% Co, 0.2 wt-% TiC, 0.5 wt-% TaC, 0.1 wt % NbC balance WC and a CW-ratio of 0.95.
  • the WC-grain size was 2.5 ⁇ m.
  • the insert had a coating consisting of a 6 ⁇ m TiCN layer and a 0.3 ⁇ m TiN layer.
  • Two parallel bars, each having a thickness of 35 mm, were centrally positioned relative to the cutter body (diameter 100 mm), and the bars were placed with an air gap of 10 mm between them.
  • the cutting data were:
  • Variant A showed no comb cracks and variant B showed 14 comb cracks. After milling 1800 mm, variant B broke down due to a lot of chipping and fracture between the comb cracks. Variant A, according to the invention, lasted 4200 mm, corresponding to an effective tool life of 11 min compared with about 4 min for variant B.
  • a cemented carbide milling tool in accordance with the invention inserts of style SEKN 1204 AZ with the composition 9.1 wt-% Co, 1.23 wt-% TaC, 0.30 wt-% NbC and balance WC, with a binder phase highly alloyed with W corresponding to a CW-ratio of 0.85 were coated with a 0.5 ⁇ m equiaxed TiCN-layer (with a high nitrogen content corresponding to an estimated C/N-ratio of 0.05) followed by a 3.7 ⁇ m thick TiCN-layer with columnar grains by using MTCVD-technique (temperature 885-850° C. and CH 3 CN as the carbon/nitrogen source).
  • a 0.9 ⁇ m thick layer of Al 2 O 3 was deposited using a temperature 970° C. and a concentration of H 2 S dopant of 0.4% as disclosed in EP-A-523 021 which corresponds to U.S. Pat. No. 5,674,564.
  • a thin (0.3 ⁇ m) layer of TiN was deposited on top according to known CVD-technique. XRD-measurement showed that the Al 2 O 3 -layer consisted of 100% ⁇ -phase.
  • the cemented carbide body had a WC grain size in average of 1.6 ⁇ m.
  • a strongly competitive cemented carbide grade in style SEKN 1204 from an external leading cemented carbide producer was selected for comparison in a wet milling test.
  • the carbide had a composition of 11.0 wt-% Co, 0.2 wt-% TaC, 0.3 wt % NbC balance WC and a CW-ratio of 0.90.
  • the insert had a coating consisting of a 0.5 ⁇ m equiaxed TiCN layer, 2.0 ⁇ m TiCN columnar layer, 2.0 ⁇ m ⁇ -Al 2 O 3 -layer and a 0.3 ⁇ m TiN-layer.
  • the bars were, as very common extremely rusty due to outdoor stocking.
  • Two parallel bars each of a thickness having 32 mm were centrally positioned relative to the cutter body (diameter 100 mm), and the bars were placed with an air gap of 10 mm between them.
  • the cutting data were:
  • the insert C broke after 1100 mm
  • the insert B broke after 2150 mm
  • the insert A broke after 2400 mm.
  • a cemented carbide milling tool in accordance with the invention inserts of style SEKN 1204 AZ with the composition 9.1 wt-% Co, 1.23 wt-% TaC, 0.30 wt-% NbC and balance WC, with a binder phase highly alloyed with W corresponding to a CW-ratio of 0.86 were coated with a 0.5 ⁇ m equiaxed TiCN-layer (with a high nitrogen content corresponding to an estimated C/N-ratio of 0.05) followed by a 3.7 ⁇ m thick TiCN-layer with columnar grains by using MTCVD-technique (temperature 885-850° C. and CH 3 CN as the carbon/nitrogen source).
  • a 1.1 ⁇ m thick layer of Al 2 O 3 was deposited using a temperature of 970° C. and a concentration of H 2 S dopant of 0.4% as disclosed in EP-A-523 021 which corresponds to U.S. Pat. No. 5,674,564.
  • a thin (0.3 ⁇ m) layer of TiN was deposited on top according to known CVD-technique. XRD-measurement showed that the Al 2 O 3 -layer consisted of 100% ⁇ -phase.
  • the cemented carbide body had a WC grain size in average of 1.7 ⁇ m.
  • the coated inserts were brushed by a nylon straw brush containing SiC grains.
  • a strongly competitive cemented carbide grade in style SEKN 1204 from an external leading carbide producer was used.
  • the carbide had a composition of 8.0 wt-% Co, 1.9 wt-% TaC, 0.2 wt % NbC, 0.2 wt % TiC balance WC and a CW-ratio of 0.85.
  • the insert had a coating consisting of a 1.1 ⁇ m TiN layer and 3.3 ⁇ m TiC layer.
  • a strongly competitive cemented carbide grade in style SEKN 1204 from an external leading carbide producer was used.
  • the carbide had a composition of 10.0 wt-% Co, 2.0 wt-% TaC, 0.2 wt % TiC, balance WC and a CW-ratio of 0.90.
  • the insert had a coating consisting of a 0.5 ⁇ m equiaxed TiCN layer, 3.3 ⁇ m TiCN columnar layer, 0.7 ⁇ m ⁇ -Al 2 O 3 -layer and a 0.5 ⁇ m TiN layer.
  • a bar with a thickness of 180 mm was centrally positioned relative to the cutter body (diameter 250 mm).
  • the cutting data were:
  • Insert B broke after 5000 mm after comb crack formation and chipping.
  • Insert C broke after 5400 mm by similar wear pattern and insert A was stopped after 6000 mm without other visible wear than a few small comb cracks.

Abstract

A coated milling insert particularly useful for milling in low and medium alloyed steels with or without raw surface zones during wet or dry conditions. The insert is characterized by a WC-Co cemented carbide with a low content of cubic carbides and a highly W alloyed binder phase and a coating including an inner layer of TiCxNyOz with columnar grains, a layer of κ-Al2O3 and, preferably, a top layer of TiN. The layers are deposited by using CVD methods.

