USRE40043E1 - Positioning device having two object holders - Google Patents

Positioning device having two object holders Download PDF

Info

Publication number
USRE40043E1
USRE40043E1 US10/347,491 US34749198A USRE40043E US RE40043 E1 USRE40043 E1 US RE40043E1 US 34749198 A US34749198 A US 34749198A US RE40043 E USRE40043 E US RE40043E
Authority
US
United States
Prior art keywords
parallel
displacement
holder
object holder
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/347,491
Inventor
Yim-Bun Patrick Kwan
Gerrit Maarten Bonnema
Erik Roelof Loopstra
Harmen Klaas Van Der Schoot
Gerjan Peter Veldhuis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Application granted granted Critical
Publication of USRE40043E1 publication Critical patent/USRE40043E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/56Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/60Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/62Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides
    • B23Q1/621Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/56Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/60Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/62Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides
    • B23Q1/621Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair
    • B23Q1/623Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair followed perpendicularly by a single rotating pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0032Arrangements for preventing or isolating vibrations in parts of the machine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/70741Handling masks outside exposure position, e.g. reticle libraries
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/7075Handling workpieces outside exposure position, e.g. SMIF box
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment

Definitions

  • the invention relates to a positioning device having a guiding surface extending parallel to an X-direction and parallel to a Y-direction, a first object holder and a second object holder which are each guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position, and a displacement system for displacing the first object holder and the second object holder over the guiding surface.
  • the invention further relates to a lithographic device provided with a radiation source, a mask holder, a focusing unit having a main axis, a characterization unit, and a positioning device, said positioning device comprising a guiding surface extending parallel to an X-direction, which is perpendicular to the main axis, and parallel to a Y-direction, which is perpendicular to the X-direction and the main axis, a first substrate holder and a second substrate holder which are each guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position which is present near the focusing unit, and a displacement system for displacing the first substrate holder and the second substrate holder over the guiding surface.
  • the first and the second object holder are displaceable from the first position to the second position and vice versa by the displacement system of the positioning device which is not described in detail in EP-A-0 687 957.
  • the second object holder is in the first position and a next semiconductor substrate is loaded thereon at first.
  • the second object holder is displaced from the first position to a characterization position in which the semiconductor substrate present on the second object holder is characterized by the characterization unit.
  • the first object holder and the second object holder are displaced lockstep-wise. In this manner the exposure of the semiconductor substrate present on the first object holder and the characterization of the semiconductor substrate present on the second object holder are carried out simultaneously, so that a high throughput of the step-and-repeat apparatus is obtained.
  • a disadvantage of the known positioning device and the known lithographic device is that the characterization of the semiconductor substrate present on the second object holder and the exposure of the semiconductor substrate present on the first object holder cannot be carried out independently from each other as a result of said lockstep-wise displacements of the first and the second object holder. As a result, the exposure of the semiconductor substrate present on the first object holder cannot be started until the second object holder has reached the characterization position.
  • the positioning device is for this purpose characterized in that the displacement system comprises a first displacement unit and a second displacement unit to which the first object holder and the second object holder can be coupled alternately, the first displacement unit being suitable for displacing the object holders from the first position into an intermediate position between the first position and the second position, and the second displacement unit being suitable for displacing the object holders from the intermediate position into the second position.
  • a first process involving a first series of positioning steps of the first object holder can be carried out in the first position by means of the first displacement unit, and a second process involving a second series of positioning steps of the second object holder can be carried out in the second position by means of the second displacement unit simultaneously with and independently from the first process.
  • the first object holder is displaced by the first displacement unit from the first position into the intermediate position and the second object holder is displaced by the second displacement unit from the second position into the intermediate position.
  • the first object holder In the intermediate position, the first object holder is uncoupled from the first displacement unit and is coupled to the second displacement unit, while the second object holder is uncoupled from the second displacement unit and is coupled to the first displacement unit. Subsequently, the first object holder is displaced by the second displacement unit from the intermediate position to the second position and the second object holder is displaced by the first displacement unit from the intermediate position to the first position. Then the first process can be carried out with the second object holder in the first position and, simultaneously and independently, the second process can be carried out with the first object holder in the second position. Furthermore, as a result of the use of said two displacement units, a distance over which each individual displacement unit has to displace the object holders is reduced, so that the required dimensions of the displacement units are reduced. It is in addition prevented that the displaceable parts of the first displacement unit and the displaceable parts of the second displacement unit must be constructed so as to be capable of passing one another, which allows a comparatively simple construction of the displacement units.
  • the lithographic device according to the invention is for this purpose characterized in that the positioning device of the lithographic device is a positioning device according to the invention, wherein each of the object holders of the positioning device is a substrate holder of the lithographic device, and wherein the first position of the object holders is a characterization position which is present near the characterization unit.
  • a characterization process involving a first series of positioning steps of the first substrate holder can be carried out in the first position by means of the first displacement unit of the positioning device, and an exposure process involving a second series of positioning steps of the second substrate holder can be carried out in the second position by means of the second displacement unit of the positioning device simultaneously with and independently from the first process.
  • the first process can also be carried out with the second substrate holder in the first position and, simultaneously and independently, the second process can be carried out with the first object holder in the second position.
  • a particular embodiment of a positioning device is characterized in that the displacement units each comprise an X-motor having a first part extending parallel to the X-direction and a second part which is displaceable along the first part of the X-motor and can be coupled alternately to the first object holder and to the second object holder, and two Y-motors each having a first part extending parallel to the Y-direction and a second part which is displaceable along the first part of the relevant Y-motor, the first part of the X-motor of each displacement unit being connected to the second parts of the two Y-motors of the relevant displacement unit.
  • the first part of the X-motor of each displacement unit is connected to the second parts of the two Y-motors of the relevant displacement unit, a comparatively stiff and stable support of the X-motor by the two Y-motors is obtained, which benefits the positioning accuracy of the displacement unit. Since the first displacement unit has a limited displacing range from the first position to the intermediate position and the second displacement unit has a limited displacing range from the intermediate position to the second position, the four Y-motors of the two displacement units can be arranged in two lines, which leads to a compact and simple construction of the positioning device.
  • a further embodiment of a positioning device is characterized in that the first parts of the Y-motors of the two displacement units are connected to a common balancing unit which is guided relative to a base of the positioning device so as to be displaceable parallel to the X-direction and parallel to the Y-direction and to be rotatable about an axis of rotation extending perpendicularly to the X-direction and the Y-direction.
  • reaction forces of the X-motors and the Y-motors of the displacement units are transmitted via the first parts of the Y-motors to the balancing unit and are converted into displacements of the balancing unit parallel to the X-direction and parallel to the Y-direction and rotations of the balancing unit about said axis of rotation relative to the base.
  • a transmission of the reaction forces to the base, the guiding surface, and the object holders is prevented as much as possible, so that the positioning accuracy of the positioning device is further improved.
  • a yet further embodiment of a positioning device is characterized in that the object holders each comprise a basic part which is guided over the guiding surface and can be coupled to the displacement units, and an object table which is displaceable relative to the basic part by means of an actuator unit of the relevant object holder.
  • the object tables of the object holders are displaceable by the displacement units over comparatively large distances and with comparatively low accuracies, while the object tables are displaceable by said actuator units over comparatively small distances and with comparatively high accuracies.
  • the displacement units can be of a relatively simple, conventional type, while the dimensions of the accurate actuator units can be limited as much as possible.
  • a particular embodiment of a positioning device is characterized in that the object table of each of the object holders is displaceable relative to the basic part parallel to the X-direction, parallel to the Y-direction, and parallel to a Z-direction extending perpendicularly to the X-direction and the Y-direction, and is pivotable relative to the basic part about a first pivot axis extending parallel to the X-direction, a second pivot axis extending parallel to the Y-direction, and a third pivot axis extending parallel to the Z-direction.
  • a high degree of adjustability of the object tables relative to the basic parts is obtained.
  • FIG. 1 diagrammatically shows a lithographic device according to the invention
  • FIG. 2 is a diagrammatic plan view of a first embodiment of a positioning device according to the invention suitable for use in the lithographic device of FIG. 1 ,
  • FIG. 3 shows the positioning device of FIG. 2 , two substrate holders of the positioning device being in an intermediate position
  • FIG. 4 is a diagrammatic plan view of a second embodiment of a positioning device according to the invention suitable for use in the lithographic device of FIG. 1 .
  • the lithographic device according to the invention shown diagrammatically in FIG. 1 is used for the exposure of semiconductor substrates in the manufacturing process of integrated semiconductor circuits and comprises a frame 1 which supports in that order, as seen parallel to a vertical Z-direction, a positioning device 3 according to the invention, a focusing unit 5 , a mask holder 7 , and a radiation source 9 .
  • the lithographic device is an optical lithographic device whose radiation source 9 comprises a light source 11 .
  • the mask holder 7 comprises a support surface 13 which extends perpendicularly to the Z-direction and on which a mask 15 can be placed comprising a pattern or a sub-pattern of an integrated semiconductor circuit.
  • the focusing unit 5 is an imaging or projection system and comprises an optical lens system 17 having a main optical axis 19 extending parallel to the Z-direction and an optical reduction factor of, for example, 4 or 5 .
  • the positioning device 3 comprises a first substrate holder 21 and a second substrate holder 23 which is identical to the first substrate holder 21 .
  • the substrate holders 21 , 23 each comprise a support surface 25 , 27 which extends perpendicularly to the Z-direction. In the situation shown in FIG. 1 , a first semiconductor substrate 29 is present on the support surface 25 of the first substrate holder 21 and a second semiconductor substrate 31 is present on the support surface 27 of the second substrate holder 23 .
  • the positioning device 3 further comprises a guiding surface 33 extending parallel to a horizontal X-direction which is perpendicular to the Z-direction and parallel to a horizontal Y-direction which is perpendicular to the X-direction and the Z-direction.
  • the substrate holders 21 , 23 are each guided over the guiding surface 33 and are each displaceable over the guiding surface 33 parallel to the X-direction and parallel to the Y-direction by means of a displacement system 35 of the positioning device 3 .
  • the first substrate holder 21 with the first semiconductor substrate 29 is in a second position of the positioning device 3 which corresponds to an exposure position of the lithographic device which is present near the focusing unit 5 .
  • a light beam originating from the light source 11 is guided through the mask 15 and is focused on the first semiconductor substrate 29 by means of the focusing unit 5 , so that the pattern present on the mask 15 is imaged on a reduced scale on the first semiconductor substrate 29 .
  • the first semiconductor substrate 29 comprises a large number of individual fields on which identical semiconductor circuits are to be imaged. The fields of the first semiconductor substrate 29 are consecutively exposed through the mask 15 for this purpose.
  • step-and-repeat exposure process according to which the first semiconductor substrate 29 and the mask 15 are in fixed positions relative to the focusing unit 5 during the exposure of an individual field of the first semiconductor substrate 29 , and according to which a next field of the first semiconductor substrate 29 is brought into position relative to the focusing unit 5 after the exposure of a previously exposed field in that the first substrate holder 21 is displaced parallel to the X-direction and/or parallel to the Y-direction by the displacement system 35 of the positioning device 3 .
  • This process is repeated a number of times, with a different mask each time, so that complicated integrated semiconductor circuits with a layered structure can be manufactured.
  • the second substrate holder 23 with the second semiconductor substrate 31 is in a first position of the positioning device 3 which corresponds to a characterization position of the lithographic device.
  • a previous semiconductor substrate which was fully exposed in the exposure position via the mask 15 , was unloaded from the second substrate holder 23 and was transported to a stack of semiconductor substrates under manufacture not shown in the figure.
  • the second semiconductor substrate 31 shown in FIG. 1 is a next semiconductor substrate which has just been taken from said stack of semiconductor substrates and loaded on the second substrate holder 23 and which has to be exposed via the mask 15 after the first semiconductor substrate 29 .
  • the second semiconductor substrate 31 is characterized by a characterization unit 37 of the lithographic device which is also supported by the frame 1 .
  • a characterization unit 37 of the lithographic device which is also supported by the frame 1 .
  • the second substrate holder 23 with the second semiconductor substrate 31 is displaced by the displacement system 35 from the characterization position into the exposure position and the first substrate holder 21 with the first semiconductor substrate 29 is displaced by the displacement system 35 from the exposure position into the characterization position.
  • the characterization unit 37 comprises, for example, a measuring system which is used for measuring the positions of the individual fields of the second semiconductor substrate 31 relative to the second substrate holder 23 .
  • the individual fields of the second semiconductor substrate 31 can subsequently be positioned relative to the focusing unit 5 in the exposure position by measuring the position of the second substrate holder 23 relative to the focusing unit 5 . In this manner, the time required to position the individual fields of the successive semiconductor substrates relative to the focusing unit 5 in the exposure position is limited considerably, so that the throughput of the lithographic device is considerably improved. Since the position of each individual field of the second semiconductor substrate 31 has to be measured in the characterization position, a step wise displacement of the second substrate holder 23 with the second semiconductor substrate 31 is carried out by the displacement system 35 of the positioning device 3 in the characterization position.
  • the exposure process of a semiconductor substrate in the exposure position can be carried out simultaneously with the unload process of a previous semiconductor substrate and the load and characterization processes of a next semiconductor substrate in the characterization position, so that the throughput of the lithographic device is further improved.
  • the displacement system 35 of the positioning device 3 comprises a first displacement unit 39 and a second displacement unit 41 .
  • the substrate holders 21 , 23 each comprise an aerostatically supported foot 43 , 45 provided with a static gas bearing by means of which the relevant substrate holder 21 , 23 is guided over the guiding surface 33 .
  • the guiding surface 33 constitutes an upper surface of a granite block 47 which is fastened to the frame 1 of the lithographic device.
  • the substrate holders 21 , 23 each comprise a first coupling member 49 , 51 and a second coupling member 53 , 55 by means of which the substrate holders 21 , 23 can be coupled alternately to a coupling member 57 of the first displacement unit 39 and to a coupling member 59 of the second displacement unit 41 , respectively.
  • the first substrate holder 21 is coupled to the coupling member 59 of the second displacement unit 41 and the second substrate holder 23 is coupled to the coupling member 57 of the first displacement unit 39 .
  • the first substrate holder 21 can be coupled to the coupling member 57 of the first displacement unit 39 and the second substrate holder 23 can be coupled to the coupling member 59 of the second displacement unit 41 .
  • the coupling members 49 , 51 , 53 , 55 , 57 , 59 may be of a type which is known and usual per se, such as, for example, a mechanical or an electromechanical coupling member.
  • the first displacement unit 39 and the second displacement unit 41 each comprise a linear X-motor 61 , 63 and two linear Y-motors 65 , 67 , 69 , 71 of a conventional type which is known and usual per se.
  • the X-motors 61 , 63 each comprise a first part 73 , 75 extending parallel to the X-direction and a second part 77 , 79 which is displaceable along the first part 73 , 75 of the relevant X-motor 61 , 63 and comprises the coupling member 57 , 59 of the relevant X-motor 61 , 63 .
  • the Y-motors 65 , 67 , 69 , 71 each comprise a first part 81 , 83 , 85 , 87 extending parallel to the Y-direction and a second part 89 , 91 , 93 , 95 which is displaceable along the first part 81 , 83 , 85 , 87 of the relevant Y-motor 65 , 67 , 69 , 71 .
  • the X-motor 61 and the two Y-motors 65 , 67 of the first displacement unit 39 are mutually arranged in a H-configuration, a first end 97 and a second end 99 of the first part 73 of the X-motor 61 being coupled to the second part 89 of the Y-motor 65 and to the second part 91 of the Y-motor 67 , respectively.
  • the X-motor 63 and the two Y-motors 69 , 71 of the second displacement unit 41 are mutually arranged in a H-configuration, a first end 101 and a second end 103 of the first part 75 of the X-motor 63 being coupled to the second part 93 of the Y-motor 69 and to the second part 95 of the Y-motor 71 , respectively.
  • the second substrate holder 23 is in the first position or characterization position and a characterization process involving a first series of positioning steps of the second substrate holder 23 is carried out by means of the first displacement unit 39 .
  • the first substrate holder 21 is in the second position or exposure position and an exposure process involving a second series of positioning steps of the first substrate holder 21 is carried out by means of the second displacement unit 41 .
  • the characterization process can be carried out not only simultaneously with but also independently from the exposure process.
  • the first substrate holder 21 is displaced by means of the second displacement unit 41 from the exposure position into an intermediate position M′ between the exposure position and the characterization position as shown in FIG. 3
  • the second substrate holder 23 is displaced by means of the first displacement unit 39 from the characterization position into an intermediate position M′′ between the exposure position and the characterization position.
  • the second coupling member 53 of the first substrate holder 21 is uncoupled from the coupling member 59 of the second displacement unit 41 and the first coupling member 51 of the second substrate holder 23 is uncoupled from the coupling member 57 of the first displacement unit 39 .
  • the coupling member 57 of the first displacement unit 39 is coupled to the first coupling member 49 of the first substrate holder 21 and the coupling member 59 of the second displacement unit 41 is coupled to the second coupling member 55 of the second substrate holder 23 , as shown in FIG. 3 .
  • the first substrate holder 21 is displaced by the first displacement unit 39 from the intermediate position M′ into the characterization position where the substrate present on the first substrate holder 21 is unloaded and a next substrate is loaded and characterized.
  • the second substrate holder 23 is displaced by the second displacement unit 41 from the intermediate position M′′ into the exposure position where the substrate present on the second substrate holder 23 is exposed.
  • the first displacement unit 39 is suitable for displacing both substrate holders 21 and 23 from the first position or characterization position into the intermediate positions M′ and M′′ and the second displacement unit 41 is suitable for displacing both substrate holders 21 and 23 from the intermediate positions M′ and M′′ into the exposure position, a distance over which each displacement unit 39 , 41 must be able to displace the substrate holders 21 and 23 is reduced, so that the required dimensions of the displacement units 39 , 41 are reduced.
  • FIG. 2 shows, particularly the dimensions of the Y-motors 65 , 67 , 69 , 71 of the displacement units 39 , 41 are considerably reduced as seen parallel to the Y-direction.
  • the use of the two displacement units 39 , 41 prevents that the displaceable parts of the displacement system 35 , in particular the X-motors 61 and 63 , must be constructed so as to be capable of passing one another, as a result of which a comparatively simple construction of the displacement system 35 is achieved.
  • the arrangement of the two X-motors 61 , 63 and the four Y-motors 65 , 67 , 69 , 71 in two H-configurations leads to a comparatively stiff and stable support of X-motors 61 , 63 by the relevant Y-motors 65 , 67 , 69 , 71 , which benefits the positioning accuracy of the displacement units 39 , 41 .
  • the limited displacing range of the displacement units 39 , 41 as seen parallel to the Y-direction enables the mutual arrangement of the four Y-motors 65 , 67 , 69 , 71 in two lines of two Y-motors 65 , 69 and 67 , 71 each, which leads to a compact and simple construction of the positioning device 3 .
  • FIG. 4 shows a second embodiment of a positioning device 105 according to the invention suitable for use in the lithographic device according to the invention.
  • Corresponding parts of the first embodiment of the positioning device 3 and the second embodiment of the positioning device 105 are indicated by means of corresponding reference numerals in FIGS. 2 , 3 , and 4 .
  • FIGS. 2 , 3 , and 4 respectively, only the main differences between the positioning devices 3 and 105 will be discussed.
  • the substrate holders 21 and 23 of the positioning device 105 each comprise a basic part 107 , 109 which comprises the aerostatically supported foot 43 , 45 , the first coupling member 49 , 51 , and the second coupling member 53 , 55 of the relevant substrate holder 21 , 23 . Furthermore, the substrate holders 21 , 23 of the positioning device 105 each comprise a substrate table 111 , 113 which comprises the support surface 25 , 27 of the relevant substrate holder 21 , 23 .
  • the substrate holders 21 , 23 each comprise ah actuator unit 115 , 117 which is indicated diagrammatically only in FIG.
  • the actuator units 115 , 117 each comprise a system of contactless Lorentz-force motors which are known and usual per se and by means of which the substrate table 111 , 113 of the relevant substrate holder 21 , 23 is displaceable relative to the basic part 107 , 109 of the relevant substrate holder 21 , 23 with comparatively high accuracies and over comparatively small distances in directions parallel to the X-direction, parallel to the Y-direction, and parallel to the Z-direction, and by means of which the substrate table 111 , 113 of the relevant substrate holder 21 , 23 is pivotable relative to the basic part 107 , 109 of the relevant substrate holder 21 , 23 with comparatively high accuracies and over comparatively small angles
  • the displacement units 39 , 41 each constitute a so called coarse-fine displacement unit wherein the substrate holders 21 , 23 with the substrate tables 111 , 113 are displaceable over comparatively large distances and with comparatively low accuracies by means of the X-motors 61 , 63 and the Y-motors 65 , 67 , 69 , 71 of the displacement units 39 , 41 , and wherein the substrate tables 111 , 113 are displaceable and pivotable with comparatively high accuracies and over comparatively low distances and small angles relative to the basic parts 107 , 109 of the substrate holders 21 , 23 by means of the actuator units 115 , 117 of the displacement units 39 , 41 .
  • the X-motors 61 , 63 and the Y-motors 65 , 67 , 69 , 71 can be of a relatively simple, conventional, and low-cost type, while the required dimensions and therefore the costs of the accurate and advanced actuator units 115 , 117 can be limited as much as possible.
  • the use of the actuator units 115 , 117 as described further provides a high degree of adjustability of the substrate tables 111 , 113 relative to the focusing unit 5 and relative to the characterization unit 37 of the lithographic device.
  • FIG. 4 further shows, the first parts 81 , 83 , 85 , 87 of the Y-motors 65 , 67 , 69 , 71 of the displacement units 39 , 41 of the positioning device 105 are fastened to a balancing unit 119 which is common for the two displacement units 39 , 41 .
  • the balancing unit 119 comprises a first beam 121 which extends substantially parallel to the Y-direction and to which the first part 81 of the Y-motor 65 of the first displacement unit 39 and the first part 85 of the Y-motor 69 of the second displacement unit 41 are fastened, and a second beam 123 which also extends substantially parallel to the Y-direction and to which the first part 83 of the Y-motor 67 of the first displacement unit 39 and the first part 87 of the Y-motor 71 of the second displacement unit 41 are fastened.
  • the first beam 121 and the second beam 123 are interconnected by means of a first cross-beam 125 and a second cross-beam 127 , the beams 121 and 123 and the cross-beams 125 and 127 being arranged in a rectangular configuration which surrounds the granite block 47 carrying the guiding surface 33 .
  • FIG. 1 A first cross-beam 125 and a second cross-beam 127 , the beams 121 and 123 and the cross-beams 125 and 127 being arranged in a rectangular configuration which surrounds the granite block 47 carrying the guiding surface 33 .
  • the first beam 121 of the balancing unit 119 is guided by means of static gas bearings 129 over a further guiding surface 131 which is provided on a base 133 of the positioning device 105 and extends parallel to the X-direction and parallel to the Y-direction, and the second beam 123 of the balancing unit 119 is guided by means of static gas bearings 135 over said further guiding surface 131 .
  • the balancing unit 119 is displaceable in direction parallel to the X-direction and parallel to the Y-direction and is rotatable about an axis of rotation extending parallel to the Z-direction.
  • reaction forces of the actuator units 115 , 117 of the displacement units 39 , 41 directed parallel to the X-direction and/or parallel to the Y-direction are transmitted via the X-motors 61 , 63 and the Y-motors 65 , 67 , 69 , 71 to the balancing unit 119
  • reaction forces of the X-motors 61 , 63 of the displacement units 39 , 41 directed parallel to the X-direction and/or parallel to the Y-direction are transmitted via the Y-motors 65 , 67 , 69 , 71 to the balancing unit 119
  • reaction forces of the Y-motors 65 , 67 , 69 , 71 of the displacement units 39 , 41 directed parallel to the X-direction and/or parallel to the Y-direction are directly transmitted to the balancing unit 119 .
  • the displacement units of the positioning device may each alternatively comprise a single linear X-motor and a single linear Y-motor for large-distance displacements of the relevant object holder and an actuator unit solely comprising an X-Lorentz-force motor and a Y-Lorentz-force motor for small-distance displacements of the relevant object table.
  • the invention also relates to lithographic devices in which an exposure process following the step-and-scan principle is applied.
  • a lithographic device is provided with a further positioning device by means of which the mask holder is displaceable in a scan direction which is parallel to, for example, the X-direction.
  • the mask and the semiconductor substrate are not in fixed positions relative to the focusing unit during the exposure process but are displaced simultaneously in the scan direction, so that the pattern present on the mask is scanned.
  • a positioning device may be used not only in a lithographic device but also in other devices where two object tables have to perform a series of positioning steps simultaneously and independently from each other. Examples are finishing machines, machine tools, and other machines or devices in which an object to be machined or processed is first characterized relative to an object holder in a characterization position and is subsequently machined or processed in an operational position.