Description

CROSS-REFERENCES TO RELATED APPLICATIONS
The present application is a reissue of U.S. Pat. No. 6,177,178 B1, which is a national stage application of PCT/SE96/01577 file Nov. 29, 1996, and which claims the benefit of priority to Swedish Application No. 9504304 - 8 filed Nov. 30, 1995.
BACKGROUND OF THE INVENTION
The present invention relates to a coated cutting tool (cemented carbide insert) particularly useful for wet and dry milling of low and medium alloyed steels, with raw surfaces such as cast skin, forged skin, hot or cold rolled skin or pre-machined surfaces.
When milling low and medium alloyed steels with cemented carbide tools, the cutting edge is worn according to different wear mechanisms, such as chemical wear, abrasive wear, adhesive wear and by edge chipping caused by cracks formed along the cutting edge, the comb cracks.
The comb crack formation is particularly severe when wet milling is employed (using coolant). Coolant and work piece material may penetrate and widen the comb cracks and the edge will start to chip. A chipped edge will generate a bad surface finish of the machined component.
Different cutting conditions require different properties of the cutting insert. For example, when cutting in steels with raw surface zones, a coated cemented carbide insert must consist of a tough carbide and have very good coating adhesion. When milling in low alloyed steels the adhesive wear is generally the dominating wear type. Here preferably thin (1-3 μm) CVD- or PVD-coatings have to be used.
Measures can be taken to improve the cutting performance with respect to a specific wear type. However, very often such action will have a negative effect on other wear properties.
The influence of some possible measures is given below:
    • 1.) Comb crack formation can be reduced by lowering the binder phase content. However, such action will lower the toughness properties of the cutting inserts which is not desirable.
    • 2.) Improved abrasive wear can be obtained by increasing the coating thickness. However, thick coatings increase the risk for flaking and will lower the resistance to adhesive wear.
    • 3.) Milling at high cutting speeds and at high cutting edge temperatures requires a cemented carbide with a rather high amount of cubic carbides (solid solution of WC-TiC-TaC-NbC). Such carbides will more easily develop comb cracks.
So far it has been very difficult to improve all tool properties simultaneously. Commercial cemented carbide grades have therefore been optimized with respect to one or few of these wear types and hence to specific application areas.
Swedish patent application 9501286-0 which corresponds to U.S. Ser. No. 08/616,012, herein incorporated by reference discloses a coated cutting insert particularly useful for dry milling of grey cast iron. The insert is characterized by a straight WC-Co cemented carbide grade and a coating including a layer of TiCxNyOz with columnar grains and a top layer of fine grained textured α-Al2O3.
Swedish patent application 9502640-7 which corresponds to U.S. Ser. No. 08/675,034, herein incorporated by reference, discloses a coated turning insert particularly useful for intermittent turning in low alloyed steel. The insert is characterized by a WC-Co cemented carbide body having a highly W-alloyed Co-binder phase and a coating including a layer of TiCxNyOz with columnar grains and a top layer of a fine grained, textured α-Al2O3.
Swedish patent application 9503056-5 which corresponds to U.S. Ser. No. 08/703,965, herein incorporated by reference, discloses a coated turning cutting tool particularly useful for cutting in hot and cold forged low alloyed steel. The insert is characterized by a WC-Co cemented carbide body having a highly W-alloyed Co-binder phase and a coating including a layer of TiCxNyOz with columnar grains and a top layer of a fine grained, α-Al2O3.
OBJECTS AND SUMMARY OF THE INVENTION
It is an object of this invention to avoid or alleviate the problems of the prior art.
It is further an object of this invention to provide a coated cutting tool particularly useful for wet and dry milling of low and medium alloyed steels.
In one aspect of the invention there is provided a cutting tool insert for milling low and medium alloyed steels with or without raw surfaces during wet or dry conditions comprising a cemented carbide body and a coating wherein said cemented carbide body comprises WC, 8.6-9.5 wt-% Co and 0.2-1.8 wt-% cubic carbides of Ta, Ti and Nb, with Ti present on a level corresponding to a technical impurity, and a highly W-alloyed binder phase with a CW-ratio of 0.78-0.93 and said coating comprises
    • a first (innermost) layer of TiCxNyOz with x+y+z=1, with a thickness of 0.1-1.5 μm, and with equiaxed grains with size <0.5 μm
    • a second layer of TiCxNyOz with x+y+z=1, with a thickness of 1-6 μm with columnar grains with diameter of <5 μm and
    • a layer of a smooth, fine-grained (0.5-2 μm) κ-Al2O3 with a thickness of 0.5-5 μm.
In another aspect of the invention, there is provided a method of making a milling insert comprising a cemented carbide body and a coating comprising a WC-Co-based cemented carbide body with a highly W-alloyed binder phase with a CW-ratio of 0.78-0.93 with
    • a first (innermost) layer of TiCxNyOz with x+y+z=1, with a thickness of 0.1-1.5 μm, with equiaxed grains with size <0.5 μm using known CVD-methods
    • a second layer of TiCxNyOz with x+y+z=1, with a thickness of 1-6 μm with columnar grains with a diameter of about <5 μm deposited by MTCVD-technique, using acetonitrile as the carbon and nitrogen source for forming the layer in a preferred temperature range of 850-900° C. and
    • a layer of a smooth κ-Al2O3 with a thickness of 0.5-5 μm.
BRIEF DESCRIPTION OF THE DRAWINGS
The FIGURE is a micrograph in 10,000× magnification of a coated insert according to the present invention in which
    • A—cemented carbide body
    • B—TiCxNyOz-layer with equiaxed grains
    • C—TiCxNyOz-layer with columnar grains
    • D—κ-Al2O3-layer with columnar like grains
    • E—TiN-layer preferred, could be an option.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
It has now surprisingly been found that by combining many different features, a cutting tool for milling with excellent cutting performance in low and medium alloyed steel with or without raw surface zones both in wet and dry milling can be obtained. The cutting tool according to the invention shows improved properties with respect to many of the wear types earlier mentioned.
The milling cutting insert according to the invention is: a cemented carbide body with a highly W-alloyed binder phase and with a well-balanced chemical composition and grain size of the WC, a columnar TiCxNyOz-layer, a κ-Al2O3-layer, a TiN-layer and optionally followed by smoothening, the cutting edges by brushing the edges with, e.g., a SiC based brush.
According to the present invention, a milling tool insert is provided with a cemented carbide body with a composition of 8.6-9.5 wt % Co, preferably 8.7-9.5 wt % Co, most preferably 8.8-9.4 wt % Co, 0.2-1.8 wt % cubic carbides, preferably 0.4-1.8 wt % cubic carbides, most preferably 0.5-1.7 wt % cubic carbides of the metals Ta, Nb and Ti and balance WC. The cemented carbide may also contain other carbides from elements from group IVb, Vb or VIb of the periodic table. The content of Ti is preferably on a level corresponding to a technical impurity. The average grain size of the WC is in the range of about 1.5-2 μm, preferably about 1.7 μm.
The cobalt binder phase is highly alloyed with W. The content of W in the binder phase can be expressed as the CW-ratio=Ms/(wt % Co 0.0161) CW-ratio=M s/(wt % Co×0.0161 ), where Ms is the measured saturation magnetization of the cemented carbide body in kA/m hAm2 /kg and wt % Co is the weight percentage of Co in the cemented carbide. The CW-value is a function of the W content in the Co binder phase. A low CW-value corresponds to a high W-content in the binder phase.
It has now been found according to the present invention, that improved cutting performance is achieved if the cemented carbide body has a CW-ratio of 0.78-0.93, preferably 0.80-0.91, and most preferably 0.82-0.90. The cemented carbide may contain small amounts, <1 volume %, of η-phase (M6C), without any detrimental effect. From the CW-value, it follows that no free graphite is allowed in the cemented carbide body according to the present invention.
The cement carbide body may contain a thin (about 5-25 μm) surface zone depleted in cubic carbides and often enriched in binder phase according to prior art such as disclosed in U.S. Pat. No. 4,610,931. In this case, the cemented carbide may contain carbonitride or even nitride.
The coating comprises
    • a first (innermost) layer of TiCxNyOz with x+y+z=1, preferably z<0.5, with equiaxed grains with size <0.5 μm and a total thickness <1.5 μm and preferably >0.1 μm.
    • a layer of TiCxNyOz with x+y+z=1, preferably with z=0 and x>0.3 and y>0.3, with a thickness of 1-6 μm, preferably 2-5 μm, with columnar grains and with an average diameter of about <5 μm, preferably 0.1-2 μm
    • a layer of a smooth, fine-grained (grain size about 0.5-2 μm) Al2O3 consisting essentially of the κ-phase. However, the layer may contain small amounts, 1-3 vol-%, of the θ- or the α-phases as determined by XRD-measurement. The Al2O3-layer has a thickness of 0.5-5 μm, preferably 0.5-2 μm, and most preferably 0.5-1.5 μm. Preferably, this Al2O3-layer is followed by a further layer (<1 μm, preferably 0.1-0.5 μm thick) of TiN, but the Al2O3 layer can be the outermost layer. This outermost layer, Al2O3 or TiN, has a surface roughness Rmax≦0.4 μm over a length of 10 μm. The TiN-layer, if present, is preferably removed along the cutting edge.
According to the method of the invention, a WC-Co-based cemented carbide body is made with a highly W-alloyed binder phase with a CW-ratio according to above, and a content of cubic carbide according to above, and a WC grain size according to above, and preferably without a binder phase enriched surface zone, a first (innermost) layer of TiCxNyOz with x+y+z=1, preferably z<0.5, with a thickness of <1.5 μm, and with equiaxed grains with size <0.5 μm using known CVD-methods.
    • a layer of TiCxNyOz x+y+z=1, preferably with z=0 and x>0.3 and y>0.3, with a thickness of 1-6 μm, preferably 2-5 μm, with columnar grains and with an average diameter of about <5 μm, preferably <2 μm, using preferably MTCVD-technique (using acetonitrile as the carbon and nitrogen source for forming the layer in the temperature range of 700-900° C.). The exact conditions, however, depend to a certain extent on the design of the equipment used.
    • a smooth Al2O3-layer essentially consisting of κ-Al2O3 is deposited under conditions disclosed in e.g. EP-A-523 021 which corresponds to U.S. Pat. No. 5,674,564, herein incorporated by reference. The Al2O3 layer has a thickness of 0.5-5 μm, preferably 0.5-2 μm, and most preferably 0.5-1.5 μm. Preferably, a further layer (<1 μm, preferably 0.1-0.5 μm thick) of TiN is deposited, but the Al2O3 layer can be the outermost layer. This outermost layer, Al2O3 or TiN, has a surface roughness Rmax≦0.4 μm over a length of 10 μm. The smooth coating surface can be obtained by a gentle wet-blasting of the coating surface with fine-grained (400-150 mesh) alumina powder or by brushing (preferably used when TiN top coating is present) the edges with brushes based on, e.g.; SiC as disclosed, e.g.; in Swedish patent application 9402543-4 which corresponds to U.S. Ser. No. 08/497,934, herein incorporated by reference. The TiN-layer, if present, is preferably removed along the cutting edge.
The invention is additionally illustrated in connection with the following Examples which are to be considered as illustrative of the present invention. It should be understood, however, that the invention is not limited to the specific details of the Examples.
EXAMPLE 1
A. A cemented carbide milling tool in accordance with the invention, inserts of style SEKN 1204 AZ with the composition 9.1 wt-% Co, 1.25 wt-% TaC, 0.30 wt-% NbC and balance WC, with a binder phase highly alloyed with W, corresponding to a CW-ratio of 0.86 were coated with a 0.5 μm equiaxed TiCN-layer (with a high nitrogen content corresponding to an estimated C/N-ratio of 0.05) followed by a 4 μm thick TiCN-layer with columnar grains by using MTCVD-technique (temperature 885-850° C. and CH3CN as the carbon/nitrogen source). In subsequent steps during the same coating cycle, a 1.0 μm thick layer of Al2O3 was deposited using a temperature 970° C. and a concentration of H2S dopant of 0.4% as disclosed in EP-A-523 021 which corresponds to U.S. Pat. No. 5,674,564. A thin (0.3 μm) layer of TiN was deposited on top, according to known CVD-technique. XRD-measurement showed that the Al2O3-layer consisted of 100% κ-phase. The cemented carbide body had a WC grain size in average of 1.65 μm. The coated inserts were brushed by a nylon straw brush containing SiC grains. Examination of the brushed inserts in a light microscope showed that the thin TiN-layer had been brushed away only along the cutting edge, leaving there a smooth Al2O3-layer surface. Coating thickness measurements on cross sectioned brushed samples showed no reduction of the coating along the edge line except for the outer TiN-layer that was removed.
B. A strongly competitive cemented carbide grade in style SEKN 1204 from an external leading carbide producer was selected for comparison in a wet milling test. The carbide had a composition of 9.0 wt-% Co, 0.2 wt-% TiC, 0.5 wt-% TaC, 0.1 wt % NbC balance WC and a CW-ratio of 0.95. The WC-grain size was 2.5 μm. The insert had a coating consisting of a 6 μm TiCN layer and a 0.3 μm TiN layer.