Abstract

A positioning device has first and second object holders that are guided over a guiding surface extending parallel to an X-direction and parallel to a Y-direction perpendicular to the X-direction and which are displaceable over the guiding surface from a first position into a second position by means of a displacement system. The displacement system includes a first displacement unit and a second displacement unit to which the object holders can be alternately coupled. The first displacement unit is suitable for carrying out a first series of positioning steps of the first object holder in the first position and for displacing the first object holder from the first position into an intermediate position between the first and second positions. The second displacement unit is suitable for carrying out a second series of positioning steps of the second object holder in the second position, simultaneously with and independently of the first displacement unit, and for displacing the second object holder from the second position into the intermediate position. In the intermediate position, the object holders are exchanged, after which the first series of positioning steps can be carried out by the first displacement unit with the second object holder in the first position and the second series of positioning steps can be carried out by the second displacement unit with the first object holder in the second position. The positioning device is suitable for use in a lithographic device to carry out an exposure process with a first semiconductor substrate in an exposure position and, simultaneously therewith and independently thereof, a characterization process with a second semiconductor substrate in a characterization position.

Description

BACKGROUND OF THE INVENTION
The invention relates to a positioning device having a guiding surface extending parallel to an X-direction and parallel to a Y-direction, a first object holder and a second object holder which are each guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position, and a displacement system for displacing the first object holder and the second object holder over the guiding surface.
The invention further relates to a lithographic device provided with a radiation source, a mask holder, a focusing unit having a main axis, a characterization unit, and a positioning device, said positioning device comprising a guiding surface extending parallel to an X-direction, which is perpendicular to the main axis, and parallel to a Y-direction, which is perpendicular to the X-direction and the main axis, a first substrate holder and a second substrate holder which are each guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position which is present near the focusing unit, and a displacement system for displacing the first substrate holder and the second substrate holder over the guiding surface.
A positioning device and a lithographic device of the kinds mentioned in the opening paragraphs are known from EP-A-0 687 957. The known lithographic device is used for the exposure of semiconductor substrates in the manufacturing process of integrated semiconductor circuits and operates according to the so-called step-and-repeat process. The known positioning device is used in the known lithographic device for displacing semiconductor substrates relative to the focusing unit and relative to the characterization unit. The first position of the known positioning device is a load and unload position in which a semiconductor substrate can be loaded on or unloaded from the first or the second object holder. The second position of the positioning device is an exposure position in which a semiconductor substrate present on the first or the second object holder can be exposed via the focusing unit. The first and the second object holder are displaceable from the first position to the second position and vice versa by the displacement system of the positioning device which is not described in detail in EP-A-0 687 957. When the first object holder is in the second position and the semiconductor substrate present thereon is being exposed, the second object holder is in the first position and a next semiconductor substrate is loaded thereon at first. Then the second object holder is displaced from the first position to a characterization position in which the semiconductor substrate present on the second object holder is characterized by the characterization unit. When the second object holder is in the characterization position, the first object holder and the second object holder are displaced lockstep-wise. In this manner the exposure of the semiconductor substrate present on the first object holder and the characterization of the semiconductor substrate present on the second object holder are carried out simultaneously, so that a high throughput of the step-and-repeat apparatus is obtained.
A disadvantage of the known positioning device and the known lithographic device is that the characterization of the semiconductor substrate present on the second object holder and the exposure of the semiconductor substrate present on the first object holder cannot be carried out independently from each other as a result of said lockstep-wise displacements of the first and the second object holder. As a result, the exposure of the semiconductor substrate present on the first object holder cannot be started until the second object holder has reached the characterization position.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a positioning device of the kind mentioned in the opening paragraph in which a first process involving a first series of positioning steps of the first object holder can be carried out simultaneously with and independently from a second process involving a second series of positioning steps of the second object holder, and in which also the first process can be carried out with the second object holder and, simultaneously and independently, the second process can be carried out with the first object holder.
It is a further object of the present invention to provide a lithographic device of the kind mentioned in the second paragraph in which a characterization process involving a first series of positioning steps of the first substrate holder can be carried out simultaneously with and independently from an exposure process involving a second series of positioning steps of the second substrate holder, and in which also the characterization process can be carried out with the second substrate holder and, simultaneously and independently, the exposure process can be carried out with the first substrate holder.
The positioning device according to the invention is for this purpose characterized in that the displacement system comprises a first displacement unit and a second displacement unit to which the first object holder and the second object holder can be coupled alternately, the first displacement unit being suitable for displacing the object holders from the first position into an intermediate position between the first position and the second position, and the second displacement unit being suitable for displacing the object holders from the intermediate position into the second position. As a result of the use of said first and second displacement units, a first process involving a first series of positioning steps of the first object holder can be carried out in the first position by means of the first displacement unit, and a second process involving a second series of positioning steps of the second object holder can be carried out in the second position by means of the second displacement unit simultaneously with and independently from the first process. When the first process and the second process have been completed, the first object holder is displaced by the first displacement unit from the first position into the intermediate position and the second object holder is displaced by the second displacement unit from the second position into the intermediate position. In the intermediate position, the first object holder is uncoupled from the first displacement unit and is coupled to the second displacement unit, while the second object holder is uncoupled from the second displacement unit and is coupled to the first displacement unit. Subsequently, the first object holder is displaced by the second displacement unit from the intermediate position to the second position and the second object holder is displaced by the first displacement unit from the intermediate position to the first position. Then the first process can be carried out with the second object holder in the first position and, simultaneously and independently, the second process can be carried out with the first object holder in the second position. Furthermore, as a result of the use of said two displacement units, a distance over which each individual displacement unit has to displace the object holders is reduced, so that the required dimensions of the displacement units are reduced. It is in addition prevented that the displaceable parts of the first displacement unit and the displaceable parts of the second displacement unit must be constructed so as to be capable of passing one another, which allows a comparatively simple construction of the displacement units.
The lithographic device according to the invention is for this purpose characterized in that the positioning device of the lithographic device is a positioning device according to the invention, wherein each of the object holders of the positioning device is a substrate holder of the lithographic device, and wherein the first position of the object holders is a characterization position which is present near the characterization unit. As a result of the use of the positioning device according to the invention in the lithographic device according to the invention, a characterization process involving a first series of positioning steps of the first substrate holder can be carried out in the first position by means of the first displacement unit of the positioning device, and an exposure process involving a second series of positioning steps of the second substrate holder can be carried out in the second position by means of the second displacement unit of the positioning device simultaneously with and independently from the first process. The first process can also be carried out with the second substrate holder in the first position and, simultaneously and independently, the second process can be carried out with the first object holder in the second position.
A particular embodiment of a positioning device according to the invention is characterized in that the displacement units each comprise an X-motor having a first part extending parallel to the X-direction and a second part which is displaceable along the first part of the X-motor and can be coupled alternately to the first object holder and to the second object holder, and two Y-motors each having a first part extending parallel to the Y-direction and a second part which is displaceable along the first part of the relevant Y-motor, the first part of the X-motor of each displacement unit being connected to the second parts of the two Y-motors of the relevant displacement unit. Since the first part of the X-motor of each displacement unit is connected to the second parts of the two Y-motors of the relevant displacement unit, a comparatively stiff and stable support of the X-motor by the two Y-motors is obtained, which benefits the positioning accuracy of the displacement unit. Since the first displacement unit has a limited displacing range from the first position to the intermediate position and the second displacement unit has a limited displacing range from the intermediate position to the second position, the four Y-motors of the two displacement units can be arranged in two lines, which leads to a compact and simple construction of the positioning device.
A further embodiment of a positioning device according to the invention is characterized in that the first parts of the Y-motors of the two displacement units are connected to a common balancing unit which is guided relative to a base of the positioning device so as to be displaceable parallel to the X-direction and parallel to the Y-direction and to be rotatable about an axis of rotation extending perpendicularly to the X-direction and the Y-direction. Since the first parts of the Y-motors of the displacement units are connected to said common balancing unit, reaction forces of the X-motors and the Y-motors of the displacement units are transmitted via the first parts of the Y-motors to the balancing unit and are converted into displacements of the balancing unit parallel to the X-direction and parallel to the Y-direction and rotations of the balancing unit about said axis of rotation relative to the base. In this manner, a transmission of the reaction forces to the base, the guiding surface, and the object holders is prevented as much as possible, so that the positioning accuracy of the positioning device is further improved.
A yet further embodiment of a positioning device according to the invention is characterized in that the object holders each comprise a basic part which is guided over the guiding surface and can be coupled to the displacement units, and an object table which is displaceable relative to the basic part by means of an actuator unit of the relevant object holder. In this yet further embodiment of the positioning device, the object tables of the object holders are displaceable by the displacement units over comparatively large distances and with comparatively low accuracies, while the object tables are displaceable by said actuator units over comparatively small distances and with comparatively high accuracies. In this manner, the displacement units can be of a relatively simple, conventional type, while the dimensions of the accurate actuator units can be limited as much as possible.
A particular embodiment of a positioning device according to the invention is characterized in that the object table of each of the object holders is displaceable relative to the basic part parallel to the X-direction, parallel to the Y-direction, and parallel to a Z-direction extending perpendicularly to the X-direction and the Y-direction, and is pivotable relative to the basic part about a first pivot axis extending parallel to the X-direction, a second pivot axis extending parallel to the Y-direction, and a third pivot axis extending parallel to the Z-direction. In this manner, a high degree of adjustability of the object tables relative to the basic parts is obtained.
BRIEF DESCRIPTION OF THE DRAWING
The invention will be explained in more detail below with reference to the drawing, in which
FIG. 1 diagrammatically shows a lithographic device according to the invention,
FIG. 2 is a diagrammatic plan view of a first embodiment of a positioning device according to the invention suitable for use in the lithographic device of FIG. 1,
FIG. 3 shows the positioning device of FIG. 2, two substrate holders of the positioning device being in an intermediate position, and
FIG. 4 is a diagrammatic plan view of a second embodiment of a positioning device according to the invention suitable for use in the lithographic device of FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The lithographic device according to the invention shown diagrammatically in FIG. 1 is used for the exposure of semiconductor substrates in the manufacturing process of integrated semiconductor circuits and comprises a frame 1 which supports in that order, as seen parallel to a vertical Z-direction, a positioning device 3 according to the invention, a focusing unit 5, a mask holder 7, and a radiation source 9. The lithographic device is an optical lithographic device whose radiation source 9 comprises a light source 11. The mask holder 7 comprises a support surface 13 which extends perpendicularly to the Z-direction and on which a mask 15 can be placed comprising a pattern or a sub-pattern of an integrated semiconductor circuit. The focusing unit 5 is an imaging or projection system and comprises an optical lens system 17 having a main optical axis 19 extending parallel to the Z-direction and an optical reduction factor of, for example, 4 or 5. The positioning device 3 comprises a first substrate holder 21 and a second substrate holder 23 which is identical to the first substrate holder 21. The substrate holders 21, 23 each comprise a support surface 25, 27 which extends perpendicularly to the Z-direction. In the situation shown in FIG. 1, a first semiconductor substrate 29 is present on the support surface 25 of the first substrate holder 21 and a second semiconductor substrate 31 is present on the support surface 27 of the second substrate holder 23. The positioning device 3 further comprises a guiding surface 33 extending parallel to a horizontal X-direction which is perpendicular to the Z-direction and parallel to a horizontal Y-direction which is perpendicular to the X-direction and the Z-direction. The substrate holders 21, 23 are each guided over the guiding surface 33 and are each displaceable over the guiding surface 33 parallel to the X-direction and parallel to the Y-direction by means of a displacement system 35 of the positioning device 3.
In the situation shown in FIG. 1, the first substrate holder 21 with the first semiconductor substrate 29 is in a second position of the positioning device 3 which corresponds to an exposure position of the lithographic device which is present near the focusing unit 5. In this position, a light beam originating from the light source 11 is guided through the mask 15 and is focused on the first semiconductor substrate 29 by means of the focusing unit 5, so that the pattern present on the mask 15 is imaged on a reduced scale on the first semiconductor substrate 29. The first semiconductor substrate 29 comprises a large number of individual fields on which identical semiconductor circuits are to be imaged. The fields of the first semiconductor substrate 29 are consecutively exposed through the mask 15 for this purpose. The exposure process used in the lithographic device of FIG. 1 is a so called step-and-repeat exposure process according to which the first semiconductor substrate 29 and the mask 15 are in fixed positions relative to the focusing unit 5 during the exposure of an individual field of the first semiconductor substrate 29, and according to which a next field of the first semiconductor substrate 29 is brought into position relative to the focusing unit 5 after the exposure of a previously exposed field in that the first substrate holder 21 is displaced parallel to the X-direction and/or parallel to the Y-direction by the displacement system 35 of the positioning device 3. This process is repeated a number of times, with a different mask each time, so that complicated integrated semiconductor circuits with a layered structure can be manufactured.
In the situation shown in FIG. 1, the second substrate holder 23 with the second semiconductor substrate 31 is in a first position of the positioning device 3 which corresponds to a characterization position of the lithographic device. In the situation shown, a previous semiconductor substrate, which was fully exposed in the exposure position via the mask 15, was unloaded from the second substrate holder 23 and was transported to a stack of semiconductor substrates under manufacture not shown in the figure. The second semiconductor substrate 31 shown in FIG. 1 is a next semiconductor substrate which has just been taken from said stack of semiconductor substrates and loaded on the second substrate holder 23 and which has to be exposed via the mask 15 after the first semiconductor substrate 29. In the characterization position, the second semiconductor substrate 31 is characterized by a characterization unit 37 of the lithographic device which is also supported by the frame 1. When the second semiconductor substrate 31 has been fully characterized and the first semiconductor substrate 29 has been fully exposed, the second substrate holder 23 with the second semiconductor substrate 31 is displaced by the displacement system 35 from the characterization position into the exposure position and the first substrate holder 21 with the first semiconductor substrate 29 is displaced by the displacement system 35 from the exposure position into the characterization position. The characterization unit 37 comprises, for example, a measuring system which is used for measuring the positions of the individual fields of the second semiconductor substrate 31 relative to the second substrate holder 23. Since these positions are already measured in the characterization position, the individual fields of the second semiconductor substrate 31 can subsequently be positioned relative to the focusing unit 5 in the exposure position by measuring the position of the second substrate holder 23 relative to the focusing unit 5. In this manner, the time required to position the individual fields of the successive semiconductor substrates relative to the focusing unit 5 in the exposure position is limited considerably, so that the throughput of the lithographic device is considerably improved. Since the position of each individual field of the second semiconductor substrate 31 has to be measured in the characterization position, a step wise displacement of the second substrate holder 23 with the second semiconductor substrate 31 is carried out by the displacement system 35 of the positioning device 3 in the characterization position. As a result of the use of the two separate identical substrate holders 21 and 23, the exposure process of a semiconductor substrate in the exposure position can be carried out simultaneously with the unload process of a previous semiconductor substrate and the load and characterization processes of a next semiconductor substrate in the characterization position, so that the throughput of the lithographic device is further improved.
As shown in FIG. 2, the displacement system 35 of the positioning device 3 comprises a first displacement unit 39 and a second displacement unit 41. The substrate holders 21, 23 each comprise an aerostatically supported foot 43, 45 provided with a static gas bearing by means of which the relevant substrate holder 21, 23 is guided over the guiding surface 33. The guiding surface 33 constitutes an upper surface of a granite block 47 which is fastened to the frame 1 of the lithographic device. Furthermore, the substrate holders 21, 23 each comprise a first coupling member 49, 51 and a second coupling member 53, 55 by means of which the substrate holders 21, 23 can be coupled alternately to a coupling member 57 of the first displacement unit 39 and to a coupling member 59 of the second displacement unit 41, respectively. In the situation shown in FIG. 2, the first substrate holder 21 is coupled to the coupling member 59 of the second displacement unit 41 and the second substrate holder 23 is coupled to the coupling member 57 of the first displacement unit 39. Alternatively, the first substrate holder 21 can be coupled to the coupling member 57 of the first displacement unit 39 and the second substrate holder 23 can be coupled to the coupling member 59 of the second displacement unit 41. The coupling members 49, 51, 53, 55, 57, 59 may be of a type which is known and usual per se, such as, for example, a mechanical or an electromechanical coupling member.
As FIG. 2 shows, the first displacement unit 39 and the second displacement unit 41 each comprise a linear X-motor 61, 63 and two linear Y- motors 65, 67, 69, 71 of a conventional type which is known and usual per se. The X-motors 61, 63 each comprise a first part 73, 75 extending parallel to the X-direction and a second part 77, 79 which is displaceable along the first part 73, 75 of the relevant X-motor 61, 63 and comprises the coupling member 57, 59 of the relevant X-motor 61, 63. The Y- motors 65, 67, 69, 71 each comprise a first part 81, 83, 85, 87 extending parallel to the Y-direction and a second part 89, 91, 93, 95 which is displaceable along the first part 81, 83, 85, 87 of the relevant Y- motor 65, 67, 69, 71. The X-motor 61 and the two Y- motors 65, 67 of the first displacement unit 39 are mutually arranged in a H-configuration, a first end 97 and a second end 99 of the first part 73 of the X-motor 61 being coupled to the second part 89 of the Y-motor 65 and to the second part 91 of the Y-motor 67, respectively. Likewise, the X-motor 63 and the two Y-motors 69, 71 of the second displacement unit 41 are mutually arranged in a H-configuration, a first end 101 and a second end 103 of the first part 75 of the X-motor 63 being coupled to the second part 93 of the Y-motor 69 and to the second part 95 of the Y-motor 71, respectively.
In the situation shown in FIG. 2, the second substrate holder 23 is in the first position or characterization position and a characterization process involving a first series of positioning steps of the second substrate holder 23 is carried out by means of the first displacement unit 39. Simultaneously, the first substrate holder 21 is in the second position or exposure position and an exposure process involving a second series of positioning steps of the first substrate holder 21 is carried out by means of the second displacement unit 41. Thus, as a result of the use of the first displacement unit 39 and the second displacement unit 41, the characterization process can be carried out not only simultaneously with but also independently from the exposure process. When the exposure process with the first substrate holder 21 and the characterization process with the second substrate holder 23 have been completed, the first substrate holder 21 is displaced by means of the second displacement unit 41 from the exposure position into an intermediate position M′ between the exposure position and the characterization position as shown in FIG. 3, and the second substrate holder 23 is displaced by means of the first displacement unit 39 from the characterization position into an intermediate position M″ between the exposure position and the characterization position. In said intermediate positions M′ and M″, the second coupling member 53 of the first substrate holder 21 is uncoupled from the coupling member 59 of the second displacement unit 41 and the first coupling member 51 of the second substrate holder 23 is uncoupled from the coupling member 57 of the first displacement unit 39. Subsequently, the coupling member 57 of the first displacement unit 39 is coupled to the first coupling member 49 of the first substrate holder 21 and the coupling member 59 of the second displacement unit 41 is coupled to the second coupling member 55 of the second substrate holder 23, as shown in FIG. 3. Then, the first substrate holder 21 is displaced by the first displacement unit 39 from the intermediate position M′ into the characterization position where the substrate present on the first substrate holder 21 is unloaded and a next substrate is loaded and characterized. Simultaneously therewith and independently therefrom, the second substrate holder 23 is displaced by the second displacement unit 41 from the intermediate position M″ into the exposure position where the substrate present on the second substrate holder 23 is exposed. Since the first displacement unit 39 is suitable for displacing both substrate holders 21 and 23 from the first position or characterization position into the intermediate positions M′ and M″ and the second displacement unit 41 is suitable for displacing both substrate holders 21 and 23 from the intermediate positions M′ and M″ into the exposure position, a distance over which each displacement unit 39, 41 must be able to displace the substrate holders 21 and 23 is reduced, so that the required dimensions of the displacement units 39, 41 are reduced. As FIG. 2 shows, particularly the dimensions of the Y- motors 65, 67, 69, 71 of the displacement units 39, 41 are considerably reduced as seen parallel to the Y-direction. Furthermore, the use of the two displacement units 39, 41 prevents that the displaceable parts of the displacement system 35, in particular the X-motors 61 and 63, must be constructed so as to be capable of passing one another, as a result of which a comparatively simple construction of the displacement system 35 is achieved. The arrangement of the two X-motors 61, 63 and the four Y- motors 65, 67, 69, 71 in two H-configurations leads to a comparatively stiff and stable support of X-motors 61, 63 by the relevant Y- motors 65, 67, 69, 71, which benefits the positioning accuracy of the displacement units 39, 41. The limited displacing range of the displacement units 39, 41 as seen parallel to the Y-direction enables the mutual arrangement of the four Y- motors 65, 67, 69, 71 in two lines of two Y- motors 65, 69 and 67, 71 each, which leads to a compact and simple construction of the positioning device 3.
FIG. 4 shows a second embodiment of a positioning device 105 according to the invention suitable for use in the lithographic device according to the invention. Corresponding parts of the first embodiment of the positioning device 3 and the second embodiment of the positioning device 105 are indicated by means of corresponding reference numerals in FIGS. 2, 3, and 4. Hereafter, only the main differences between the positioning devices 3 and 105 will be discussed.
The substrate holders 21 and 23 of the positioning device 105 each comprise a basic part 107, 109 which comprises the aerostatically supported foot 43, 45, the first coupling member 49, 51, and the second coupling member 53, 55 of the relevant substrate holder 21, 23. Furthermore, the substrate holders 21, 23 of the positioning device 105 each comprise a substrate table 111, 113 which comprises the support surface 25, 27 of the relevant substrate holder 21, 23. The substrate holders 21, 23 each comprise ah actuator unit 115, 117 which is indicated diagrammatically only in FIG. 4 and by means of which the substrate table 111, 113 of the relevant substrate holder 21, 23 is displaceable relative to the basic part 107, 109 of the relevant substrate holder 21, 23. In the second embodiment of the positioning device 105 according to the invention, the actuator units 115, 117 each comprise a system of contactless Lorentz-force motors which are known and usual per se and by means of which the substrate table 111, 113 of the relevant substrate holder 21, 23 is displaceable relative to the basic part 107, 109 of the relevant substrate holder 21, 23 with comparatively high accuracies and over comparatively small distances in directions parallel to the X-direction, parallel to the Y-direction, and parallel to the Z-direction, and by means of which the substrate table 111, 113 of the relevant substrate holder 21, 23 is pivotable relative to the basic part 107, 109 of the relevant substrate holder 21, 23 with comparatively high accuracies and over comparatively small angles about a first pivot axis extending parallel to the X-direction, a second pivot axis extending parallel to the Y-direction, and a third pivot axis extending parallel to the Z-direction. In this manner, the displacement units 39, 41 each constitute a so called coarse-fine displacement unit wherein the substrate holders 21, 23 with the substrate tables 111, 113 are displaceable over comparatively large distances and with comparatively low accuracies by means of the X-motors 61, 63 and the Y- motors 65, 67, 69, 71 of the displacement units 39, 41, and wherein the substrate tables 111, 113 are displaceable and pivotable with comparatively high accuracies and over comparatively low distances and small angles relative to the basic parts 107, 109 of the substrate holders 21, 23 by means of the actuator units 115, 117 of the displacement units 39, 41. In this manner, the X-motors 61, 63 and the Y- motors 65, 67, 69, 71 can be of a relatively simple, conventional, and low-cost type, while the required dimensions and therefore the costs of the accurate and advanced actuator units 115, 117 can be limited as much as possible. The use of the actuator units 115, 117 as described further provides a high degree of adjustability of the substrate tables 111, 113 relative to the focusing unit 5 and relative to the characterization unit 37 of the lithographic device.
As FIG. 4 further shows, the first parts 81, 83, 85, 87 of the Y- motors 65, 67, 69, 71 of the displacement units 39, 41 of the positioning device 105 are fastened to a balancing unit 119 which is common for the two displacement units 39, 41. The balancing unit 119 comprises a first beam 121 which extends substantially parallel to the Y-direction and to which the first part 81 of the Y-motor 65 of the first displacement unit 39 and the first part 85 of the Y-motor 69 of the second displacement unit 41 are fastened, and a second beam 123 which also extends substantially parallel to the Y-direction and to which the first part 83 of the Y-motor 67 of the first displacement unit 39 and the first part 87 of the Y-motor 71 of the second displacement unit 41 are fastened. The first beam 121 and the second beam 123 are interconnected by means of a first cross-beam 125 and a second cross-beam 127, the beams 121 and 123 and the cross-beams 125 and 127 being arranged in a rectangular configuration which surrounds the granite block 47 carrying the guiding surface 33. As FIG. 4 diagrammatically shows, the first beam 121 of the balancing unit 119 is guided by means of static gas bearings 129 over a further guiding surface 131 which is provided on a base 133 of the positioning device 105 and extends parallel to the X-direction and parallel to the Y-direction, and the second beam 123 of the balancing unit 119 is guided by means of static gas bearings 135 over said further guiding surface 131. Thus, the balancing unit 119 is displaceable in direction parallel to the X-direction and parallel to the Y-direction and is rotatable about an axis of rotation extending parallel to the Z-direction. In operation, reaction forces of the actuator units 115, 117 of the displacement units 39, 41 directed parallel to the X-direction and/or parallel to the Y-direction are transmitted via the X-motors 61, 63 and the Y- motors 65, 67, 69, 71 to the balancing unit 119, reaction forces of the X-motors 61, 63 of the displacement units 39, 41 directed parallel to the X-direction and/or parallel to the Y-direction are transmitted via the Y- motors 65, 67, 69, 71 to the balancing unit 119, and reaction forces of the Y- motors 65, 67, 69, 71 of the displacement units 39, 41 directed parallel to the X-direction and/or parallel to the Y-direction are directly transmitted to the balancing unit 119. Since the balancing unit 119 is guided over the further guiding surface 131 by means of the static gas bearings 129, 135, said reaction forces are substantially completely converted into relatively small displacements of the balancing unit 119 in directions parallel to the X-direction and/or parallel to the Y-direction and into relatively small rotations of the balancing unit 119 about said axis of rotation extending parallel to the Z-direction. In this manner, mechanical vibrations, which may be caused by said reaction forces in the base 133 and which may be transmitted to the granite block 47 and the substrate holders 21, 23 of the lithographic device 105 and to the frame 1 of the lithographic device, are prevented as much as possible, so that the positioning accuracy of the displacement system 35 of the positioning device 105 is further improved.
It is noted that another type of displacement unit may be used in the positioning device according to the invention instead of the displacement units 39, 41 used in the positioning devices 3, 105 described before. For example, the displacement units of the positioning device may each alternatively comprise a single linear X-motor and a single linear Y-motor for large-distance displacements of the relevant object holder and an actuator unit solely comprising an X-Lorentz-force motor and a Y-Lorentz-force motor for small-distance displacements of the relevant object table.
It is further noted that the invention also relates to lithographic devices in which an exposure process following the step-and-scan principle is applied. Such a lithographic device is provided with a further positioning device by means of which the mask holder is displaceable in a scan direction which is parallel to, for example, the X-direction. According to the stepand-scan process, the mask and the semiconductor substrate are not in fixed positions relative to the focusing unit during the exposure process but are displaced simultaneously in the scan direction, so that the pattern present on the mask is scanned.
It is finally noted, that a positioning device according to the invention may be used not only in a lithographic device but also in other devices where two object tables have to perform a series of positioning steps simultaneously and independently from each other. Examples are finishing machines, machine tools, and other machines or devices in which an object to be machined or processed is first characterized relative to an object holder in a characterization position and is subsequently machined or processed in an operational position.