The insert from A was compared against the insert from B in a wet milling test in a medium alloyed steel (HB=310) with hot-rolled surfaces. Two parallel bars, each having a thickness of 35 mm, were centrally positioned relative to the cutter body (diameter 100 mm), and the bars were placed with an air gap of 10 mm between them.
The cutting data were:
    • Speed=160 m/min,
    • Feed=0.20 mm/rev
    • Cutting depth=2 mm, single tooth milling with coolant.
A comparison was made after milling 1200 mm. Variant A, according to the invention, showed no comb cracks and variant B showed 14 comb cracks. After milling 1800 mm, variant B broke down due to a lot of chipping and fracture between the comb cracks. Variant A, according to the invention, lasted 4200 mm, corresponding to an effective tool life of 11 min compared with about 4 min for variant B.
EXAMPLE 2
A. A cemented carbide milling tool in accordance with the invention, inserts of style SEKN 1204 AZ with the composition 9.1 wt-% Co, 1.23 wt-% TaC, 0.30 wt-% NbC and balance WC, with a binder phase highly alloyed with W corresponding to a CW-ratio of 0.85 were coated with a 0.5 μm equiaxed TiCN-layer (with a high nitrogen content corresponding to an estimated C/N-ratio of 0.05) followed by a 3.7 μm thick TiCN-layer with columnar grains by using MTCVD-technique (temperature 885-850° C. and CH3CN as the carbon/nitrogen source). In subsequent steps during the same coating cycle, a 0.9 μm thick layer of Al2O3 was deposited using a temperature 970° C. and a concentration of H2S dopant of 0.4% as disclosed in EP-A-523 021 which corresponds to U.S. Pat. No. 5,674,564. (A thin (0.3 μm) layer of TiN was deposited on top according to known CVD-technique. XRD-measurement showed that the Al2O3-layer consisted of 100% κ-phase. The cemented carbide body had a WC grain size in average of 1.6 μm.
B. A strongly competitive cemented carbide grade in style SEKN 1204 from an external leading cemented carbide producer was selected for comparison in a wet milling test. The carbide had a composition of 11.0 wt-% Co, 0.2 wt-% TaC, 0.3 wt % NbC balance WC and a CW-ratio of 0.90. The insert had a coating consisting of a 0.5 μm equiaxed TiCN layer, 2.0 μm TiCN columnar layer, 2.0 μm κ-Al2O3-layer and a 0.3 μm TiN-layer.
C. A strongly competitive cemented carbide grade in style SEKN 1204 from an external leading carbide producer was used. The carbide had a composition of 7.5 wt-% Co, 0.4 wt-% TaC, 0.1 wt % NbC, 0.3 wt % TiC balance WC and a CW-ratio of 0.95. The insert had a coating consisting of a 0.5 μm equiaxed TiCN-layer, 2.1 μm columnar TiCN-layer, 2.2 μm κ-Al2O3-layer and a 0.3 μm TiN-layer.
Inserts from A were compared against inserts from B and C in a wet milling test in a low alloyed steel (HB=190) with hot rolled surfaces. The bars were, as very common extremely rusty due to outdoor stocking. Two parallel bars each of a thickness having 32 mm were centrally positioned relative to the cutter body (diameter 100 mm), and the bars were placed with an air gap of 10 mm between them.
The cutting data were:
    • Speed=150 m/min,
    • Feed=0.20 mm/rev
    • Cutting depth=2 mm, single tooth milling with coolant.
The insert C broke after 1100 mm, the insert B broke after 2150 mm and the insert A, according to the invention, broke after 2400 mm.
In this test all coatings were of similar type, and the major difference was on the cemented carbide. The results show that the coated cemented carbide according to the invention, exhibited longer tool life than two important competitor grades containing less and more binder phase resp than the coated grade according to the invention.
EXAMPLE 3
A. A cemented carbide milling tool in accordance with the invention, inserts of style SEKN 1204 AZ with the composition 9.1 wt-% Co, 1.23 wt-% TaC, 0.30 wt-% NbC and balance WC, with a binder phase highly alloyed with W corresponding to a CW-ratio of 0.86 were coated with a 0.5 μm equiaxed TiCN-layer (with a high nitrogen content corresponding to an estimated C/N-ratio of 0.05) followed by a 3.7 μm thick TiCN-layer with columnar grains by using MTCVD-technique (temperature 885-850° C. and CH3CN as the carbon/nitrogen source). In subsequent steps during the same coating cycle, a 1.1 μm thick layer of Al2O3 was deposited using a temperature of 970° C. and a concentration of H2S dopant of 0.4% as disclosed in EP-A-523 021 which corresponds to U.S. Pat. No. 5,674,564. A thin (0.3 μm) layer of TiN was deposited on top according to known CVD-technique. XRD-measurement showed that the Al2O3-layer consisted of 100% κ-phase. The cemented carbide body had a WC grain size in average of 1.7 μm. The coated inserts were brushed by a nylon straw brush containing SiC grains. Examination of the brushed inserts in a light microscope showed that the thin TiN-layer had been brushed away only along the cutting edge leaving there a smooth Al2O3-layer surface. Coating thickness measurements on cross-sectioned brushed samples showed no reduction of the coating along the edge line except for the outer TiN-layer that was removed.
B. A strongly competitive cemented carbide grade in style SEKN 1204 from an external leading carbide producer was used. The carbide had a composition of 8.0 wt-% Co, 1.9 wt-% TaC, 0.2 wt % NbC, 0.2 wt % TiC balance WC and a CW-ratio of 0.85. The insert had a coating consisting of a 1.1 μm TiN layer and 3.3 μm TiC layer.
C. A strongly competitive cemented carbide grade in style SEKN 1204 from an external leading carbide producer was used. The carbide (had a composition of 10.0 wt-% Co, 2.0 wt-% TaC, 0.2 wt % TiC, balance WC and a CW-ratio of 0.90. The insert had a coating consisting of a 0.5 μm equiaxed TiCN layer, 3.3 μm TiCN columnar layer, 0.7 μm κ-Al2O3-layer and a 0.5 μm TiN layer.
Inserts from A were compared against inserts from B and C in a dry milling test in a low alloyed steel (HB=290) with pre machined surfaces. A bar with a thickness of 180 mm was centrally positioned relative to the cutter body (diameter 250 mm).
The cutting data were:
    • Speed=204 m/min,
    • Feed=0.22 mm/rev
    • Cutting depth=2 mm, single tooth milling dry conditions.
Insert B broke after 5000 mm after comb crack formation and chipping. Insert C broke after 5400 mm by similar wear pattern and insert A was stopped after 6000 mm without other visible wear than a few small comb cracks.
The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. The invention which is intended to be protected herein, however, is not to be construed as limited to the particular forms disclosed, since these are to be regarded as illustrative rather than restrictive. Variations and changes may be made by those skilled in the art without departing from the spirit of the invention.

Claims (20)

1. A cutting tool insert for milling low and medium alloyed steels with or without raw surfaces during wet or dry conditions comprising a cemented carbide body and a coating wherein said cemented carbide body comprises WC, 8.6-9.5 wt-% Co and 0.2-1.8 wt-% cubic carbides of Ta, Ti and Nb, with Ti present on a level corresponding to a technical impurity, and a highly W-alloyed binder phase with a CW-ratio of 0.78-0.93 and said coating comprises
a first (innermost) layer of TiCxNyOz with x+y+z=1, with a thickness of 0.1-1.5 μm, and with equiaxed grains with size <0.5 μm
a second layer of TiCxNyOz with x+y+z=1, with a thickness of 1-6 μm with columnar grains with diameter of <5 μm and
a layer of a smooth, fine-grained (0.5-2 μm) κ-Al2O3 with a thickness of 0.5-5 μm.
2. The milling insert of claim 1 wherein the cemented carbide has the composition of 8.8-9.4 wt-% Co and 0.4-1.8 wt-% carbides of Ta and Nb.
3. The milling insert of claim 1 wherein the CW-ratio is from 0.82-0.90.
4. The milling insert of claim 1 further comprising an outermost TiN-layer which has been removed along the cutting edge.
5. A method of making a milling insert comprising a cemented carbide body and a coating comprising coating a WC-Co-based cemented carbide body with a highly W-alloyed binder phase with a CW-ratio of 0.78-0.93 with
a first (innermost) layer of TiCxNyOz with x+y+z=1, with a thickness of 0.1-1.5 μm, with equiaxed grains with size <0.5 μm using known CVD-methods
a second layer of TiCxNyOz with x+y+z=1, with a thickness of 1-6 μm with columnar grains with a diameter of about <5 μm deposited by MTCVD-technique, using acetonitrile as the carbon and nitrogen source for forming the layer in a preferred temperature range of 850-900° C. and
a layer of a smooth κ-Al2O3 with a thickness of 0.5-5 μm.
6. The method of claim 5 wherein said cemented carbide body has a cobalt content of 8.8-9.4 wt-% and cubic carbides of Ta and Nb.
7. The method of claim 5 wherein the CW-ratio is from 0.82-0.90.
8. The method of claim 5 further comprising an outermost TiN-layer which is removed along the cutting edge.
9. The cutting tool insert of claim 1 wherein in the first (innermost) layer of TiCxNyOz, z<0.5 and in the second layer of TiCxNyOz, z=0, x>0.3 and y>0.3.
10. The cutting tool insert of claim 1 wherein the insert contains an outermost layer of TiN with a thickness of >1 <1 μm.
11. The method of claim 5 wherein in the first (innermost) layer of TiCxNyOz, z<0.5 and in the second layer of TiCxNyOz, z=0, x>0.3 and y>0.3.
12. The method of claim 5 wherein the insert contains an outermost layer of TiN with a thickness of <1 μm.
13. The cutting tool insert of claim 1 wherein the CW-ratio is 0.80-0.91.
14. The cutting tool insert of claim 1 wherein an average grain size of WC is in the range of or about 1.5-2.0 μm.
15. The cutting tool insert of claim 1 wherein a surface roughness of the layer of κ-Al 2 O 3 is less than or equal to 0.4 μm.
16. The cutting tool insert of claim 10 wherein a surface roughness of the outermost TiN-layer is less than or equal to 0.4 μm.
17. The method of claim 5 wherein the CW-ratio is 0.80-0.91.
18. The method of claim 5 wherein an average grain size of WC is in the range of or about 1.5-2.0 μm.
19. The method of claim 5 wherein a surface roughness of the layer of κ-Al 2 O 3 is less than or equal to 0.4 μm.
20. The method of claim 12 wherein a surface roughness of the outermost TiN-layer is less than or equal to 0.4 μm.
US11/483,381 1995-11-30 1996-11-29 Coated milling insert and method of making it Expired - Fee Related USRE39884E1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9504304A SE9504304D0 (en) 1995-11-30 1995-11-30 Coated milling insert
PCT/SE1996/001577 WO1997020081A1 (en) 1995-11-30 1996-11-29 Coated milling insert and method of making it