Claims (15)

1. A positioning device for a lithographic apparatus, comprising:
a guiding surface extending parallel to an X-direction and parallel to a Y-direction;
a first object holder and a second object holder which are each adapted to be guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position; and
a displacement system constructed and arranged to displace the first object holder and the second object holder over the guiding surface,
wherein the displacement system comprises a first displacement unit and a second displacement unit to which the first object holder, and the second object holder can be coupled alternately, the first displacement unit being suitable for displacing the object holders from the first position into an intermediate position between the first position and the second position, and the second displacement unit being suitable for displacing the object holders from the intermediate position into the second position.
2. A positioning device as claimed in claim 1, wherein the first and second displacement units each comprise an X-motor having a first part extending parallel to the X-direction and a second part which is displaceable along the first part of the X-motor and can be coupled alternately to the first object holder and to the second object holder, and two Y-motors each having a first part extending parallel to the Y-direction and a second part which is displaceable along the first part of the relevant Y-motor, the first part of the X-motor of each displacement unit being connected to the second parts of the two Y-motors of the relevant displacement unit.
3. A positioning device as claimed in claim 2, wherein the first parts of the Y-motors of the two displacement units are connected to a common balancing unit which is guided relative to a base of the positioning device so as to be displaceable parallel to the X-direction and parallel to the Y-direction and to be rotatable about an axis of rotation extending perpendicularly to the X-direction and the Y-direction.
4. A positioning device as claimed in claim 1, wherein the object holder each comprise a basic part which is guided over the guiding surface and adapted to be coupled to the displacement units, and an object table which is displaceable relative to the basic part by an actuator unit of the relevant object holder.
5. A positioning device as claimed in claim 4, wherein the object table of each of the object holders is displaceable relative to the basic part parallel to the X-direction, parallel to the Y-direction, and parallel to a Z-direction extending perpendicularly to the X-direction and the Y-direction, and is pivotable relative to the basic part about a first pivot axis extending parallel to the X-direction, a second pivot axis extending parallel to the Y-direction, and a third pivot axis extending parallel to the Z-direction.
6. A positioned device as claimed in claim 1, wherein said first and second object holders are first and second substrate holders, respectively.
7. A lithographic device comprising:
a radiation source;
a mask bolder holder;
a focusing unit having a main axis;
a characterization unit; and
a positioning device comprising:
a guiding surface extending parallel to an X-direction, which is perpendicular to the main axis, and parallel to a Y-direction, which is perpendicular to the X-direction and this main axis,
a first substrate holder and a second substrate holder which are each guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position which is near the focusing unit, and
a displacement system constructed and arranged to displace the first substrate bolder holder and the second substrate holder over the guiding surface,
wherein the displacement system comprises a first displacement unit and a second displacement unit to which the first substrate holder and second substrate holder can be coupled alternately, the first displacement unit being suitable for displacing the substrate holders from the first position into an intermediate position between the first position and the second position, and the second displacement unit being suitable for displacing the substrate holders from the intermediate position into the second position, and
wherein the first position of the substrate holders is a characterization position which is present near the characterization unit.
8. A lithographic device as claimed in claim 7, wherein the first and second displacement units each comprise an X-motor having a first part extending parallel to the X-direction and a second part which is displaceable along the first part of the X-motor and can be coupled alternately to the first substrate holder and to the second substrate holder, and two Y-motors each having a first part extending parallel to the Y-direction and a second part which is displaceable along the first part of the relevant Y-motor, the first part of the X-motor of each displacement unit being connected to the second parts of the two Y-motors of the relevant displacement unit.
9. A lithographic device as claimed in claim 8, wherein the first parts of the Y-motors of the two displacement units are connected to a common balancing unit which is guided relative to a base of the positioning device so as to be displaceable parallel to the X-direction and parallel to the Y-direction and to be rotatable about an axis of rotation extending perpendicularly to the X-direction and the Y-direction.
10. A lithographic device as claimed in claim 7, wherein the substrate holders each comprise a basic part which is guided over the guiding surface and can be coupled to the displacement units, and a substrate table which is displaceable relative to the basic part by means of an actuator unit of the relevant substrate holder.
11. A lithographic device as claimed in claim 10, wherein the substrate table of each of the substrate holders is displaceable relative to the basic part parallel to the X-direction, parallel to the Y-direction, and parallel to the Z-direction extending perpendicularly to the X-direction and the Y-direction, and is pivotable relative to the basic part about a first pivot axis extending parallel to the X-direction, a second pivot axis extending parallel to the Y-direction, and a third pivot axis extending parallel to the Z-direction.
12. A positioning device for a lithographic apparatus, comprising:
a guiding surface extending parallel to an X-direction and parallel to a Y-direction;
a first object holder and a second object holder which are each adapted to be guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position;
a displacement system constructed and arranged to displace the first object holder and the second object holder over the guiding surface;
wherein the displacement system comprises a first displacement unit and a second displacement unit to which the first object holder and the second object holder can be coupled alternately so that the first object holder and the second object holder switch positions;
wherein the first and second displacement units each comprise an X-motor having a first part extending parallel to the X-direction and a second part which is displaceable along the first part of the X-motor and can be coupled alternately to the first object holder and to the second object holder, and two Y-motors each having a first part extending parallel to the Y-direction and a second part which is displaceable along the first part of the relevant Y-motor, the first part of the X-motor of each displacement unit being connected to the second parts of the two Y-motors of the relevant displacement unit; and
wherein the first parts of the Y-motors of the two displacement units are connected to a common balancing unit which is guided relative to a base of the positioning device so as to be displaceable parallel to the X-direction and parallel to the Y-direction and to be rotatable about an axis of rotation extending perpendicularly to the X-direction and the Y-direction.
13. A positioning device for a lithographic apparatus, comprising:
a guiding surface extending parallel to an X-direction and parallel to a Y-direction;
a first object holder and a second object holder which are each adapted to be guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position;
a displacement system constructed and arranged to displace the first object holder and the second object holder over the guiding surface;
wherein the displacement system comprises a first displacement unit and a second displacement unit to which the first object holder and the second object holder can be coupled alternately so that the first object holder and the second object holder switch positions;
wherein the object holders each comprise a basic part which is guided over the guiding surface and adapted to be coupled to the displacement units, and an object table which is displaceable relative to the basic part by an actuator unit of the relevant object holder; and
wherein the object table of each of the object holders is displaceable relative to the basic part parallel to the X-direction, parallel to the Y-direction, and parallel to a Z-direction extending perpendicularly to the X-direction and the Y-direction, and is pivotable relative to the basic part about a first pivot axis extending parallel to the X-direction, a second pivot axis extending parallel to the Y-direction, and a third pivot axis extending parallel to the Z-direction.
14. A positioning device for a lithographic apparatus, comprising:
a guiding surface extending parallel to an X-direction and parallel to a Y-direction;
a first object holder and a second object holder which are each adapted to be guided over the guiding surface and are each displaceable parallel to the X-direction and parallel to the Y-direction from a first position into a second position;
a displacement system constructed and arranged to displace the first object holder and the second object holder over the guiding surface;
wherein the displacement system comprises a first displacement unit and a second displacement unit to which the first object holder and the second object holder can be coupled alternately so that the first object holder and the second object holder switch positions; and
wherein said first and second object holders are first and second substrate holders, respectively.
15. A positioning method for performing operations on substrates in a lithographic device, comprising:
moving first and second substrate holders over a two-dimensional plane between a first position into a second position with first and second displacement units;
loading and characterizing a substrate in the first position;
exposing and unloading the substrate in the second position;
the first and second displacement units moving the first substrate holder and the second substrate holder over the guiding surface between the first and second positions using connections that can be coupled and uncoupled so that the substrate holders switch positions.
US10/347,491 1997-03-10 1998-02-27 Positioning device having two object holders Expired - Lifetime USRE40043E1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP97200706 1997-03-10
PCT/IB1998/000254 WO1998040791A1 (en) 1997-03-10 1998-02-27 Positioning device having two object holders

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/180,011 Reissue US6262796B1 (en) 1997-03-10 1998-02-27 Positioning device having two object holders

Publications (1)

Publication Number Publication Date
USRE40043E1 true USRE40043E1 (en) 2008-02-05

Family

ID=8228087

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/180,011 Ceased US6262796B1 (en) 1997-03-10 1998-02-27 Positioning device having two object holders
US10/347,491 Expired - Lifetime USRE40043E1 (en) 1997-03-10 1998-02-27 Positioning device having two object holders