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/077,360 Reissue US6177178B1 (en) 1995-11-30 1996-11-29 Coated milling insert and method of making it

Publications (1)

Publication Number Publication Date
USRE39884E1 true USRE39884E1 (en) 2007-10-16

Family

ID=20400435

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/077,360 Ceased US6177178B1 (en) 1995-11-30 1996-11-29 Coated milling insert and method of making it
US11/483,381 Expired - Fee Related USRE39884E1 (en) 1995-11-30 1996-11-29 Coated milling insert and method of making it

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/077,360 Ceased US6177178B1 (en) 1995-11-30 1996-11-29 Coated milling insert and method of making it

Country Status (11)

Country Link
US (2) US6177178B1 (en)
EP (1) EP0871796B1 (en)
JP (2) JP2000515587A (en)
KR (1) KR100430361B1 (en)
CN (1) CN1203638A (en)
AT (1) ATE231565T1 (en)
BR (1) BR9611780A (en)
DE (1) DE69625934T2 (en)
IL (1) IL124474A (en)
SE (1) SE9504304D0 (en)
WO (1) WO1997020081A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080323B2 (en) 2007-06-28 2011-12-20 Kennametal Inc. Cutting insert with a wear-resistant coating scheme exhibiting wear indication and method of making the same
US20190010606A1 (en) * 2015-08-29 2019-01-10 Kyocera Corporation Coated tool

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010031682A (en) 1997-10-31 2001-04-16 존 팔머 Hyaluronan synthase gene and uses thereof
SE9903090D0 (en) * 1999-09-01 1999-09-01 Sandvik Ab Coated milling insert
EP1103635B1 (en) 1999-11-25 2004-08-11 Seco Tools Ab Coated cutting insert for milling and turning applications
US6638571B2 (en) 2000-05-31 2003-10-28 Mitsubishi Materials Corporation Coated cemented carbide cutting tool member and process for producing the same
EP1160353B1 (en) * 2000-05-31 2007-12-12 Mitsubishi Materials Corporation Coated cemented carbide cutting tool member and process for producing the same
SE519250C2 (en) * 2000-11-08 2003-02-04 Sandvik Ab Coated cemented carbide insert and its use for wet milling
US6805944B2 (en) * 2001-03-26 2004-10-19 Mitsubishi Materials Corporation Coated cemented carbide cutting tool
SE0103970L (en) * 2001-11-27 2003-05-28 Seco Tools Ab Carbide metal with binder phase enriched surface zone
SE523826C2 (en) * 2002-03-20 2004-05-25 Seco Tools Ab Cutter coated with TiAIN for high speed machining of alloy steels, ways of making a cutter and use of the cutter
SE523827C2 (en) * 2002-03-20 2004-05-25 Seco Tools Ab Coated cutting insert for high speed machining of low and medium alloy steels, ways of making a cutting insert and use of the cutting insert
US7220098B2 (en) * 2003-05-27 2007-05-22 General Electric Company Wear resistant variable stator vane assemblies
US20060029494A1 (en) * 2003-05-27 2006-02-09 General Electric Company High temperature ceramic lubricant
SE526599C2 (en) * 2003-06-16 2005-10-18 Seco Tools Ab CVD coated carbide inserts
US7455918B2 (en) * 2004-03-12 2008-11-25 Kennametal Inc. Alumina coating, coated product and method of making the same
JP2006026814A (en) * 2004-07-16 2006-02-02 Tungaloy Corp Coated cutting tip
KR100576321B1 (en) * 2004-12-14 2006-05-03 한국야금 주식회사 Cutting tool/an abrasion resistance tool with high toughness
SE528673C2 (en) 2005-01-03 2007-01-16 Sandvik Intellectual Property Coated cemented carbide inserts for dry milling in high-alloy gray cast iron and method and use
US7543992B2 (en) * 2005-04-28 2009-06-09 General Electric Company High temperature rod end bearings
SE529838C2 (en) * 2005-12-08 2007-12-04 Sandvik Intellectual Property Coated cemented carbide inserts, ways of making this and its use for milling in steel
SE529856C2 (en) * 2005-12-16 2007-12-11 Sandvik Intellectual Property Coated cemented carbide inserts, ways of making this and its use for milling
SE530516C2 (en) * 2006-06-15 2008-06-24 Sandvik Intellectual Property Coated cemented carbide insert, method of making this and its use in milling cast iron
SE530634C2 (en) * 2006-06-15 2008-07-22 Sandvik Intellectual Property Coated cemented carbide insert, method of making this and its use in dry milling of cast iron
ES2426582T5 (en) * 2006-09-05 2016-11-22 Tungaloy Corporation Coated cutting tool and method to produce it
SE531930C2 (en) * 2007-02-01 2009-09-08 Seco Tools Ab Coated cutting tool for medium to coarse turning of stainless steel and hot-strength alloys
SE0701321L (en) * 2007-06-01 2008-12-02 Sandvik Intellectual Property Coated cutting
US20090004449A1 (en) * 2007-06-28 2009-01-01 Zhigang Ban Cutting insert with a wear-resistant coating scheme exhibiting wear indication and method of making the same
SE531946C2 (en) 2007-08-24 2009-09-15 Seco Tools Ab Cutter for milling in cast iron
SE532020C2 (en) 2007-09-13 2009-09-29 Seco Tools Ab Coated cemented carbide inserts for milling applications and manufacturing methods
SE532044C2 (en) * 2007-12-27 2009-10-06 Seco Tools Ab Use of a CVD coated cutter when milling
CN103157815B (en) * 2011-12-08 2016-10-19 三菱综合材料株式会社 The surface-coated cutting tool of the wearability of excellence is played in high speed heavy cut
CN103737092A (en) * 2013-11-13 2014-04-23 厦门金鹭特种合金有限公司 Miniature PVD coat miller cutter for PCB, and making method thereof
CN104723049A (en) * 2015-03-20 2015-06-24 深圳市圆梦精密技术研究院 Process for manufacturing machining tool made of alloy materials
JP6699056B2 (en) * 2016-06-14 2020-05-27 住友電工ハードメタル株式会社 Surface coated cutting tool
KR20180065117A (en) 2016-12-07 2018-06-18 주식회사 세진티앤에스 High-strength cutting tool coated with carbon fiber
CN110899803B (en) * 2020-01-02 2021-01-29 山东大学 Integral ceramic milling cutter for high-speed milling of nickel-based alloy and manufacturing method thereof
CN111575641A (en) * 2020-05-30 2020-08-25 河源富马硬质合金股份有限公司 Hard alloy surface treatment process
CN115595554A (en) * 2022-01-26 2023-01-13 浙江馨治盛科技有限公司(Cn) Preparation method of milling cutter with low surface roughness for cutting aluminum alloy

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610931A (en) 1981-03-27 1986-09-09 Kennametal Inc. Preferentially binder enriched cemented carbide bodies and method of manufacture
US4643620A (en) 1983-05-27 1987-02-17 Sumitomo Electric Industries, Ltd. Coated hard metal tool
US5137774A (en) 1989-07-13 1992-08-11 Seco Tools Ab Multi-oxide coated carbide body and method of producing the same
JPH068008A (en) 1992-06-25 1994-01-18 Mitsubishi Materials Corp Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property
JPH06108254A (en) 1992-09-28 1994-04-19 Mitsubishi Materials Corp Cutting tool made of surface-coated wc-base sintered hard alloy
US5372873A (en) 1992-10-22 1994-12-13 Mitsubishi Materials Corporation Multilayer coated hard alloy cutting tool
EP0653499A1 (en) 1993-05-31 1995-05-17 Sumitomo Electric Industries, Ltd. Coated cutting tool and method for producing the same
US5451469A (en) 1992-12-18 1995-09-19 Sandvik Ab Cemented carbide with binder phase enriched surface zone
EP0685572A2 (en) 1994-05-31 1995-12-06 Mitsubishi Materials Corporation Coated hard-alloy blade member
EP0686707A1 (en) 1992-12-22 1995-12-13 Mitsubishi Materials Corporation Surface coated cutting tool
EP0693574A1 (en) 1994-07-20 1996-01-24 Sandvik Aktiebolag Aluminium oxide coated tool
EP0709484A1 (en) 1994-10-20 1996-05-01 Mitsubishi Materials Corporation Coated tungsten carbide-based cemented carbide blade member
US5545490A (en) 1994-06-21 1996-08-13 Mitsubishi Materials Corporation Surface coated cutting tool
US5549980A (en) 1992-02-21 1996-08-27 Sandvik Ab Cemented carbide with binder phase enriched surface zone
US5576093A (en) 1992-10-22 1996-11-19 Mitsubishi Materials Corporation Multilayer coated hard alloy cutting tool
US5674564A (en) 1991-06-25 1997-10-07 Sandvik Ab Alumina-coated sintered body
US5786069A (en) 1995-09-01 1998-07-28 Sandvik Ab Coated turning insert

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2757469B2 (en) * 1989-07-06 1998-05-25 三菱マテリアル株式会社 Tungsten carbide based cemented carbide end mill
JP2825693B2 (en) * 1991-08-29 1998-11-18 京セラ株式会社 Coating tool and method of manufacturing the same
JPH0598385A (en) * 1991-10-08 1993-04-20 Sumitomo Electric Ind Ltd High capacity cemented carbide alloy
JPH05239587A (en) * 1992-02-26 1993-09-17 Hitachi Tool Eng Ltd Ticn-based cermet alloy
JP3052586B2 (en) * 1992-06-25 2000-06-12 三菱マテリアル株式会社 Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
GB9214851D0 (en) 1992-07-13 1992-08-26 Europ Economic Community Communities desulphurisation of waste gases
SE501527C2 (en) * 1992-12-18 1995-03-06 Sandvik Ab Methods and articles when coating a cutting tool with an alumina layer
JPH07112306A (en) * 1993-10-14 1995-05-02 Mitsubishi Materials Corp Surface coating cutting tool
SE502174C2 (en) * 1993-12-23 1995-09-04 Sandvik Ab Methods and articles when coating a cutting tool with an alumina layer