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/180,011 Ceased US6262796B1 (en) 1997-03-10 1998-02-27 Positioning device having two object holders

Country Status (6)

Country Link
US (2) US6262796B1 (en)
EP (1) EP0900412B1 (en)
JP (1) JP3626504B2 (en)
DE (1) DE69829614T2 (en)
TW (1) TW452546B (en)
WO (1) WO1998040791A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060132740A1 (en) * 2003-06-19 2006-06-22 Nikon Corporation Exposure apparatus, and device manufacturing method
US20070132975A1 (en) * 2003-04-11 2007-06-14 Nikon Corporation Cleanup method for optics in immersion lithography
US20070242247A1 (en) * 2004-06-09 2007-10-18 Kenichi Shiraishi Exposure apparatus and device manufacturing method
US20070247600A1 (en) * 2003-05-23 2007-10-25 Nikon Corporation Exposure apparatus and method for producing device
US20070247607A1 (en) * 2004-02-02 2007-10-25 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US20070247602A1 (en) * 2003-04-11 2007-10-25 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US20100053588A1 (en) * 2008-08-29 2010-03-04 Nikon Corporation Substrate Stage movement patterns for high throughput While Imaging a Reticle to a pair of Imaging Locations

Families Citing this family (347)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1244021C (en) 1996-11-28 2006-03-01 株式会社尼康 Photoetching device and exposure method
JPH10209039A (en) 1997-01-27 1998-08-07 Nikon Corp Method and apparatus for projection exposure
US6262796B1 (en) * 1997-03-10 2001-07-17 Asm Lithography B.V. Positioning device having two object holders
JPH10270535A (en) * 1997-03-25 1998-10-09 Nikon Corp Moving stage device and circuit-device manufacture using the same
KR100521704B1 (en) 1997-09-19 2005-10-14 가부시키가이샤 니콘 Stage apparatus, a scanning aligner and a scanning exposure method, and a device manufacturing thereby
TW448487B (en) 1997-11-22 2001-08-01 Nippon Kogaku Kk Exposure apparatus, exposure method and manufacturing method of device
DE69933903T2 (en) * 1998-04-14 2007-05-24 Asml Netherlands B.V. Lithographic projection apparatus and method of manufacturing a device
EP0957275A3 (en) 1998-05-14 2000-12-06 Asm Lithography B.V. Gas bearing and lithographic apparatus including such a bearing
US6296990B1 (en) * 1998-05-14 2001-10-02 Asm Lithography, B.V. Gas bearing and lithographic apparatus including such a bearing
TWI242111B (en) 1999-04-19 2005-10-21 Asml Netherlands Bv Gas bearings for use in vacuum chambers and their application in lithographic projection apparatus
TW513617B (en) 1999-04-21 2002-12-11 Asml Corp Lithographic projection apparatus and method of manufacturing a device using a lithographic projection apparatus
EP1052546B1 (en) * 1999-04-21 2004-09-15 ASML Netherlands B.V. Substrate handler for use in lithographic projection apparatus
TW587199B (en) 1999-09-29 2004-05-11 Asml Netherlands Bv Lithographic method and apparatus
JP2001118773A (en) 1999-10-18 2001-04-27 Nikon Corp Stage device and exposure system
DE60032568T2 (en) * 1999-12-01 2007-10-04 Asml Netherlands B.V. Positioning apparatus and lithographic apparatus provided therewith
JP2001160530A (en) 1999-12-01 2001-06-12 Nikon Corp Stage system and exposure device
EP1248288A1 (en) * 1999-12-16 2002-10-09 Nikon Corporation Exposure method and exposure apparatus
US6836093B1 (en) 1999-12-21 2004-12-28 Nikon Corporation Exposure method and apparatus
TWI264617B (en) * 1999-12-21 2006-10-21 Asml Netherlands Bv Balanced positioning system for use in lithographic apparatus
TW546551B (en) 1999-12-21 2003-08-11 Asml Netherlands Bv Balanced positioning system for use in lithographic apparatus
TW588222B (en) 2000-02-10 2004-05-21 Asml Netherlands Bv Cooling of voice coil motors in lithographic projection apparatus
JP2001308003A (en) 2000-02-15 2001-11-02 Nikon Corp Exposure method and system, and method of device manufacturing
US7301605B2 (en) * 2000-03-03 2007-11-27 Nikon Corporation Projection exposure apparatus and method, catadioptric optical system and manufacturing method of devices
JP2001267226A (en) 2000-03-21 2001-09-28 Nikon Corp Drive device, exposure system, device, and method of manufacturing the same
US7508487B2 (en) * 2000-06-01 2009-03-24 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US6630984B2 (en) 2000-08-03 2003-10-07 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US7561270B2 (en) 2000-08-24 2009-07-14 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
TW527526B (en) 2000-08-24 2003-04-11 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and device manufactured thereby
TWI232356B (en) 2000-09-04 2005-05-11 Asml Netherlands Bv Lithographic projection apparatus, device manufacturing method and device manufactured thereby
EP1197803B1 (en) 2000-10-10 2012-02-01 ASML Netherlands B.V. Lithographic apparatus
EP2081086B1 (en) 2000-11-07 2013-01-02 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US6757053B1 (en) 2000-11-16 2004-06-29 Nikon Corporation Stage assembly including a reaction mass assembly
US6958808B2 (en) 2000-11-16 2005-10-25 Nikon Corporation System and method for resetting a reaction mass assembly of a stage assembly
US6603531B1 (en) 2000-11-16 2003-08-05 Nikon Corporation Stage assembly including a reaction assembly that is connected by actuators
US6885430B2 (en) 2000-11-16 2005-04-26 Nikon Corporation System and method for resetting a reaction mass assembly of a stage assembly
US6593997B1 (en) 2000-11-16 2003-07-15 Nikon Corporation Stage assembly including a reaction assembly
TW591342B (en) 2000-11-30 2004-06-11 Asml Netherlands Bv Lithographic projection apparatus and integrated circuit manufacturing method using a lithographic projection apparatus
JP2002289515A (en) * 2000-12-28 2002-10-04 Nikon Corp Method for manufacturing product, method for manufacturing aligner, aligner, and method for manufacturing device
US7113258B2 (en) 2001-01-15 2006-09-26 Asml Netherlands B.V. Lithographic apparatus
US6927838B2 (en) 2001-02-27 2005-08-09 Nikon Corporation Multiple stage, stage assembly having independent stage bases
US20020117109A1 (en) * 2001-02-27 2002-08-29 Hazelton Andrew J. Multiple stage, stage assembly having independent reaction force transfer
US6792591B2 (en) 2001-02-28 2004-09-14 Asml Masktools B.V. Method of identifying an extreme interaction pitch region, methods of designing mask patterns and manufacturing masks, device manufacturing methods and computer programs
DE60202230T2 (en) 2001-03-14 2005-12-15 Asml Masktools B.V. Close-effect correction by means of unresolved auxiliary structures in the form of conductor bars
US7735052B2 (en) 2001-04-24 2010-06-08 Asml Masktools Netherlands B.V. Method of identifying an extreme interaction pitch region, methods of designing mask patterns and manufacturing masks, device manufacturing methods and computer programs
JP3970106B2 (en) 2001-05-23 2007-09-05 エーエスエムエル ネザーランズ ビー.ブイ. Substrate comprising alignment marks in a substantially transparent process layer, a mask for exposing the marks, and a device manufacturing method
TWI266959B (en) 2001-06-20 2006-11-21 Asml Netherlands Bv Device manufacturing method, device manufactured thereby and a mask for use in the method
US6788385B2 (en) * 2001-06-21 2004-09-07 Nikon Corporation Stage device, exposure apparatus and method
TW529172B (en) 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
US6674512B2 (en) 2001-08-07 2004-01-06 Nikon Corporation Interferometer system for a semiconductor exposure system
US6785005B2 (en) 2001-09-21 2004-08-31 Nikon Corporation Switching type dual wafer stage
US7026081B2 (en) 2001-09-28 2006-04-11 Asml Masktools B.V. Optical proximity correction method utilizing phase-edges as sub-resolution assist features
JP3980469B2 (en) 2001-10-19 2007-09-26 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
US6665054B2 (en) 2001-10-22 2003-12-16 Nikon Corporation Two stage method
US6927505B2 (en) 2001-12-19 2005-08-09 Nikon Corporation Following stage planar motor
US20030159956A1 (en) * 2002-02-26 2003-08-28 Woos Michael T. Display backing card
US7333178B2 (en) * 2002-03-18 2008-02-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7170587B2 (en) * 2002-03-18 2007-01-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6724466B2 (en) 2002-03-26 2004-04-20 Nikon Corporation Stage assembly including a damping assembly
US7061577B2 (en) * 2002-03-26 2006-06-13 Nikon Corporation Image adjustor including damping assembly
US6757110B2 (en) 2002-05-29 2004-06-29 Asml Holding N.V. Catadioptric lithography system and method with reticle stage orthogonal to wafer stage
EP1367446A1 (en) 2002-05-31 2003-12-03 ASML Netherlands B.V. Lithographic apparatus
TWI230844B (en) * 2002-06-07 2005-04-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1369745B1 (en) 2002-06-07 2013-02-27 ASML Netherlands B.V. Lihographic apparatus and device manufaturing method
US7049592B2 (en) * 2002-07-11 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1383007A1 (en) * 2002-07-16 2004-01-21 ASML Netherlands B.V. Lithographic apparatus, and device manufacturing method
TWI242690B (en) * 2002-08-15 2005-11-01 Asml Netherlands Bv Reflector assembly, lithographic projection apparatus, radiation system with the reflector assembly, and method of manufacturing an integrated structure by a lithographic process
TWI229242B (en) * 2002-08-23 2005-03-11 Asml Netherlands Bv Lithographic projection apparatus and particle barrier for use in said apparatus
US7627354B2 (en) * 2002-08-30 2009-12-01 Qualcomm Incorporated Display format for handheld wireless communication devices
TWI229243B (en) * 2002-09-20 2005-03-11 Asml Netherlands Bv Lithographic marker structure, lithographic projection apparatus comprising such a lithographic marker structure and method for substrate alignment using such a lithographic marker structure
EP2204697A3 (en) 2002-09-20 2012-04-18 ASML Netherlands B.V. Marker structure, lithographic projection apparatus, method for substrate alignment using such a structure, and substrate comprising such marker structure
CN100437355C (en) * 2002-09-30 2008-11-26 Asml荷兰有限公司 Photoetching projector and device manufacturing method
CN100421024C (en) 2002-09-30 2008-09-24 Asml荷兰有限公司 Photoetching device and device manufacturing method
EP1429188B1 (en) 2002-11-12 2013-06-19 ASML Netherlands B.V. Lithographic projection apparatus
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG116510A1 (en) 2002-11-12 2005-11-28
SG121819A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1420298B1 (en) 2002-11-12 2013-02-20 ASML Netherlands B.V. Lithographic apparatus
SG121822A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG137657A1 (en) 2002-11-12 2007-12-28 Asml Masktools Bv Method and apparatus for performing model-based layout conversion for use with dipole illumination
EP1420302A1 (en) 2002-11-18 2004-05-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
SG111171A1 (en) 2002-11-27 2005-05-30 Asml Netherlands Bv Lithographic projection apparatus and device manufacturing method
JP4423559B2 (en) 2002-12-03 2010-03-03 株式会社ニコン Pollutant removal method
DE60323927D1 (en) 2002-12-13 2008-11-20 Asml Netherlands Bv Lithographic apparatus and method of making a device
KR100549781B1 (en) 2002-12-19 2006-02-06 에이에스엠엘 네델란즈 비.브이. A Lithographic Projection Mask, a Device Manufacturing Method Using a Lithographic Projection Mask and a Device Manufactured Thereby
CN100476585C (en) 2002-12-23 2009-04-08 Asml荷兰有限公司 Impurity shielding with extendable slice
EP1434092A1 (en) 2002-12-23 2004-06-30 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
TWI286674B (en) 2002-12-27 2007-09-11 Asml Netherlands Bv Container for a mask, method of transferring lithographic masks therein and method of scanning a mask in a container
CN1573554A (en) 2003-01-14 2005-02-02 Asml蒙片工具有限公司 Method of optical proximity correction design for contact hole mask
SG125101A1 (en) 2003-01-14 2006-09-29 Asml Netherlands Bv Level sensor for lithographic apparatus
TWI304158B (en) 2003-01-15 2008-12-11 Asml Netherlands Bv Detection assembly and lithographic projection apparatus provided with such a detection assembly
US6963821B2 (en) * 2003-02-11 2005-11-08 Nikon Corporation Stage counter mass system
WO2004075268A1 (en) 2003-02-19 2004-09-02 Nikon Corporation Transfer method, exposure method and exposure device, and device manufacturing method
EP3301511A1 (en) 2003-02-26 2018-04-04 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7206059B2 (en) * 2003-02-27 2007-04-17 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US6943941B2 (en) * 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
SG115641A1 (en) 2003-03-06 2005-10-28 Asml Netherlands Bv Device and method for manipulation and routing of a metrology beam
TWI264620B (en) 2003-03-07 2006-10-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
SG115631A1 (en) 2003-03-11 2005-10-28 Asml Netherlands Bv Lithographic projection assembly, load lock and method for transferring objects
TWI234692B (en) 2003-03-11 2005-06-21 Asml Netherlands Bv Lithographic projection assembly, handling apparatus for handling substrates and method of handling a substrate
EP1457826A1 (en) 2003-03-11 2004-09-15 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1457825A1 (en) 2003-03-11 2004-09-15 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
EP1457833B1 (en) 2003-03-11 2012-05-30 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
SG115630A1 (en) 2003-03-11 2005-10-28 Asml Netherlands Bv Temperature conditioned load lock, lithographic apparatus comprising such a load lock and method of manufacturing a substrate with such a load lock
EP1457827A1 (en) 2003-03-11 2004-09-15 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
SG125108A1 (en) 2003-03-11 2006-09-29 Asml Netherlands Bv Assembly comprising a sensor for determining at least one of tilt and height of a substrate, a method therefor and a lithographic projection apparatus
CN101840163B (en) 2003-03-31 2012-06-06 Asml蒙片工具有限公司 Illumination source and photomask optimization
SG125948A1 (en) 2003-03-31 2006-10-30 Asml Netherlands Bv Supporting structure for use in a lithographic apparatus
US7397539B2 (en) 2003-03-31 2008-07-08 Asml Netherlands, B.V. Transfer apparatus for transferring an object, lithographic apparatus employing such a transfer apparatus, and method of use thereof
US7126671B2 (en) 2003-04-04 2006-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR20110104084A (en) * 2003-04-09 2011-09-21 가부시키가이샤 니콘 Immersion lithography fluid control system
JP4394500B2 (en) 2003-04-09 2010-01-06 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus, device manufacturing method, and computer program
SG2012050829A (en) 2003-04-10 2015-07-30 Nippon Kogaku Kk Environmental system including vacuum scavange for an immersion lithography apparatus
EP3062152B1 (en) * 2003-04-10 2017-12-20 Nikon Corporation Environmental system including vaccum scavenge for an immersion lithography apparatus
JP4071733B2 (en) 2003-04-17 2008-04-02 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus, device manufacturing method, and computer program
SG115678A1 (en) 2003-04-22 2005-10-28 Asml Netherlands Bv Substrate carrier and method for making a substrate carrier
EP1475666A1 (en) 2003-05-06 2004-11-10 ASML Netherlands B.V. Substrate holder for lithographic apparatus
EP1475667A1 (en) 2003-05-09 2004-11-10 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4552853B2 (en) * 2003-05-15 2010-09-29 株式会社ニコン Exposure apparatus and device manufacturing method
EP1477861A1 (en) 2003-05-16 2004-11-17 ASML Netherlands B.V. A method of calibrating a lithographic apparatus, an alignment method, a computer program, a lithographic apparatus and a device manufacturing method
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1486828B1 (en) 2003-06-09 2013-10-09 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1486824A1 (en) 2003-06-11 2004-12-15 ASML Netherlands B.V. A movable stage system for in a lithographic projection apparatus, lithographic projection apparatus and device manufacturing method
EP2261741A3 (en) 2003-06-11 2011-05-25 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US20070103528A1 (en) * 2003-06-16 2007-05-10 Kornit Digital Ltd. Ink composition
US20070104899A1 (en) * 2003-06-16 2007-05-10 Kornit Digital Ltd. Process for printing images on dark surfaces
US20070103529A1 (en) * 2003-06-16 2007-05-10 Kornit Digital Ltd. Process and system for printing images on absorptive surfaces
IL162231A (en) * 2004-05-30 2007-05-15 Kornit Digital Ltd Process for direct digital inkjet printing onto a wet textile piece
TWI251129B (en) 2003-06-27 2006-03-11 Asml Netherlands Bv Lithographic apparatus and integrated circuit manufacturing method
EP1491967A1 (en) 2003-06-27 2004-12-29 ASML Netherlands B.V. Method and apparatus for positioning a substrate on a substrate table
DE60321779D1 (en) 2003-06-30 2008-08-07 Asml Netherlands Bv Lithographic apparatus and method for making an article
CN100480860C (en) 2003-06-30 2009-04-22 Asml蒙片工具有限公司 Improved scattering bar OPC application method for sub-half wavelength lithography patterning
US7355673B2 (en) 2003-06-30 2008-04-08 Asml Masktools B.V. Method, program product and apparatus of simultaneous optimization for NA-Sigma exposure settings and scattering bars OPC using a device layout
TWI284253B (en) 2003-07-01 2007-07-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI260154B (en) * 2003-07-03 2006-08-11 Fuji Photo Film Co Ltd Image forming device
WO2005006418A1 (en) * 2003-07-09 2005-01-20 Nikon Corporation Exposure apparatus and method for manufacturing device
US7384149B2 (en) 2003-07-21 2008-06-10 Asml Netherlands B.V. Lithographic projection apparatus, gas purging method and device manufacturing method and purge gas supply system
EP1500987A1 (en) 2003-07-21 2005-01-26 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
EP1500979A1 (en) 2003-07-21 2005-01-26 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI245170B (en) 2003-07-22 2005-12-11 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and device manufactured thereby
EP1500980A1 (en) 2003-07-22 2005-01-26 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
TWI254188B (en) 2003-07-23 2006-05-01 Asml Netherlands Bv Lithographic projection apparatus and article holder therefor
CN102043350B (en) 2003-07-28 2014-01-29 株式会社尼康 Exposure apparatus, device manufacturing method, and control method of exposure apparatus
US7145643B2 (en) 2003-08-07 2006-12-05 Asml Netherlands B.V. Interface unit, lithographic projection apparatus comprising such an interface unit and a device manufacturing method
KR101205263B1 (en) * 2003-08-07 2012-11-27 가부시키가이샤 니콘 Exposure method and exposure apparatus, stage unit, and device manufacturing method
US7265817B2 (en) 2003-08-27 2007-09-04 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and slide assembly
TWI245163B (en) 2003-08-29 2005-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1660925B1 (en) * 2003-09-03 2015-04-29 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US8064730B2 (en) 2003-09-22 2011-11-22 Asml Netherlands B.V. Device manufacturing method, orientation determination method and lithographic apparatus
US7414759B2 (en) * 2003-11-26 2008-08-19 Samsung Electronics Co., Ltd. Scanner linearity tester
US7253077B2 (en) 2003-12-01 2007-08-07 Asml Netherlands B.V. Substrate, method of preparing a substrate, method of measurement, lithographic apparatus, device manufacturing method and device manufactured thereby, and machine-readable storage medium
US7565219B2 (en) 2003-12-09 2009-07-21 Asml Netherlands B.V. Lithographic apparatus, method of determining a model parameter, device manufacturing method, and device manufactured thereby
US20050134865A1 (en) 2003-12-17 2005-06-23 Asml Netherlands B.V. Method for determining a map, device manufacturing method, and lithographic apparatus
US7288779B2 (en) 2003-12-17 2007-10-30 Asml Netherlands B.V. Method for position determination, method for overlay optimization, and lithographic projection apparatus
US7113255B2 (en) 2003-12-19 2006-09-26 Asml Holding N.V. Grating patch arrangement, lithographic apparatus, method of testing, device manufacturing method, and device manufactured thereby
US7193722B2 (en) * 2003-12-30 2007-03-20 Asml Netherlands B.V. Lithographic apparatus with disturbance correction system and device manufacturing method
US7349101B2 (en) 2003-12-30 2008-03-25 Asml Netherlands B.V. Lithographic apparatus, overlay detector, device manufacturing method, and device manufactured thereby
US7145641B2 (en) 2003-12-31 2006-12-05 Asml Netherlands, B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US7221433B2 (en) 2004-01-28 2007-05-22 Nikon Corporation Stage assembly including a reaction assembly having a connector assembly
US7256873B2 (en) 2004-01-28 2007-08-14 Asml Netherlands B.V. Enhanced lithographic resolution through double exposure
US7607745B2 (en) * 2004-02-12 2009-10-27 Kornit Digital Ltd. Digital printing machine
US7113256B2 (en) 2004-02-18 2006-09-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method with feed-forward focus control
US7352472B2 (en) 2004-02-18 2008-04-01 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and method for determining z-displacement
US20070030467A1 (en) * 2004-02-19 2007-02-08 Nikon Corporation Exposure apparatus, exposure method, and device fabricating method
US20080151200A1 (en) * 2004-02-19 2008-06-26 Nikon Corporation Exposure Apparatus and Device Manufacturing Method
JP4974049B2 (en) * 2004-02-20 2012-07-11 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
US7625675B2 (en) 2004-02-25 2009-12-01 Oerlikon Trading Ag, Trubbach Method for producing masks for photolithography and the use of such masks
US7184123B2 (en) 2004-03-24 2007-02-27 Asml Netherlands B.V. Lithographic optical system
TW201816844A (en) 2004-03-25 2018-05-01 日商尼康股份有限公司 Exposure apparatus, exposure method, and device manufacturing method
US7856606B2 (en) 2004-03-31 2010-12-21 Asml Masktools B.V. Apparatus, method and program product for suppressing waviness of features to be printed using photolithographic systems
US7034917B2 (en) * 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
EP1747499A2 (en) * 2004-05-04 2007-01-31 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
JP2005327993A (en) * 2004-05-17 2005-11-24 Canon Inc Positioning device, exposure device, and device-manufacturing method
US7486381B2 (en) * 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11447648B2 (en) 2004-05-30 2022-09-20 Kornit Digital Ltd. Process and system for printing images on absorptive surfaces
JPWO2006001282A1 (en) * 2004-06-25 2008-04-17 株式会社ニコン Positioning apparatus, positioning method, exposure apparatus, exposure method, and device manufacturing method
US7403264B2 (en) 2004-07-08 2008-07-22 Asml Netherlands B.V. Lithographic projection apparatus and a device manufacturing method using such lithographic projection apparatus
KR101433491B1 (en) 2004-07-12 2014-08-22 가부시키가이샤 니콘 Exposure equipment and device manufacturing method
US20080012511A1 (en) * 2004-07-15 2008-01-17 Nikon Corporation Planar Motor Device, Stage Device, Exposure Device and Device Manufacturing Method
JPWO2006009254A1 (en) * 2004-07-23 2008-05-01 株式会社ニコン Support apparatus, stage apparatus, exposure apparatus, and device manufacturing method
JP4983257B2 (en) * 2004-08-18 2012-07-25 株式会社ニコン Exposure apparatus, device manufacturing method, measuring member, and measuring method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7456929B2 (en) * 2004-10-15 2008-11-25 Nikon Corporation Exposure apparatus and device manufacturing method
US7262831B2 (en) 2004-12-01 2007-08-28 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method using such lithographic projection apparatus
US7397533B2 (en) * 2004-12-07 2008-07-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060119811A1 (en) 2004-12-07 2006-06-08 Asml Netherlands B.V. Radiation exposure apparatus comprising a gas flushing system
US7453063B2 (en) * 2004-12-08 2008-11-18 Asml Netherlands B.V. Calibration substrate and method for calibrating a lithographic apparatus
US7355675B2 (en) * 2004-12-29 2008-04-08 Asml Netherlands B.V. Method for measuring information about a substrate, and a substrate for use in a lithographic apparatus
US7193683B2 (en) 2005-01-06 2007-03-20 Nikon Corporation Stage design for reflective optics
JP2006202825A (en) * 2005-01-18 2006-08-03 Jsr Corp Immersion type exposure device
JP2006202920A (en) * 2005-01-19 2006-08-03 National Institute Of Information & Communication Technology Processing machine
KR101427056B1 (en) 2005-01-31 2014-08-05 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
WO2006080427A1 (en) * 2005-01-31 2006-08-03 Nikon Corporation Exposure method, exposure apparatus and method for manufacturing device
US8692973B2 (en) * 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
US20070258068A1 (en) * 2005-02-17 2007-11-08 Hiroto Horikawa Exposure Apparatus, Exposure Method, and Device Fabricating Method
JP4922638B2 (en) * 2005-03-29 2012-04-25 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus, seal, device manufacturing method, computer program, and data recording medium
US7548302B2 (en) 2005-03-29 2009-06-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7317506B2 (en) 2005-03-29 2008-01-08 Asml Netherlands B.V. Variable illumination source
US20070085984A1 (en) * 2005-10-18 2007-04-19 Asml Netherlands B.V. Lithographic projection apparatus, device manufacturing method and device manufactured thereby
JP4677267B2 (en) * 2005-04-04 2011-04-27 キヤノン株式会社 Planar stage apparatus and exposure apparatus
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US7738075B2 (en) 2005-05-23 2010-06-15 Asml Netherlands B.V. Lithographic attribute enhancement
US7838858B2 (en) 2005-05-31 2010-11-23 Nikon Corporation Evaluation system and method of a search operation that detects a detection subject on an object
US20070074635A1 (en) * 2005-08-25 2007-04-05 Molecular Imprints, Inc. System to couple a body and a docking plate
US20070064384A1 (en) * 2005-08-25 2007-03-22 Molecular Imprints, Inc. Method to transfer a template transfer body between a motion stage and a docking plate
US7665981B2 (en) * 2005-08-25 2010-02-23 Molecular Imprints, Inc. System to transfer a template transfer body between a motion stage and a docking plate
US20070046917A1 (en) 2005-08-31 2007-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method that compensates for reticle induced CDU
WO2007029829A1 (en) 2005-09-09 2007-03-15 Nikon Corporation Exposure apparatus, exposure method, and device production method
US7948675B2 (en) * 2005-10-11 2011-05-24 Nikon Corporation Surface-corrected multilayer-film mirrors with protected reflective surfaces, exposure systems comprising same, and associated methods
US8011915B2 (en) 2005-11-04 2011-09-06 Asml Netherlands B.V. Imprint lithography
JPWO2007055237A1 (en) 2005-11-09 2009-04-30 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
EP1965414A4 (en) * 2005-12-06 2010-08-25 Nikon Corp Exposure method, exposure apparatus, and method for manufacturing device
KR100768849B1 (en) * 2005-12-06 2007-10-22 엘지전자 주식회사 Power supply apparatus and method for line conection type fuel cell system
KR101704310B1 (en) * 2005-12-08 2017-02-07 가부시키가이샤 니콘 Substrate holding device, exposure device, exposure method, and device fabrication method
US7626181B2 (en) 2005-12-09 2009-12-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP5182558B2 (en) 2005-12-28 2013-04-17 株式会社ニコン Pattern forming method and pattern forming apparatus, exposure method and exposure apparatus, and device manufacturing method
US8953148B2 (en) 2005-12-28 2015-02-10 Nikon Corporation Exposure apparatus and making method thereof
US7649611B2 (en) 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN101356623B (en) 2006-01-19 2012-05-09 株式会社尼康 Moving body drive method, moving body drive system, pattern formation method, pattern formation device, exposure method, exposure device, and device fabrication method
WO2007102484A1 (en) 2006-03-07 2007-09-13 Nikon Corporation Device manufacturing method, device manufacturing system, and measuring/examining instrument
US7598024B2 (en) 2006-03-08 2009-10-06 Asml Netherlands B.V. Method and system for enhanced lithographic alignment
EP2267530A1 (en) 2006-04-06 2010-12-29 ASML MaskTools B.V. Method and apparatus for performing dark field double dipole lithography
CN100504614C (en) * 2006-04-14 2009-06-24 上海微电子装备有限公司 Stepping scan photo-etching machine double-platform exchanging and positioning system
TW200746259A (en) 2006-04-27 2007-12-16 Nikon Corp Measuring and/or inspecting method, measuring and/or inspecting apparatus, exposure method, device manufacturing method, and device manufacturing apparatus
US7583359B2 (en) 2006-05-05 2009-09-01 Asml Netherlands B.V. Reduction of fit error due to non-uniform sample distribution
EP2037487A4 (en) 2006-06-09 2014-07-02 Nikon Corp Apparatus with mobile body, exposure apparatus, exposure method and device manufacturing method
US7697115B2 (en) 2006-06-23 2010-04-13 Asml Holding N.V. Resonant scanning mirror
CN2938172Y (en) * 2006-07-18 2007-08-22 上海微电子装备有限公司 Exposure precision positioning system of changed by two-device
US7675201B2 (en) * 2006-07-25 2010-03-09 Asml Netherlands B.V. Lithographic apparatus with planar motor driven support
TWI653511B (en) 2006-08-31 2019-03-11 日商尼康股份有限公司 Exposure apparatus, exposure method, and component manufacturing method
US8013982B2 (en) 2006-08-31 2011-09-06 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
CN104460241B (en) 2006-08-31 2017-04-05 株式会社尼康 Movable body drive system and method, patterning device and method, exposure device and method, assembly manufacture method
KR101452524B1 (en) 2006-09-01 2014-10-21 가부시키가이샤 니콘 Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
TWI596656B (en) 2006-09-01 2017-08-21 尼康股份有限公司 Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, element manufacturing method, and correction method
US7592760B2 (en) * 2006-09-11 2009-09-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7872730B2 (en) * 2006-09-15 2011-01-18 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
KR101419196B1 (en) 2006-09-29 2014-07-15 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device manufacturing method
US20080158531A1 (en) 2006-11-15 2008-07-03 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US20080212047A1 (en) * 2006-12-28 2008-09-04 Nikon Corporation Exposure apparatus, exposing method, and device fabricating method
US8004651B2 (en) * 2007-01-23 2011-08-23 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
CN101012549B (en) * 2007-01-29 2010-05-19 尤耀明 Chip carrier in silicon chip production
JP2010519722A (en) * 2007-02-23 2010-06-03 株式会社ニコン Exposure method, exposure apparatus, device manufacturing method, and immersion exposure substrate
US20080225248A1 (en) * 2007-03-15 2008-09-18 Nikon Corporation Apparatus, systems and methods for removing liquid from workpiece during workpiece processing
US8237911B2 (en) 2007-03-15 2012-08-07 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
US8497980B2 (en) * 2007-03-19 2013-07-30 Nikon Corporation Holding apparatus, exposure apparatus, exposure method, and device manufacturing method
US8134685B2 (en) 2007-03-23 2012-03-13 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US20080246941A1 (en) * 2007-04-06 2008-10-09 Katsura Otaki Wavefront aberration measuring device, projection exposure apparatus, method for manufacturing projection optical system, and method for manufacturing device
US8194322B2 (en) * 2007-04-23 2012-06-05 Nikon Corporation Multilayer-film reflective mirror, exposure apparatus, device manufacturing method, and manufacturing method of multilayer-film reflective mirror
US20080266651A1 (en) * 2007-04-24 2008-10-30 Katsuhiko Murakami Optical apparatus, multilayer-film reflective mirror, exposure apparatus, and device
US8300207B2 (en) * 2007-05-17 2012-10-30 Nikon Corporation Exposure apparatus, immersion system, exposing method, and device fabricating method
US20090122282A1 (en) * 2007-05-21 2009-05-14 Nikon Corporation Exposure apparatus, liquid immersion system, exposing method, and device fabricating method
KR20100031694A (en) * 2007-05-28 2010-03-24 가부시키가이샤 니콘 Exposure apparatus, device manufacturing method, cleaning device, cleaning method and exposure method
WO2008149853A1 (en) * 2007-06-04 2008-12-11 Nikon Corporation Environment control apparatus, stage apparatus, exposure apparatus, and device production method
JP4968335B2 (en) * 2007-06-11 2012-07-04 株式会社ニコン Measuring member, sensor, measuring method, exposure apparatus, exposure method, and device manufacturing method
US9550374B1 (en) 2007-06-27 2017-01-24 Cafepress Inc. System and method for improved digital printing on textiles
CN100470379C (en) * 2007-07-19 2009-03-18 清华大学 Photo-etching machine silicon chip platform double-platform switching system
US9025126B2 (en) * 2007-07-31 2015-05-05 Nikon Corporation Exposure apparatus adjusting method, exposure apparatus, and device fabricating method
WO2009028494A1 (en) * 2007-08-28 2009-03-05 Nikon Corporation Position detecting apparatus, position detecting method, exposure apparatus and device manufacturing method
CN101855705A (en) * 2007-09-07 2010-10-06 国立大学法人横滨国立大学 Drive controlling method, driving control device, stage control method, stage control apparatus, exposure method, exposure device and measuring device
US8711327B2 (en) * 2007-12-14 2014-04-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US20090174873A1 (en) * 2007-12-17 2009-07-09 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
KR20100102580A (en) * 2007-12-17 2010-09-24 가부시키가이샤 니콘 Exposure apparatus, exposure method and device manufacturing method
US8964166B2 (en) * 2007-12-17 2015-02-24 Nikon Corporation Stage device, exposure apparatus and method of producing device
US8237916B2 (en) * 2007-12-28 2012-08-07 Nikon Corporation Movable body drive system, pattern formation apparatus, exposure apparatus and exposure method, and device manufacturing method
US8451425B2 (en) * 2007-12-28 2013-05-28 Nikon Corporation Exposure apparatus, exposure method, cleaning apparatus, and device manufacturing method
TWI640840B (en) 2007-12-28 2018-11-11 日商尼康股份有限公司 Exposure apparatus, exposure method, and component manufacturing method
JP5369443B2 (en) 2008-02-05 2013-12-18 株式会社ニコン Stage apparatus, exposure apparatus, exposure method, and device manufacturing method
US20090218743A1 (en) * 2008-02-29 2009-09-03 Nikon Corporation Substrate holding apparatus, exposure apparatus, exposing method, device fabricating method, plate member, and wall
NL1036557A1 (en) 2008-03-11 2009-09-14 Asml Netherlands Bv Method and lithographic apparatus for measuring and acquiring height data in relation to a substrate surface.
US20100039628A1 (en) * 2008-03-19 2010-02-18 Nikon Corporation Cleaning tool, cleaning method, and device fabricating method
US8233139B2 (en) * 2008-03-27 2012-07-31 Nikon Corporation Immersion system, exposure apparatus, exposing method, and device fabricating method
JPWO2009125867A1 (en) * 2008-04-11 2011-08-04 株式会社ニコン Stage apparatus, exposure apparatus, and device manufacturing method
US8654306B2 (en) * 2008-04-14 2014-02-18 Nikon Corporation Exposure apparatus, cleaning method, and device fabricating method
NL1036647A1 (en) 2008-04-16 2009-10-19 Asml Netherlands Bv A method of measuring a lithographic projection apparatus.
NL1036891A1 (en) 2008-05-02 2009-11-03 Asml Netherlands Bv Dichroic mirror, method for manufacturing a dichroic mirror, lithographic apparatus, semiconductor device and method of manufacturing therefor.
JP5097166B2 (en) 2008-05-28 2012-12-12 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and method of operating the apparatus
NL2002935A1 (en) 2008-06-27 2009-12-29 Asml Netherlands Bv Object support positioning device and lithographic apparatus.
WO2010005081A1 (en) * 2008-07-10 2010-01-14 株式会社ニコン Deformation measuring apparatus, exposure apparatus, jig for deformation measuring apparatus, position measuring method and device manufacturing method
TW201009895A (en) * 2008-08-11 2010-03-01 Nikon Corp Exposure apparatus, maintaining method and device fabricating method
DE102009045008A1 (en) 2008-10-15 2010-04-29 Carl Zeiss Smt Ag EUV lithography apparatus and method for processing a mask
US8896806B2 (en) * 2008-12-29 2014-11-25 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US20100196832A1 (en) 2009-01-30 2010-08-05 Nikon Corporation Exposure apparatus, exposing method, liquid immersion member and device fabricating method
WO2010103822A1 (en) 2009-03-10 2010-09-16 株式会社ニコン Exposure apparatus, exposure method and device manufacturing method
CN101571676B (en) * 2009-04-03 2010-12-01 清华大学 Photoetching machine wafer stage dual-stage switching system
CN101551598B (en) 2009-04-03 2010-12-01 清华大学 Double-stage switching system of photoetching machine wafer stage
NL2004242A (en) 2009-04-13 2010-10-14 Asml Netherlands Bv Detector module, cooling arrangement and lithographic apparatus comprising a detector module.
NL2004322A (en) 2009-04-13 2010-10-14 Asml Netherlands Bv Cooling device, cooling arrangement and lithographic apparatus comprising a cooling arrangement.
US8953143B2 (en) * 2009-04-24 2015-02-10 Nikon Corporation Liquid immersion member
US8202671B2 (en) 2009-04-28 2012-06-19 Nikon Corporation Protective apparatus, mask, mask forming apparatus, mask forming method, exposure apparatus, device fabricating method, and foreign matter detecting apparatus
US20110085152A1 (en) * 2009-05-07 2011-04-14 Hideaki Nishino Vibration control apparatus, vibration control method, exposure apparatus, and device manufacturing method
US20100323303A1 (en) * 2009-05-15 2010-12-23 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, and device fabricating method
IT1399285B1 (en) * 2009-07-03 2013-04-11 Applied Materials Inc SUBSTRATE PROCESSING SYSTEM
DE102009033319B4 (en) 2009-07-15 2019-02-21 Carl Zeiss Microscopy Gmbh Particle beam microscopy system and method of operating the same
EP2464697B1 (en) * 2009-08-10 2019-03-13 Kornit Digital Ltd. Inkjet compositions and processes for stretchable substrates
US20110199591A1 (en) * 2009-10-14 2011-08-18 Nikon Corporation Exposure apparatus, exposing method, maintenance method and device fabricating method
TWI643027B (en) 2009-11-09 2018-12-01 尼康股份有限公司 Exposure apparatus, exposure method, exposure apparatus maintenance method, exposure apparatus adjustment method and device manufacturing method
CN101727019B (en) * 2009-12-15 2011-05-11 清华大学 Double-platform exchange system for silicon chip platform of lithography machine and exchange method thereof
KR20120112615A (en) 2009-12-28 2012-10-11 가부시키가이샤 니콘 Liquid immersion member, method for manufacturing liquid immersion member, exposure apparatus, and device manufacturing method
WO2011083724A1 (en) 2010-01-08 2011-07-14 株式会社ニコン Liquid-immersion member, exposing device, exposing method, and device manufacturing method
US20110222031A1 (en) * 2010-03-12 2011-09-15 Nikon Corporation Liquid immersion member, exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium
NL2006285A (en) * 2010-03-31 2011-10-03 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and substrate exchanging method.
EP2381310B1 (en) 2010-04-22 2015-05-06 ASML Netherlands BV Fluid handling structure and lithographic apparatus
US20120013864A1 (en) 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member, immersion exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium
US8937703B2 (en) 2010-07-14 2015-01-20 Nikon Corporation Liquid immersion member, immersion exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium
US20120013863A1 (en) 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member, immersion exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium
US20120012191A1 (en) 2010-07-16 2012-01-19 Nikon Corporation Liquid recovery apparatus, exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium
US20120019803A1 (en) 2010-07-23 2012-01-26 Nikon Corporation Cleaning method, liquid immersion member, immersion exposure apparatus, device fabricating method, program, and storage medium
US20120019802A1 (en) 2010-07-23 2012-01-26 Nikon Corporation Cleaning method, immersion exposure apparatus, device fabricating method, program, and storage medium
US20120019804A1 (en) 2010-07-23 2012-01-26 Nikon Corporation Cleaning method, cleaning apparatus, device fabricating method, program, and storage medium
US8926080B2 (en) 2010-08-10 2015-01-06 Kornit Digital Ltd. Formaldehyde-free inkjet compositions and processes
EP2469339B1 (en) * 2010-12-21 2017-08-30 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US20120188521A1 (en) 2010-12-27 2012-07-26 Nikon Corporation Cleaning method, liquid immersion member, immersion exposure apparatus, device fabricating method, program and storage medium
US20120162619A1 (en) 2010-12-27 2012-06-28 Nikon Corporation Liquid immersion member, immersion exposure apparatus, exposing method, device fabricating method, program, and storage medium
US9746787B2 (en) 2011-02-22 2017-08-29 Nikon Corporation Holding apparatus, exposure apparatus and manufacturing method of device
US20130016329A1 (en) 2011-07-12 2013-01-17 Nikon Corporation Exposure apparatus, exposure method, measurement method, and device manufacturing method
US9329496B2 (en) 2011-07-21 2016-05-03 Nikon Corporation Exposure apparatus, exposure method, method of manufacturing device, program, and storage medium
US9256137B2 (en) 2011-08-25 2016-02-09 Nikon Corporation Exposure apparatus, liquid holding method, and device manufacturing method
US20130050666A1 (en) 2011-08-26 2013-02-28 Nikon Corporation Exposure apparatus, liquid holding method, and device manufacturing method
JP6156147B2 (en) 2011-11-17 2017-07-05 株式会社ニコン Encoder apparatus, optical apparatus, exposure apparatus, and device manufacturing method
US20130135594A1 (en) 2011-11-25 2013-05-30 Nikon Corporation Liquid immersion member, immersion exposure apparatus, exposure method, device manufacturing method, program, and recording medium
US20130169944A1 (en) 2011-12-28 2013-07-04 Nikon Corporation Exposure apparatus, exposure method, device manufacturing method, program, and recording medium
US9207549B2 (en) 2011-12-29 2015-12-08 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method with encoder of higher reliability for position measurement
US9360772B2 (en) 2011-12-29 2016-06-07 Nikon Corporation Carrier method, exposure method, carrier system and exposure apparatus, and device manufacturing method
JP6196286B2 (en) 2012-03-27 2017-09-13 エーエスエムエル ネザーランズ ビー.ブイ. Substrate table system, lithography apparatus and substrate table exchange method
US9268231B2 (en) 2012-04-10 2016-02-23 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US9323160B2 (en) 2012-04-10 2016-04-26 Nikon Corporation Liquid immersion member, exposure apparatus, exposure method, device fabricating method, program, and recording medium
WO2013175835A1 (en) 2012-05-21 2013-11-28 株式会社ニコン Reflector, projection optical system, exposure apparatus, and device manufacturing method
US9823580B2 (en) 2012-07-20 2017-11-21 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US9494870B2 (en) 2012-10-12 2016-11-15 Nikon Corporation Exposure apparatus, exposing method, device manufacturing method, program, and recording medium
US9568828B2 (en) 2012-10-12 2017-02-14 Nikon Corporation Exposure apparatus, exposing method, device manufacturing method, program, and recording medium
JP6119242B2 (en) 2012-12-27 2017-04-26 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
US9720331B2 (en) 2012-12-27 2017-08-01 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
US9651873B2 (en) 2012-12-27 2017-05-16 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
US9057955B2 (en) 2013-01-22 2015-06-16 Nikon Corporation Functional film, liquid immersion member, method of manufacturing liquid immersion member, exposure apparatus, and device manufacturing method
US9352073B2 (en) 2013-01-22 2016-05-31 Niko Corporation Functional film
JP5979302B2 (en) 2013-02-28 2016-08-24 株式会社ニコン Sliding film, member formed with sliding film, and manufacturing method thereof
JP5344105B1 (en) * 2013-03-08 2013-11-20 ウシオ電機株式会社 Polarizing light irradiation apparatus for photo-alignment and polarized light irradiation method for photo-alignment
EP2998980A4 (en) 2013-05-09 2016-11-16 Nikon Corp Optical element, projection optical system, exposure apparatus, and device manufacturing method
WO2015001805A1 (en) 2013-07-05 2015-01-08 株式会社ニコン Multilayer film reflector, multilayer film reflector manufacturing method, projection optical system, exposure apparatus, device manufacturing method
EP3057122B1 (en) 2013-10-08 2018-11-21 Nikon Corporation Immersion member, exposure apparatus, exposure method, and device manufacturing method
CN106483778B (en) * 2015-08-31 2018-03-30 上海微电子装备(集团)股份有限公司 Based on relative position measurement to Barebone, double-workpiece-table system and measuring system
US10247940B2 (en) 2015-12-07 2019-04-02 Asml Holding N.V. Objective lens system
CN109937242A (en) 2016-10-31 2019-06-25 扣尼数字有限公司 The method of dye sublimation inkjet printing for textile
EP3598236A4 (en) 2017-03-16 2021-01-20 Nikon Corporation Control device and control method, exposure device and exposure method, device manufacturing method, data generation method, and program
JP2021500437A (en) 2017-10-22 2021-01-07 コーニット・デジタル・リミテッド Low friction image by inkjet printing
CN111965945A (en) * 2020-08-12 2020-11-20 Tcl华星光电技术有限公司 Exposure platform device and exposure machine

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3679874A (en) 1970-07-06 1972-07-25 Bendix Corp Automatic baggage handling system
GB2155201A (en) 1984-02-24 1985-09-18 Canon Kk X-ray exposure apparatus
US4768064A (en) 1983-07-13 1988-08-30 Canon Kabushiki Kaisha Conveyor device for alignment
JPH03273607A (en) 1990-03-23 1991-12-04 Canon Inc Moving table system
US5073912A (en) 1988-11-16 1991-12-17 Hitachi, Ltd. Sample moving apparatus, sample moving system and semiconductor manufacturing apparatus
EP0498496A1 (en) 1991-02-05 1992-08-12 Koninklijke Philips Electronics N.V. Lithographic device with a suspended object table
EP0525872A1 (en) 1991-07-30 1993-02-03 Koninklijke Philips Electronics N.V. Positioning device having two manipulators operating in parallel, and optical lithographic device provided with such a positioning device
US5208497A (en) 1989-04-17 1993-05-04 Sharp Kabushiki Kaisha Linear driving apparatus
EP0687957A1 (en) 1994-06-17 1995-12-20 International Business Machines Corporation A multi-task semiconductor wafer stepper
GB2290658A (en) 1994-06-27 1996-01-03 Nikon Corp Electromagnetic alignment and scanning apparatus
US5763966A (en) 1995-03-15 1998-06-09 Hinds; Walter E. Single plane motor system generating orthogonal movement
US5826129A (en) * 1994-06-30 1998-10-20 Tokyo Electron Limited Substrate processing system
US5969441A (en) * 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
US6027262A (en) * 1996-09-03 2000-02-22 Tokyo Electron Limited Resist process method and system
US6262796B1 (en) * 1997-03-10 2001-07-17 Asm Lithography B.V. Positioning device having two object holders

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236851A (en) * 1978-01-05 1980-12-02 Kasper Instruments, Inc. Disc handling system and method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3679874A (en) 1970-07-06 1972-07-25 Bendix Corp Automatic baggage handling system
US4768064A (en) 1983-07-13 1988-08-30 Canon Kabushiki Kaisha Conveyor device for alignment
GB2155201A (en) 1984-02-24 1985-09-18 Canon Kk X-ray exposure apparatus
US5073912A (en) 1988-11-16 1991-12-17 Hitachi, Ltd. Sample moving apparatus, sample moving system and semiconductor manufacturing apparatus
US5208497A (en) 1989-04-17 1993-05-04 Sharp Kabushiki Kaisha Linear driving apparatus
JPH03273607A (en) 1990-03-23 1991-12-04 Canon Inc Moving table system
EP0498496A1 (en) 1991-02-05 1992-08-12 Koninklijke Philips Electronics N.V. Lithographic device with a suspended object table
EP0525872A1 (en) 1991-07-30 1993-02-03 Koninklijke Philips Electronics N.V. Positioning device having two manipulators operating in parallel, and optical lithographic device provided with such a positioning device
EP0687957A1 (en) 1994-06-17 1995-12-20 International Business Machines Corporation A multi-task semiconductor wafer stepper
US5715064A (en) * 1994-06-17 1998-02-03 International Business Machines Corporation Step and repeat apparatus having enhanced accuracy and increased throughput
GB2290658A (en) 1994-06-27 1996-01-03 Nikon Corp Electromagnetic alignment and scanning apparatus
US5826129A (en) * 1994-06-30 1998-10-20 Tokyo Electron Limited Substrate processing system
US5763966A (en) 1995-03-15 1998-06-09 Hinds; Walter E. Single plane motor system generating orthogonal movement
US6027262A (en) * 1996-09-03 2000-02-22 Tokyo Electron Limited Resist process method and system
US5969441A (en) * 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
US6262796B1 (en) * 1997-03-10 2001-07-17 Asm Lithography B.V. Positioning device having two object holders

Cited By (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8848168B2 (en) 2003-04-11 2014-09-30 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8269946B2 (en) 2003-04-11 2012-09-18 Nikon Corporation Cleanup method for optics in immersion lithography supplying cleaning liquid at different times than immersion liquid
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
US9946163B2 (en) 2003-04-11 2018-04-17 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US20110026000A1 (en) * 2003-04-11 2011-02-03 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8351019B2 (en) 2003-04-11 2013-01-08 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US20070247602A1 (en) * 2003-04-11 2007-10-25 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US20070252965A1 (en) * 2003-04-11 2007-11-01 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US20070273857A1 (en) * 2003-04-11 2007-11-29 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9329493B2 (en) 2003-04-11 2016-05-03 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8493545B2 (en) 2003-04-11 2013-07-23 Nikon Corporation Cleanup method for optics in immersion lithography supplying cleaning liquid onto a surface of object below optical element, liquid supply port and liquid recovery port
US20080074634A1 (en) * 2003-04-11 2008-03-27 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US20080100813A1 (en) * 2003-04-11 2008-05-01 Nikon Corporation Cleanup method for optics in immersion lithography
US8269944B2 (en) 2003-04-11 2012-09-18 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8488100B2 (en) 2003-04-11 2013-07-16 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US20090161084A1 (en) * 2003-04-11 2009-06-25 Nikon Corporation Cleanup method for optics in immersion lithography
US8085381B2 (en) 2003-04-11 2011-12-27 Nikon Corporation Cleanup method for optics in immersion lithography using sonic device
US9081298B2 (en) 2003-04-11 2015-07-14 Nikon Corporation Apparatus for maintaining immersion fluid in the gap under the projection lens during wafer exchange using a co-planar member in an immersion lithography machine
US20090195762A1 (en) * 2003-04-11 2009-08-06 Nikon Corporation Cleanup method for optics in immersion lithography
US8879047B2 (en) 2003-04-11 2014-11-04 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens using a pad member or second stage during wafer exchange in an immersion lithography machine
US8848166B2 (en) 2003-04-11 2014-09-30 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8514367B2 (en) 2003-04-11 2013-08-20 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US20090174872A1 (en) * 2003-04-11 2009-07-09 Nikon Corporation Cleanup method for optics in immersion lithography
US20100203455A1 (en) * 2003-04-11 2010-08-12 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US20070132975A1 (en) * 2003-04-11 2007-06-14 Nikon Corporation Cleanup method for optics in immersion lithography
US8670104B2 (en) 2003-04-11 2014-03-11 Nikon Corporation Cleanup method for optics in immersion lithography with cleaning liquid opposed by a surface of object
US8670103B2 (en) 2003-04-11 2014-03-11 Nikon Corporation Cleanup method for optics in immersion lithography using bubbles
US8634057B2 (en) 2003-04-11 2014-01-21 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8035795B2 (en) 2003-04-11 2011-10-11 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the protection lens during wafer exchange in an immersion lithography machine
US8610875B2 (en) 2003-04-11 2013-12-17 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8760617B2 (en) 2003-05-23 2014-06-24 Nikon Corporation Exposure apparatus and method for producing device
US20110199594A1 (en) * 2003-05-23 2011-08-18 Nikon Corporation Exposure apparatus and method for producing device
US8780327B2 (en) 2003-05-23 2014-07-15 Nikon Corporation Exposure apparatus and method for producing device
US8072576B2 (en) 2003-05-23 2011-12-06 Nikon Corporation Exposure apparatus and method for producing device
US9304392B2 (en) 2003-05-23 2016-04-05 Nikon Corporation Exposure apparatus and method for producing device
US8125612B2 (en) 2003-05-23 2012-02-28 Nikon Corporation Exposure apparatus and method for producing device
US8130363B2 (en) 2003-05-23 2012-03-06 Nikon Corporation Exposure apparatus and method for producing device
US8134682B2 (en) 2003-05-23 2012-03-13 Nikon Corporation Exposure apparatus and method for producing device
US8169592B2 (en) 2003-05-23 2012-05-01 Nikon Corporation Exposure apparatus and method for producing device
US8174668B2 (en) 2003-05-23 2012-05-08 Nikon Corporation Exposure apparatus and method for producing device
US20080225249A1 (en) * 2003-05-23 2008-09-18 Nikon Corporation Exposure apparatus and method for producing device
US20080225250A1 (en) * 2003-05-23 2008-09-18 Nikon Corporation Exposure apparatus and method for producing device
US20080030696A1 (en) * 2003-05-23 2008-02-07 Nikon Corporation Exposure apparatus and method for producing device
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
US8384877B2 (en) 2003-05-23 2013-02-26 Nikon Corporation Exposure apparatus and method for producing device
US20070247600A1 (en) * 2003-05-23 2007-10-25 Nikon Corporation Exposure apparatus and method for producing device
US7812925B2 (en) 2003-06-19 2010-10-12 Nikon Corporation Exposure apparatus, and device manufacturing method
US20080002166A1 (en) * 2003-06-19 2008-01-03 Nikon Corporation Exposure apparatus, and device manufacturing method
US8319941B2 (en) 2003-06-19 2012-11-27 Nikon Corporation Exposure apparatus, and device manufacturing method
US10191388B2 (en) 2003-06-19 2019-01-29 Nikon Corporation Exposure apparatus, and device manufacturing method
US10007188B2 (en) 2003-06-19 2018-06-26 Nikon Corporation Exposure apparatus and device manufacturing method
US20070211234A1 (en) * 2003-06-19 2007-09-13 Nikon Corporation Exposure apparatus, and device manufacturing method
US9810995B2 (en) 2003-06-19 2017-11-07 Nikon Corporation Exposure apparatus and device manufacturing method
US8027027B2 (en) 2003-06-19 2011-09-27 Nikon Corporation Exposure apparatus, and device manufacturing method
US8018575B2 (en) 2003-06-19 2011-09-13 Nikon Corporation Exposure apparatus, and device manufacturing method
US9551943B2 (en) 2003-06-19 2017-01-24 Nikon Corporation Exposure apparatus and device manufacturing method
US8436978B2 (en) 2003-06-19 2013-05-07 Nikon Corporation Exposure apparatus, and device manufacturing method
US20110025996A1 (en) * 2003-06-19 2011-02-03 Nikon Corporation Exposure apparatus, and device manufacturing method
US8692976B2 (en) 2003-06-19 2014-04-08 Nikon Corporation Exposure apparatus, and device manufacturing method
US20060132740A1 (en) * 2003-06-19 2006-06-22 Nikon Corporation Exposure apparatus, and device manufacturing method
US8705001B2 (en) 2003-06-19 2014-04-22 Nikon Corporation Exposure apparatus, and device manufacturing method
US8436979B2 (en) 2003-06-19 2013-05-07 Nikon Corporation Exposure apparatus, and device manufacturing method
US9274437B2 (en) 2003-06-19 2016-03-01 Nikon Corporation Exposure apparatus and device manufacturing method
US8717537B2 (en) 2003-06-19 2014-05-06 Nikon Corporation Exposure apparatus, and device manufacturing method
US8724085B2 (en) 2003-06-19 2014-05-13 Nikon Corporation Exposure apparatus, and device manufacturing method
US20090190112A1 (en) * 2003-06-19 2009-07-30 Nikon Corporation Exposure apparatus, and device manufacturing method
US9025129B2 (en) 2003-06-19 2015-05-05 Nikon Corporation Exposure apparatus, and device manufacturing method
US9019473B2 (en) 2003-06-19 2015-04-28 Nikon Corporation Exposure apparatus and device manufacturing method
US8767177B2 (en) 2003-06-19 2014-07-01 Nikon Corporation Exposure apparatus, and device manufacturing method
US9001307B2 (en) 2003-06-19 2015-04-07 Nikon Corporation Exposure apparatus and device manufacturing method
US8830445B2 (en) 2003-06-19 2014-09-09 Nikon Corporation Exposure apparatus, and device manufacturing method
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US20110051104A1 (en) * 2004-02-02 2011-03-03 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US20090231564A1 (en) * 2004-02-02 2009-09-17 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US20090296069A1 (en) * 2004-02-02 2009-12-03 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US8045136B2 (en) 2004-02-02 2011-10-25 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US8736808B2 (en) 2004-02-02 2014-05-27 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US8724079B2 (en) 2004-02-02 2014-05-13 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US8711328B2 (en) 2004-02-02 2014-04-29 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US8705002B2 (en) 2004-02-02 2014-04-22 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US10139737B2 (en) 2004-02-02 2018-11-27 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US10007196B2 (en) 2004-02-02 2018-06-26 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US20090296067A1 (en) * 2004-02-02 2009-12-03 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US8553203B2 (en) 2004-02-02 2013-10-08 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US20070247607A1 (en) * 2004-02-02 2007-10-25 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US9665016B2 (en) 2004-02-02 2017-05-30 Nikon Corporation Lithographic apparatus and method having substrate table and sensor table to hold immersion liquid
US9684248B2 (en) 2004-02-02 2017-06-20 Nikon Corporation Lithographic apparatus having substrate table and sensor table to measure a patterned beam
US8547528B2 (en) 2004-02-02 2013-10-01 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US20070242247A1 (en) * 2004-06-09 2007-10-18 Kenichi Shiraishi Exposure apparatus and device manufacturing method
US8525971B2 (en) 2004-06-09 2013-09-03 Nikon Corporation Lithographic apparatus with cleaning of substrate table
US8520184B2 (en) 2004-06-09 2013-08-27 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device
US20070291239A1 (en) * 2004-06-09 2007-12-20 Kenichi Shiraishi Exposure Apparatus and Device Manufacturing Method
US8704997B2 (en) 2004-06-09 2014-04-22 Nikon Corporation Immersion lithographic apparatus and method for rinsing immersion space before exposure
US20100053588A1 (en) * 2008-08-29 2010-03-04 Nikon Corporation Substrate Stage movement patterns for high throughput While Imaging a Reticle to a pair of Imaging Locations

Also Published As

Publication number Publication date
WO1998040791A1 (en) 1998-09-17
TW452546B (en) 2001-09-01
EP0900412B1 (en) 2005-04-06
DE69829614T2 (en) 2006-03-09
JP3626504B2 (en) 2005-03-09
DE69829614D1 (en) 2005-05-12
EP0900412A1 (en) 1999-03-10
US6262796B1 (en) 2001-07-17
JP2000511704A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
USRE40043E1 (en) Positioning device having two object holders
EP0890136B9 (en) Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
US7289194B2 (en) Positioning apparatus, exposure apparatus, and device manufacturing method
US7009683B2 (en) Exposure apparatus
EP0894287B1 (en) Two-dimensionally balanced positioning device, and lithographic device provided with such a positioning device
US6665054B2 (en) Two stage method
EP1014199B1 (en) Stage control apparatus, exposure apparatus and method of manufacturing a semiconductor device
KR20060086495A (en) Aligner and method for exposure
US6054784A (en) Positioning device having three coil systems mutually enclosing angles of 120° and lithographic device comprising such a positioning device
WO1999031462A1 (en) Stage device and exposure apparatus
KR101384440B1 (en) Article loading/unloading method and article loading/unloading device, exposure method and exposure apparatus, and method of manufacturing device
US5150152A (en) Exposure apparatus including device for determining movement of an object
EP1450208A1 (en) Lithographic apparatus having two object holders
KR100536209B1 (en) Positioning device equipped with two object holders
JPH0774084A (en) Substrate processor
US6122059A (en) Scanning exposure apparatus and device fabrication method in which multiple laser interferometers use a respective laser head
JP3483403B2 (en) Exposure equipment
JP2002141267A (en) Adjustment method aligner, and exposing system

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12