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610931A (en) 1981-03-27 1986-09-09 Kennametal Inc. Preferentially binder enriched cemented carbide bodies and method of manufacture
US4643620A (en) 1983-05-27 1987-02-17 Sumitomo Electric Industries, Ltd. Coated hard metal tool
US5137774A (en) 1989-07-13 1992-08-11 Seco Tools Ab Multi-oxide coated carbide body and method of producing the same
US5162147A (en) 1989-07-13 1992-11-10 Sandvik Ab Kappa-alumina oxide coated carbide body and method of producing the same
US5674564A (en) 1991-06-25 1997-10-07 Sandvik Ab Alumina-coated sintered body
US5549980A (en) 1992-02-21 1996-08-27 Sandvik Ab Cemented carbide with binder phase enriched surface zone
JPH068008A (en) 1992-06-25 1994-01-18 Mitsubishi Materials Corp Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property
JPH06108254A (en) 1992-09-28 1994-04-19 Mitsubishi Materials Corp Cutting tool made of surface-coated wc-base sintered hard alloy
US5576093A (en) 1992-10-22 1996-11-19 Mitsubishi Materials Corporation Multilayer coated hard alloy cutting tool
US5372873A (en) 1992-10-22 1994-12-13 Mitsubishi Materials Corporation Multilayer coated hard alloy cutting tool
US5451469A (en) 1992-12-18 1995-09-19 Sandvik Ab Cemented carbide with binder phase enriched surface zone
EP0686707A1 (en) 1992-12-22 1995-12-13 Mitsubishi Materials Corporation Surface coated cutting tool
EP0653499A1 (en) 1993-05-31 1995-05-17 Sumitomo Electric Industries, Ltd. Coated cutting tool and method for producing the same
US5915162A (en) 1993-05-31 1999-06-22 Sumitomo Electric Industries, Ltd. Coated cutting tool and a process for the production of the same
EP0685572A2 (en) 1994-05-31 1995-12-06 Mitsubishi Materials Corporation Coated hard-alloy blade member
US5920760A (en) 1994-05-31 1999-07-06 Mitsubishi Materials Corporation Coated hard alloy blade member
US5545490A (en) 1994-06-21 1996-08-13 Mitsubishi Materials Corporation Surface coated cutting tool
EP0693574A1 (en) 1994-07-20 1996-01-24 Sandvik Aktiebolag Aluminium oxide coated tool
EP0709484A1 (en) 1994-10-20 1996-05-01 Mitsubishi Materials Corporation Coated tungsten carbide-based cemented carbide blade member
US5652045A (en) 1994-10-20 1997-07-29 Mitsubishi Materials Corporation Coated tungsten carbide-based cemented carbide blade member
US5786069A (en) 1995-09-01 1998-07-28 Sandvik Ab Coated turning insert

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Patent Abstract of Japan, vol. 18, No. 203, M-1590, abstract of JP,A, 6-8008 (Mitsubishi Materials Corp), Jan. 18, 1994 & JP,A, 6008008.
Patent Abstracts of Japan, vol. 18, No. 392, C-1228, abstract of JP,A, 6-108254 (Mitsubishi Materials Corp), Apr. 19, 1994 & JP,A, 6108254.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080323B2 (en) 2007-06-28 2011-12-20 Kennametal Inc. Cutting insert with a wear-resistant coating scheme exhibiting wear indication and method of making the same
US20190010606A1 (en) * 2015-08-29 2019-01-10 Kyocera Corporation Coated tool
US10837104B2 (en) * 2015-08-29 2020-11-17 Kyocera Corporation Coated tool

Also Published As

Publication number Publication date
SE9504304D0 (en) 1995-11-30
BR9611780A (en) 1999-02-23
KR100430361B1 (en) 2004-07-19
CN1203638A (en) 1998-12-30
JP2008183708A (en) 2008-08-14
IL124474A (en) 2001-08-26
IL124474A0 (en) 1998-12-06
EP0871796B1 (en) 2003-01-22
EP0871796A1 (en) 1998-10-21
DE69625934D1 (en) 2003-02-27
JP2000515587A (en) 2000-11-21
DE69625934T2 (en) 2003-11-13
US6177178B1 (en) 2001-01-23
WO1997020081A1 (en) 1997-06-05
ATE231565T1 (en) 2003-02-15
KR19990071775A (en) 1999-09-27

Similar Documents

Publication Publication Date Title
USRE39884E1 (en) Coated milling insert and method of making it
EP0870073B1 (en) Coated cutting insert and method of making it
EP0953065B1 (en) Coated cutting insert
USRE39999E1 (en) Coated turning insert and method of making it
US6221479B1 (en) Cemented carbide insert for turning, milling and drilling
US5786069A (en) Coated turning insert
US5863640A (en) Coated cutting insert and method of manufacture thereof
US6638609B2 (en) Coated inserts for rough milling
US20090214306A1 (en) Coated Cutting Tool Insert
US6406224B1 (en) Coated milling insert
WO2009011648A1 (en) Textured alpha- alumina coated cutting tool insert for turning of steel
US20080298921A1 (en) Coated cutting tool insert
US7431977B2 (en) Coated inserts for dry milling
US7429151B2 (en) Coated inserts for wet milling
JP3358538B2 (en) Slow-away cutting insert made of cemented carbide with excellent wear resistance

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees