USRE42662E1 - Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas - Google Patents

Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas Download PDF

Info

Publication number
USRE42662E1
USRE42662E1 US11/377,892 US37789206A USRE42662E US RE42662 E1 USRE42662 E1 US RE42662E1 US 37789206 A US37789206 A US 37789206A US RE42662 E USRE42662 E US RE42662E
Authority
US
United States
Prior art keywords
wire
tip
microcatheter
cavity
aneurysm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US11/377,892
Inventor
Guido Guglielmi
Ivan Sepetka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27050843&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE42662(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US07/492,717 external-priority patent/US5122136A/en
Priority claimed from US07/840,211 external-priority patent/US5354295A/en
Application filed by University of California filed Critical University of California
Priority to US11/377,892 priority Critical patent/USRE42662E1/en
Anticipated expiration legal-status Critical
Application granted granted Critical
Publication of USRE42662E1 publication Critical patent/USRE42662E1/en
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • A61B17/12145Coils or wires having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • A61B17/1215Coils or wires comprising additional materials, e.g. thrombogenic, having filaments, having fibers, being coated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • A61B17/12172Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • A61B2017/12054Details concerning the detachment of the occluding device from the introduction device
    • A61B2017/12063Details concerning the detachment of the occluding device from the introduction device electrolytically detachable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • A61B2017/12054Details concerning the detachment of the occluding device from the introduction device
    • A61B2017/12095Threaded connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22038Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • A61B2018/00678Sensing and controlling the application of energy using a threshold value upper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00761Duration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00886Duration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1226Generators therefor powered by a battery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/1253Generators therefor characterised by the output polarity monopolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/126Generators therefor characterised by the output polarity bipolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1266Generators therefor with DC current output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1435Spiral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1495Electrodes being detachable from a support structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3966Radiopaque markers visible in an X-ray image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip

Definitions

  • the invention relates to a method and apparatus for endovascular electrothrombic formation of thrombi in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas.
  • the extravascular approach is comprised of surgery or microsurgery of the aneurysm or treatment site for the purpose of preserving the parent artery.
  • This treatment is common with intracranial berry aneurysms.
  • the methodology comprises the step of clipping the neck of the aneurysm, performing a sutureligation of the neck, or wrapping the entire aneurysm.
  • Each of these surgical procedures is performed by intrusive invasion into the body and performed from outside the aneurysm or target site.
  • General anesthesia, craniotomy, brain retraction and arachnoid dissection around the neck of the aneurysm and placement of a clip are typically required in these surgical procedures.
  • Surgical treatment of vascular intracranial aneurysm can expect a mortality rate of 4-8% with a morbidity rate of 18-20%. Because of the mortality and morbidity rate expected, the surgical procedure is often delayed while waiting for the best surgical time with the result that an additional percentage of patients will die from the underlying disease or defect prior to surgery. For this reason the prior art has sought alternative means of treatment.
  • microcatheters In the endovascular approach, the interior of the aneurysm is entered through the use of a microcatheter. Recently developed microcatheters, such as those shown by Engelson, “Catheter Guidewire”, U.S. Pat. No. 4,884,579 and as described in Engelson, “Catheter for Guidewire Tracking”, U.S. Pat. No. 4,739,768 (1988), allow navigation into the cerebral arteries and entry into a cranial aneurysm.
  • a balloon is typically attached to the end of the microcatheter and it is possible to introduce the balloon into the aneurysm, inflate it, and detach it, leaving it to occlude the sac and neck with preservation of the parent artery.
  • endovascular balloon embolization of berry aneurysms is an attractive method in situations where an extravascular surgical approach is difficult, inflation of a balloon into the aneurysm carries some risk of aneurysm rupture due to possible over-distention of portions of the sac and due to the traction produced while detaching the balloon.
  • an ideal embolizing agent should adapt itself to the irregular shape of the internal walls of the aneurysm.
  • the aneurysmal wall must conform to the shape of the balloon. This may not lead to a satisfactory result and further increases the risk of rupture.
  • balloon embolization is not always possible. If the diameter of the deflated balloon is too great to enter the intracerebral arteries, especially in the cases where there is a vasospasm, complications with ruptured intracranial aneurysms may occur. The procedure then must be deferred until the spasm is resolved and this then incurs a risk of rebleeding.
  • an aneurysm is surgically exposed or stereotaxically reached with a probe.
  • the wall of the aneurysm is then perforated from the outside and various techniques are used to occlude the interior in order to prevent it from rebleeding.
  • These prior art techniques include electrothrombosis, isobutyl-cyanoacrylate embolization, hog-hair embolization and ferromagnetic thrombosis.
  • the prior art has also devised the use of a liquid adhesive, isobutylcyanoacrylate (IBCA) which polymerizes rapidly on contact with blood to form a firm mass.
  • IBCA isobutylcyanoacrylate
  • the liquid adhesive is injected into the aneurysm by puncturing the sac with a small needle.
  • blood flow through the parent artery must be momentarily reduced or interrupted.
  • an inflated balloon may be placed in the artery at the level of the neck of the aneurysm for injection.
  • the risks of seepage of such a polymerizing adhesive into the parent artery exists, if it is not completely blocked with consequent occlusion of the artery.
  • the prior art has utilized an air gun to inject hog hair through the aneurysm wall to induce internal thrombosis.
  • the success of this procedure involves exposing the aneurysm sufficiently to allow air gun injection and has not been convincingly shown as successful for thrombic formations.
  • Ferromagnetic thrombosis in the prior art in extraintravascular treatments comprises the stereotactic placement of a magnetic probe against the sac of the aneurysm followed by injection into the aneurysm by an injecting needle of iron microspheres. Aggregation of the microspheres through the extravascular magnet is followed by interneuysmatic thrombus. This treatment has not been entirely successful because of the risk of fragmentation of the metallic thrombus when the extravascular magnet is removed. Suspension of the iron powder in methyl methymethacrylate has been used to prevent fragmentation.
  • the treatment has not been favored, because of the need to puncture the aneurysm, the risk of occlusion of the parent artery, the use of unusual and expensive equipment, the need for a craniectomy and general anesthesia, and the necessity to penetrate cerebral tissue to reach the aneurysm.
  • Endovascular coagulation of blood is also well known in the art and a device using laser optically generated heat is shown by O'Reilly, “Optical Fiber with Attachable Metallic Tip for Intravascular Laser Coagulation of Arteies, Veins, Aneurysms, Vascular Malformation and Arteriovenous Fistulas”, U.S. Pat. No. 4,735,201 (1988). See also, O'Reilly et al., “Laser Induced Thermal Occlusion of Berry Aneurysms: Initial Experimental Results”, Radiology, Vol. 171, No. 2, pages 471-74 (1989). O'Reilly places a tip into an aneurysm by means of an endovascular microcatheter.
  • the tip is adhesively bonded to a optic fiber disposed through the microcatheter.
  • Optical energy is transmitted along the optic fiber from a remote laser at the proximal end of the microcatheter.
  • the optical energy heats the tip to cauterize the tissue surrounding the neck of the aneurysm or other vascular opening to be occluded.
  • the catheter is provided with a balloon located on or adjacent to its distal end to cut off blood flow to the site to be cauterized and occluded. Normally, the blood flow would carry away the heat at the catheter tip, thereby preventing cauterization.
  • the heat in the tip also serves to melt the adhesive used to secure the tip to the distal end of the optical fiber. If all goes well, the tip can be separated from the optical fiber and left in place in the neck of the aneurysm, provided that the cauterization is complete at the same time as the hot melt adhesive melts.
  • a thrombus is not formed from the heated tip. Instead, blood tissue surrounding the tip is coagulated. Coagulation is a denaturation of protein to form a connective-like tissue similar to that which occurs when the albumen of an egg is heated and coagulates from a clear running liquid to an opaque white solid. The tissue characteristics and composition of the coagulated tissue is therefore substantially distinct from the thrombosis which is formed by the thrombotic aggregation of white and red blood cells, platelets and fibrinogen. The coagulative tissue is substantially softer than a thrombic mass and can therefore more easily be dislodged.
  • O'Reilly's device depends at least in part upon the successful cauterization timed to occur no later than the detachment of the heat tip from the optic fiber.
  • the heated tip must also be proportionally sized to the neck of the aneurysm in order to effectively coagulate the tissue surrounding it to form a blockage at the neck. It is believed that the tissue in the interior of the aneurysm remains substantially uncoagulated.
  • the hot melt adhesive attaching the tip to the optic fiber melts and is dispersed into the adjacent blood tissue where it resolidifies to form free particles within the intracranial blood stream with much the same disadvantages which result from fragmentation of a ferromagnetic electrothrombosis.
  • the invention is a method for forming an occlusion within a vascular cavity having blood disposed therein comprising the steps of endovascularly disposing a wire and/or tip near an endovascular opening into the vascular cavity.
  • the wire may include a distinguishable structure at its distal end, which is termed a tip, in which case the remaining portion of the wire may be termed a guidewire.
  • the term “wire” should be understood to collectively include both guidewires and tips and simply wires without distinct tip structures. However, the tip may also simply be the extension of the wire itself without substantial distinction in its nature.
  • a distal tip of the wire is disposed into the vascular cavity to pack the cavity to mechanically form the occlusion within the vascular cavity about the distal tip. The distal tip is detached from the guidewire (or wire) to leave the distal tip within the vascular cavity. As a result, the vascular cavity is occluded by the distal tip, and by any thrombus formed by use of the tip.
  • the step of detaching the distal tip from the guidewire (or wire) comprises the step of mechanically detaching the distal tip from the guidewire (or wire).
  • the guidewire and tip (or wire) are used within a microcatheter and in the step of detaching the distal tip from the guidewire (or wire), the guidewire and tip (or wire) are longitudinally displaced within the microcatheter.
  • the microcatheter has radio-opaque proximal and tip markers.
  • the guidewire and tip (or wire) have collectively a single radio-opaque marker.
  • the displacement of the guidewire and tip (or wire) moves the single radio-opaque marker to the proximity of the proximal marker on the microcatheter. At this point the tip will be fully deployed in the vascular cavity and tip separation may proceed. It is not necessary then in this embodiment to be able to see actual deployment of the tip before separation.
  • the tip marker allows and enhances direct observation of the correct placement of the catheter tip into the opening of the vascular cavity.
  • the step of disposing the tip (or wire) into the vascular cavity to pack the cavity comprises the step of disposing a tip (or wire) having a plurality of filaments extending therefrom to pack the cavity.
  • the step of disposing the tip (or wire) into the vascular cavity to pack the cavity comprises the step of disposing a long flexible tip (or wire) folded upon itself a multiple number of times to pack the cavity.
  • the invention can also be characterized as a method for forming an occlusion within a vascular cavity having blood disposed therein comprising the steps of endovascularly disposing a wire within a microcatheter near an endovascular opening into the vascular cavity.
  • the microcatheter has a distal tip electrode.
  • the distal tip of the wire is disposed into the vascular cavity to pack the cavity to form the occlusion within the vascular cavity about the distal tip of the wire by applying a current between the distal tip electrode and the distal end of the wire packed into the cavity.
  • the distal tip of the wire is detached from the wire to leave the distal tip of the wire within the vascular cavity.
  • the vascular cavity is occluded by the distal tip, and by any thrombus formed by use of the tip.
  • the invention is also a wire for use in formation of an occlusion within a vascular cavity used in combination with a microcatheter comprising a core wire, and a detachable elongate tip portion extending the core wire for a predetermined lineal extent.
  • the tip portion is adapted to be packed into the vascular cavity to form the occlusion in the vascular cavity and coupled to the distal portion of the core wire.
  • the elongate tip portion is a long and substantially pliable segment adapted to be multiply folded upon itself to substantially pack said vascular cavity.
  • the elongate tip portion is a segment adapted to be disposed in said vascular cavity and having a plurality of filaments extending therefrom to substantially pack said vascular cavity when disposed therein.
  • the microcatheter has a pair of radioopaque markers disposed thereon and the core wire has a radioopaque marker disposed thereon.
  • the marker on the core wire is positioned in the proximity of one of the pair of markers on the microcatheter when the core wire is fully deployed.
  • the other marker on the core wire marks the position of the catheter tip.
  • the invention is still further characterized as a microcatheter system for use in formation of an occlusion within a vascular cavity
  • a microcatheter having a distal end adapted for disposition in the proximity of the vascular cavity.
  • the distal end has an electrode disposed thereon.
  • a conductive guidewire is disposed in the microcatheter and longitudinally displaceable therein.
  • the guidewire comprises a core wire, and an elongate tip portion extending the core wire for a predetermined lineal extent.
  • the tip portion is adapted to be packed into the vascular cavity to form the occlusion in the vascular cavity.
  • the tip portion is coupled to the distal portion of the core wire.
  • the occlusion is formed by means of applying a current between the tip portion and the electrode on the microcatheter when the tip portion is disposed into the vascular cavity. As a result, endovascular occlusion of the vascular cavity can be performed.
  • the invention is a method for forming an occlusion within a vascular cavity having blood disposed therein comprising the steps of disposing a body into the cavity to substantially impede movement of blood in the cavity.
  • the body is employed in the cavity to form the occlusion within the vascular cavity.
  • the vascular cavity is occluded by the body.
  • the step of disposing the body in the vascular cavity comprises the step of packing the body to substantially obstruct the cavity.
  • the step of packing the cavity with the body comprises the step of obstructing the cavity with a detachable elongate wire tip multiply folded upon itself in the cavity.
  • the step of disposing the body into the vascular cavity comprises disposing in the vascular cavity means for slowing blood movement in the cavity to initiate formation of the occlusion in the cavity.
  • the step of packing the cavity with the body comprises the step of obstructing the cavity with a body having a compound filamentary shape.
  • the step of employing the body in the vascular cavity to form the occlusion comprises the step of applying an electrical current to the body or mechanically forming the occlusion in the body or both simultaneously.
  • the invention is also wire for use in formation of an occlusion within a vascular cavity used in combination with a microcatheter.
  • the invention comprises a core wire and a detachable elongate tip portion extending the core wire for a predetermined lineal extent.
  • the core wire is adapted to being packed into the vascular cavity to form the occlusion in the vascular cavity and is coupled to the distal portion of the core wire.
  • the tip portion includes a first segment for disposition into the cavity and a second segment for coupling the first portion to the core wire.
  • the second segment is adapted to be electrolysized upon application of current.
  • An insulating coating is disposed on the first segment. The second segment is left exposed to permit selective electrolysis thereof As a result, endovascular occlusion of the vascular cavity can be performed.
  • FIGS. 1 and 1A are enlarged partially cross-sectioned side views of a first embodiment of the distal end of the guidewire and tip of the invention.
  • FIGS. 2 and 2A are enlarged longitudinal cross sections of a second embodiment of the guidewire and tip of the invention.
  • FIG. 3 is an enlarged side view of a third embodiment of the invention with a microcatheter portion cut away in a longitudinal cross-sectional view.
  • FIG. 4 is a simplified depiction of the wire of FIG. 3 shown disposed within a simple cranial aneurysm.
  • FIG. 5 is a depiction of the wire of FIG. 4 shown after electrolytic detachment of the tip.
  • FIG. 6 is a plan view of another embodiment of the guidewire and tip portion wherein the type is provided with a plurality of polyester filamentary hairs.
  • FIGS. 7 and 8 are a diagrammatic depictions of the use of the invention wherein position markers have been provided on the catheter and wire to assist in proper fluoroscopic manipulation.
  • FIG. 9 is a simplified cross-sectional view of the catheter and wire showing a ground electrode disposed on the distal tip of the catheter.
  • An artery, vein, aneurysm, vascular malformation or arterial fistula is occluded through endovascular occlusion by the endovascular insertion of a platinum tip into the vascular cavity.
  • the vascular cavity is packed with the tip to obstruct blood flow or access of blood in the cavity such that the blood clots in the cavity and an occlusion if formed.
  • the tip may be elongate and flexible so that it packs the cavity by being folded upon itself a multiple number of times, or may pack the cavity by virtue of a filamentary or fuzzy structure of the tip. The tip is then separated from the wire mechanically or by electrolytic separation of the tip from the wire.
  • the wire and the microcatheter are thereafter removed leaving the tip embedded in the thrombus formed within the vascular cavity. Movement of wire in the microcatheter is more easily tracked by providing a radioopaque proximal marker on the microcatheter and a corresponding indicator marker on the wire. Electrothrombosis is facilitate by placing the ground electrode on the distal end of the microcatheter and flowing current between the microcatheter electrode and the tip.
  • a portion of the wire connected between the tip and the body of the wire is comprised of stainless steel and exposed to the bloodstream so that upon continued application of a positive current to the exposed portion, the exposed portion is corroded away at least at one location and the tip is separated from the body of the wire.
  • FIG. 1 is an enlarged side view of a first embodiment of the distal end of the wire and tip shown in partial cross-sectional view.
  • a conventional Teflon laminated or similarly insulated stainless steel wire 10 is disposed within a protective microcatheter (not shown).
  • Stainless steel wire 10 is approximately 0.010-0.020 inch (0.254-0.508 mm) in diameter.
  • wire 10 is tapered at its distal end to form a conical section 12 which joins a section 14 of reduced diameter which extends longitudinally along a length 16 of wire 10 .
  • Section 16 then narrows gradually down to a thin threadlike portion 18 beginning at a first bonding location 20 and ending at a second bonding location 22 .
  • the stainless steel wire 10 comprised of that portion disposed within the microcatheter body, tapered section 12 , reduced diameter section 16 and threadlike section 18 , is collectively referred to as a core wire which typically is 50-300 cm. in length.
  • the portion of the core wire extending from tapered section 12 to second bonding location 22 is collectively referred to as the grinding length and may typically be between 20 and 50 cm. in length.
  • Reduced diameter portion 14 and at least part of sections 12 and first bonding location 20 may be covered with an insulating Teflon laminate 24 which encapsulates the underlying portion of wire 10 to prevent contact with the blood.
  • a stainless steel coil 26 is soldered to the proximate end of threadlike portion 18 of wire 10 at first bonding location 20 .
  • Stainless steel coil 26 is typically 3 to 10 cm. in length and like wire 10 has a diameter typically between 0.010 to 0.020 inch (0.254-0.508 mm).
  • the distal end of stainless steel coil 26 is soldered to the distal end of threadlike portion 18 of wire 10 and to the proximal end of a platinum secondary coil 28 at second bonding location 22 .
  • Secondary coil 28 itself forms a spiral or helix typically between 2 to 10 mm. in diameter.
  • the helical envelope formed by secondary coil 28 may be cylindrical or conical.
  • secondary coil 28 is between approximately 0.010 and 0.020 inch (0.254-0.508 mm) in diameter.
  • the diameter of the wire itself forming stainless steel coil 26 and coil 28 is approximately between 0.001-0.005 inch.
  • the distal end of secondary coil 28 is provided with a platinum soldered tip 30 to form a rounded and smooth termination to avoid puncturing the aneurysm or tearing tissue.
  • secondary coil 28 Although prebiased to form a cylindrical or conical envelope, secondary coil 28 is extremely soft and its overall shape is easily deformed. When inserted within the microcatheter (not shown), secondary coil 28 is easily straightened to lie axially within the microcatheter. Once disposed out of the tip of the microcatheter, secondary coil 28 forms the shape shown in FIG. 1 and may similarly be loosely deformed to the interior shape of the aneurysm.
  • both threadlike portion and stainless steel coil 26 will be completely disintegrated at least at one point, thereby allowing wire 10 to be withdrawn from the vascular space while leaving secondary coil 28 embedded within the thrombus formed within the aneurysm.
  • FIG. 2 illustrates in enlarged partially cross-sectional view a second embodiment of the invention.
  • Stainless steel core 32 terminates in a conical distal portion 34 .
  • Stainless steel coil 36 shown in cross-sectional view, is soldered to distal portion 34 of wire 32 at bonding location 38 .
  • the opposing end of the stainless steel coil 36 is provided with a soldered, rounded platinum tip 40 .
  • stainless steel core wire 32 is approximately 0.010 inch in diameter with the length of stainless steel coil 36 being approximately 8 cm. with the longitudinal length of platinum tip 40 being between 3 and 10 mm.
  • the total length of wire 32 from tip 40 to the proximate end is approximately 150 cm.
  • FIG. 2 is utilized in exactly the same manner as described above in connection with FIG. 1 to form a thrombic mass within an aneurysm or other vascular cavity.
  • the embodiment of FIG. 2 is distinguished from that shown in FIG. 1 by the absence of the extension of stainless core 32 through coil 36 to tip 40 .
  • no inner core or reinforcement is provided within stainless steel coil 36 .
  • Threadlike portion 18 is provided in the embodiment of FIG. 1 to allow increased tensile strength of the wire.
  • a degree of flexibility of the wire is sacrificed by the inclusion even of threadlike tip 18 , so that the embodiment of FIG. 2 provides a more flexible tip, at least for that portion of the micro-guidewire constituting the stainless steel coil 36 .
  • Thinned and threadlike portion guidewires disposed concentrically within coiled portions are well known and are shown in Antoshkiw, “Disposable Guidewire”, U.S. Pat. No. 3,789,841 (1974); Sepetka et al., “Guidewire Device”, U.S. Pat. No. 4,832,047 (1989); Engelson, “Catheter Guidewire”, U.S. Pat. No. 4,884,579 (1989); Samson et al., “Guidewire for Catheters”, U.S. Pat. No. 4,538,622 (1985); and Samson et al., “Catheter Guidewire with Short Spring Tip and Method of Using the Same”, U.S. Pat. No. 4,554,929 (1985).
  • FIG. 3 shows an enlarged side view of a wire, generally denoted by reference numeral 42 , disposed within a microcatheter 44 shown in cross-sectional view.
  • a stainless steel coil 46 is soldered to a conical portion 48 of wire 22 at a first bonding location 50 .
  • a thin threadlike extension 52 is then longitudinally disposed within stainless steel coil 46 to a second bonding location 54 where stainless steel wire 46 and threadlike portion 52 are soldered to a soft platinum coil 56 .
  • Platinum coil 56 is not prebiased, nor does it contain any internal reinforcement, but is a free and open coil similar in that respect to stainless steel coil 36 of the embodiment of FIG. 2 .
  • platinum coil 56 is particularly distinguished by its length of approximately 1 to 50 cm. and by its flexibility.
  • the platinum or platinum alloy used is particularly pliable and the diameter of the wire used to form platinum coil 56 is approximately 0.001-0.005 inch in diameter.
  • the distal end of platinum coil 56 is provided with a smooth and rounded platinum tip 58 similar in that respect to tips 30 and 40 of FIGS. 1 and 2 , respectively.
  • microcatheter 44 When coil 56 is disposed within microcatheter 44 , it lies along the longitudinal lumen 60 defined by microcatheter 44 .
  • the distal end 62 of microcatheter 60 is then placed into the neck of the aneurysm and the wire 42 is advanced, thereby feeding tip 58 in platinum coil 56 into aneurysm 64 until bonding location 50 resides in the neck of the aneurysm as best depicted in the diagrammatic cross-sectional view of FIG. 4 .
  • FIG. 4 illustrates the insertion of the embodiment of FIG. 3 within a vessel 66 with distal tip of microcatheter 44 positioned near neck 68 of aneurysm 64 .
  • Coil 56 is fed into aneurysm 64 until at least a portion of stainless steel coil 46 is exposed beyond the distal tip 62 of microcatheter 44 .
  • a positive electric current of approximately 0.01 to 2 milliamps at 0.1-6 volts is applied to wire 42 to form the thrombus. Typically a thrombus will form within three to five minutes.
  • the negative pole 72 of voltage source 70 is typically placed over and in contact with the skin.
  • tip 58 and coil 56 are detached from wire 42 by electrolytic disintegration of at least one portion of stainless steel coil 46 . In the illustrated embodiment this is accomplished by continued application of current until the total time of current application is almost approximately four minutes.
  • At least one portion of stainless steel coil 46 will be completely dissolved through by electrolytic action within 3 to 10 minutes, usually about 4 minutes.
  • wire 42 , microcatheter 44 and the remaining portion of coil 46 still attached to wire 42 are removed from vessel 66 , leaving aneurysm 64 completely occluded as diagrammatically depicted in FIG. 5 by thrombus 74 .
  • the time of disintegration may be varied by altering the dimensions of the portions of the wire and/or the current.
  • the process is practiced under fluoroscopic control with local anesthesia at the groin.
  • a transfemoral microcatheter is utilized to treat the cerebral aneurysm.
  • the platinum is not affected by electrolysis and the remaining portions of the microcatheter are insulated either by a Teflon lamination directly on wire 42 and/or by microcatheter 44 . Only the exposed portion of the wire 46 is affected by the electrolysis.
  • thrombus 74 continues to form even after detachment from wire 42 . It is believed that a positive charge is retained on or near coil 56 which therefore continues to attract platelets, white blood cells, red blood cells and fibrinogen within aneurysm 64 .
  • Wire 10 has a tapering end portion 14 covered with a Teflon laminate 24 similar to that described in connection with the embodiment of FIG. 1 .
  • Wire 10 is attached by means of a mechanical coupling 100 to a platinum coil 102 which has a plurality of filaments or fine hairs 104 extending therefrom.
  • hairs 104 have a length as may be determined from the size of the vascular cavity in which coil 102 is to be used. For example, in a small vessel hair lengths of up to 1 mm are contemplated.
  • An example of polyester filaments or hairs attached to a coil which was not used in electrothrombosis may be seen in the copending application entitled Vasoocclusion Coil with Attached Fiberous Elements, filed Oct. 2, 1991, Ser. No. 07/771,013.
  • Coil 102 has sufficient length and flexibility that it can be inserted or coiled loosely into the vascular cavity.
  • the length of coil 102 need not be so long that the coil itself is capable of being multiply folded on itself and fill or substantially fill the vascular cavity.
  • Hairs 104 extending from coil 102 serve to substantially pack, fill or at least impede blood flow or access in the vascular cavity.
  • Hairs 104 which are generally inclined backwardly away from extreme tip 106 when delivered, are thus easily able to slide forward with little friction through restrictions in the vessels and aneurysm. Additionally, hairs 104 do not have sufficient length, strength or sharpness to provide any substantial risk or potential for a puncture of the thin vascular wall.
  • the plurality of hairs 104 when coiled within the vascular cavity, provide an extremely large surface for attachment of blood constituents to encourage and enhance the formation of a mechanical occlusion within the vascular opening.
  • coil 102 is mechanically coupled to thin tapered portion 104 of wire 10 by means of a small drop of polyester 100 .
  • Polyester may be substituted for the gold solder of the previously described embodiments in order to reduce concern or risk of toxic reactions in the body.
  • Tip portion 104 may also be mechanically separated from wire 10 by means other than electrolysis.
  • One method is make the connection between tip 104 and wire 10 by means of a spring loaded mechanical clasp (not shown). The clasps are retained on tip 104 as long as the clasps remain inside of the catheter, but spring open and release tip 104 when extended from the catheter. The catheter and clasps may then be removed from the insertion site.
  • This type of mechanical connection is described in the copending application entitled, “Detachable Pusher-Vasoocclusive Coil Assembly with Interlocking Coupling”, filed Dec. 12, 1991 with Ser. No. 07/806,979 which is incorporated herein by reference and assigned to Target Therapeutics Inc.
  • wire 10 and tip portion 104 screw into each other and can be unscrewed from each other by rotation of the catheter or wire with respect to tip 104 .
  • An extendable sheath (not shown) in the microcatheter is advanced to seize tip 104 to prevent its rotation with wire 10 during the unscrewing process.
  • This type of mechanical connection is described in the copending application entitled “Detachable Pusher-Vasoocclusive Coil Assembly with Threaded Coupling”, filed Dec. 12, 1991 with Ser. No. 07/806,898 which is incorporated herein by reference and assigned to Target Therapeutics Inc.
  • tip 104 may be effected by electrolysis.
  • the electrolysing current may be concentrated on the sacrificial stainless steel portion of tip 104 by disposition of an insulative coating on the remaining platinum portion.
  • tip 104 may be provided with a polyethylene coating save at least a portion of the stainless steel length. This has the effect of decreasing the time required to electrolytically sufficiently disintegrate the steel portion to allow detachment of the platinum tip, which is an advantageous feature in those cases where a large aneurysm must be treated and a multiple number of coils must be deployed within the aneurysm.
  • FIG. 7 illustrates an improvement of, for example, the embodiment of FIGS. 4 and 5 .
  • Microcatheter 144 is positioned so that its distal end 162 within vessel 66 is positioned at the opening aneurysm 64 .
  • Microcatheter 144 is provided with radiopaque marker 108 at distal tip 162 , a tip marker. Moving toward the proximal end of microcatheter 144 is a second radiopaque marker 110 , a proximal marker.
  • Radiopaque markers 108 and 110 are, for example, in the form of radiopaque rings made of platinum, approximately 1-3 mm in longitudinal length along the axis of microcatheter 144 . Rings 110 and 108 are typically separated by about 3 cm on microcatheter 144 .
  • wire 10 has a radiopaque marker 112 defined on it such that marker 112 on wire 10 is approximately with aligned with marker 110 on microcatheter 14 when coil 56 is fully deployed into aneurysm 64 .
  • Distal marker 108 on microcatheter 144 is used to facilitate the location of the microcatheter tip, which can often be obscured by the coils which have been previously deployed.
  • the coils are a varying lengths depending on the application or size of the aneurysm or vascular cavity being treated. Coil lengths of 4-40 cm are common. Therefore, even though the thinness of coil 56 may make it difficult to see under standard fluoroscopy and even though the fineness of wire 10 may similarly be obscured or partly obscured, radiopaque markers 108 , 110 and 112 are clearly visible. Manipulation of wire 10 to proximal marker 110 can then easily be observed under conventional fluoroscopy even when there are some loss of resolution or fluoroscopic visual obstruction of the coil.
  • FIG. 9 illustrates an alternative embodiment wherein microcatheter 144 is supplied with an end electrode 114 coupled to an electrical conductor 116 disposed along the length of microcatheter 144 . Wire 116 is ultimately led back to voltage source 70 so that ring electrode 114 is used as the cathode during electrothrombosis instead of an exterior skin electrode 72 .
  • the electrical currents and electrical current paths which are set up during the electrothrombosis formation are local to the site of application which allows even smaller currents and voltages to be used to initiate electrothrombosis than in the situation when an exterior skin electrode must be utilized.
  • the electrothrombosic current distributions are also better controlled and localized to the site of the thrombus formation. The possibility of stray thrombus formations occurring at unwanted sites or uncontrolled and possibly unwanted electrical current patterns being established elsewhere in the brain or body is therefore largely avoided.
  • the shape of the tip or distal platinum coil used in combination with the wire according to the invention may be provided with a variety of shapes and envelopes.
  • the composition of the micro-guidewire tip may be made of elements other than platinum including stainless steel, beryllium, copper and various alloys of the same with or without platinum.
  • the diameter of the wire, various of the wire described above and the stainless steel coil immediately proximal to the detachable tip may be provided with differing diameters or cross sections to vary the times and current magnitudes necessary in order to effectuate electrolytic detachment from the tip.
  • the invention may include conventional electronics connected to the proximal end of the wire for determining the exact instant of detachment of the distal tip from the wire.

Abstract

An artery, vein, aneurysm, vascular malformation or arterial fistula is occluded through endovascular occlusion by the endovascular insertion of a platinum wire and/or tip into the vascular cavity. The vascular cavity is packed with the tip to obstruct blood flow or access of blood in the cavity such that the blood clots in the cavity and an occlusion if formed. The tip may be elongate and flexible so that it packs the cavity by being folded upon itself a multiple number of times, or may pack the cavity by virtue of a filamentary or fuzzy structure of the tip. The tip is then separated from the wire mechanically or by electrolytic separation of the tip from the wire. The wire and the microcatheter are thereafter removed leaving the tip embedded in the thrombus formed within the vascular cavity. Movement of wire in the microcatheter is more easily tracked by providing a radioopaque proximal marker on the microcatheter and a corresponding indicator marker on the wire. Electrothrombosis is facilitate by placing the ground electrode on the distal end of the microcatheter and flowing current between the microcatheter electrode and the tip.

Description

This application is a divisional of application Ser. No. 08/485,821 filed Jun. 6, 1995, now abandoned, which is a divisional of application Ser. No. 08/311,508, filed on Sep. 23, 1994, issued as U.S. Pat. No. 5,540,680, which in turn was is a continuation of application Ser. No. 07/840,211, filed on Feb. 24, 1992, now issued as U.S. Pat. No. 5,354,295, and which in its turn was is a continuation-in-part application of application Ser. No. 07/492,717, filed Mar. 13, 1990, issued as U.S. Pat. No. 5,122,136.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method and apparatus for endovascular electrothrombic formation of thrombi in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas.
2. Description of the Prior Art
Approximately 25,000 intracranial aneurysms rupture every year in North America. The primary purpose of treatment for ruptured intracranial aneurysm is to prevent rebleeding. At the present time, three general methods of treatment exist, namely an extravascular, endovascular and extra-endovascular approach.
The extravascular approach is comprised of surgery or microsurgery of the aneurysm or treatment site for the purpose of preserving the parent artery. This treatment is common with intracranial berry aneurysms. The methodology comprises the step of clipping the neck of the aneurysm, performing a sutureligation of the neck, or wrapping the entire aneurysm. Each of these surgical procedures is performed by intrusive invasion into the body and performed from outside the aneurysm or target site. General anesthesia, craniotomy, brain retraction and arachnoid dissection around the neck of the aneurysm and placement of a clip are typically required in these surgical procedures. Surgical treatment of vascular intracranial aneurysm can expect a mortality rate of 4-8% with a morbidity rate of 18-20%. Because of the mortality and morbidity rate expected, the surgical procedure is often delayed while waiting for the best surgical time with the result that an additional percentage of patients will die from the underlying disease or defect prior to surgery. For this reason the prior art has sought alternative means of treatment.
In the endovascular approach, the interior of the aneurysm is entered through the use of a microcatheter. Recently developed microcatheters, such as those shown by Engelson, “Catheter Guidewire”, U.S. Pat. No. 4,884,579 and as described in Engelson, “Catheter for Guidewire Tracking”, U.S. Pat. No. 4,739,768 (1988), allow navigation into the cerebral arteries and entry into a cranial aneurysm.
In such procedures a balloon is typically attached to the end of the microcatheter and it is possible to introduce the balloon into the aneurysm, inflate it, and detach it, leaving it to occlude the sac and neck with preservation of the parent artery. While endovascular balloon embolization of berry aneurysms is an attractive method in situations where an extravascular surgical approach is difficult, inflation of a balloon into the aneurysm carries some risk of aneurysm rupture due to possible over-distention of portions of the sac and due to the traction produced while detaching the balloon.
While remedial procedures exist for treating a ruptured aneurysm during classical extravascular surgery, no satisfactory methodology exists if the aneurysm breaks during an endovascular balloon embolization.
Furthermore, an ideal embolizing agent should adapt itself to the irregular shape of the internal walls of the aneurysm. On the contrary, in a balloon embolization the aneurysmal wall must conform to the shape of the balloon. This may not lead to a satisfactory result and further increases the risk of rupture.
Still further, balloon embolization is not always possible. If the diameter of the deflated balloon is too great to enter the intracerebral arteries, especially in the cases where there is a vasospasm, complications with ruptured intracranial aneurysms may occur. The procedure then must be deferred until the spasm is resolved and this then incurs a risk of rebleeding.
In the extra-intravascular approach, an aneurysm is surgically exposed or stereotaxically reached with a probe. The wall of the aneurysm is then perforated from the outside and various techniques are used to occlude the interior in order to prevent it from rebleeding. These prior art techniques include electrothrombosis, isobutyl-cyanoacrylate embolization, hog-hair embolization and ferromagnetic thrombosis.
In the use of electrothrombosis for extra-intravascular treatment the tip of a positively charged electrode is inserted surgically into the interior of the aneurysm An application of the positive charge attracts white blood cells, red blood cells, platelets and fibrinogen which are typically negatively charged at the normal pH of the blood. The thrombic mass is then formed in the aneurysm about the tip. Thereafter, the tip is removed. See Mullan, “Experiences with Sugical Thrombosis of Intracranial Berry Aneurysms and Carotid Cavemous Fistulas”, J. Neurosurg., Vol. 41, December 1974; Hosobuchi, “Electrothrombosis Carotid-Cavemous Fistula”, J. Neurosurg., Vol. 42, January 1975; Araki et al., “Electrically Induced Thrombosis for the Treatment of Intracranial Aneurysms and Angiomas”, Excerpta Medica International Congress Series, Amsterdam 1965, Vol. 110, 651-654; Sawyer et al., “Bio-Electric Phenomena as an Etiological Factor in Intravascular Thrombosis”, Am. J. Physiol., Vol. 175, 103-107 (1953); J. Piton et al., “Selective Vascular Thrombosis Induced by a Direct Electrical Current; Animal Experiments”, J. Neuroradiology, Vol. 5, pages 139-152 (1978). However, each of these techniques involves some type of intrusive procedure to approach the aneurysm from the exterior of the body.
The prior art has also devised the use of a liquid adhesive, isobutylcyanoacrylate (IBCA) which polymerizes rapidly on contact with blood to form a firm mass. The liquid adhesive is injected into the aneurysm by puncturing the sac with a small needle. In order to avoid spillage into the parent artery during IBCA injection, blood flow through the parent artery must be momentarily reduced or interrupted. Alternatively, an inflated balloon may be placed in the artery at the level of the neck of the aneurysm for injection. In addition to the risks caused by temporary blockage of the parent artery, the risks of seepage of such a polymerizing adhesive into the parent artery exists, if it is not completely blocked with consequent occlusion of the artery.
Still further, the prior art has utilized an air gun to inject hog hair through the aneurysm wall to induce internal thrombosis. The success of this procedure involves exposing the aneurysm sufficiently to allow air gun injection and has not been convincingly shown as successful for thrombic formations.
Ferromagnetic thrombosis in the prior art in extraintravascular treatments comprises the stereotactic placement of a magnetic probe against the sac of the aneurysm followed by injection into the aneurysm by an injecting needle of iron microspheres. Aggregation of the microspheres through the extravascular magnet is followed by interneuysmatic thrombus. This treatment has not been entirely successful because of the risk of fragmentation of the metallic thrombus when the extravascular magnet is removed. Suspension of the iron powder in methyl methymethacrylate has been used to prevent fragmentation. The treatment has not been favored, because of the need to puncture the aneurysm, the risk of occlusion of the parent artery, the use of unusual and expensive equipment, the need for a craniectomy and general anesthesia, and the necessity to penetrate cerebral tissue to reach the aneurysm.
Endovascular coagulation of blood is also well known in the art and a device using laser optically generated heat is shown by O'Reilly, “Optical Fiber with Attachable Metallic Tip for Intravascular Laser Coagulation of Arteies, Veins, Aneurysms, Vascular Malformation and Arteriovenous Fistulas”, U.S. Pat. No. 4,735,201 (1988). See also, O'Reilly et al., “Laser Induced Thermal Occlusion of Berry Aneurysms: Initial Experimental Results”, Radiology, Vol. 171, No. 2, pages 471-74 (1989). O'Reilly places a tip into an aneurysm by means of an endovascular microcatheter. The tip is adhesively bonded to a optic fiber disposed through the microcatheter. Optical energy is transmitted along the optic fiber from a remote laser at the proximal end of the microcatheter. The optical energy heats the tip to cauterize the tissue surrounding the neck of the aneurysm or other vascular opening to be occluded. The catheter is provided with a balloon located on or adjacent to its distal end to cut off blood flow to the site to be cauterized and occluded. Normally, the blood flow would carry away the heat at the catheter tip, thereby preventing cauterization. The heat in the tip also serves to melt the adhesive used to secure the tip to the distal end of the optical fiber. If all goes well, the tip can be separated from the optical fiber and left in place in the neck of the aneurysm, provided that the cauterization is complete at the same time as the hot melt adhesive melts.
A thrombus is not formed from the heated tip. Instead, blood tissue surrounding the tip is coagulated. Coagulation is a denaturation of protein to form a connective-like tissue similar to that which occurs when the albumen of an egg is heated and coagulates from a clear running liquid to an opaque white solid. The tissue characteristics and composition of the coagulated tissue is therefore substantially distinct from the thrombosis which is formed by the thrombotic aggregation of white and red blood cells, platelets and fibrinogen. The coagulative tissue is substantially softer than a thrombic mass and can therefore more easily be dislodged.
O'Reilly's device depends at least in part upon the successful cauterization timed to occur no later than the detachment of the heat tip from the optic fiber. The heated tip must also be proportionally sized to the neck of the aneurysm in order to effectively coagulate the tissue surrounding it to form a blockage at the neck. It is believed that the tissue in the interior of the aneurysm remains substantially uncoagulated. In addition, the hot melt adhesive attaching the tip to the optic fiber melts and is dispersed into the adjacent blood tissue where it resolidifies to form free particles within the intracranial blood stream with much the same disadvantages which result from fragmentation of a ferromagnetic electrothrombosis.
Therefore, what is needed is an apparatus and methodology which avoids each of the shortcomings and limitations of the prior art discussed above.
BRIEF SUMMARY OF THE INVENTION
The invention is a method for forming an occlusion within a vascular cavity having blood disposed therein comprising the steps of endovascularly disposing a wire and/or tip near an endovascular opening into the vascular cavity. The wire may include a distinguishable structure at its distal end, which is termed a tip, in which case the remaining portion of the wire may be termed a guidewire. The term “wire” should be understood to collectively include both guidewires and tips and simply wires without distinct tip structures. However, the tip may also simply be the extension of the wire itself without substantial distinction in its nature. A distal tip of the wire is disposed into the vascular cavity to pack the cavity to mechanically form the occlusion within the vascular cavity about the distal tip. The distal tip is detached from the guidewire (or wire) to leave the distal tip within the vascular cavity. As a result, the vascular cavity is occluded by the distal tip, and by any thrombus formed by use of the tip.
In one embodiment, the step of detaching the distal tip from the guidewire (or wire) comprises the step of mechanically detaching the distal tip from the guidewire (or wire).
In another embodiment, the guidewire and tip (or wire) are used within a microcatheter and in the step of detaching the distal tip from the guidewire (or wire), the guidewire and tip (or wire) are longitudinally displaced within the microcatheter. The microcatheter has radio-opaque proximal and tip markers. The guidewire and tip (or wire) have collectively a single radio-opaque marker. The displacement of the guidewire and tip (or wire) moves the single radio-opaque marker to the proximity of the proximal marker on the microcatheter. At this point the tip will be fully deployed in the vascular cavity and tip separation may proceed. It is not necessary then in this embodiment to be able to see actual deployment of the tip before separation. The tip marker allows and enhances direct observation of the correct placement of the catheter tip into the opening of the vascular cavity.
In one embodiment the step of disposing the tip (or wire) into the vascular cavity to pack the cavity comprises the step of disposing a tip (or wire) having a plurality of filaments extending therefrom to pack the cavity.
In another embodiment the step of disposing the tip (or wire) into the vascular cavity to pack the cavity comprises the step of disposing a long flexible tip (or wire) folded upon itself a multiple number of times to pack the cavity.
The invention can also be characterized as a method for forming an occlusion within a vascular cavity having blood disposed therein comprising the steps of endovascularly disposing a wire within a microcatheter near an endovascular opening into the vascular cavity. The microcatheter has a distal tip electrode. The distal tip of the wire is disposed into the vascular cavity to pack the cavity to form the occlusion within the vascular cavity about the distal tip of the wire by applying a current between the distal tip electrode and the distal end of the wire packed into the cavity. The distal tip of the wire is detached from the wire to leave the distal tip of the wire within the vascular cavity. As a result, the vascular cavity is occluded by the distal tip, and by any thrombus formed by use of the tip.
The invention is also a wire for use in formation of an occlusion within a vascular cavity used in combination with a microcatheter comprising a core wire, and a detachable elongate tip portion extending the core wire for a predetermined lineal extent. The tip portion is adapted to be packed into the vascular cavity to form the occlusion in the vascular cavity and coupled to the distal portion of the core wire. As a result, endovascular occlusion of the vascular cavity can be performed.
In one embodiment, the elongate tip portion is a long and substantially pliable segment adapted to be multiply folded upon itself to substantially pack said vascular cavity.
In another embodiment, the elongate tip portion is a segment adapted to be disposed in said vascular cavity and having a plurality of filaments extending therefrom to substantially pack said vascular cavity when disposed therein.
In still another embodiment, the microcatheter has a pair of radioopaque markers disposed thereon and the core wire has a radioopaque marker disposed thereon. The marker on the core wire is positioned in the proximity of one of the pair of markers on the microcatheter when the core wire is fully deployed. The other marker on the core wire marks the position of the catheter tip.
The invention is still further characterized as a microcatheter system for use in formation of an occlusion within a vascular cavity comprising a microcatheter having a distal end adapted for disposition in the proximity of the vascular cavity. The distal end has an electrode disposed thereon. A conductive guidewire is disposed in the microcatheter and longitudinally displaceable therein. The guidewire comprises a core wire, and an elongate tip portion extending the core wire for a predetermined lineal extent. The tip portion is adapted to be packed into the vascular cavity to form the occlusion in the vascular cavity. The tip portion is coupled to the distal portion of the core wire. The occlusion is formed by means of applying a current between the tip portion and the electrode on the microcatheter when the tip portion is disposed into the vascular cavity. As a result, endovascular occlusion of the vascular cavity can be performed.
More generally speaking, the invention is a method for forming an occlusion within a vascular cavity having blood disposed therein comprising the steps of disposing a body into the cavity to substantially impede movement of blood in the cavity. The body is employed in the cavity to form the occlusion within the vascular cavity. As a result, the vascular cavity is occluded by the body.
The step of disposing the body in the vascular cavity comprises the step of packing the body to substantially obstruct the cavity.
In one embodiment the step of packing the cavity with the body comprises the step of obstructing the cavity with a detachable elongate wire tip multiply folded upon itself in the cavity.
The step of disposing the body into the vascular cavity comprises disposing in the vascular cavity means for slowing blood movement in the cavity to initiate formation of the occlusion in the cavity.
In another embodiment the step of packing the cavity with the body comprises the step of obstructing the cavity with a body having a compound filamentary shape.
The step of employing the body in the vascular cavity to form the occlusion comprises the step of applying an electrical current to the body or mechanically forming the occlusion in the body or both simultaneously.
The invention is also wire for use in formation of an occlusion within a vascular cavity used in combination with a microcatheter. The invention comprises a core wire and a detachable elongate tip portion extending the core wire for a predetermined lineal extent. The core wire is adapted to being packed into the vascular cavity to form the occlusion in the vascular cavity and is coupled to the distal portion of the core wire. The tip portion includes a first segment for disposition into the cavity and a second segment for coupling the first portion to the core wire. The second segment is adapted to be electrolysized upon application of current. An insulating coating is disposed on the first segment. The second segment is left exposed to permit selective electrolysis thereof As a result, endovascular occlusion of the vascular cavity can be performed.
The invention can better be visualized by now turning to the following drawings wherein like elements are referenced by like numerals.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1 and 1A are enlarged partially cross-sectioned side views of a first embodiment of the distal end of the guidewire and tip of the invention.
FIGS. 2 and 2A are enlarged longitudinal cross sections of a second embodiment of the guidewire and tip of the invention.
FIG. 3 is an enlarged side view of a third embodiment of the invention with a microcatheter portion cut away in a longitudinal cross-sectional view.
FIG. 4 is a simplified depiction of the wire of FIG. 3 shown disposed within a simple cranial aneurysm.
FIG. 5 is a depiction of the wire of FIG. 4 shown after electrolytic detachment of the tip.
FIG. 6 is a plan view of another embodiment of the guidewire and tip portion wherein the type is provided with a plurality of polyester filamentary hairs.
FIGS. 7 and 8 are a diagrammatic depictions of the use of the invention wherein position markers have been provided on the catheter and wire to assist in proper fluoroscopic manipulation.
FIG. 9 is a simplified cross-sectional view of the catheter and wire showing a ground electrode disposed on the distal tip of the catheter.
The invention and its various embodiments are best understood by now turning to the following detailed description.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
An artery, vein, aneurysm, vascular malformation or arterial fistula is occluded through endovascular occlusion by the endovascular insertion of a platinum tip into the vascular cavity. The vascular cavity is packed with the tip to obstruct blood flow or access of blood in the cavity such that the blood clots in the cavity and an occlusion if formed. The tip may be elongate and flexible so that it packs the cavity by being folded upon itself a multiple number of times, or may pack the cavity by virtue of a filamentary or fuzzy structure of the tip. The tip is then separated from the wire mechanically or by electrolytic separation of the tip from the wire. The wire and the microcatheter are thereafter removed leaving the tip embedded in the thrombus formed within the vascular cavity. Movement of wire in the microcatheter is more easily tracked by providing a radioopaque proximal marker on the microcatheter and a corresponding indicator marker on the wire. Electrothrombosis is facilitate by placing the ground electrode on the distal end of the microcatheter and flowing current between the microcatheter electrode and the tip.
When the tip is separated from the wire by electrolytic separation of the tip from the wire, a portion of the wire connected between the tip and the body of the wire is comprised of stainless steel and exposed to the bloodstream so that upon continued application of a positive current to the exposed portion, the exposed portion is corroded away at least at one location and the tip is separated from the body of the wire.
FIG. 1 is an enlarged side view of a first embodiment of the distal end of the wire and tip shown in partial cross-sectional view. A conventional Teflon laminated or similarly insulated stainless steel wire 10 is disposed within a protective microcatheter (not shown). Stainless steel wire 10 is approximately 0.010-0.020 inch (0.254-0.508 mm) in diameter. In the illustrated embodiment, wire 10 is tapered at its distal end to form a conical section 12 which joins a section 14 of reduced diameter which extends longitudinally along a length 16 of wire 10. Section 16 then narrows gradually down to a thin threadlike portion 18 beginning at a first bonding location 20 and ending at a second bonding location 22.
The stainless steel wire 10, comprised of that portion disposed within the microcatheter body, tapered section 12, reduced diameter section 16 and threadlike section 18, is collectively referred to as a core wire which typically is 50-300 cm. in length.
In the illustrated embodiment the portion of the core wire extending from tapered section 12 to second bonding location 22 is collectively referred to as the grinding length and may typically be between 20 and 50 cm. in length.
Reduced diameter portion 14 and at least part of sections 12 and first bonding location 20 may be covered with an insulating Teflon laminate 24 which encapsulates the underlying portion of wire 10 to prevent contact with the blood.
A stainless steel coil 26 is soldered to the proximate end of threadlike portion 18 of wire 10 at first bonding location 20. Stainless steel coil 26 is typically 3 to 10 cm. in length and like wire 10 has a diameter typically between 0.010 to 0.020 inch (0.254-0.508 mm).
The distal end of stainless steel coil 26 is soldered to the distal end of threadlike portion 18 of wire 10 and to the proximal end of a platinum secondary coil 28 at second bonding location 22. Secondary coil 28 itself forms a spiral or helix typically between 2 to 10 mm. in diameter. The helical envelope formed by secondary coil 28 may be cylindrical or conical. Like wire 10 and stainless steel coil 26, secondary coil 28 is between approximately 0.010 and 0.020 inch (0.254-0.508 mm) in diameter. The diameter of the wire itself forming stainless steel coil 26 and coil 28 is approximately between 0.001-0.005 inch.
The distal end of secondary coil 28 is provided with a platinum soldered tip 30 to form a rounded and smooth termination to avoid puncturing the aneurysm or tearing tissue.
Although prebiased to form a cylindrical or conical envelope, secondary coil 28 is extremely soft and its overall shape is easily deformed. When inserted within the microcatheter (not shown), secondary coil 28 is easily straightened to lie axially within the microcatheter. Once disposed out of the tip of the microcatheter, secondary coil 28 forms the shape shown in FIG. 1 and may similarly be loosely deformed to the interior shape of the aneurysm.
As will be described below in greater detail in connection with the third embodiment of FIG. 3, after placement of secondary coil 28 within the interior of the aneurysm a direct current is applied to wire 10 from a voltage source exterior to the body. The positive charge on secondary coil 28 within the cavity of the aneurysm causes a thrombus to form within the aneurysm by electrothrombosis. Detachment of the tip occurs either: (1) by continued application of current for a predetermined time when the portion 18 is exposed to blood; or (2) by movement of the wire to expose portion 18 to blood followed by continued current application for a predetermined time. Ultimately, both threadlike portion and stainless steel coil 26 will be completely disintegrated at least at one point, thereby allowing wire 10 to be withdrawn from the vascular space while leaving secondary coil 28 embedded within the thrombus formed within the aneurysm.
FIG. 2 illustrates in enlarged partially cross-sectional view a second embodiment of the invention. Stainless steel core 32 terminates in a conical distal portion 34. Stainless steel coil 36, shown in cross-sectional view, is soldered to distal portion 34 of wire 32 at bonding location 38. The opposing end of the stainless steel coil 36 is provided with a soldered, rounded platinum tip 40. In the illustrated embodiment, stainless steel core wire 32 is approximately 0.010 inch in diameter with the length of stainless steel coil 36 being approximately 8 cm. with the longitudinal length of platinum tip 40 being between 3 and 10 mm. The total length of wire 32 from tip 40 to the proximate end is approximately 150 cm.
The embodiment of FIG. 2 is utilized in exactly the same manner as described above in connection with FIG. 1 to form a thrombic mass within an aneurysm or other vascular cavity. The embodiment of FIG. 2 is distinguished from that shown in FIG. 1 by the absence of the extension of stainless core 32 through coil 36 to tip 40. In the case of the embodiment of FIG. 2 no inner core or reinforcement is provided within stainless steel coil 36. Threadlike portion 18 is provided in the embodiment of FIG. 1 to allow increased tensile strength of the wire. However, a degree of flexibility of the wire is sacrificed by the inclusion even of threadlike tip 18, so that the embodiment of FIG. 2 provides a more flexible tip, at least for that portion of the micro-guidewire constituting the stainless steel coil 36.
It is expressly understood that the helical secondary coil tip of the embodiment of FIG. 1 could similarly be attached to stainless steel coil 36 of the embodiment of FIG. 2 without departing from the spirit and scope of the invention.
Thinned and threadlike portion guidewires disposed concentrically within coiled portions are well known and are shown in Antoshkiw, “Disposable Guidewire”, U.S. Pat. No. 3,789,841 (1974); Sepetka et al., “Guidewire Device”, U.S. Pat. No. 4,832,047 (1989); Engelson, “Catheter Guidewire”, U.S. Pat. No. 4,884,579 (1989); Samson et al., “Guidewire for Catheters”, U.S. Pat. No. 4,538,622 (1985); and Samson et al., “Catheter Guidewire with Short Spring Tip and Method of Using the Same”, U.S. Pat. No. 4,554,929 (1985).
Turn now to the third embodiment of the invention as shown in FIG. 3. FIG. 3 shows an enlarged side view of a wire, generally denoted by reference numeral 42, disposed within a microcatheter 44 shown in cross-sectional view. Like the embodiment of FIG. 1, a stainless steel coil 46 is soldered to a conical portion 48 of wire 22 at a first bonding location 50. A thin threadlike extension 52 is then longitudinally disposed within stainless steel coil 46 to a second bonding location 54 where stainless steel wire 46 and threadlike portion 52 are soldered to a soft platinum coil 56. Platinum coil 56 is not prebiased, nor does it contain any internal reinforcement, but is a free and open coil similar in that respect to stainless steel coil 36 of the embodiment of FIG. 2.
However, platinum coil 56 is particularly distinguished by its length of approximately 1 to 50 cm. and by its flexibility. The platinum or platinum alloy used is particularly pliable and the diameter of the wire used to form platinum coil 56 is approximately 0.001-0.005 inch in diameter. The distal end of platinum coil 56 is provided with a smooth and rounded platinum tip 58 similar in that respect to tips 30 and 40 of FIGS. 1 and 2, respectively.
When coil 56 is disposed within microcatheter 44, it lies along the longitudinal lumen 60 defined by microcatheter 44. The distal end 62 of microcatheter 60 is then placed into the neck of the aneurysm and the wire 42 is advanced, thereby feeding tip 58 in platinum coil 56 into aneurysm 64 until bonding location 50 resides in the neck of the aneurysm as best depicted in the diagrammatic cross-sectional view of FIG. 4.
FIG. 4 illustrates the insertion of the embodiment of FIG. 3 within a vessel 66 with distal tip of microcatheter 44 positioned near neck 68 of aneurysm 64. Coil 56 is fed into aneurysm 64 until at least a portion of stainless steel coil 46 is exposed beyond the distal tip 62 of microcatheter 44. A positive electric current of approximately 0.01 to 2 milliamps at 0.1-6 volts is applied to wire 42 to form the thrombus. Typically a thrombus will form within three to five minutes. The negative pole 72 of voltage source 70 is typically placed over and in contact with the skin.
After the thrombus has been formed and the aneurysm completely occluded, tip 58 and coil 56 are detached from wire 42 by electrolytic disintegration of at least one portion of stainless steel coil 46. In the illustrated embodiment this is accomplished by continued application of current until the total time of current application is almost approximately four minutes.
At least one portion of stainless steel coil 46 will be completely dissolved through by electrolytic action within 3 to 10 minutes, usually about 4 minutes. After separation by electrolytic disintegration, wire 42, microcatheter 44 and the remaining portion of coil 46 still attached to wire 42 are removed from vessel 66, leaving aneurysm 64 completely occluded as diagrammatically depicted in FIG. 5 by thrombus 74. It will be appreciated that the time of disintegration may be varied by altering the dimensions of the portions of the wire and/or the current.
The process is practiced under fluoroscopic control with local anesthesia at the groin. A transfemoral microcatheter is utilized to treat the cerebral aneurysm. The platinum is not affected by electrolysis and the remaining portions of the microcatheter are insulated either by a Teflon lamination directly on wire 42 and/or by microcatheter 44. Only the exposed portion of the wire 46 is affected by the electrolysis.
It has further been discovered that thrombus 74 continues to form even after detachment from wire 42. It is believed that a positive charge is retained on or near coil 56 which therefore continues to attract platelets, white blood cells, red blood cells and fibrinogen within aneurysm 64.
Although the foregoing embodiment has been described as forming an occlusion within a blood-filled vascular cavity by means of electrothrombosis, the above disclosure must be read to expressly include formation of the occlusion by mechanical mechanisms without resort to the application of electrical current. A mechanical mechanism which can be safely disposed into the vascular cavity to impede, slow or otherwise initiate clotting of the blood or formation of the occlusion is within the scope of the invention. The insertion within the vascular cavity and maintenance therein of an object with an appropriate blood-clotting characteristics can and does in many cases cause the formation of an occlusion by itself. Depicted in FIG. 6 is an embodiment of the invention wherein such mechanical thrombosis can be achieved. Wire 10 has a tapering end portion 14 covered with a Teflon laminate 24 similar to that described in connection with the embodiment of FIG. 1. Wire 10 is attached by means of a mechanical coupling 100 to a platinum coil 102 which has a plurality of filaments or fine hairs 104 extending therefrom. In the illustrated embodiment, hairs 104 have a length as may be determined from the size of the vascular cavity in which coil 102 is to be used. For example, in a small vessel hair lengths of up to 1 mm are contemplated. An example of polyester filaments or hairs attached to a coil which was not used in electrothrombosis may be seen in the copending application entitled Vasoocclusion Coil with Attached Fiberous Elements, filed Oct. 2, 1991, Ser. No. 07/771,013.
Coil 102 has sufficient length and flexibility that it can be inserted or coiled loosely into the vascular cavity. The length of coil 102 need not be so long that the coil itself is capable of being multiply folded on itself and fill or substantially fill the vascular cavity. Hairs 104 extending from coil 102 serve to substantially pack, fill or at least impede blood flow or access in the vascular cavity. Hairs 104, which are generally inclined backwardly away from extreme tip 106 when delivered, are thus easily able to slide forward with little friction through restrictions in the vessels and aneurysm. Additionally, hairs 104 do not have sufficient length, strength or sharpness to provide any substantial risk or potential for a puncture of the thin vascular wall. The plurality of hairs 104, when coiled within the vascular cavity, provide an extremely large surface for attachment of blood constituents to encourage and enhance the formation of a mechanical occlusion within the vascular opening.
In the preferred embodiment, coil 102 is mechanically coupled to thin tapered portion 104 of wire 10 by means of a small drop of polyester 100. Polyester may be substituted for the gold solder of the previously described embodiments in order to reduce concern or risk of toxic reactions in the body.
Tip portion 104 may also be mechanically separated from wire 10 by means other than electrolysis. One method is make the connection between tip 104 and wire 10 by means of a spring loaded mechanical clasp (not shown). The clasps are retained on tip 104 as long as the clasps remain inside of the catheter, but spring open and release tip 104 when extended from the catheter. The catheter and clasps may then be removed from the insertion site. This type of mechanical connection is described in the copending application entitled, “Detachable Pusher-Vasoocclusive Coil Assembly with Interlocking Coupling”, filed Dec. 12, 1991 with Ser. No. 07/806,979 which is incorporated herein by reference and assigned to Target Therapeutics Inc. An alternative nonresilient mechanical ball and clasp capturing mechanism is described in the copending application entitled “Detachable Pusher-Vasoocclusive Coil Assembly with Interlocking Ball and Keyway Coupling”, filed Dec. 12, 1991 with Ser. No. 07/806,912 which is also incorporated herein by reference and assigned to Target Therapeutics Inc.
In another embodiment wire 10 and tip portion 104 screw into each other and can be unscrewed from each other by rotation of the catheter or wire with respect to tip 104. An extendable sheath (not shown) in the microcatheter is advanced to seize tip 104 to prevent its rotation with wire 10 during the unscrewing process. This type of mechanical connection is described in the copending application entitled “Detachable Pusher-Vasoocclusive Coil Assembly with Threaded Coupling”, filed Dec. 12, 1991 with Ser. No. 07/806,898 which is incorporated herein by reference and assigned to Target Therapeutics Inc.
In any case the specific means disclosed here of mechanically detaching tip 104 from wire 10 forms no part of the present invention apart from its combination as a whole with other elements of the invention. Specific disclosure of the mechanical means of detachment have been set forth only for the purposes of providing an enabling disclosure of the best mode presently known for practicing the claimed invention.
Even where the occlusion is not formed by electrothrombosis, separation of tip 104 may be effected by electrolysis. In such situations, the electrolysing current may be concentrated on the sacrificial stainless steel portion of tip 104 by disposition of an insulative coating on the remaining platinum portion. For example, tip 104 may be provided with a polyethylene coating save at least a portion of the stainless steel length. This has the effect of decreasing the time required to electrolytically sufficiently disintegrate the steel portion to allow detachment of the platinum tip, which is an advantageous feature in those cases where a large aneurysm must be treated and a multiple number of coils must be deployed within the aneurysm.
Notwithstanding the fact that wire 10 and platinum coil 102 in the embodiment FIG. 6 or wire 10 and platinum coil 28, 36 and 56 in the embodiments of FIGS. 1-5 are radiopaque, there is still some difficulty when manipulating the device under fluoroscopy to be able to determine the exact position or movement of the probe relative to the aneurysm. This is particularly true when a large number of coils are deployed and one coil then radiographically hides another. FIG. 7 illustrates an improvement of, for example, the embodiment of FIGS. 4 and 5. Microcatheter 144 is positioned so that its distal end 162 within vessel 66 is positioned at the opening aneurysm 64. Microcatheter 144 is provided with radiopaque marker 108 at distal tip 162, a tip marker. Moving toward the proximal end of microcatheter 144 is a second radiopaque marker 110, a proximal marker. Radiopaque markers 108 and 110 are, for example, in the form of radiopaque rings made of platinum, approximately 1-3 mm in longitudinal length along the axis of microcatheter 144. Rings 110 and 108 are typically separated by about 3 cm on microcatheter 144. Similarly, wire 10 has a radiopaque marker 112 defined on it such that marker 112 on wire 10 is approximately with aligned with marker 110 on microcatheter 14 when coil 56 is fully deployed into aneurysm 64. Typically, full deployment will place the solder or connection point 54 of the order of 2-3 mm past opening 68 of aneurysm 64. Distal marker 108 on microcatheter 144 is used to facilitate the location of the microcatheter tip, which can often be obscured by the coils which have been previously deployed. The coils are a varying lengths depending on the application or size of the aneurysm or vascular cavity being treated. Coil lengths of 4-40 cm are common. Therefore, even though the thinness of coil 56 may make it difficult to see under standard fluoroscopy and even though the fineness of wire 10 may similarly be obscured or partly obscured, radiopaque markers 108, 110 and 112 are clearly visible. Manipulation of wire 10 to proximal marker 110 can then easily be observed under conventional fluoroscopy even when there are some loss of resolution or fluoroscopic visual obstruction of the coil.
Further, in the previous embodiments, such as that shown in FIGS. 4 and 5, when electrothrombosis is used to form the occlusion within vascular aneurysm 64, coil 56 is used as the electrical anode while the cathode is a large skin electrode 72 typically conductively applied to the groin or scalp. FIG. 9 illustrates an alternative embodiment wherein microcatheter 144 is supplied with an end electrode 114 coupled to an electrical conductor 116 disposed along the length of microcatheter 144. Wire 116 is ultimately led back to voltage source 70 so that ring electrode 114 is used as the cathode during electrothrombosis instead of an exterior skin electrode 72. With the embodiment of FIG. 9, the electrical currents and electrical current paths which are set up during the electrothrombosis formation are local to the site of application which allows even smaller currents and voltages to be used to initiate electrothrombosis than in the situation when an exterior skin electrode must be utilized. The electrothrombosic current distributions are also better controlled and localized to the site of the thrombus formation. The possibility of stray thrombus formations occurring at unwanted sites or uncontrolled and possibly unwanted electrical current patterns being established elsewhere in the brain or body is therefore largely avoided.
Many alterations and modifications may be made by those having ordinary skill in the art without departing from the spirit and scope of the invention. Therefore, it must be understood that the shape of the tip or distal platinum coil used in combination with the wire according to the invention may be provided with a variety of shapes and envelopes. In addition thereto, the composition of the micro-guidewire tip may be made of elements other than platinum including stainless steel, beryllium, copper and various alloys of the same with or without platinum. Still further, the diameter of the wire, various of the wire described above and the stainless steel coil immediately proximal to the detachable tip may be provided with differing diameters or cross sections to vary the times and current magnitudes necessary in order to effectuate electrolytic detachment from the tip. Still further, the invention may include conventional electronics connected to the proximal end of the wire for determining the exact instant of detachment of the distal tip from the wire.
Therefore, the illustrated embodiment has been set forth only for the purposes of clarity and example and should not be taken as limiting the invention as defined by the following claims, which include all equivalent means whether now known or later devised.

Claims (10)

1. A wire for use in the formation of an occlusion within a vascular cavity in conjunction with a microcatheter having an interior lumen, said wire comprising:
a metal coil having a first shape which conforms to said microcatheter lumen when within the microcatheter, and said metal coil forming an unbiased, regular cylindrical or unbiased single regular conical envelope when disposed out of said microcatheter.
2. The wire of claim 1 wherein the wire comprises platinum.
3. The wire of claim 1 wherein the diameter of the coil is approximately 0.001-0.005 inch.
4. The wire of claim 1 wherein the diameter of the coil is approximately 0.010-0.020 inch.
5. The wire of claim 1 wherein the diameter of the envelope is approximately 2-10 mm.
6. The wire of claim 1 wherein the envelope is conical.
7. The wire of claim 1 wherein the envelope is cylindrical.
8. The wire of claim 1 further comprising a plurality of filaments extending from said first shape.
9. The wire of claim 8 wherein the filaments comprise polyester.
10. The wire of claim 2 wherein the coil is prebiased to form said cylindrical or conical envelope.
US11/377,892 1990-03-13 2006-03-15 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas Expired - Fee Related USRE42662E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/377,892 USRE42662E1 (en) 1990-03-13 2006-03-15 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US07/492,717 US5122136A (en) 1990-03-13 1990-03-13 Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US07/840,211 US5354295A (en) 1990-03-13 1992-02-24 In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US08/311,508 US5540680A (en) 1990-03-13 1994-09-23 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US48582195A 1995-06-06 1995-06-06
US08/647,114 US6083220A (en) 1990-03-13 1996-05-09 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US11/377,892 USRE42662E1 (en) 1990-03-13 2006-03-15 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/647,114 Reissue US6083220A (en) 1990-03-13 1996-05-09 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas

Publications (1)

Publication Number Publication Date
USRE42662E1 true USRE42662E1 (en) 2011-08-30

Family

ID=27050843

Family Applications (8)

Application Number Title Priority Date Filing Date
US08/647,114 Ceased US6083220A (en) 1990-03-13 1996-05-09 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US08/801,795 Expired - Lifetime US5855578A (en) 1990-03-13 1997-02-14 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US08/944,583 Expired - Lifetime US5947962A (en) 1990-03-13 1997-10-06 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries veins aneurysms vascular malformations and arteriovenous fistulas
US08/944,580 Expired - Lifetime US6010498A (en) 1990-03-13 1997-10-06 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US08/944,826 Expired - Lifetime US6066133A (en) 1990-03-13 1997-10-06 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US08/944,828 Expired - Lifetime US5944714A (en) 1990-03-13 1997-10-06 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US08/944,584 Expired - Lifetime US5976126A (en) 1990-03-13 1997-10-06 Endovascular electrolytically detachable wire and tip formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US11/377,892 Expired - Fee Related USRE42662E1 (en) 1990-03-13 2006-03-15 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas

Family Applications Before (7)

Application Number Title Priority Date Filing Date
US08/647,114 Ceased US6083220A (en) 1990-03-13 1996-05-09 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US08/801,795 Expired - Lifetime US5855578A (en) 1990-03-13 1997-02-14 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US08/944,583 Expired - Lifetime US5947962A (en) 1990-03-13 1997-10-06 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries veins aneurysms vascular malformations and arteriovenous fistulas
US08/944,580 Expired - Lifetime US6010498A (en) 1990-03-13 1997-10-06 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US08/944,826 Expired - Lifetime US6066133A (en) 1990-03-13 1997-10-06 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US08/944,828 Expired - Lifetime US5944714A (en) 1990-03-13 1997-10-06 Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US08/944,584 Expired - Lifetime US5976126A (en) 1990-03-13 1997-10-06 Endovascular electrolytically detachable wire and tip formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas

Country Status (1)

Country Link
US (8) US6083220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867622B2 (en) 2014-04-11 2018-01-16 Microvention, Inc. Implant delivery system

Families Citing this family (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42625E1 (en) 1990-03-13 2011-08-16 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US6083220A (en) 1990-03-13 2000-07-04 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
USRE42756E1 (en) 1990-03-13 2011-09-27 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5350397A (en) 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
US5800453A (en) * 1993-04-19 1998-09-01 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking hooks and slots
US6030382A (en) * 1994-08-08 2000-02-29 Ep Technologies, Inc. Flexible tissue ablatin elements for making long lesions
US5814062A (en) * 1994-12-22 1998-09-29 Target Therapeutics, Inc. Implant delivery assembly with expandable coupling/decoupling mechanism
US6245067B1 (en) * 1997-04-16 2001-06-12 Irvine Biomedical, Inc. Ablation device and methods having perpendicular electrodes
US5984929A (en) 1997-08-29 1999-11-16 Target Therapeutics, Inc. Fast detaching electronically isolated implant
US6156061A (en) * 1997-08-29 2000-12-05 Target Therapeutics, Inc. Fast-detaching electrically insulated implant
US6511468B1 (en) * 1997-10-17 2003-01-28 Micro Therapeutics, Inc. Device and method for controlling injection of liquid embolic composition
US6159206A (en) * 1997-10-30 2000-12-12 Kaneka Medix Corporation Medical implement for depositing implanted device and method of depositing implanted device
US6475227B2 (en) 1997-12-24 2002-11-05 Scimed Life Systems, Inc. Vaso-occlusion apparatus having a mechanically expandable detachment joint and a method for using the apparatus
US6022369A (en) * 1998-02-13 2000-02-08 Precision Vascular Systems, Inc. Wire device with detachable end
US5935145A (en) 1998-02-13 1999-08-10 Target Therapeutics, Inc. Vaso-occlusive device with attached polymeric materials
US6346091B1 (en) * 1998-02-13 2002-02-12 Stephen C. Jacobsen Detachable coil for aneurysm therapy
US5941888A (en) 1998-02-18 1999-08-24 Target Therapeutics, Inc. Vaso-occlusive member assembly with multiple detaching points
US6077260A (en) * 1998-02-19 2000-06-20 Target Therapeutics, Inc. Assembly containing an electrolytically severable joint for endovascular embolic devices
US6113622A (en) 1998-03-10 2000-09-05 Cordis Corporation Embolic coil hydraulic deployment system
US6379374B1 (en) * 1998-10-22 2002-04-30 Cordis Neurovascular, Inc. Small diameter embolic coil hydraulic deployment system
US6537272B2 (en) 1998-07-07 2003-03-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6315709B1 (en) * 1998-08-07 2001-11-13 Stereotaxis, Inc. Magnetic vascular defect treatment system
US7410482B2 (en) * 1998-09-04 2008-08-12 Boston Scientific-Scimed, Inc. Detachable aneurysm neck bridge
US6277126B1 (en) * 1998-10-05 2001-08-21 Cordis Neurovascular Inc. Heated vascular occlusion coil development system
US8016852B2 (en) * 1998-11-10 2011-09-13 Stryker Corporation Bioactive components for incorporation with vaso-occlusive members
US6723112B2 (en) 1998-11-10 2004-04-20 Scimed Life Systems, Inc. Bioactive three loop coil
US6569179B2 (en) 1998-11-10 2003-05-27 Scimed Life Systems, Inc. Bioactive three loop coil
US6187024B1 (en) * 1998-11-10 2001-02-13 Target Therapeutics, Inc. Bioactive coating for vaso-occlusive devices
US20040097996A1 (en) 1999-10-05 2004-05-20 Omnisonics Medical Technologies, Inc. Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode
US6660013B2 (en) * 1999-10-05 2003-12-09 Omnisonics Medical Technologies, Inc. Apparatus for removing plaque from blood vessels using ultrasonic energy
US6375670B1 (en) 1999-10-07 2002-04-23 Prodesco, Inc. Intraluminal filter
US8048104B2 (en) 2000-10-30 2011-11-01 Dendron Gmbh Device for the implantation of occlusion spirals
US6936065B2 (en) * 1999-11-22 2005-08-30 Cordis Corporation Stent delivery system having a fixed guidewire
US20060069423A1 (en) * 1999-11-22 2006-03-30 Fischell David R Means and method for treating an intimal dissection after stent implantation
US6391037B1 (en) 2000-03-02 2002-05-21 Prodesco, Inc. Bag for use in the intravascular treatment of saccular aneurysms
US6346117B1 (en) 2000-03-02 2002-02-12 Prodesco, Inc. Bag for use in the intravascular treatment of saccular aneurysms
US7458974B1 (en) * 2000-07-25 2008-12-02 Endovascular Technologies, Inc. Apparatus and method for electrically induced thrombosis
US6855154B2 (en) 2000-08-11 2005-02-15 University Of Louisville Research Foundation, Inc. Endovascular aneurysm treatment device and method
US7033374B2 (en) * 2000-09-26 2006-04-25 Microvention, Inc. Microcoil vaso-occlusive device with multi-axis secondary configuration
US7029486B2 (en) * 2000-09-26 2006-04-18 Microvention, Inc. Microcoil vaso-occlusive device with multi-axis secondary configuration
US6607538B1 (en) * 2000-10-18 2003-08-19 Microvention, Inc. Mechanism for the deployment of endovascular implants
US20040204701A1 (en) * 2000-10-18 2004-10-14 Brian Cox Mechanism for the deployment of endovascular implants
US6689141B2 (en) 2000-10-18 2004-02-10 Microvention, Inc. Mechanism for the deployment of endovascular implants
US6547804B2 (en) 2000-12-27 2003-04-15 Scimed Life Systems, Inc. Selectively permeable highly distensible occlusion balloon
US6544163B2 (en) * 2000-12-28 2003-04-08 Scimed Life Systems, Inc. Apparatus and method for controlling a magnetically controllable embolic in the embolization of an aneurysm
US6540657B2 (en) * 2000-12-28 2003-04-01 Scimed Life Systems, Inc. Apparatus and method for internally inducing a magnetic field in an aneurysm to embolize aneurysm with magnetically-controllable substance
AU2002235311B2 (en) * 2001-01-08 2005-09-15 Boston Scientific Limited Retrieval basket with releasable tip
EP1229337A1 (en) 2001-02-06 2002-08-07 Abb Research Ltd. Procedure for temperaturecompensated electro-optic measuring of a voltage
US6494884B2 (en) * 2001-02-09 2002-12-17 Concentric Medical, Inc. Methods and devices for delivering occlusion elements
US7294137B2 (en) * 2001-03-27 2007-11-13 Boston Scientific Scimed Device for multi-modal treatment of vascular lesions
US20020183783A1 (en) * 2001-06-04 2002-12-05 Shadduck John H. Guidewire for capturing emboli in endovascular interventions
US20030100945A1 (en) 2001-11-23 2003-05-29 Mindguard Ltd. Implantable intraluminal device and method of using same in treating aneurysms
JP4351405B2 (en) * 2001-08-29 2009-10-28 インターナショナル・ビジネス・マシーンズ・コーポレーション Transcoding system and annotation management device
US6953473B2 (en) * 2001-12-20 2005-10-11 Boston Scientific Scimed, Inc. Detachable device with electrically responsive element
DE10233085B4 (en) 2002-07-19 2014-02-20 Dendron Gmbh Stent with guide wire
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US8075585B2 (en) * 2002-08-29 2011-12-13 Stryker Corporation Device and method for treatment of a vascular defect
US20040044391A1 (en) * 2002-08-29 2004-03-04 Stephen Porter Device for closure of a vascular defect and method of treating the same
US8229572B2 (en) * 2008-06-27 2012-07-24 Medtronic, Inc. Lead delivery device and method
US8920432B2 (en) * 2002-09-24 2014-12-30 Medtronic, Inc. Lead delivery device and method
US7107105B2 (en) * 2002-09-24 2006-09-12 Medtronic, Inc. Deployable medical lead fixation system and method
US9480839B2 (en) * 2002-09-24 2016-11-01 Medtronic, Inc. Lead delivery device and method
US9636499B2 (en) * 2002-09-24 2017-05-02 Medtronic, Inc. Lead delivery device and method
US9849279B2 (en) * 2008-06-27 2017-12-26 Medtronic, Inc. Lead delivery device and method
AU2003286534A1 (en) * 2002-10-21 2004-05-13 The General Hospital Corporation D/B/A Massachusetts General Hospital Catheter and radiofrequency coil with annular b1 filed
US20040176686A1 (en) * 2002-12-23 2004-09-09 Omnisonics Medical Technologies, Inc. Apparatus and method for ultrasonic medical device with improved visibility in imaging procedures
WO2004058074A1 (en) 2002-12-23 2004-07-15 Omnisonics Medical Technologies, Inc. Apparatus and method for ultrasonic medical device with improved visibility in imaging procedures
US20050043585A1 (en) * 2003-01-03 2005-02-24 Arindam Datta Reticulated elastomeric matrices, their manufacture and use in implantable devices
US7229454B2 (en) * 2003-01-07 2007-06-12 Boston Scientific Scimed, Inc. Occlusive cinching devices and methods of use
US7678119B2 (en) * 2003-01-15 2010-03-16 Scimed Life Systems, Inc. Medical retrieval device with frangible basket
US20040193179A1 (en) * 2003-03-26 2004-09-30 Cardiomind, Inc. Balloon catheter lumen based stent delivery systems
ES2346059T3 (en) 2003-03-26 2010-10-08 Biosensors International Group Ltd. IMPLANT SUPPLY CATHETER WITH ELECTROLYTICALLY EROSIONABLE JOINTS.
US7771463B2 (en) * 2003-03-26 2010-08-10 Ton Dai T Twist-down implant delivery technologies
US20050209672A1 (en) * 2004-03-02 2005-09-22 Cardiomind, Inc. Sliding restraint stent delivery systems
ATE381913T1 (en) * 2003-04-02 2008-01-15 Boston Scient Ltd REMOVABLE AND RETURNABLE STENT ASSEMBLY
US7651513B2 (en) * 2003-04-03 2010-01-26 Boston Scientific Scimed, Inc. Flexible embolic device delivery system
US7559934B2 (en) * 2003-04-07 2009-07-14 Scimed Life Systems, Inc. Beaded basket retrieval device
BRPI0410324A (en) 2003-05-15 2006-05-23 Biomerix Corp implantable device, elastomeric matrix production lyophilization processes having a cross-linked structure, polymerization for cross-linked elastomeric matrix preparation and cross-linked composite elastomeric implant preparation, and method for treating an orthopedic disorder
WO2005006992A1 (en) 2003-07-03 2005-01-27 Cook, Inc. Occluding device for occluding fluid flow through a body vessel
US20050021023A1 (en) * 2003-07-23 2005-01-27 Scimed Life Systems, Inc. System and method for electrically determining position and detachment of an implantable device
US8043321B2 (en) * 2003-07-24 2011-10-25 Boston Scientific Scimed, Inc. Embolic coil
US7395527B2 (en) 2003-09-30 2008-07-01 International Business Machines Corporation Method and apparatus for counting instruction execution and data accesses
US8381037B2 (en) * 2003-10-09 2013-02-19 International Business Machines Corporation Method and system for autonomic execution path selection in an application
EP1689482A1 (en) * 2003-10-28 2006-08-16 Peacock, James C., III Embolic filter device and related systems and methods
US20050107867A1 (en) * 2003-11-17 2005-05-19 Taheri Syde A. Temporary absorbable venous occlusive stent and superficial vein treatment method
US20070104752A1 (en) * 2003-12-10 2007-05-10 Lee Jeffrey A Aneurysm embolization material and device
US20080109057A1 (en) * 2003-12-10 2008-05-08 Calabria Marie F Multiple point detacher system
US20050149108A1 (en) * 2003-12-17 2005-07-07 Microvention, Inc. Implant delivery and detachment system and method
US7763077B2 (en) 2003-12-24 2010-07-27 Biomerix Corporation Repair of spinal annular defects and annulo-nucleoplasty regeneration
US7895382B2 (en) 2004-01-14 2011-02-22 International Business Machines Corporation Method and apparatus for qualifying collection of performance monitoring events by types of interrupt when interrupt occurs
US7415705B2 (en) 2004-01-14 2008-08-19 International Business Machines Corporation Autonomic method and apparatus for hardware assist for patching code
DE102004003265A1 (en) 2004-01-21 2005-08-11 Dendron Gmbh Device for the implantation of electrically isolated occlusion coils
US7794414B2 (en) * 2004-02-09 2010-09-14 Emigrant Bank, N.A. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US20050187514A1 (en) * 2004-02-09 2005-08-25 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device operating in a torsional mode
US8192676B2 (en) 2004-02-12 2012-06-05 Valspar Sourcing, Inc. Container having barrier properties and method of manufacturing the same
US7651521B2 (en) * 2004-03-02 2010-01-26 Cardiomind, Inc. Corewire actuated delivery system with fixed distal stent-carrying extension
US20050222605A1 (en) * 2004-03-16 2005-10-06 Secant Medical, Llc Occluding coil delivery device and method
US20050267488A1 (en) * 2004-05-13 2005-12-01 Omnisonics Medical Technologies, Inc. Apparatus and method for using an ultrasonic medical device to treat urolithiasis
US20050256410A1 (en) * 2004-05-14 2005-11-17 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic probe capable of bending with aid of a balloon
US20070190108A1 (en) * 2004-05-17 2007-08-16 Arindam Datta High performance reticulated elastomeric matrix preparation, properties, reinforcement, and use in surgical devices, tissue augmentation and/or tissue repair
EP1761178B1 (en) * 2004-05-21 2010-12-08 Micro Therapeutics, Inc. Metallic coils enlaced with biological or biodegradable or synthetic polymers or fibers for embolization of a body cavity
US20050277978A1 (en) * 2004-06-09 2005-12-15 Secant Medical, Llc Three-dimensional coils for treatment of vascular aneurysms
US7744641B2 (en) * 2004-07-21 2010-06-29 Boston Scientific Scimed, Inc. Expandable framework with overlapping connectors
US7918872B2 (en) 2004-07-30 2011-04-05 Codman & Shurtleff, Inc. Embolic device delivery system with retractable partially coiled-fiber release
US20060025801A1 (en) * 2004-07-30 2006-02-02 Robert Lulo Embolic device deployment system with filament release
US20060025802A1 (en) 2004-07-30 2006-02-02 Sowers William W Embolic coil delivery system with U-shaped fiber release mechanism
US20060030929A1 (en) * 2004-08-09 2006-02-09 Scimed Life Systems, Inc. Flap-cover aneurysm stent
WO2006024040A2 (en) 2004-08-25 2006-03-02 Microvention, Inc. Thermal detachment system for implantable devices
WO2006026744A1 (en) * 2004-08-31 2006-03-09 Cook Incorporated Device for treating an aneurysm
US7824415B2 (en) * 2004-09-15 2010-11-02 Boston Scientific Scimed, Inc. Atraumatic medical device
DE502004008712D1 (en) 2004-09-22 2009-01-29 Dendron Gmbh MEDICAL IMPLANT
US8845676B2 (en) * 2004-09-22 2014-09-30 Micro Therapeutics Micro-spiral implantation device
US8771294B2 (en) 2004-11-26 2014-07-08 Biomerix Corporation Aneurysm treatment devices and methods
US20060116714A1 (en) * 2004-11-26 2006-06-01 Ivan Sepetka Coupling and release devices and methods for their assembly and use
US20060116610A1 (en) * 2004-11-30 2006-06-01 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device with variable frequency drive
EP1841368B1 (en) 2005-01-25 2015-06-10 Covidien LP Structures for permanent occlusion of a hollow anatomical structure
US7678107B2 (en) * 2005-03-10 2010-03-16 Boston Scientific Scimed, Inc. Medical needles and electrodes with improved bending stiffness
DE102005019782A1 (en) * 2005-04-28 2006-11-09 Dendron Gmbh Device for implantation of occlusion coils with internal securing means
US20060271097A1 (en) * 2005-05-31 2006-11-30 Kamal Ramzipoor Electrolytically detachable implantable devices
US20070073379A1 (en) * 2005-09-29 2007-03-29 Chang Jean C Stent delivery system
US7778684B2 (en) * 2005-08-08 2010-08-17 Boston Scientific Scimed, Inc. MRI resonator system with stent implant
US8057495B2 (en) * 2005-09-13 2011-11-15 Cook Medical Technologies Llc Aneurysm occlusion device
US20070100414A1 (en) * 2005-11-02 2007-05-03 Cardiomind, Inc. Indirect-release electrolytic implant delivery systems
US8066036B2 (en) * 2005-11-17 2011-11-29 Microvention, Inc. Three-dimensional complex coil
US7473232B2 (en) * 2006-02-24 2009-01-06 Boston Scientific Scimed, Inc. Obtaining a tissue sample
US7699884B2 (en) * 2006-03-22 2010-04-20 Cardiomind, Inc. Method of stenting with minimal diameter guided delivery systems
US8998926B2 (en) * 2006-04-06 2015-04-07 DePuy Synthes Products, LLC Heat detachable coil
KR20090008347A (en) 2006-04-17 2009-01-21 마이크로 테라퓨틱스 인코포레이티드 System and method for mechanically positioning intravascular implants
US8777979B2 (en) 2006-04-17 2014-07-15 Covidien Lp System and method for mechanically positioning intravascular implants
US9017361B2 (en) 2006-04-20 2015-04-28 Covidien Lp Occlusive implant and methods for hollow anatomical structure
US8694076B2 (en) * 2006-07-06 2014-04-08 Boston Scientific Scimed, Inc. Electroactive polymer radiopaque marker
WO2008024714A1 (en) 2006-08-21 2008-02-28 Mayo Foundation For Medical Education And Research Coagulum formation controlling apparatus
JP4943796B2 (en) 2006-09-29 2012-05-30 テルモ株式会社 Medical device
US20080281350A1 (en) * 2006-12-13 2008-11-13 Biomerix Corporation Aneurysm Occlusion Devices
CN101605509B (en) * 2006-12-15 2012-09-19 生物传感器国际集团有限公司 Stent systems
US20080188892A1 (en) * 2007-02-01 2008-08-07 Cook Incorporated Vascular occlusion device
JP5249249B2 (en) 2007-03-13 2013-07-31 コヴィディエン リミテッド パートナーシップ Implant including a coil and a stretch resistant member
JP5227344B2 (en) 2007-03-13 2013-07-03 タイコ ヘルスケア グループ リミテッド パートナーシップ Implant, mandrel, and implant formation method
US8197442B2 (en) * 2007-04-27 2012-06-12 Codman & Shurtleff, Inc. Interventional medical device system having a slotted section and radiopaque marker and method of making the same
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8066757B2 (en) * 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US20100174309A1 (en) * 2008-05-19 2010-07-08 Mindframe, Inc. Recanalization/revascularization and embolus addressing systems including expandable tip neuro-microcatheter
US20100022951A1 (en) * 2008-05-19 2010-01-28 Luce, Forward, Hamilton 7 Scripps, Llp Detachable hub/luer device and processes
US20100256600A1 (en) * 2009-04-04 2010-10-07 Ferrera David A Neurovascular otw pta balloon catheter and delivery system
US9198687B2 (en) * 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US9220522B2 (en) * 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US8926680B2 (en) * 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US20090112238A1 (en) * 2007-10-26 2009-04-30 Vance Products Inc., D/B/A Cook Urological Inc. Fistula brush device
EP2227163B1 (en) * 2007-12-03 2012-10-10 Stryker Corporation Implantable device with electrolytically detachable junction having multiple fine wires
US8192480B2 (en) 2007-12-21 2012-06-05 Microvention, Inc. System and method of detecting implant detachment
EP2231030B1 (en) 2007-12-21 2019-02-27 MicroVention, Inc. System and method for locating detachment zone of a detachable implant
WO2009089297A2 (en) * 2008-01-07 2009-07-16 Intersect Partners, Llc Novel enhanced ptna rapid exchange type of catheter system
BRPI0908500A8 (en) 2008-02-22 2018-10-23 Micro Therapeutics Inc imaging methods of restoration of thrombus-occluded blood vessel blood flow, partial or substantial dissolution and thrombus dislocation, self-expanding thrombus removal equipment and integrated removable thrombus mass
JP5547712B2 (en) * 2008-04-04 2014-07-16 クラシール,インコーポレイティド Implantable fistula closure device
WO2009126935A2 (en) * 2008-04-11 2009-10-15 Mindframe, Inc. Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
JP5610542B2 (en) 2008-04-21 2014-10-22 コヴィディエン リミテッド パートナーシップ Blade ball embolization device and delivery system
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
US9775989B2 (en) * 2008-06-27 2017-10-03 Medtronic, Inc. Lead delivery device and method
US9775990B2 (en) * 2008-06-27 2017-10-03 Medtronic, Inc. Lead delivery device and method
CN102137626A (en) * 2008-07-22 2011-07-27 微治疗公司 Vascular remodeling device
AU2009282868B2 (en) * 2008-08-19 2013-09-05 Covidien Lp Detachable tip microcatheter
CA2735748C (en) 2008-09-04 2017-08-29 Curaseal Inc. Inflatable devices for enteric fistula treatment
US8657870B2 (en) * 2009-06-26 2014-02-25 Biosensors International Group, Ltd. Implant delivery apparatus and methods with electrolytic release
WO2011094638A1 (en) * 2010-01-28 2011-08-04 Micro Therapeutics, Inc. Vascular remodeling device
US9039749B2 (en) 2010-10-01 2015-05-26 Covidien Lp Methods and apparatuses for flow restoration and implanting members in the human body
CA2825774C (en) * 2011-02-11 2017-02-28 Frank P. Becking Two-stage deployment aneurysm embolization devices
CA2828960A1 (en) * 2011-03-02 2012-09-07 Joe Michael Eskridge Endovascular closure system
WO2012134990A1 (en) 2011-03-25 2012-10-04 Tyco Healthcare Group Lp Vascular remodeling device
US10028745B2 (en) 2011-03-30 2018-07-24 Noha, Llc Advanced endovascular clip and method of using same
US10398444B2 (en) 2011-03-30 2019-09-03 Noha, Llc Advanced endovascular clip and method of using same
JP6122424B2 (en) 2011-06-16 2017-04-26 キュラシール インコーポレイテッド Device for fistula treatment and related method
WO2012174468A1 (en) 2011-06-17 2012-12-20 Curaseal Inc. Fistula treatment devices and methods
WO2013049448A1 (en) 2011-09-29 2013-04-04 Covidien Lp Vascular remodeling device
US9579104B2 (en) 2011-11-30 2017-02-28 Covidien Lp Positioning and detaching implants
US9011480B2 (en) 2012-01-20 2015-04-21 Covidien Lp Aneurysm treatment coils
US9687245B2 (en) 2012-03-23 2017-06-27 Covidien Lp Occlusive devices and methods of use
US10124087B2 (en) 2012-06-19 2018-11-13 Covidien Lp Detachable coupling for catheter
US9326774B2 (en) 2012-08-03 2016-05-03 Covidien Lp Device for implantation of medical devices
US9314248B2 (en) 2012-11-06 2016-04-19 Covidien Lp Multi-pivot thrombectomy device
WO2014105578A1 (en) * 2012-12-27 2014-07-03 Volcano Corporation Intravascular guidewire with hyper flexible distal end portion
US9295571B2 (en) 2013-01-17 2016-03-29 Covidien Lp Methods and apparatus for luminal stenting
JP2016518870A (en) * 2013-03-12 2016-06-30 ガイデッド インターヴェンションズ, インコーポレイテッド System including a guide wire for detecting fluid pressure
US9463105B2 (en) 2013-03-14 2016-10-11 Covidien Lp Methods and apparatus for luminal stenting
CN105142545B (en) 2013-03-15 2018-04-06 柯惠有限合伙公司 Locking device
US10660645B2 (en) 2013-03-15 2020-05-26 Embo Medical Limited Embolization systems
US10675039B2 (en) 2013-03-15 2020-06-09 Embo Medical Limited Embolisation systems
NZ751705A (en) * 2013-03-15 2019-12-20 Embo Medical Ltd Embolisation systems
US9566071B2 (en) * 2013-04-11 2017-02-14 Blockade Medical, LLC Systems and devices for cerebral aneurysm repair
FR3008304B1 (en) * 2013-07-15 2016-04-01 Balt Extrusion ENDOPROTHESIS FOR THE TREATMENT IN PARTICULAR AN ANEURYSM
US10076399B2 (en) 2013-09-13 2018-09-18 Covidien Lp Endovascular device engagement
EP3082619A4 (en) 2013-12-20 2017-07-26 Microvention, Inc. Vascular occlusion
JP6492087B2 (en) 2013-12-20 2019-03-27 マイクロベンション インコーポレイテッドMicrovention, Inc. Device delivery system
US9713475B2 (en) 2014-04-18 2017-07-25 Covidien Lp Embolic medical devices
US9814466B2 (en) 2014-08-08 2017-11-14 Covidien Lp Electrolytic and mechanical detachment for implant delivery systems
US9808256B2 (en) 2014-08-08 2017-11-07 Covidien Lp Electrolytic detachment elements for implant delivery systems
US9717503B2 (en) 2015-05-11 2017-08-01 Covidien Lp Electrolytic detachment for implant delivery systems
WO2017011402A1 (en) * 2015-07-10 2017-01-19 Rox Medical, Inc. Methods, systems and devices for creating a blood flow pathway to treat a patient
US10307168B2 (en) 2015-08-07 2019-06-04 Terumo Corporation Complex coil and manufacturing techniques
US10478194B2 (en) 2015-09-23 2019-11-19 Covidien Lp Occlusive devices
US10828037B2 (en) 2016-06-27 2020-11-10 Covidien Lp Electrolytic detachment with fluid electrical connection
US10828039B2 (en) 2016-06-27 2020-11-10 Covidien Lp Electrolytic detachment for implantable devices
US11051822B2 (en) 2016-06-28 2021-07-06 Covidien Lp Implant detachment with thermal activation
CN108339195B (en) * 2017-01-22 2020-06-26 北京市神经外科研究所 Device and method for forming electric thrombus
CA3195810A1 (en) 2017-10-16 2022-04-21 Michael Bruce Horowitz Clot removal methods and devices with multiple independently controllable elements
US20190110804A1 (en) 2017-10-16 2019-04-18 Michael Bruce Horowitz Catheter based retrieval device with proximal body having axial freedom of movement
US20220104839A1 (en) 2017-10-16 2022-04-07 Retriever Medical, Inc. Clot Removal Methods and Devices with Multiple Independently Controllable Elements
US11564692B2 (en) 2018-11-01 2023-01-31 Terumo Corporation Occlusion systems

Citations (199)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU591906A (en) 1906-05-15 1906-11-27 Ludwig Max Vorwald Gottfried Improvements in carburetters for internal combustion engines
US2839049A (en) 1954-03-25 1958-06-17 Kenneth S Maclean Abrasive cytologic brush
US3334629A (en) 1964-11-09 1967-08-08 Bertram D Cohn Occlusive device for inferior vena cava
US3452742A (en) 1966-05-31 1969-07-01 Us Catheter & Instr Corp Controlled vascular curvable spring guide
US3521620A (en) 1967-10-30 1970-07-28 William A Cook Vascular coil spring guide with bendable tip
US3547103A (en) 1965-10-29 1970-12-15 William A Cook Coil spring guide
US3605750A (en) 1969-04-07 1971-09-20 David S Sheridan X-ray tip catheter
US3773034A (en) 1971-11-24 1973-11-20 Itt Research Institute Steerable catheter
US3789841A (en) 1971-09-15 1974-02-05 Becton Dickinson Co Disposable guide wire
US3868956A (en) 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US3952747A (en) 1974-03-28 1976-04-27 Kimmell Jr Garman O Filter and filter insertion instrument
US3996938A (en) 1975-07-10 1976-12-14 Clark Iii William T Expanding mesh catheter
US4003369A (en) 1975-04-22 1977-01-18 Medrad, Inc. Angiographic guidewire with safety core wire
US4114603A (en) 1976-08-06 1978-09-19 Wilkinson Harold A Intracranial pressure monitoring catheter
US4147169A (en) 1977-05-02 1979-04-03 The Kendall Company Balloon catheter with balloon retaining sleeves
US4190057A (en) 1977-12-27 1980-02-26 Thoratec Laboratories Corporation Device for determining the patentcy of a blood vessel
US4213461A (en) 1977-09-15 1980-07-22 Pevsner Paul H Miniature balloon catheter
WO1982000768A1 (en) 1980-09-03 1982-03-18 Taylor T Therapeutic device
US4323071A (en) 1978-04-24 1982-04-06 Advanced Catheter Systems, Inc. Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods of making the same
US4327734A (en) 1979-01-24 1982-05-04 White Jr Robert I Therapeutic method of use for miniature detachable balloon catheter
ZA812814B (en) 1980-05-08 1982-05-26 Biotrol Sa Lab Bipolar probe for electrocoagulation
US4341218A (en) 1978-05-30 1982-07-27 University Of California Detachable balloon catheter
US4346712A (en) 1979-04-06 1982-08-31 Kuraray Company, Ltd. Releasable balloon catheter
DE3203410A1 (en) 1981-05-08 1982-11-25 VEB Kombinat Wälzlager und Normteile, DDR 9022 Karl-Marx-Stadt Closure body and method for its production
US4411648A (en) 1981-06-11 1983-10-25 Board Of Regents, The University Of Texas System Iontophoretic catheter device
US4413989A (en) 1980-09-08 1983-11-08 Angiomedics Corporation Expandable occlusion apparatus
DE3334174A1 (en) 1982-09-22 1984-03-22 C.R. Bard, Inc., 07974 Murray Hill, N.J. STEERABLE GUIDE WIRE FOR BALLONDILATION
EP0117940A2 (en) 1982-12-06 1984-09-12 Cook Incorporated Expandable blood clot filter
EP0119688A2 (en) 1983-01-25 1984-09-26 Alexander Balko Apparatus for restoring patency to body vessels
WO1984004686A1 (en) 1983-05-27 1984-12-06 Rene Gilliard Probe head
US4517979A (en) 1983-07-14 1985-05-21 Cordis Corporation Detachable balloon catheter
DD223065A1 (en) 1983-12-21 1985-06-05 Univ Berlin Humboldt DEVICE WITH A LOCK BUTTER FOR CLOSING ADERN
US4538622A (en) 1983-11-10 1985-09-03 Advanced Cardiovascular Systems, Inc. Guide wire for catheters
US4545367A (en) 1982-07-16 1985-10-08 Cordis Corporation Detachable balloon catheter and method of use
US4554929A (en) 1983-07-13 1985-11-26 Advanced Cardiovascular Systems, Inc. Catheter guide wire with short spring tip and method of using the same
US4576174A (en) 1982-07-08 1986-03-18 Shionogi & Company, Ltd. Micro electrode
US4597389A (en) 1982-09-30 1986-07-01 Ibrahim Adel A Device for removing objects from tubular body passages
US4613324A (en) 1985-06-17 1986-09-23 Ghajar Jamshid B G Method and apparatus for guiding catheter into ventricular system of human brain
US4619274A (en) 1985-04-18 1986-10-28 Advanced Cardiovascular Systems, Inc. Torsional guide wire with attenuated diameter
WO1986006285A1 (en) 1985-05-02 1986-11-06 C. R. Bard, Inc. Microdilatation probe and system for performing angioplasty
WO1987000062A1 (en) 1985-07-02 1987-01-15 Target Therapeutics Vaso-occlusive collagen composition and method
US4641654A (en) 1985-07-30 1987-02-10 Advanced Cardiovascular Systems, Inc. Steerable balloon dilatation catheter assembly having dye injection and pressure measurement capabilities
USRE32348E (en) 1976-04-29 1987-02-10 Miniature balloon catheter method and apparatus
EP0212936A1 (en) 1985-08-14 1987-03-04 Roger A. Yangas Reflective apparatus for microwave cooking
US4655746A (en) 1985-12-02 1987-04-07 Target Therapeutics Catheter device
US4660571A (en) 1985-07-18 1987-04-28 Cordis Corporation Percutaneous lead having radially adjustable electrode
US4669465A (en) 1984-12-10 1987-06-02 Gv Medical, Inc. Laser catheter control and connecting apparatus
US4682596A (en) 1984-05-22 1987-07-28 Cordis Corporation Electrosurgical catheter and method for vascular applications
EP0249371A2 (en) 1986-06-02 1987-12-16 Hitachi, Ltd. Semiconductor device including two compound semiconductors, and method of manufacturing such a device
EP0253620A2 (en) 1986-07-15 1988-01-20 Ngk Insulators, Ltd. Filter apparatus
EP0255331A2 (en) 1986-07-28 1988-02-03 Sumitomo Seika Chemicals Co., Ltd. Method for treating glycoside
US4723556A (en) 1986-04-14 1988-02-09 Cordis Corporation Intracranial ventricular catheter assembly
US4729914A (en) 1985-12-30 1988-03-08 Tyndale Plains-Hunter Ltd. Hydrophilic coating and substrate coated therewith
WO1988001851A1 (en) 1986-09-12 1988-03-24 Oral Roberts University Radio frequency surgical tool
US4735201A (en) 1986-01-30 1988-04-05 The Beth Israel Hospital Association Optical fiber with detachable metallic tip for intravascular laser coagulation of arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US4739768A (en) 1986-06-02 1988-04-26 Target Therapeutics Catheter for guide-wire tracking
US4748986A (en) 1985-11-26 1988-06-07 Advanced Cardiovascular Systems, Inc. Floppy guide wire with opaque tip
US4782834A (en) 1987-01-06 1988-11-08 Advanced Cardiovascular Systems, Inc. Dual lumen dilatation catheter and method of manufacturing the same
US4787899A (en) 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
US4793359A (en) 1987-04-24 1988-12-27 Gv Medical, Inc. Centering balloon structure for transluminal angioplasty catheter
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4813934A (en) 1987-08-07 1989-03-21 Target Therapeutics Valved catheter device and method
US4820298A (en) 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
EP0296224A4 (en) 1986-12-23 1989-04-12 M & T Chemicals Inc U.v. stabilized article and process for making same.
US4821722A (en) 1987-01-06 1989-04-18 Advanced Cardiovascular Systems, Inc. Self-venting balloon dilatation catheter and method
US4830003A (en) 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
US4832047A (en) 1987-12-15 1989-05-23 Target Therapeutics Guide wire device
US4838268A (en) 1988-03-07 1989-06-13 Scimed Life Systems, Inc. Non-over-the wire balloon catheter
US4838879A (en) 1986-05-08 1989-06-13 Terumo Kabushiki Kaisha Catheter
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4884579A (en) 1988-04-18 1989-12-05 Target Therapeutics Catheter guide wire
WO1990001840A1 (en) 1988-08-03 1990-02-22 Harris Corporation Keypad/dialer interface for telephone test
US4907336A (en) 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
WO1990002585A1 (en) 1988-09-16 1990-03-22 Drue Walden Hip mounted exercising device
US4917088A (en) 1985-05-02 1990-04-17 C. R. Bard, Inc. Balloon dilation probe
EP0366407A2 (en) 1988-10-24 1990-05-02 Toray Engineering Co., Ltd. Method of making a composite foamed and shaped article
US4943278A (en) 1988-02-29 1990-07-24 Scimed Life Systems, Inc. Dilatation balloon catheter
US4944746A (en) 1988-03-18 1990-07-31 Kabushiki-Kaisha Tokai-Rika-Denki-Seisakusho Method of and apparatus for separating a balloon in a balloon catheter
US4950239A (en) 1988-08-09 1990-08-21 Worldwide Medical Plastics Inc. Angioplasty balloons and balloon catheters
IT1224838B (en) 1988-12-22 1990-10-24 Guglielmi Guido Dieci Nella ENDOVASCULAR DEVICE FOR THE ENCLOSURE OF ENDOCRANIC SACCULAR ANEURISMS, INDUCED BY FERROMAGNETIC THROMBOSIS
US4968306A (en) 1989-07-07 1990-11-06 Advanced Cardiovascular Systems, Inc. Intravascular catheter having an adjustable length infusion section to delivery therapeutic fluid
US4969458A (en) 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
EP0397357A1 (en) 1989-05-08 1990-11-14 Schneider (Usa) Inc. Monorail catheter with guidewire port marker
US4986830A (en) 1989-09-22 1991-01-22 Schneider (U.S.A.) Inc. Valvuloplasty catheter with balloon which remains stable during inflation
US4991069A (en) 1990-05-21 1991-02-05 Welch Allyn, Inc. End cap for rechargeable battery instrument handle
US4989608A (en) 1987-07-02 1991-02-05 Ratner Adam V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
US4994069A (en) 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US4998933A (en) 1988-06-10 1991-03-12 Advanced Angioplasty Products, Inc. Thermal angioplasty catheter and method
US5002556A (en) 1986-11-29 1991-03-26 Terumo Kabushiki Kaisha Balloon catheter assembly
EP0422632A2 (en) 1989-10-13 1991-04-17 Abbott Laboratories Kink-resistant medical tubing and catheters
WO1991004716A1 (en) 1989-10-09 1991-04-18 Fondation De L'avenir Pour La Recherche Medicale Appliquee Anti-pulmonary embolism filter and kit for storing and applying such filter
US5011482A (en) 1989-01-17 1991-04-30 Cook Pacemaker Corporation Apparatus for removing an elongated structure implanted in biological tissue
US5019075A (en) 1984-10-24 1991-05-28 The Beth Israel Hospital Method and apparatus for angioplasty
US5021043A (en) 1989-09-11 1991-06-04 C. R. Bard, Inc. Method and catheter for dilatation of the lacrimal system
US5041090A (en) 1988-01-12 1991-08-20 Scheglov Viktor I Occluding device
EP0442657A2 (en) 1990-02-13 1991-08-21 C.R. Bard, Inc. Stent introducer system
WO1991013592A1 (en) 1990-03-13 1991-09-19 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip
US5055101A (en) 1983-10-31 1991-10-08 Catheter Research, Inc. Variable shape guide apparatus
US5061914A (en) 1989-06-27 1991-10-29 Tini Alloy Company Shape-memory alloy micro-actuator
GB2245495A (en) 1990-05-11 1992-01-08 John Stanley Webber Artery support insertion instrument
NO914433L (en) 1990-03-13 1992-01-10 Univ California ENDOVASCULAR CIRCULAR POINT WHICH CAN BE SOLELY ELECTROLYTIC
WO1992001425A1 (en) 1990-07-26 1992-02-06 Rodney James Lane Self expanding vascular endoprosthesis for aneurysms
US5104376A (en) 1985-05-02 1992-04-14 C. R. Bard, Inc. Torsionally rigid balloon dilatation probe
EP0471683A4 (en) 1989-05-12 1992-04-22 Gaf Chemicals Corporation Bis-(pyrrolidonyl alkylene) biguanides
US5108407A (en) 1990-06-08 1992-04-28 Rush-Presbyterian St. Luke's Medical Center Method and apparatus for placement of an embolic coil
US5109867A (en) 1991-04-19 1992-05-05 Target Therapeutics Extendable guidewire assembly
USRE33925E (en) 1984-05-22 1992-05-12 Cordis Corporation Electrosurgical catheter aned method for vascular applications
WO1992008342A1 (en) 1990-11-08 1992-05-29 Vijgendam B.V. Cheese-rind-cutting apparatus
EP0493878A2 (en) 1990-12-29 1992-07-08 Yamari Sangyo Kabushikikaisha Sensing components of metal melts
EP0494495A1 (en) 1991-01-08 1992-07-15 Elf Atochem North America, Inc. Forming a metal-oxide coating on glass articles
US5133731A (en) 1990-11-09 1992-07-28 Catheter Research, Inc. Embolus supply system and method
US5135516A (en) 1989-12-15 1992-08-04 Boston Scientific Corporation Lubricious antithrombogenic catheters, guidewires and coatings
US5143085A (en) 1987-05-13 1992-09-01 Wilson Bruce C Steerable memory alloy guide wires
WO1992014408A1 (en) 1991-02-15 1992-09-03 Malte Neuss Spiral implant for bodily ducts
US5154179A (en) 1987-07-02 1992-10-13 Medical Magnetics, Inc. Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
US5167624A (en) 1990-11-09 1992-12-01 Catheter Research, Inc. Embolus delivery system and method
US5169386A (en) 1989-09-11 1992-12-08 Bruce B. Becker Method and catheter for dilatation of the lacrimal system
EP0516717A1 (en) 1990-02-28 1992-12-09 Bilfirma Bröderna Moricz Ab Locking system for cars
WO1992021400A1 (en) 1991-06-07 1992-12-10 Marks Michael P Retractable-wire catheter device and method
US5171297A (en) 1989-03-17 1992-12-15 Angeion Corporation Balloon catheter
US5171233A (en) 1990-04-25 1992-12-15 Microvena Corporation Snare-type probe
US5178618A (en) 1991-01-16 1993-01-12 Brigham And Womens Hospital Method and device for recanalization of a body passageway
US5180368A (en) 1989-09-08 1993-01-19 Advanced Cardiovascular Systems, Inc. Rapidly exchangeable and expandable cage catheter for repairing damaged blood vessels
US5188621A (en) 1991-08-26 1993-02-23 Target Therapeutics Inc. Extendable guidewire assembly
US5191297A (en) 1991-07-25 1993-03-02 Iomega Corporation Transconductance amplifier having sensfets which drive a load with linearly proportional current
US5201323A (en) 1991-02-20 1993-04-13 Brigham & Women's Hospital Wire-guided cytology brush
US5209730A (en) 1989-12-19 1993-05-11 Scimed Life Systems, Inc. Method for placement of a balloon dilatation catheter across a stenosis and apparatus therefor
JPH0523153Y2 (en) 1986-12-12 1993-06-14
WO1993011825A1 (en) 1991-12-12 1993-06-24 Target Therapeutics, Inc. Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5226911A (en) 1991-10-02 1993-07-13 Target Therapeutics Vasoocclusion coil with attached fibrous element(s)
US5234437A (en) 1991-12-12 1993-08-10 Target Therapeutics, Inc. Detachable pusher-vasoocclusion coil assembly with threaded coupling
WO1993016650A1 (en) 1992-02-24 1993-09-02 Regents Of The University Of California Endovascular electrolytically detachable wire for thrombus formation
US5242396A (en) 1991-12-19 1993-09-07 Advanced Cardiovascular Systems, Inc. Dilatation catheter with reinforcing mandrel
US5246421A (en) 1992-02-12 1993-09-21 Saab Mark A Method of treating obstructed regions of bodily passages
JPH0538366Y2 (en) 1987-10-14 1993-09-28
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5254130A (en) 1992-04-13 1993-10-19 Raychem Corporation Surgical device
US5263964A (en) 1992-05-06 1993-11-23 Coil Partners Ltd. Coaxial traction detachment apparatus and method
US5264421A (en) 1990-07-18 1993-11-23 Nippon Hypox Laboratories, Incorporated Food composition
US5275594A (en) 1990-11-09 1994-01-04 C. R. Bard, Inc. Angioplasty system having means for identification of atherosclerotic plaque
WO1994006503A1 (en) 1992-09-22 1994-03-31 Target Therapeutics, Inc. Detachable embolic coil assembly
US5304195A (en) 1991-12-12 1994-04-19 Target Therapeutics, Inc. Detachable pusher-vasoocclusive coil assembly with interlocking coupling
US5306287A (en) 1992-10-30 1994-04-26 Becker James H Heated tissue forceps and method
US5312415A (en) 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
WO1994010936A1 (en) 1992-11-18 1994-05-26 Target Therapeutics, Inc. Ultrasoft embolism devices and process for using
JPH0626576Y2 (en) 1987-06-30 1994-07-20 近畿イシコ株式会社 Machinery for foundation work
US5334210A (en) 1993-04-09 1994-08-02 Cook Incorporated Vascular occlusion assembly
US5342294A (en) 1991-06-20 1994-08-30 Wiest Peter P Gas connection device for insufflation equipment
US5342387A (en) 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5345927A (en) 1990-03-02 1994-09-13 Bonutti Peter M Arthroscopic retractors
US5350397A (en) 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
US5360443A (en) 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
US5382261A (en) 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
US5423829A (en) 1993-11-03 1995-06-13 Target Therapeutics, Inc. Electrolytically severable joint for endovascular embolic devices
WO1995023558A1 (en) 1994-03-03 1995-09-08 Target Therapeutics, Inc. Method for detecting separation of a vasoocclusion device
US5449372A (en) 1990-10-09 1995-09-12 Scimed Lifesystems, Inc. Temporary stent and methods for use and manufacture
WO1995025480A1 (en) 1994-03-18 1995-09-28 Cook Incorporated Helical embolization coil
US5454826A (en) 1993-02-26 1995-10-03 Mineluba Co., Ltd. Temporary clip with balloon activation means for controlling blood flow
EP0484486B1 (en) 1990-05-22 1996-01-24 BUMANN, Harold Process for preparing a fruitjuice drink
CA2160640A1 (en) 1994-10-17 1996-04-18 Guido Guglielmi Detachable endovascular occlusion device activated by alternating electric current
US5522836A (en) 1994-06-27 1996-06-04 Target Therapeutics, Inc. Electrolytically severable coil assembly with movable detachment point
JP2501389Y2 (en) 1992-07-24 1996-06-19 株式会社ダイクレ Top opener for lorries
EP0471754B1 (en) 1989-05-12 1996-07-31 Genentech, Inc. Production of vascular endothelial cell growth factor and dna encoding same
EP0750886A1 (en) 1995-06-30 1997-01-02 The Regents Of The University Of California Apparatus for endovascular thermal treatment
US5609608A (en) 1995-10-27 1997-03-11 Regents Of The University Of California Miniature plastic gripper and fabrication method
US5645558A (en) 1995-04-20 1997-07-08 Medical University Of South Carolina Anatomically shaped vasoocclusive device and method of making the same
US5645564A (en) 1995-05-22 1997-07-08 Regents Of The University Of California Microfabricated therapeutic actuator mechanisms
WO1997048351A1 (en) 1996-06-21 1997-12-24 Medical University Of South Carolina In situ formable and self-forming intravascular flow modifier (ifm), catheter and ifm assembly, and method for deployment of same
WO1998002100A1 (en) 1996-07-16 1998-01-22 Anson Medical Limited Surgical implants and delivery systems therefor
WO1998004196A1 (en) 1996-07-25 1998-02-05 Haviv Toledano A flexible annular stapler for closed surgery of hollow organs
WO1998004195A1 (en) 1996-07-29 1998-02-05 Sergey Popov Purse string suture apparatus
WO1998004315A1 (en) 1996-07-31 1998-02-05 Micro Therapeutics, Inc. Method and apparatus for intravascular embolization
US5724534A (en) 1993-06-30 1998-03-03 U.S. Philips Corporation Transferring instructions into DSP memory including testing instructions to determine if they are to be processed by an instruction interpreter or a first kernel
US5725552A (en) 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5733294A (en) 1996-02-28 1998-03-31 B. Braun Medical, Inc. Self expanding cardiovascular occlusion device, method of using and method of making the same
US5743905A (en) 1995-07-07 1998-04-28 Target Therapeutics, Inc. Partially insulated occlusion device
US5800454A (en) 1997-03-17 1998-09-01 Sarcos, Inc. Catheter deliverable coiled wire thromboginic apparatus and method
US5814062A (en) 1994-12-22 1998-09-29 Target Therapeutics, Inc. Implant delivery assembly with expandable coupling/decoupling mechanism
US5855578A (en) 1990-03-13 1999-01-05 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5882334A (en) 1995-12-04 1999-03-16 Target Therapeutics, Inc. Balloon/delivery catheter assembly with adjustable balloon positioning
US5891155A (en) 1995-01-27 1999-04-06 Scimed Life Systems, Inc. Embolizing system
US5891128A (en) 1994-12-30 1999-04-06 Target Therapeutics, Inc. Solderless electrolytically severable joint for detachable devices placed within the mammalian body
US5895391A (en) 1996-09-27 1999-04-20 Target Therapeutics, Inc. Ball lock joint and introducer for vaso-occlusive member
US5911717A (en) 1997-03-17 1999-06-15 Precision Vascular Systems, Inc. Catheter deliverable thrombogenic apparatus and method
US5916235A (en) 1997-08-13 1999-06-29 The Regents Of The University Of California Apparatus and method for the use of detachable coils in vascular aneurysms and body cavities
US5925062A (en) 1992-09-02 1999-07-20 Board Of Regents, The University Of Texas System Intravascular device
US5944733A (en) 1997-07-14 1999-08-31 Target Therapeutics, Inc. Controlled detachable vasoocclusive member using mechanical junction and friction-enhancing member
US5972019A (en) 1996-07-25 1999-10-26 Target Therapeutics, Inc. Mechanical clot treatment device
US5976131A (en) 1990-03-13 1999-11-02 The Regents Of The University At California Detachable endovascular occlusion device activated by alternating electric current
US5980514A (en) 1996-07-26 1999-11-09 Target Therapeutics, Inc. Aneurysm closure device assembly
US6063220A (en) 1995-12-22 2000-05-16 Tetra Laval Holdings & Finance S.A. Method and an apparatus using ultrasound for fixedly welding a circular material blank
US6096034A (en) 1996-07-26 2000-08-01 Target Therapeutics, Inc. Aneurysm closure device assembly
US6168615B1 (en) 1998-05-04 2001-01-02 Micrus Corporation Method and apparatus for occlusion and reinforcement of aneurysms
WO2001032085A1 (en) 1999-10-30 2001-05-10 Dendron Gmbh Device for implanting occlusion coils
WO2002014408A3 (en) 2000-08-16 2002-05-02 Honeywell Int Inc Impact resistant rigid composite and method of manufacture
US6425893B1 (en) 1990-03-13 2002-07-30 The Regents Of The University Of California Method and apparatus for fast electrolytic detachment of an implant
US6468266B1 (en) 1997-08-29 2002-10-22 Scimed Life Systems, Inc. Fast detaching electrically isolated implant
WO2003017852A1 (en) 2001-08-27 2003-03-06 Dendron Gmbh Device for the implantation of occlusion means
JP3152399U (en) 2009-05-19 2009-07-30 株式会社シーテックセンター熊本 Locking device for paper, etc.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU591906B (en) 1906-05-15 1906-11-27 Ludwig Max Vorwald Gottfried Improvements in carburetters for internal combustion engines

Patent Citations (318)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU591906A (en) 1906-05-15 1906-11-27 Ludwig Max Vorwald Gottfried Improvements in carburetters for internal combustion engines
US2839049A (en) 1954-03-25 1958-06-17 Kenneth S Maclean Abrasive cytologic brush
US3334629A (en) 1964-11-09 1967-08-08 Bertram D Cohn Occlusive device for inferior vena cava
US3547103A (en) 1965-10-29 1970-12-15 William A Cook Coil spring guide
US3452742A (en) 1966-05-31 1969-07-01 Us Catheter & Instr Corp Controlled vascular curvable spring guide
US3521620A (en) 1967-10-30 1970-07-28 William A Cook Vascular coil spring guide with bendable tip
US3605750A (en) 1969-04-07 1971-09-20 David S Sheridan X-ray tip catheter
US3789841A (en) 1971-09-15 1974-02-05 Becton Dickinson Co Disposable guide wire
US3773034A (en) 1971-11-24 1973-11-20 Itt Research Institute Steerable catheter
US3868956A (en) 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US3952747A (en) 1974-03-28 1976-04-27 Kimmell Jr Garman O Filter and filter insertion instrument
US4003369A (en) 1975-04-22 1977-01-18 Medrad, Inc. Angiographic guidewire with safety core wire
US4080706A (en) 1975-04-22 1978-03-28 Medrad, Inc. Method of manufacturing catheter guidewire
US3996938A (en) 1975-07-10 1976-12-14 Clark Iii William T Expanding mesh catheter
USRE32348E (en) 1976-04-29 1987-02-10 Miniature balloon catheter method and apparatus
US4114603A (en) 1976-08-06 1978-09-19 Wilkinson Harold A Intracranial pressure monitoring catheter
US4147169A (en) 1977-05-02 1979-04-03 The Kendall Company Balloon catheter with balloon retaining sleeves
US4402319A (en) 1977-09-14 1983-09-06 Kuraray Co., Ltd. Releasable balloon catheter
US4213461A (en) 1977-09-15 1980-07-22 Pevsner Paul H Miniature balloon catheter
US4190057A (en) 1977-12-27 1980-02-26 Thoratec Laboratories Corporation Device for determining the patentcy of a blood vessel
US4323071B1 (en) 1978-04-24 1990-05-29 Advanced Cardiovascular System
US4323071A (en) 1978-04-24 1982-04-06 Advanced Catheter Systems, Inc. Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods of making the same
US4341218A (en) 1978-05-30 1982-07-27 University Of California Detachable balloon catheter
US4327734A (en) 1979-01-24 1982-05-04 White Jr Robert I Therapeutic method of use for miniature detachable balloon catheter
US4346712A (en) 1979-04-06 1982-08-31 Kuraray Company, Ltd. Releasable balloon catheter
ZA812814B (en) 1980-05-08 1982-05-26 Biotrol Sa Lab Bipolar probe for electrocoagulation
US4522205A (en) 1980-09-03 1985-06-11 The University Court Of The University Of Edinburgh Therapeutic device and method of inducing thrombosis in a blood vessel
EP0058708B1 (en) 1980-09-03 1985-05-08 The University Court Of The University Of Edinburgh Therapeutic device
WO1982000768A1 (en) 1980-09-03 1982-03-18 Taylor T Therapeutic device
US4413989A (en) 1980-09-08 1983-11-08 Angiomedics Corporation Expandable occlusion apparatus
DD158084A1 (en) 1981-05-08 1982-12-29 Joachim Heinke CLOSURE BODY AND METHOD FOR ITS MANUFACTURE
DE3203410A1 (en) 1981-05-08 1982-11-25 VEB Kombinat Wälzlager und Normteile, DDR 9022 Karl-Marx-Stadt Closure body and method for its production
US4411648A (en) 1981-06-11 1983-10-25 Board Of Regents, The University Of Texas System Iontophoretic catheter device
US4576174A (en) 1982-07-08 1986-03-18 Shionogi & Company, Ltd. Micro electrode
US4545367A (en) 1982-07-16 1985-10-08 Cordis Corporation Detachable balloon catheter and method of use
DE3334174A1 (en) 1982-09-22 1984-03-22 C.R. Bard, Inc., 07974 Murray Hill, N.J. STEERABLE GUIDE WIRE FOR BALLONDILATION
DE3334174C2 (en) 1982-09-22 1993-05-13 C.R. Bard, Inc., Murray Hill, N.J., Us
US4545390A (en) 1982-09-22 1985-10-08 C. R. Bard, Inc. Steerable guide wire for balloon dilatation procedure
US4597389A (en) 1982-09-30 1986-07-01 Ibrahim Adel A Device for removing objects from tubular body passages
EP0117940A2 (en) 1982-12-06 1984-09-12 Cook Incorporated Expandable blood clot filter
US4512338A (en) 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
EP0119688A2 (en) 1983-01-25 1984-09-26 Alexander Balko Apparatus for restoring patency to body vessels
WO1984004686A1 (en) 1983-05-27 1984-12-06 Rene Gilliard Probe head
US4554929A (en) 1983-07-13 1985-11-26 Advanced Cardiovascular Systems, Inc. Catheter guide wire with short spring tip and method of using the same
US4517979A (en) 1983-07-14 1985-05-21 Cordis Corporation Detachable balloon catheter
US5055101A (en) 1983-10-31 1991-10-08 Catheter Research, Inc. Variable shape guide apparatus
US4538622A (en) 1983-11-10 1985-09-03 Advanced Cardiovascular Systems, Inc. Guide wire for catheters
US4787899A (en) 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
DD223065A1 (en) 1983-12-21 1985-06-05 Univ Berlin Humboldt DEVICE WITH A LOCK BUTTER FOR CLOSING ADERN
USRE33925E (en) 1984-05-22 1992-05-12 Cordis Corporation Electrosurgical catheter aned method for vascular applications
US4682596A (en) 1984-05-22 1987-07-28 Cordis Corporation Electrosurgical catheter and method for vascular applications
US5019075A (en) 1984-10-24 1991-05-28 The Beth Israel Hospital Method and apparatus for angioplasty
US4669465A (en) 1984-12-10 1987-06-02 Gv Medical, Inc. Laser catheter control and connecting apparatus
US4619274A (en) 1985-04-18 1986-10-28 Advanced Cardiovascular Systems, Inc. Torsional guide wire with attenuated diameter
GB2185190A (en) 1985-05-02 1987-07-15 Bard Inc C R Microdilatation probe and system for performing angioplasty
US5104376A (en) 1985-05-02 1992-04-14 C. R. Bard, Inc. Torsionally rigid balloon dilatation probe
GB2208607A (en) 1985-05-02 1989-04-12 Bard Inc C R Angioplasty probe
DE3690224T1 (en) 1985-05-02 1987-08-27
JPS62502950A (en) 1985-05-02 1987-11-26 シ−・ア−ル・バ−ド・インコ−ポレ−テッド balloon coronary angioplasty probe
EP0220285B1 (en) 1985-05-02 1992-07-08 C.R. Bard, Inc. Microdilatation probe and system for performing angioplasty
CA1308988C (en) 1985-05-02 1992-10-20 James F. Crittenden Microdilatation probe and system for performing angioplasty in highly stenosed blood vessels
US4917088A (en) 1985-05-02 1990-04-17 C. R. Bard, Inc. Balloon dilation probe
US5201754A (en) 1985-05-02 1993-04-13 C. R. Bard, Inc. Balloon dilatation catheter with varying radiopacity
AU3934589A (en) 1985-05-02 1989-11-23 C.R. Bard Inc. Microdilatation probe
DE3690224C2 (en) 1985-05-02 1998-11-19 Bard Inc C R Vascular plastic coronary balloon probe
WO1986006285A1 (en) 1985-05-02 1986-11-06 C. R. Bard, Inc. Microdilatation probe and system for performing angioplasty
US5102390A (en) 1985-05-02 1992-04-07 C. R. Bard, Inc. Microdilatation probe and system for performing angioplasty in highly stenosed blood vessels
AU5865286A (en) 1985-05-02 1986-11-18 C.R. Bard Inc. Method and apparatus for performing angioplasty
AU621923B2 (en) 1985-05-02 1992-03-26 C.R. Bard Inc. Microdilatation probe
US4613324A (en) 1985-06-17 1986-09-23 Ghajar Jamshid B G Method and apparatus for guiding catheter into ventricular system of human brain
WO1987000062A1 (en) 1985-07-02 1987-01-15 Target Therapeutics Vaso-occlusive collagen composition and method
US4660571A (en) 1985-07-18 1987-04-28 Cordis Corporation Percutaneous lead having radially adjustable electrode
US4641654A (en) 1985-07-30 1987-02-10 Advanced Cardiovascular Systems, Inc. Steerable balloon dilatation catheter assembly having dye injection and pressure measurement capabilities
EP0212936A1 (en) 1985-08-14 1987-03-04 Roger A. Yangas Reflective apparatus for microwave cooking
US4748986A (en) 1985-11-26 1988-06-07 Advanced Cardiovascular Systems, Inc. Floppy guide wire with opaque tip
US4655746A (en) 1985-12-02 1987-04-07 Target Therapeutics Catheter device
US4729914A (en) 1985-12-30 1988-03-08 Tyndale Plains-Hunter Ltd. Hydrophilic coating and substrate coated therewith
US4735201A (en) 1986-01-30 1988-04-05 The Beth Israel Hospital Association Optical fiber with detachable metallic tip for intravascular laser coagulation of arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4723556A (en) 1986-04-14 1988-02-09 Cordis Corporation Intracranial ventricular catheter assembly
US4838879A (en) 1986-05-08 1989-06-13 Terumo Kabushiki Kaisha Catheter
US4739768B1 (en) 1986-06-02 1994-11-15 Target Therapeutics Inc Catheter for guide-wire tracking
US4739768B2 (en) 1986-06-02 1995-10-24 Target Therapeutics Inc Catheter for guide-wire tracking
EP0249371A2 (en) 1986-06-02 1987-12-16 Hitachi, Ltd. Semiconductor device including two compound semiconductors, and method of manufacturing such a device
EP0249371A3 (en) 1986-06-02 1988-10-05 Hitachi, Ltd. Semiconductor device including two compound semiconductors, and method of manufacturing such a device
US4739768A (en) 1986-06-02 1988-04-26 Target Therapeutics Catheter for guide-wire tracking
EP0253620A3 (en) 1986-07-15 1989-05-24 Ngk Insulators, Ltd. Filter apparatus
EP0253620A2 (en) 1986-07-15 1988-01-20 Ngk Insulators, Ltd. Filter apparatus
EP0255331A3 (en) 1986-07-28 1989-02-22 Seitetsu Kagaku Co., Ltd. Method for treating glycoside
EP0255331A2 (en) 1986-07-28 1988-02-03 Sumitomo Seika Chemicals Co., Ltd. Method for treating glycoside
WO1988001851A1 (en) 1986-09-12 1988-03-24 Oral Roberts University Radio frequency surgical tool
EP0375775B1 (en) 1986-11-29 1994-08-31 Terumo Kabushiki Kaisha Catheter equipped with balloon
US5002556A (en) 1986-11-29 1991-03-26 Terumo Kabushiki Kaisha Balloon catheter assembly
JPH0523153Y2 (en) 1986-12-12 1993-06-14
EP0296224A4 (en) 1986-12-23 1989-04-12 M & T Chemicals Inc U.v. stabilized article and process for making same.
US4782834A (en) 1987-01-06 1988-11-08 Advanced Cardiovascular Systems, Inc. Dual lumen dilatation catheter and method of manufacturing the same
US4821722A (en) 1987-01-06 1989-04-18 Advanced Cardiovascular Systems, Inc. Self-venting balloon dilatation catheter and method
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4907336A (en) 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US4793359A (en) 1987-04-24 1988-12-27 Gv Medical, Inc. Centering balloon structure for transluminal angioplasty catheter
US5143085A (en) 1987-05-13 1992-09-01 Wilson Bruce C Steerable memory alloy guide wires
JPH0626576Y2 (en) 1987-06-30 1994-07-20 近畿イシコ株式会社 Machinery for foundation work
US4989608A (en) 1987-07-02 1991-02-05 Ratner Adam V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
US5154179A (en) 1987-07-02 1992-10-13 Medical Magnetics, Inc. Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
US4969458A (en) 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
US4813934A (en) 1987-08-07 1989-03-21 Target Therapeutics Valved catheter device and method
US4813934B1 (en) 1987-08-07 1992-05-12 Target Therapeutics Inc
JPH0538366Y2 (en) 1987-10-14 1993-09-28
US4820298A (en) 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
US4832047A (en) 1987-12-15 1989-05-23 Target Therapeutics Guide wire device
US5041090A (en) 1988-01-12 1991-08-20 Scheglov Viktor I Occluding device
US4943278A (en) 1988-02-29 1990-07-24 Scimed Life Systems, Inc. Dilatation balloon catheter
US4838268A (en) 1988-03-07 1989-06-13 Scimed Life Systems, Inc. Non-over-the wire balloon catheter
US4944746A (en) 1988-03-18 1990-07-31 Kabushiki-Kaisha Tokai-Rika-Denki-Seisakusho Method of and apparatus for separating a balloon in a balloon catheter
US4884579A (en) 1988-04-18 1989-12-05 Target Therapeutics Catheter guide wire
US4998933A (en) 1988-06-10 1991-03-12 Advanced Angioplasty Products, Inc. Thermal angioplasty catheter and method
US4830003A (en) 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
WO1990001840A1 (en) 1988-08-03 1990-02-22 Harris Corporation Keypad/dialer interface for telephone test
US4950239A (en) 1988-08-09 1990-08-21 Worldwide Medical Plastics Inc. Angioplasty balloons and balloon catheters
WO1990002585A1 (en) 1988-09-16 1990-03-22 Drue Walden Hip mounted exercising device
EP0366407A3 (en) 1988-10-24 1990-12-27 Toray Engineering Co., Ltd. Method of making a composite foamed and shaped article
EP0366407A2 (en) 1988-10-24 1990-05-02 Toray Engineering Co., Ltd. Method of making a composite foamed and shaped article
US4994069A (en) 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
IT1224838B (en) 1988-12-22 1990-10-24 Guglielmi Guido Dieci Nella ENDOVASCULAR DEVICE FOR THE ENCLOSURE OF ENDOCRANIC SACCULAR ANEURISMS, INDUCED BY FERROMAGNETIC THROMBOSIS
US5011482A (en) 1989-01-17 1991-04-30 Cook Pacemaker Corporation Apparatus for removing an elongated structure implanted in biological tissue
US5171297A (en) 1989-03-17 1992-12-15 Angeion Corporation Balloon catheter
EP0397357A1 (en) 1989-05-08 1990-11-14 Schneider (Usa) Inc. Monorail catheter with guidewire port marker
EP0471683A4 (en) 1989-05-12 1992-04-22 Gaf Chemicals Corporation Bis-(pyrrolidonyl alkylene) biguanides
EP0471754B1 (en) 1989-05-12 1996-07-31 Genentech, Inc. Production of vascular endothelial cell growth factor and dna encoding same
US5061914A (en) 1989-06-27 1991-10-29 Tini Alloy Company Shape-memory alloy micro-actuator
US4968306A (en) 1989-07-07 1990-11-06 Advanced Cardiovascular Systems, Inc. Intravascular catheter having an adjustable length infusion section to delivery therapeutic fluid
US5180368A (en) 1989-09-08 1993-01-19 Advanced Cardiovascular Systems, Inc. Rapidly exchangeable and expandable cage catheter for repairing damaged blood vessels
US5169386A (en) 1989-09-11 1992-12-08 Bruce B. Becker Method and catheter for dilatation of the lacrimal system
US5021043A (en) 1989-09-11 1991-06-04 C. R. Bard, Inc. Method and catheter for dilatation of the lacrimal system
US4986830A (en) 1989-09-22 1991-01-22 Schneider (U.S.A.) Inc. Valvuloplasty catheter with balloon which remains stable during inflation
EP0495861B1 (en) 1989-10-09 1993-05-26 Fondation De L'avenir Pour La Recherche Medicale Appliquee Anti-pulmonary embolism filter and kit for storing and applying such filter
WO1991004716A1 (en) 1989-10-09 1991-04-18 Fondation De L'avenir Pour La Recherche Medicale Appliquee Anti-pulmonary embolism filter and kit for storing and applying such filter
DE69001759T2 (en) 1989-10-09 1994-01-05 Fondation De L Avenir Pour La ANTI-EMBLEM FILTER FOR LUNG AND KIT TO STORE AND USE THIS FILTER.
US5116652A (en) 1989-10-13 1992-05-26 Abbott Laboratories Kink-resistant medical tubing and catheters
EP0422632A2 (en) 1989-10-13 1991-04-17 Abbott Laboratories Kink-resistant medical tubing and catheters
US5135516A (en) 1989-12-15 1992-08-04 Boston Scientific Corporation Lubricious antithrombogenic catheters, guidewires and coatings
US5209730A (en) 1989-12-19 1993-05-11 Scimed Life Systems, Inc. Method for placement of a balloon dilatation catheter across a stenosis and apparatus therefor
EP0442657A2 (en) 1990-02-13 1991-08-21 C.R. Bard, Inc. Stent introducer system
US5108416A (en) 1990-02-13 1992-04-28 C. R. Bard, Inc. Stent introducer system
EP0516717A1 (en) 1990-02-28 1992-12-09 Bilfirma Bröderna Moricz Ab Locking system for cars
US5345927A (en) 1990-03-02 1994-09-13 Bonutti Peter M Arthroscopic retractors
US5947962A (en) 1990-03-13 1999-09-07 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries veins aneurysms vascular malformations and arteriovenous fistulas
DE69131340T2 (en) 1990-03-13 1999-10-14 Univ California ENDOVASCULAR ELECTROLYTIC DETACHABLE GUIDE WIRE TIP
DE69133297T2 (en) 1990-03-13 2004-06-03 The Regents Of The University Of California, Oakland Endovascular, electrolytically detachable guidewire tip
US6620152B2 (en) 1990-03-13 2003-09-16 The Regents Of The University Of California Method and apparatus for fast electrolyitic detachment of an implant
EP0914803B1 (en) 1990-03-13 2003-07-23 The Regents of the University of California Endovascular electrolytically detachable guidewire tip
JPH05500322A (en) 1990-03-13 1993-01-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Intravascular electrolytically separable guidewire tip
EP1329196A1 (en) 1990-03-13 2003-07-23 The Regents of the University of California Endovascular electrolytically detachable guidewire tip
US20020151883A1 (en) 1990-03-13 2002-10-17 Guido Guglielmi Method and apparatus for fast electrolyitic detachment of an implant
US6425893B1 (en) 1990-03-13 2002-07-30 The Regents Of The University Of California Method and apparatus for fast electrolytic detachment of an implant
HU219694B (en) 1990-03-13 2001-06-28 The Regents Of The University Of California Method and apparatus for provoking thrombus causing embolism in cavities of body
CA2055492C (en) 1990-03-13 2000-11-14 Guido Guglielmi Endovascular electrolytically detachable guidewire tip
US6083220A (en) 1990-03-13 2000-07-04 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US6066133A (en) 1990-03-13 2000-05-23 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US6010498A (en) 1990-03-13 2000-01-04 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
NO914433L (en) 1990-03-13 1992-01-10 Univ California ENDOVASCULAR CIRCULAR POINT WHICH CAN BE SOLELY ELECTROLYTIC
DE69131467T2 (en) 1990-03-13 1999-11-11 Univ California Endovascular electrolytically detachable guidewire tip
DE69131466T2 (en) 1990-03-13 1999-11-11 Univ California Endovascular electrolytically detachable guidewire tip
US5976131A (en) 1990-03-13 1999-11-02 The Regents Of The University At California Detachable endovascular occlusion device activated by alternating electric current
US5947963A (en) 1990-03-13 1999-09-07 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5928226A (en) 1990-03-13 1999-07-27 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
EP0800790B1 (en) 1990-03-13 1999-07-21 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip
EP0804905B1 (en) 1990-03-13 1999-07-21 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip
US5925037A (en) 1990-03-13 1999-07-20 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5919187A (en) 1990-03-13 1999-07-06 The Regents Of The University Of California Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
EP0484468B1 (en) 1990-03-13 1999-06-16 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip
KR100200441B1 (en) 1990-03-13 1999-06-15 Univ California Endovascular electrothrombic formating apparatus
EP0914803A1 (en) 1990-03-13 1999-05-12 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip
US5895385A (en) 1990-03-13 1999-04-20 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5122136A (en) 1990-03-13 1992-06-16 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5855578A (en) 1990-03-13 1999-01-05 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5851206A (en) 1990-03-13 1998-12-22 The Regents Of The University Of California Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
US5944714A (en) 1990-03-13 1999-08-31 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5976126A (en) 1990-03-13 1999-11-02 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
EP0804905A1 (en) 1990-03-13 1997-11-05 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip
EP0804904A1 (en) 1990-03-13 1997-11-05 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip
AU7447491A (en) 1990-03-13 1991-10-10 Regents Of The University Of California, The Endovascular electrolytically detachable guidewire tip
EP0484468A4 (en) 1990-03-13 1994-07-20 Univ California Endovascular electrolytically detachable guidewire tip
EP0800790A3 (en) 1990-03-13 1997-10-29 Univ California
EP0800790A2 (en) 1990-03-13 1997-10-15 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip
US5569245A (en) 1990-03-13 1996-10-29 The Regents Of The University Of California Detachable endovascular occlusion device activated by alternating electric current
US5540680A (en) 1990-03-13 1996-07-30 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
WO1991013592A1 (en) 1990-03-13 1991-09-19 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip
US5354295A (en) 1990-03-13 1994-10-11 Target Therapeutics, Inc. In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5171233A (en) 1990-04-25 1992-12-15 Microvena Corporation Snare-type probe
GB2245495A (en) 1990-05-11 1992-01-08 John Stanley Webber Artery support insertion instrument
US4991069A (en) 1990-05-21 1991-02-05 Welch Allyn, Inc. End cap for rechargeable battery instrument handle
EP0484486B1 (en) 1990-05-22 1996-01-24 BUMANN, Harold Process for preparing a fruitjuice drink
US5108407A (en) 1990-06-08 1992-04-28 Rush-Presbyterian St. Luke's Medical Center Method and apparatus for placement of an embolic coil
US5360443A (en) 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
US5264421A (en) 1990-07-18 1993-11-23 Nippon Hypox Laboratories, Incorporated Food composition
WO1992001425A1 (en) 1990-07-26 1992-02-06 Rodney James Lane Self expanding vascular endoprosthesis for aneurysms
US5449372A (en) 1990-10-09 1995-09-12 Scimed Lifesystems, Inc. Temporary stent and methods for use and manufacture
WO1992008342A1 (en) 1990-11-08 1992-05-29 Vijgendam B.V. Cheese-rind-cutting apparatus
US5167624A (en) 1990-11-09 1992-12-01 Catheter Research, Inc. Embolus delivery system and method
US5275594A (en) 1990-11-09 1994-01-04 C. R. Bard, Inc. Angioplasty system having means for identification of atherosclerotic plaque
US5133731A (en) 1990-11-09 1992-07-28 Catheter Research, Inc. Embolus supply system and method
EP0493878A3 (en) 1990-12-29 1992-08-26 Yamari Sangyo Kabushikikaisha Sensing components of metal melts
EP0493878A2 (en) 1990-12-29 1992-07-08 Yamari Sangyo Kabushikikaisha Sensing components of metal melts
EP0494495A1 (en) 1991-01-08 1992-07-15 Elf Atochem North America, Inc. Forming a metal-oxide coating on glass articles
US5178618A (en) 1991-01-16 1993-01-12 Brigham And Womens Hospital Method and device for recanalization of a body passageway
WO1992014408A1 (en) 1991-02-15 1992-09-03 Malte Neuss Spiral implant for bodily ducts
US5201323A (en) 1991-02-20 1993-04-13 Brigham & Women's Hospital Wire-guided cytology brush
US5109867A (en) 1991-04-19 1992-05-05 Target Therapeutics Extendable guidewire assembly
US5217484A (en) 1991-06-07 1993-06-08 Marks Michael P Retractable-wire catheter device and method
EP0587782B1 (en) 1991-06-07 1999-04-21 MARKS, Michael P. Retractable-wire catheter device
WO1992021400A1 (en) 1991-06-07 1992-12-10 Marks Michael P Retractable-wire catheter device and method
US5342294A (en) 1991-06-20 1994-08-30 Wiest Peter P Gas connection device for insufflation equipment
US5191297A (en) 1991-07-25 1993-03-02 Iomega Corporation Transconductance amplifier having sensfets which drive a load with linearly proportional current
US5188621A (en) 1991-08-26 1993-02-23 Target Therapeutics Inc. Extendable guidewire assembly
US5226911A (en) 1991-10-02 1993-07-13 Target Therapeutics Vasoocclusion coil with attached fibrous element(s)
US5261916A (en) 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5234437A (en) 1991-12-12 1993-08-10 Target Therapeutics, Inc. Detachable pusher-vasoocclusion coil assembly with threaded coupling
WO1993011825A1 (en) 1991-12-12 1993-06-24 Target Therapeutics, Inc. Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5304195A (en) 1991-12-12 1994-04-19 Target Therapeutics, Inc. Detachable pusher-vasoocclusive coil assembly with interlocking coupling
US5242396A (en) 1991-12-19 1993-09-07 Advanced Cardiovascular Systems, Inc. Dilatation catheter with reinforcing mandrel
US5246421A (en) 1992-02-12 1993-09-21 Saab Mark A Method of treating obstructed regions of bodily passages
EP1005837A3 (en) 1992-02-24 2000-06-14 The Regents Of The University Of California Endovascular electrolytically detachable wire for thrombus formation
DE69231550T2 (en) 1992-02-24 2001-06-07 Univ California Endovascular, electrolytically detachable wire for thrombus formation
EP0803230A3 (en) 1992-02-24 1997-11-12 The Regents Of The University Of California Endovascular electrolytically detachable wire for thrombus formation
EP0804906A3 (en) 1992-02-24 1997-11-19 The Regents Of The University Of California Endovascular electrolytically detachable wire for thrombus formation
EP0803230B1 (en) 1992-02-24 2000-11-02 The Regents of the University of California Endovascular electrolytically detachable wire for thrombus formation
EP0629125A1 (en) 1992-02-24 1994-12-21 Regents Of The University Of California Microcatheter system
DE69233026T2 (en) 1992-02-24 2004-01-22 The Regents Of The University Of California, Oakland Apparatus for clogging a vascular cavity
DE69228134T2 (en) 1992-02-24 1999-05-20 Univ California Endovascular, electrolytically detachable wire for thrombus formation
NO943106D0 (en) 1992-02-24 1994-08-23 Univ California Endovascular electrolytically removable thread for thrombus formation
DK0803230T3 (en) 1992-02-24 2001-02-26 Univ California Endovascular electrolytic separable wire for thrombus formation
EP0803230A2 (en) 1992-02-24 1997-10-29 The Regents Of The University Of California Endovascular electrolytically detachable wire for thrombus formation
FI941937A (en) 1992-02-24 1994-06-06 Univ California Intravascular, electrolytically detachable wire to form a blood clot
PT101162B (en) 1992-02-24 2001-11-30 Univ California DEVICE FOR THE FORMATION OF AN OCLUSION IN A VASCULAR CAVITY
EP1005837A2 (en) 1992-02-24 2000-06-07 The Regents Of The University Of California Endovascular electrolytically detachable wire for thrombus formation
EP1005837B1 (en) 1992-02-24 2003-04-23 The Regents Of The University Of California Apparatus for occluding a vascular cavity
JPH07503165A (en) 1992-02-24 1995-04-06 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア A device that creates an occlusion within a blood vessel lumen.
EP0804906B1 (en) 1992-02-24 1999-01-07 The Regents Of The University Of California Endovascular electrolytically detachable wire for thrombus formation
EP0629125B1 (en) 1992-02-24 1998-06-24 Regents Of The University Of California Microcatheter system
DE69226024T2 (en) 1992-02-24 1999-01-07 Univ California Microcatheter system
EP1323385A3 (en) 1992-02-24 2003-07-16 The Regents of The University of California Endovascular electrolytically detachable wire for thrombus formation
EP1323385A2 (en) 1992-02-24 2003-07-02 The Regents of The University of California Endovascular electrolytically detachable wire for thrombus formation
WO1993016650A1 (en) 1992-02-24 1993-09-02 Regents Of The University Of California Endovascular electrolytically detachable wire for thrombus formation
US5254130A (en) 1992-04-13 1993-10-19 Raychem Corporation Surgical device
US5263964A (en) 1992-05-06 1993-11-23 Coil Partners Ltd. Coaxial traction detachment apparatus and method
US5342387A (en) 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
JP2501389Y2 (en) 1992-07-24 1996-06-19 株式会社ダイクレ Top opener for lorries
US5382261A (en) 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
US5925062A (en) 1992-09-02 1999-07-20 Board Of Regents, The University Of Texas System Intravascular device
US5312415A (en) 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
WO1994006503A1 (en) 1992-09-22 1994-03-31 Target Therapeutics, Inc. Detachable embolic coil assembly
US5306287A (en) 1992-10-30 1994-04-26 Becker James H Heated tissue forceps and method
US5350397A (en) 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
US5891130A (en) 1992-11-13 1999-04-06 Target Therapeutics, Inc. Axially detachable embolic coil assembly
US5718711A (en) 1992-11-18 1998-02-17 Target Therapeutics, Inc. Ultrasoft embolism devices and process for using them
WO1994010936A1 (en) 1992-11-18 1994-05-26 Target Therapeutics, Inc. Ultrasoft embolism devices and process for using
US5826587A (en) 1992-11-18 1998-10-27 Target Therapeutics, Inc. Ultrasoft embolism coils and process for using them
US5690666A (en) 1992-11-18 1997-11-25 Target Therapeutics, Inc. Ultrasoft embolism coils and process for using them
US5454826A (en) 1993-02-26 1995-10-03 Mineluba Co., Ltd. Temporary clip with balloon activation means for controlling blood flow
US5334210A (en) 1993-04-09 1994-08-02 Cook Incorporated Vascular occlusion assembly
US5724534A (en) 1993-06-30 1998-03-03 U.S. Philips Corporation Transferring instructions into DSP memory including testing instructions to determine if they are to be processed by an instruction interpreter or a first kernel
US5423829A (en) 1993-11-03 1995-06-13 Target Therapeutics, Inc. Electrolytically severable joint for endovascular embolic devices
WO1995023558A1 (en) 1994-03-03 1995-09-08 Target Therapeutics, Inc. Method for detecting separation of a vasoocclusion device
WO1995025480A1 (en) 1994-03-18 1995-09-28 Cook Incorporated Helical embolization coil
US5797953A (en) 1994-03-18 1998-08-25 Cook Incorporated Helical embolization coil
US5522836A (en) 1994-06-27 1996-06-04 Target Therapeutics, Inc. Electrolytically severable coil assembly with movable detachment point
US5725552A (en) 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
EP0707830B1 (en) 1994-10-17 2001-02-28 The Regents of the University of California Detachable endovascular occlusion device activated by alternating electric current
AU3429195A (en) 1994-10-17 1996-05-02 Regents Of The University Of California, The Detachable endovascular occlusion device activated by alternating electric current
CA2160640A1 (en) 1994-10-17 1996-04-18 Guido Guglielmi Detachable endovascular occlusion device activated by alternating electric current
DE69520186T2 (en) 1994-10-17 2001-06-21 Univ California Detachable endovascular occlusion device activated by AC
AU704583B2 (en) 1994-10-17 1999-04-29 Regents Of The University Of California, The Detachable endovascular occlusion device activated by alternating electric current
JPH08196544A (en) 1994-10-17 1996-08-06 Univ California Intratubal occlusion device and tubal occlusion forming method
EP0707830A1 (en) 1994-10-17 1996-04-24 The Regents Of The University Of California Detachable endovascular occlusion device activated by alternating electric current
US5814062A (en) 1994-12-22 1998-09-29 Target Therapeutics, Inc. Implant delivery assembly with expandable coupling/decoupling mechanism
US6238415B1 (en) 1994-12-22 2001-05-29 Target Therapeutics, Inc Implant delivery assembly with expandable coupling/decoupling mechanism
US5891128A (en) 1994-12-30 1999-04-06 Target Therapeutics, Inc. Solderless electrolytically severable joint for detachable devices placed within the mammalian body
US5891155A (en) 1995-01-27 1999-04-06 Scimed Life Systems, Inc. Embolizing system
US5645558A (en) 1995-04-20 1997-07-08 Medical University Of South Carolina Anatomically shaped vasoocclusive device and method of making the same
US5766219A (en) 1995-04-20 1998-06-16 Musc Foundation For Research Development Anatomically shaped vasoocclusive device and method for deploying same
US5645564A (en) 1995-05-22 1997-07-08 Regents Of The University Of California Microfabricated therapeutic actuator mechanisms
NO962745L (en) 1995-06-30 1997-01-02 Univ California Method and apparatus for intravascular heat treatment of thrombosis and heat treatment of cancer
DE69627243T2 (en) 1995-06-30 2004-01-29 Univ California Device for thermal endovascular treatment
JPH0998981A (en) 1995-06-30 1997-04-15 Univ California Method and device for intravascular thermal thrombophilia and thermal cancer treatment
AU5624496A (en) 1995-06-30 1997-01-09 Regents Of The University Of California, The Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
EP0750886B1 (en) 1995-06-30 2003-04-09 The Regents Of The University Of California Apparatus for endovascular thermal treatment
CA2179863C (en) 1995-06-30 2001-09-11 Guido Guglielmi Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
JP3131386B2 (en) 1995-06-30 2001-01-31 ザ リージェンツ オブ ザ ユニバーシテイ オブ カリフォルニア Device for intravascular thermal thrombosis and thermal cancer treatment
EP0750886A1 (en) 1995-06-30 1997-01-02 The Regents Of The University Of California Apparatus for endovascular thermal treatment
US5743905A (en) 1995-07-07 1998-04-28 Target Therapeutics, Inc. Partially insulated occlusion device
US5609608A (en) 1995-10-27 1997-03-11 Regents Of The University Of California Miniature plastic gripper and fabrication method
US5882334A (en) 1995-12-04 1999-03-16 Target Therapeutics, Inc. Balloon/delivery catheter assembly with adjustable balloon positioning
US6063220A (en) 1995-12-22 2000-05-16 Tetra Laval Holdings & Finance S.A. Method and an apparatus using ultrasound for fixedly welding a circular material blank
US5733294A (en) 1996-02-28 1998-03-31 B. Braun Medical, Inc. Self expanding cardiovascular occlusion device, method of using and method of making the same
WO1997048351A1 (en) 1996-06-21 1997-12-24 Medical University Of South Carolina In situ formable and self-forming intravascular flow modifier (ifm), catheter and ifm assembly, and method for deployment of same
WO1998002100A1 (en) 1996-07-16 1998-01-22 Anson Medical Limited Surgical implants and delivery systems therefor
US5972019A (en) 1996-07-25 1999-10-26 Target Therapeutics, Inc. Mechanical clot treatment device
WO1998004196A1 (en) 1996-07-25 1998-02-05 Haviv Toledano A flexible annular stapler for closed surgery of hollow organs
US6168592B1 (en) 1996-07-26 2001-01-02 Target Therapeutics, Inc. Aneurysm closure device assembly
US6344041B1 (en) 1996-07-26 2002-02-05 David Kupiecki Aneurysm closure device assembly
US5980514A (en) 1996-07-26 1999-11-09 Target Therapeutics, Inc. Aneurysm closure device assembly
US6096034A (en) 1996-07-26 2000-08-01 Target Therapeutics, Inc. Aneurysm closure device assembly
WO1998004195A1 (en) 1996-07-29 1998-02-05 Sergey Popov Purse string suture apparatus
WO1998004198A1 (en) 1996-07-31 1998-02-05 Micro Therapeutics, Inc. Method and apparatus for intravascular embolization
WO1998004315A1 (en) 1996-07-31 1998-02-05 Micro Therapeutics, Inc. Method and apparatus for intravascular embolization
US5895391A (en) 1996-09-27 1999-04-20 Target Therapeutics, Inc. Ball lock joint and introducer for vaso-occlusive member
US5800454A (en) 1997-03-17 1998-09-01 Sarcos, Inc. Catheter deliverable coiled wire thromboginic apparatus and method
US5911717A (en) 1997-03-17 1999-06-15 Precision Vascular Systems, Inc. Catheter deliverable thrombogenic apparatus and method
US5944733A (en) 1997-07-14 1999-08-31 Target Therapeutics, Inc. Controlled detachable vasoocclusive member using mechanical junction and friction-enhancing member
US5916235A (en) 1997-08-13 1999-06-29 The Regents Of The University Of California Apparatus and method for the use of detachable coils in vascular aneurysms and body cavities
US6468266B1 (en) 1997-08-29 2002-10-22 Scimed Life Systems, Inc. Fast detaching electrically isolated implant
US6168615B1 (en) 1998-05-04 2001-01-02 Micrus Corporation Method and apparatus for occlusion and reinforcement of aneurysms
WO2001032085A1 (en) 1999-10-30 2001-05-10 Dendron Gmbh Device for implanting occlusion coils
WO2002014408A3 (en) 2000-08-16 2002-05-02 Honeywell Int Inc Impact resistant rigid composite and method of manufacture
WO2003017852A1 (en) 2001-08-27 2003-03-06 Dendron Gmbh Device for the implantation of occlusion means
JP3152399U (en) 2009-05-19 2009-07-30 株式会社シーテックセンター熊本 Locking device for paper, etc.

Non-Patent Citations (296)

* Cited by examiner, † Cited by third party
Title
"All Things Considered," of NPR, Jun. 28, 2000, Hour 1, pp. 10-20.
"Amendment in 07/492,717," Aug. 7, 1991, pp. 8.
"Amendment Under 37 C.F.R. § 1.111 in 08/147,529," Jun. 30, 1994, pp. 1-12.
"Dendron Electrolytically Detachable Coil (EDC II) Package Info.," 8 pages.
"Dendron Electrolytically Detachable Coils," Dendron GmbH, pp. 1-5, & Jul. 23, 2001.
"Dendron New Positioning System for the EDC II and VDS: Technical Note," 2 pages.
"Device for the Implantation of Occlusion Means," pp. 1-27.
"Excelsior 1018 Microcatheter," Boston Scientific Therapeutic, 2000, 4 pages.
"Guglielmi Detachable Coil (GDC®) Product Information Summary," 36 pages.
"Prowler Select: Microcatheter Select Performance," Cordis, 3 pages.
"Renegade Fiber Braided Microcatheter," Boston Scientific Target, 1998, 4 pages.
"Seeker Flexible 16," Target Therapeutics, 1 page.
"Seeker Lite(TM)-10 Steerable Guidewire," Target Therapeutics, 1 page.
"Seeker® Standard 14 Steerable Guidewire," Target Therapeutics, 1 page.
"Spinnaker(TM) 1.8F-L w/Hydrolene® Flow Directed Catheter," Target Therapeutics, 1 page.
"Target Therapeutics: Recommended Start Up Products: Guglielmi Detachable Coil (GDC) (Investigational Device)," 1 page.
"Tracker®-18 Hi-Flow Infusion Catheter Applications," Target Therapeutics, 1 page.
"Tracker®-18 Hi-Flow Infusion Catheter Specifications," Target Therapeutics, 1 page.
"Tracker®Excel(TM) -14 Microcatheter Engineered for GDC® Coil Delivery," Boston Scientific Target, 1998, 4 pages.
"Reaction to the Inventive Step Arguments From the Groeneveld Report of Nov. 4, 2002 on EP-B-0 484 468, EP-B-0 800 790, EP-B-0 804 905 in the case EV3 et al. / The Regents & Boston," 11 pages.
"Replication of the Thompson et al. Transcatheter Electrocoagulation Experimental Evaluation of the Anode Experiments," Apr. 30, 2003, 16 pages.
"Seeker Lite™—10 Steerable Guidewire," Target Therapeutics, 1 page.
"Spinnaker™ 1.8F-L w/Hydrolene® Flow Directed Catheter," Target Therapeutics, 1 page.
"Third Amendment After Final in 10/170,897," Dec. 2, 2002, 4 pages.
"Tracker®Excel™ —14 Microcatheter Engineered for GDC® Coil Delivery," Boston Scientific Target, 1998, 4 pages.
Abramson, H.A., "A Possible Relationship Between the Current of Injury and the White-Blood Cell in Inflamation," American J. Medical Sciences, 1924, pp. 702-711, vol. CLXVII.
Alksne et al. "Stereotaxic Occlusion of 22 Consecutive Anterior Communicating Artery Anuerysms," J. Neurosurg., 1980, pp. 790-793, vol. 52.
Almgard, L.E. et al., "Embolic Occlusion of an Intrarenal Aneurysm: A Case Report," British Journal of Urology, 1973, pp. 485-486, vol. 45.
Amplatz, K., "A New, Simple Test for Thrombogenicity," Radiology, Jul.-Sep. 1976, pp. 53-55, vol. 120.
Amplatz, K., "Vessel Occlusion With Transcatheter Electrocoagulation: Negative Results," pp. 253-255.
Anderson et al., "Transcatheter Intravascular Coil Occlusion of Experimental Arteriovenous Fistulas," Am. J. Roentgenology, Oct./Nov. 1977, pp. 795-798, vol. 129.
Anderson, J. H. et al., "Mini Gianturco Stainless Steel Coils for Transcatheter Vascular Occlusion," Radiology, Aug. 1979, pp. 301-303, vol. 132, No. 2.
Araki et al., "Electrically Induced Thrombosis for the Treatment of Intracranial Aneurysms and Angiomas," Department of Neurosurgery, Kyoto University Medical School, Kyoto, Japan, pp. 651-654.
Araki, C. et al., "Electrically Induced Thrombosis for the Treatment of Intracranial Aneurysms and Angiomas," Proceedings of the Third International Congress of Neurological Surgery, Aug. 23-27, 1965, pp. 651-654.
ASNR Section, Highlights of the 28th Annual Meeting of the American Society of Neuroradiology, Los Angeles, CA, Mar. 19-23, pp. 1057-1069, 1990.
Auger, R. G. et al., "Management of Unruptured Intracranial Aneurysms;" J. Stroke Cerebrovasc. Dis., 1991, pp. 174-181, vol. 1, No. 4.
Ausman, J. I. et al., "Current Management of Cerebral Aneurysms: Is It Based on Facts or Myths?" Surg. Neurol., 1985, pp. 625-634, vol. 24.
Barth, K. H. et al., "Chronic Vascular Reactions to Steel Coil Occlusion Devices," Am. J. Roentgenol., Sep. 1978, pp. 455-458, vol. 131.
Bavinzski, G. et al., "Gross and Microscopic Histopathological Findings in Aneurysms of the Human Brain Treated With Guglielmi Detachable Coils," J. Neurosurg., Jul. 1999, pp. 284-293, vol. 91, No. 1.
Bendok, B. et al., "Coil Embolization of Intracranial Aneurysms," Neurosurgery, May 2003, pp. 1125-1130, vol. 52, No. 5.
Berenstein, A., "Embolization of Spinal Cord AVMS," 4 pages.
Berenstein, A., "Tissue Response to Guglielmi Detachable Coils: Present Implications and Future Developments," AJNR, Apr. 1999, vol. 20.
Berenstein, A., et al., "Transvascular Treatment of Giant Aneurysms of the Cavernous Carotid and Vertebral Arteries," Surg Neurol, 1984, pp. 3-12, vol. 21.
Billmeyer, F.W., "Textbook of Polymer Science," 1961, pp. 108-113.
Blakemore, A. H. et al., "Electrothermic Coagulation of Aortic Aneurysms," The Journal of the American Medical Association, Oct. 1, 1938, pp. 1821-1827, vol. III, No. 20.
Blakemore, A.H., "Progressive Constrictive Occlusion of the Abdominal Aorta With Wiring and Electrothermic Coagulation," Annals of Surgery, Jan.-Jun. 1951, pp. 447-462, vol. 133.
Braun et al. "Use of Coils for Transcatheter Carotid Occlusion," AJNR, Dec. 1985, pp. 953-956, vol. 6.
Brendler, H. "Early Days of Urology at Mount Sinai," Urology, Jun. 1974, pp. 246-250, vol. III, No. 6.
Brunelle, F. et al., "A Bipolar Electrode for Vascular Electrocoagulation With Alternating Current," Radiology, Oct.-Dec. 1980, pp. 239-240, vol. 137.
Brunelle, F. et al., "Micro Stainless Steel Coils for Transcatheter Vascular Occlusion in Children," Pediatr. Radiol., 1983, pp. 332-334, vol. 13.
Bursch, J. H. et al., "Assessment of Arterial Blood Flow Measurement by Digital Angiography," Radiology, Oct. 1981, pp. 39-47, vol. 141.
Butto, F. et al., "Coil-In-Coil Technique for Vascular Embolization," Radiology, Nov. 1986, pp. 554-555, vol. 161.
Byrne et al., "The Nature of Thrombosis Induced by Platinum and Tungsten Coils in Saccular Aneurisms," AJNR, 1997, pp. 29-33, vol. 18.
Byrne, J.V. et al., "The Nature of Thrombosis Induced by Platinum and Tungsten Coils in Saccular Aneurysms," Am J. Neuroradiology, Jan. 1997, pp. 29-33, vol. 18.
Canadian Patent Application No. 2,055,492, Patent Application File History, 93 pages.
Canadian Patent Application No. 2,160,640 Patent Application Status, 1 page.
Canadian Patent Application No. 2,179,863 Patent Application File History, 39 pages.
Casasco, A. E. et al., "Selective Endovascular Treatment of 71 Intracranial Aneurysms With Platinum Coils," J. Neurosurg., 1993, pp. 3-10, vol. 79.
Casasco, A. et al., "Percutaneous Transvenous Catheterization and Embolization of Vein of Galen Aneurysms," Neurosurgery, 1991, pp. 260-266, vol. 28.
Castaneda-Zuniga et al., "A New Device for the Safe Delivery of Stainless Steel Coils," Radiology, Jul. 1980, pp. 230-131, vol. 136.
Castaneda-Zuniga, W. et al., "A New Device for the Safe Delivery of Stainless Steel Coils," Radiology, Jul. 1980, pp. 230-231, vol. 136.
Castaneda-Zuniga, W. R. et al., "Experimental Venous Occlusion With Stainless Steel Spiders," Radiology, Oct.-Dec. 1981, pp. 238-242, vol. 141.
Castaneda-Zuniga, W. R. et al., "Nonsurgical Closure of Large Arteriovenous Fistulas," JAMA, Dec. 6, 1976, pp. 2649-2650, vol. 236, No. 23.
Castaneda-Zuniga, W. R. et al., "Single Barbed Stainless Steel Coils for Venous Occlusion a Single But Useful Modification," Investigative Radiology, Mar.-Apr. 1982, pp. 186-188, vol. 17, No. 2.
Castaneda-Zuniga, W. R. et al., "Therapeutic Embolization of Facial Arteriovenous Fistulae," Radiology, Jul.-Sep. 1979, pp. 599-602, vol. 132.
Castaneda-Zuniga, W.R. et al., "A Rare Source of Pulmonary Embolization in Catheterization Procedures," Radiology, Oct.-Dec. 1981, pp. 237-242, vol. 141.
Castañeda-Zuniga, WR; M Epstein, et al. "Embolization of Multiple Pulmonary Artery Fistulas," Radiology 134:309-10, Feb. 1980.
Castel, J. C. et al., "Les Anevrysmes > Intracraniens Sus-Tentoriels-Pieges Diagnostiques," J. Neuroradiology, 1985, pp. 135-149, vol. 12.
Castel, J. C. et al., "Les Anevrysmes <<Hypergeants>> Intracraniens Sus-Tentoriels—Pieges Diagnostiques," J. Neuroradiology, 1985, pp. 135-149, vol. 12.
Castro, E. et al., "Long-Term Histopathologic Findings in Two Cerebral Aneurysms Embolized With Guglielemi Detachable Coils," AJRN, Apr. 1999, pp. 549-552, vol. 20.
Choi, I., "Spinal Cord Tumors," pp. 57-61.
Chuang, V. P. et al., "A New Improved Coil for Tapered-Tip Catheter for Arterial Occlusion," Radiology, May 1980, pp. 507-509, vol. 135.
Claiborne Johnston et al. "Recommendations for the Endovascular Treatment of Intracranial Aneurysms," Stroke, 2002, pp. 2536-2544, vol. 33.
Cook Catalog with Hilal-Coils, 1988, pp. 1-5.
Cragg et al. "Nonsurgical Placement of Arterial Endoprostheses: A New Technique Using Nitinol Wire", Radiology, Apr. 1983, pp. 261-263, vol. 147.
Davis, P., "Southeastern Neuroradiological Society: 15th Annual Meeting, Oct. 2-6, 1991, Williamsburg, VA," AJNR, May/Jun. 1992, p. 1038, vol. 13.
de los Reyes, R. A. et al., "Transcallosal, Transventricular Approach to a Basilar Apex Aneurysm," Neurosurgery, Sep. 1992, p. 397, vol. 31, No. 3.
Debrun et al. "Detachable Balloon and Calibrated-leak balloon techniques in the treatment of cerebral vascular lesions," J. Neurosurg, 1978, pp. 635-649, vol. 49.
Debrun, G. et al., "Experimental Approach to the Treatment of Carotid Cavernous Fistulas with an Inflatable and Isolated Balloon," Neuroradiology, 1975, pp. 9-12, vol. 9.
Debrun, G., "Dural AVM's of The Cavemous Sinus Region: Clinical Presentation, Angiographic Evaluation, Embolization and Complications," 2 pages.
Disclosure of Expert Testimony of Dr. Randall T. Higashida Under Fed. R. Civ. P. 26(A)(2), 198 pages.
Donauer et al., "Intracranial Aneurysms: The surgical and Endovascular Approach," Dendron, 2002, Lanzer and Topol eds., Springer Verlag, pp. 1154-1216.
Dovey et al. "Guglielmi Detachable Coiling for Intracranial Aneurysms," Arch Neurol., 2001, pp. 559-564, vol. 58.
Dowd et al. "Endovascular Coil Embolization of Unusual Posterior Inferior Cerebellar Artery Aneurysms," Neurosurgery, 1990, pp. 954-961, vol. 27.
Eskridge, J. M. et al., "Endovascular Embolization of 150 Basilar Tip Aneurysms With Guglielmi Detachable Coils: Results of the Food and Drug Administration Multicenter Clinical Trial," J. Neurosurg., Jul. 1998, pp. 81-86, vol. 89.
Formanek, A. et al., "Transcatheter Embolization (Interventive Radiology) In The Pediatric Age Group and Adolescent," Annales De Radiologie Medecine Nuceaire, Jan.-Feb. 1979, pp. 150-159, No. 1.
Fox, A., "Highlights of the First Congress of the World Federation of Interventional and Therapeutic Neuroradiology, Oct. 11-13, 1991, Zurich, Switzerland," pp. 1021-1023.
Fox, A., "Notes on the Working Group in Interventional Neuroradiology," AJNR, Jan. 13-20, 1990, pp. 840-841, vol. 11.
Fox, A.J. et al., "Use of Detachable Balloons for Proximal Artery Occlusion in the Treatment of Unclippable Cerebral Aneurysms," J Neurosurg, 1987, pp. 40-46, vol. 66.
Frazer, H., "Balloons and Electricity: Treating Brain Aneurysms," Diagnostic Imaging, Jul. 1990, pp. 115-117.
Gangarosa, E.J. et al., "Ristocetin-Induced Thrombocytopenia: Site and Mechanism of Action," A.M.A. Archives of Internal Medicine, 1960, pp. 83-89, vol. 105.
Gelfand, D. W. et al., "Gastric Ulcer Scars," Radiology, Jul. 1981, pp. 37-43, vol. 140, No. 1.
Gianturco et al., "Mechanical Devices for Arterial Occlusion", Am. J. Roentgenology Radium Therapy and Nuclear Medicine (AJR), 1975, pp. 428-435, vol. 124.
Gibbs, J., "Medical Device Investigations Understanding IRB and Informed Consent Requirements," Medical Device & Diagnostic Industry, Jun. 1989, pp. 103-106.
Gold, R. F. et al., "Transarterial Electrocoagulation Therapy of a Pseudoaneurysm in the Head of the Pancreas," Oct. 1975, pp. 422-426.
Goldman, M. L. et al., "Transcatheter Embolization With Bucrylate (In 100 Patients)," RadioGraphics, Aug. 1982, pp. 340-375, vol. 2, No. 3.
Gomes, A.S. et al., "The Use of the Bristle Brush for Transcatheter Embolization," Radiology, Nov. 1978, pp. 345-350, vol. 129.
Graves et al., "Treatment of Carotid Artery Aneurysms With Platinum Coils: An Experimental Study In Dogs," AJNR, 1990, pp. 249-252, vol. 11.
Groeneveld, Y. G., "Rapport Inzake EP-484.468 & EP-800.790 & EP-804.905 Niet-inbreuk & Ongeldigheid," 43 pages.
Guarda, F. et at., "Histological Reactions of Porous Tip Endocardial Electrodes Implanted in Sheep," pp. 267-273.
Guerrisi et al. "L'elettrotrombosi Intravasale Nelle Malformazioni Vascolari Sperimentalmente Provocate," Proceedings of the Bari Congress, Sep. 29/30, 1983, pp. 139-146, translation included.
Guglielm, G., "In Re: Radiologic and Histopathology Evaluation of Canine Artery Occlusion After Collagen-Coated Platinum Microcoil Delivery," Letters, p. 607.
Guglielmi et al., "Electrothrombosis of Saccular Aneurysms Via Endovascular Approach, Part 1: Electrochemical Basis, Technique, and Experimental Results," J. Neurosurg., 1991, pp. 1-7, vol. 75.
Guglielmi et al., "Electrothrombosis of Saccular Aneurysms Via Endovascular Approach, Part 21: Preliminary Clinical Experience," J. Neurosurg., 1991, pp. 8-14, vol. 75.
Guglielmi Record of Invention Disclosure to UC, Jun. 15, 1989.
Guglielmi, G. et al., "Detachable Microcoils in the Endovascular Treatment of Intracranial Aneurysms: Preliminary Clinical Experience," Endovascular Therapy, Session VII/Paper 35, p. 73.
Guglielmi, G. et al., "Endovascular Treatment of Posterior Circulation Aneurysms by Electrothrombosis Using Electrically Detachable Coils," J. Neurosurg., Oct. 1992, pp. 515-524.
Guglielmi, G. et al., "Carotid-Cavernous Fistula Caused by a Ruptured Intracavemous Aneurysm: Endovascular Treatment by Electrothrombosis With Detachable Coils," Neurosurgery, Sep. 1992, pp. 591-597, vol. 31, No. 3.
Guglielmi, G. et al., "Detachable Microcoils in the Endovascular Treatment of Intracranial Aneurysms; Preliminary Clinical Experience."
Guglielmi, G. et al., "Electrothrombosis of Saccular Aneurysms Via Endovascular Approach, Part 2" J. Neurosurg., 1991, pp. 8-14, vol. 75.
Guglielmi, G. et al., "Endovascular Treatment of Intracranial Saccular Aneurysms With Detachable Coils and Electrothrombosis: Experience With 39 Cases," 1992 AANS Annual Meeting San Francisco, CA, Apr. 11-16, 1992.
Guglielmi, G., "Embolization of Intracranial Aneurysms With Detachable Coils and Electrothrombosis," Interventional Neuradiology: Endovascular Therapy of the Central Nervous System, Ed. F. Vinuela et al. Raven Press, New York, 1992, pp. 63-75.
Guglielmi, G., "Endovascular Treatment of Intracranial Aneurysms," Interventional Neuroradiology, May 1992, pp. 269-278, vol. 2, No. 2.
Guglielmi, G., "Generations of Guglielmi Detachable Coils," AJNR, Jun. 1997, p. 1195, vol. 16.
Guglielmi, G., "Historical Note," AJNR, 2002, p. 342, vol. 23.
Guglielmi, G., Vinuela, Becker, D, et al: "Experimental endovascular occlusion of small and medium-sized saccular aneurysms by electrothrombosis. Potential uses in the clinical setting." In: Proceedings of the 58th Annual Meeting of the American Association of Neurological Surgeons, Nashville, Tennessee. Apr.-May 1990. (Presentation).
Gyo, K., "Hilstological Study of Chronic Electrode Implantation Through the Round Window of the Guinea Pig," Acta Otolaryngol (Stockh), 1988, pp. 248-254, vol. 105.
Halbach, V. V. et al., "Embolization of Brain AVMS With Particles," 4 pages.
Halbach, V. V. et al., "Paper 221: Metallic Fragment Emboli Resulting From Treatment With Electrolytically Detachable Coils (GDC)," Proceedings of the American Society of Neuroradiology (ASNR), May 3-7, 1994, pp. 155-156.
Halbach, V.V. et al., "Transvenous Embolization of Direct Carotid Cavernous Fistulas," AJNR, Jul./Aug. 1988, pp. 741-747, vol. 9.
Han, M. et al., "Gas Generation and Clot Formation During Electrolytic Detachment of Guglielmi Detachable Coils: In Vitro Observations and Animal Experiment," AJNR, Mar. 2003, pp. 539-544, vol. 24.
Handley, D. A. et al., "Colloidal Gold Labeling Studies Related to Vascular and Endothelial Function, Hemostasis and Receptor-Mediated Processing of Plasma Macromolecules," European Journal of Cell Biology, 1987, pp. 163-174, vol. 43.
Hanner et al., "Gianturco Coil Embolization of Vein of Galen Aneurysms: Technical Aspects," Radiographics, Sep. 1988, pp. 935-946, vol. 8, No. 5.
Hanner, J. et al., "Gianturco Coil Embolization of Vein of Galen Aneurysms: Technical Aspects," RadioGraphics, Sep. 1988, pp. 935-946, vol. 8, No. 5.
Hare, H. "Wiring With Electrolysis in Saccular Aneurysm," Jour. A.M.A (JAMA), 38:230-232, Jan. 22, 1927.
Hawkins et al., "Retrievable Gianturco-Coil Introducer," Radiology, Jan. 1986, pp. 262-264.
Heilman, C. B. et al., "Elimination of a Cirsoid Aneurysm of the Scalp by Direct Percutaneous Embolization With Thrombogenic Coils," J. Neurosurg., 1990, pp. 296-300, vol. 73.
Heros, R. C., "Intracranial Aneurysms," Minnesota Medicine, Oct. 1990, pp. 27-32, vol. 73.
Hieshima, G. B. et al., "Intracranial Embolotherapy: Plugging Aneurysms With Balloons," Diagnostic Imaging, 1986.
Higashida et al., "Interventional Neurovascular Treatment of a Giant Intracranial Aneurysm Using Platinum Microcoils," Surg. Neurol., Jan. 1991, pp. 64-68, vol. 35, No. 1.
Hilal Coils in Cook Incorporated Catalog, 1988, 9 pages.
Hilal et al., "Synthetic Fiber-Coated Platinum Coils Successfully Used for the Endovascular Treatement of Arteriovenous Malformations, Aneurysms and Direct Arteriovenous Fistulas of the CNS," 26th Annual Meeting, Session 10G, Paper 175, 1988.
Hilal presentation at Stonwin Medical Conference, Scarsdale, NY, Jul. 10-12, 1989."Treatment of Intracranial aneurysms and arteriovenous malformations with preshaped thrombogenic coils". Hilal SK.
Hilal, S. K. et al., "Synthetic Fiber-Coated Platinum Coils Successfully Used for the Endovascular Treatment of Arteriovenous Malformations, Aneurysms and Direct Arteriovenous Fistulas of the CNS," ASNR Twenty-Sixth Annual Meeting, May 15-20, 1988, pp. 224-225.
Hilal, S. K. et al., Endovascular Treatment of Aneurysms With Coils, J. Neurosurg., Feb. 1992, pp. 337-339, vol. 76.
Hodes, J. E. et al., "Endovascular Occlusino of Intracranial Vessels for Curative Treatment of Unclippable Aneurysms: Report of 16 Cases," J. Neurosurg., 1991, pp. 694-701, vol. 75.
Horowitz et al., "Does Electrothrombosis Occur Immediately After Embolization of an Aneurysm With Guglielmi Detachable Coils," AJNR, 1997, pp. 510-513, vol. 18.
Horowitz, M. B. et al., "Scanning Electron Microscopic Findings in a Basilar Tip Aneurysm Embolized With Guglielmi Detachable Coils," AJNR, Apr. 1997, pp. 688-690, vol. 18.
Horowitz, M. et al., "Does Electrothrombosis Occur Immediately After Embolizatlon of an Aneurysm With Guglielmi Detachable Coils," AJNR, Mar. 1997, pp. 510-513, vol. 18.
Hosobuchi, Y., "Electrothrombosis of Carotid-Cavernous Fistula," J. Neurosurg., Jan. 1975, pp. 76-85, vol. 42.
Huckman, M. et al., "Highlights of the 28th Annual Meeting of the American Society of Neuroradiology, Los Angeles, Mar. 19-23, 1990," AJNR, Sep./Oct. 1990, pp. 1057-1068.
Huckman, M. et al., "Meeting Summaries, XIVth Symposium Neuroradiologicum: Jun. 17-23, 1990, the Queen Elizabeth Centre, London," AJNR, Nov./Dec. 1990, pp. 1273-1279, vol. 11.
Huckman, M., "Founding of the Mexican Society of Diagnostic and Therapeutic Neuroradiology (SMNR)," AJNR, May/Jun. 1992, pp. 1024-1026, vol. 13.
Hunner, G.L., "Aneurysm of the Aorta Treated by the Insertion of a Permanent Wire and Galvanism Moore-Corradi Method," Bulletin of the Johns Hopkins Hospital; 1900, pp. 263-279, vol. XI, No. 116.
Ison, K. T., "Platinum and Platinum/Iridium Electrode Properties When Used for Extracochlear Electrical Stimulation of the Totally Deaf," Medical & Biological Engineering & Computing, Jul. 1987, pp. 403-413, vol. 25.
Ji et al., "Endovascular Electrocoagulation: Concept, Technique, and Experimental Results," AJNR, 1997, pp. 1669-1678, vol. 18.
Johnston, S.C. et al., "Recommendations for the Endovascular Treatment of Intracranial Aneurysms," Stroke, 2002, pp. 2536-2544, vol. 33.
Joseph, GJ. "Platinum Wire Microcoils for Transvascular Embolization with Microcatheter Systems," Radiology, 169(P):341, 1988.
Kassell, N. F. et al., "The International Cooperative Study on the Timing of Aneurysm Surgery," J. Neurosurg., 1990, pp. 18-36, vol. 73.
Kassell, N. F. et al., "Timing of Aneurysm Surgery," Neurosurgery, 1982, pp. 514-519, vol. 10.
Kichikawa, K. et al., "Iliac Artery Stenosis and Occlusion: Preliminary Results of Treatment With Gianturco Expandable Metallic Stents," Radiology, pp. 799-802, vol. 177, No. 3.
Konishi et al., "Congenital Fistula of the Dural Carotid-Cavernous Sinus: Case Report and Review of the Literature," Neurosurgery, 1990, pp. 120-125, vol. 27, No. 1.
Konishi Y. et al., "Evaluation of Acute Thrombogenesis of Microcoil for Treatment of Experimental Aneurysms," 1 page.
Kwan, E.S.K. et al., "Enlargement of Basilar Artery Aneurysms Following Balloon Occlusion-"Water Hammer Effect"" J Neurosurg, 1991, pp. 963-968, vol. 75.
Lammer, J. "Biliary Endoprostheses," Radiologic Clinics of North America, Nov. 1990, pp. 1211-1222, vol. 28, No. 6.
Lane, B. et al., "Coil Embolization of an Acutely Ruptuired Saccular Aneurysm," AJNR, Nov./Dec. 1991, pp. 1067-1069, vol. 12.
Leonardi, M., "A History of Neuroradiology in Italy," AJNR, Apr. 1996, pp. 721-730, vol. 17.
Linton, R. et al., "Treatment of Thoracic Aortic Aneurysms by the "Pack" Method of Intrasaccular Wiring," The New England Journal of Medicine, Jan.-Jun. 1952, pp. 847-855, vol. 246.
Linton, R. R. et al., "Treatment of Thoracic Aortic Aneurysms by The "Pack" Method of Intrasaccular Wiring," The New England Journal of Medicine, Jan.-Jun. 1952, pp. 847-855, vol. 246.
Linton, R., "Intrasaccular Wiring of Abdominalarteriosclerotic Aortic Aneurysms by the "Pack" Method," Angiology, 1951, pp. 485-498, vol. II.
Ljunggren, B. et al., "Early Management of Aneurysmal Subarachnoid Hemorrhage," Neurosurgery, 1981, pp. 412-418, vol. 11, No. 3.
Ljunnggren, B. et al., "Early Operation and Overall Outcome in Aneurysmal Subarachnoid Hemorrhage," J. Neurosurg., Apr. 1985, pp. 547-551, vol. 62.
Loucks, R. B. et al., "The Erosion of Electrodes by Small Currents," Electrocephalography and Clinical Neurophysiology, 159, pp. 823-826, vol. IX.
Lozier, A. P. et al., "Guglielmi Detachable Coil Embolization of Posterior Circulation Aneurysms," Stroke, Oct. 2002, pp. 2509-2518.
Lund et al., "Detachable Steel Spring Coils for Vessel Occlusion," Radiology, May 1985, p. 530, vol. 155.
Lund, G. et al., "Detachable Stainless-Steel Spider," Radiology, Aug. 1983, pp. 567-568, vol. 148, No. 2.
Lylyk et al., "Therapeutic Alternatives for Vein of Galen Vascular Malformations," J. Neurosurg., Mar. 1993, pp. 438-445, vol. 78.
Lylyk, P. et al., "Therapeutic Alternatives for Vein of Galen Vascular Malformations," J. Nurosurg., Mar. 1993, pp. 438-445, vol. 78.
Malisch, T. et al., "What You Should Know About Aneurysms," brochure, 6 pages.
Manabe, H. et al., "Embolisation of Ruptured Cerebral Aneurysms With Interlocking Detachable Coils in Acute Stage," Interventional Neuroradiology, 1997, pp. 49-63, vol. 3.
Marshall, M. W. et al., "Ferromagnetism and Magnetic Resonance Artifacts of Platinum Embolization Microcoils," Cardiovasc. Intervent. Radiol., 1991, pp. 163-166, vol. 14.
Marsman et al., "A Safe Technique for the Delivery of ‘Mini’ Gianturco Stainless Steel Coils," Diagnostic Imaging, 1981, pp. 43-46, vol. 50.
Marsman, "Evaluation of a New Distal Delivery Guidewire for Steel Coils," Europ. J. Radiol., 2:250-253, 1982.
Marsman, J.W.P. et al., "A Safe Technique for the Delivery of 'Mini' Gianturco Stainless Steel Coils," Diagnostic Imaging, 1981, pp. 43-46, vol. 50.
Massoud, T.F. et al., "Laboratory Simulations and Training in Endovascular Embolotherapy with a Swine Arteriovenous Malformation Model," AJNR, Feb. 1996, pp. 271-279, vol. 17.
Mazer, M. J. et al., "Therapeutic Embolization of the Renal Artery With Gianturco Coils: Limitations and Technical Pitfalls," Radiology, Jan. 1981, pp. 37-46, vol. 138.
McAlister et al., "Occlusion of Acquired Renal Arteriovenous Fistula With Transcatheter Electrocoagulation," Am. J. Roentgenol., Jun. 1979, pp. 998-1000, vol. 132.
McAlister et al., "Transcatheter Electrocoagulation of the Pulmonary Artery: An Experimental Model in Dogs for Studying Pulmonary Thrombosis," Invest Radiol., 1981, pp. 289-297, vol. 16.
McAlister, D.S. et al., "Occlusion of Acquired Renal Arteriovenous Fistula With Transcatheter Electrocoagulation," AJR, Jun. 1979, pp. 998-1000, vol. 132.
McConnell, A. A., "Subchiasmal Aneurysm Treated by Implantation of Muscle," Zentralblatt Fur Neurochirurgie, 1937, pp. 269-274, No. 5-6.
McDermott, J. C. et al., "Review of the Uses of Digital Roadmap Techniques in Interventional Radiology," CIRSE-SCVIR, Jun. 12-17, 168, pp. 11-13.
McDougall, C. G. et al., "Endovascular Treatment of Basilar Tip Aneurysms Using Electrolytically Detachable Coils," J. Neurosurg., Mar. 1996, pp. 393-399, vol. 84.
McDougall, C.G. et al., "Causes and Management of Aneurysmal Hemmorage Occurring During Embolization With Guglielmi Detachable Coils," J. Neurosurg., 1998, pp. 87-92, vol. 89.
McKissock, W., "Anterior Communicating Aneurysms a Trial of Conservative and Surgical Treatment," The Lancet, Apr. 24, 1965, pp. 873-876.
MDR Database, Brand Name 10 Unibody Infusion Catheter, May 1991, Access No. M231556.
MDR Database, Brand Name Flex-Tip Guidewire and Tracker Hi-Flow, 1998, Access No. M162232.
MDR Database, Brand Name Target Therapeutics Coil Pusher 16, Dec. 1989, Access No. M181514.
MDR Database, Brand Name Target Therapeutics Coil Pusher 16, Jan. 1990, Access No. M183709.
MDR Database, Brand Name Target Therapeutics Tracker 18 Catheter, 1991, Access No. M235647.
MDR Database, Brand Name Target Therapeutics Tracker 18 LF Catheter, 1990, Access No. M220254.
MDR Database, Brand Name Target Therapeutics Tracker 18 Unibody Catheter, Oct. 1991, Access No. M246650.
MDR Database, Brand Name Target Therapeutics, 1990, Access No. M183708.
MDR Database, Brand Name Tracker 18 Dual Marker, Jan. 1992, Access No. M264109.
Mehringer, C.M. et al., "Therapeutic Embolizatlon for Vascular Trauma of the Head and Neck," AJNR, pp. 137-142, Mar.-Apr. 1983, vol. 4.
Mickle, J.P. et al., "The Transtorcular Embolization of Vein of Galen Aneurysms," J. Neurosurg., May 1986, vol. 64., pp. 731-735.
Micropaw 20 Micro-Plasma Welding Systems, 1 page.
Miller et al., "Clinical Use of Transcatheter Electrocoagulation," Radiol.,1978, pp. 211-214, vol. 129.
Miller, D.L., "Arterial Occlusion With Coils," Arch. Intern. Med., Sep. 1985, p. 1737, vol. 145.
Mizoi, K. et al., "A Pitfall in the Surgery of a Recurrent Aneurysm After Coil Embolization and its Histological Observation: Technical Case Report" Neurosurgery, Jul. 1996, vol. 39, No. 1.
Molyneux, A. J. et al., "Histological Findings in Giant Aneurysms Treated With Guglielmi Detachable Coils," J. Neurosurg., 1995, pp. 129-132, vol. 83.
Morag et al., "The Role of Spermatic Venography After Surgical High Ligation of the Left Spermatic Veins: Diagnosis and Percutaneous Occlusion," Urologic Radiology, 1985, pp. 32-34, vol. 7.
Morse et al., "Platinum Microcoils for Therapeutic Embolization: Nonneuroradiologic Applications," AJR, 1990, pp. 401-403, vol. 155.
Mullan et al., "Electrically Inducted Thrombosis in Intracranial Aneurysms," J. Neurosurg., Jan.-Jun. 1965, pp. 539-547, vol. 22.
Mullan et al., "Stereotactic Copper electric Thrombosis of Intracranial Aneurysms," Progr. Nuerol. Surg., 1969, pp. 193-211, vol. 2.
Mullan, S. et al., "Simplified Thrombosis of a Large, Hypertrophic Hemangioma of the Scalp," J. Neurosurg., 1964, pp. 68-72, vol. XXI.
Mullan, S., "Experiences with Surgical Thrombosis of Intracranial Berry Aneurysms and Cartotid Cavemour Fistulas," J. Neurosurg., 1974, pp. 657-670, vol. 41.
Murayama, Y. et al., "Ion Implantation: A New Experimental Approach to Surface Modification of Electrolytically Detachable Coils," 1 page.
Murayama, Y. et al., "Guglielmi Detachable Coil Embolization of Cerebral Aneurysms: 11 Years' Experience," J. Neurosurg., 2003, pp. 959-966, vol. 98.
Nahser, H. C. et al., "Okklusion Von Aneurysmata Mit Platincoils," Neuroradiologie des Alfred-Krupp-Krankenhauses, pp. 203-207.
Nakahara, I. et al., "Endovascular Coil Embolization of a Recurrent Giant Internal Carotid Artery Aneurysm Via a Posterior Communicating Artery After Cervical Carotid Litigation: Case Report," Surg. Neurol., 1992, pp. 57-61, vol. 38.
Nakahara, I. et al., "Treatment of Giant Anterior Communicating Artery Aneurysm Via An Endovascular Approach Using Detachable Balloons and Occlusive Coils," AJNR, Nov./Dec. 1990, pp. 1195-1197, vol. 11.
Nancarrow, P. A. et al., "Stability of Coil Emboli: An In Vitro Study," Cardiovasc. Intervent. Radiol., 1987, pp. 226-229, vol. 10.
NASA Tech Briefs; "Implantable Electrode for Critical Locations," Aug. 1990, p. 74.
Nishioka H. et al., "Cooperative Study of Intracranial Aneurysms and Subarachnoid Hemorrhage: A Long-Term Prognostic Study," Arch. Neurol., Nov. 1984, vol. 41.
Numoguchi, Y. et al., "Platinum Coil Treatment of Complex Aneurysms of the Vertebrobasilar Circulation," Neuroradiology, 1992, pp. 252-255, vol. 34.
Okazaki, M. et al., "A Coaxial Catheter and Steerable Guidewire Used to Embolize Branches of the Splanchnic Arteries," AJR, Aug. 1990, pp. 405-406, vol. 155.
O'Reilly, G. V. et al., "Transcatheter Fiberoptic Laser Coagulation of Blood Vessels," Radiology, Mar. 1982, pp. 777-779, vol. 142, No. 3.
Ovitt et al., "Guide Wire Thrombogenicity and its Reduction," Radiology, 1974, pp. 43-46, vol. 111, No. 1.
Padolecchia, R. et al., "Role of Electrothrombosis in Aneurysm Treatment With Guglielmi Detachable Coils: An In Vitro Scanning Electron Microscopic Study," AJNR, Oct. 2001, pp. 1757-1760, vol. 22.
Pakarinen, S., "Incidence, Aetiology and Prognosis of Primary Surarachnoid Haemorrhage," Acta Neurologica Scandinavica, 1967, pp. 9-128, Supplementum 29, vol. 43.
Parsonnet, V. et al., "Corrosion of Pacemaker Electrodes," Pace, May-Jun. 1981, pp. 289-297, vol. 4.
Peerless, S. J. et al., "Giant Intracranial Aneurysms," Vascular Disease, Chapter 57, 1987, pp. 1742-1763.
Peterson, E. W. et al., (abstract) "291. Electrically Induced Thrombosis of the Cavernous Sinus in the Treatment of Carotid Cavernous Fistula," Fourth Intematinal Congress of Neurological Surgery Ninth International Congress of Neurology, Sep. 20-27, 1969, p. 105.
Pevsner, Paul. "Micro-Balloon Catheter for Superselective Angiography and Therapeutic Occlusion," AMJR, Feb. 1977, pp. 225-230, vol. 128.
Phillips, J., "Transcatheter Electrocoagulation of Blood Vessels," Invest Rad., 1973, pp. 295-304, vol. 8.
Phillips, J.F. et al., "Experimental Closure of Arteriovenous Fistula by Transcatheter Electrocoagulation," Diagnostic Radiology May 1975, pp. 319-321, vol. 115.
Phillips, J.F., "Transcatheter Electrocoagulation of Blood Vessels," Investigative Radiology, Sep.-Oct. 1973, pp. 295-304, vol. 8.
Philpott et al., "The Mechanism of Transcatheter Electrocoagulation (TCEC)," Investigative Radiology, 1983, pp. 100-104, vol. 18.
Piton et al., "Embolisation Par Courant Electrique Continu : ECEC," J. Radiol., 1979, pp. 799-808, vol. 60, No. 12 (including English translation).
Piton et al., "Selective Vascular Thrombosis Induced by a Direct Electrical Current: animal experiments," J. Neuroradiology, 1978, pp. 139-152, vol. 5.
Piton et al., "Vascular Thrombosis Induced by Direct Electrical Current," Neuroradiology, 1978, pp. 385-388, vol. 16.
Probst, P. et al., "Nonsurgical Treatment of Splenic-Artery Aneurysms," Radiology, Jul.-Sep. 1978, pp. 619-623, vol. 128.
Probst, P. et al., "Which Embolic Material is Best Suited for Which Embolization Procedure?" Fortschr. Rontgenstr., 1978, pp. 447-454, vol. 129, No. 4.
Purdy, P.D., "Imaging Cerebral Blood Flow in Interventional Neuroradiology: Choice of Technique and Indications," AJNR, May/Jun. 1991, pp. 424-427, vol. 12.
Quereshi, A.I. et al., "Endovascular Treatment of Intracranial Aneurysms by Using Guglielmi Detachable Coils in Awake Patients: Safety and Feasability," Neurosurgery Focus, May 2001, pp. 1-6, vol. 10, No. 5.
Quinn, S. F. et al., "Complications From 0.018-in. Floppy Platinum-Tip Guidewires," AJR, May 1990, pp. 1103-1104, vol. 154.
Qureshi et al., "Endovascular Treatment of Intracranial Aneurysm by Using Guglielmi Detachable Coils in Awake Patients: Safety and Feasability," Neurosurg. Focus, 2001, pp. 1-6, vol. 10, No. 5.
Ralston, M. D. et al., "Effect of Increasing Current and Decreasing Blood Flow for Transcatheter Electrocoagulation (TCEC)," Investigative Radiology, Mar.-Apr. 1982, pp. 171-177, vol. 17, No. 2.
Rao, V. R. et al., "Embolization of Large Saccular Aneurysms With Gianturco Coils," Radiology, 1990, pp. 407-410, vol. 175.
Reul, J. et al., "Long-Term Angiographic and Histopathologic Findings in Experimental Aneurysms of the Carotid Bifurcation Embolized With Platinum and Tungsten Coils," AJRN, Jan. 1997, pp. 35-42, vol. 18.
Rodriguez, F., "Principles of Polymer Systems," Second Edition, 1982, pp. 534-537.
Rufenacht, D. et al., "Principles and Methodology of Intracranial Endovascular Access," Interventional Neuroradiology, May 1992, pp. 251-268, vol. 2, No. 2.
Ruscalleda, J. et al., "Neuroradiological Features of Intracranial and Intraorbital Meningeal Haemangiopericytomas," Neuroradiology, 1994, pp. 440-445, vol. 36.
Russell, E., "Highlights of The Scientific Exhibits of the 29th Annual Meeting of the American Society of Neuroradiology, Washington, D.C., Jun. 9-14, 1991," pp. 1251-1257.
Sadato et al., "Treatment of a Spontaneous Carotid Cavernous Fistula Using an Electrodetachable Microcoil," AJNR, 1993, pp. 334-336, vol. 14.
Sadato, A. et al., "Treatment of a Spontaneous Carotid Cavernous Fistula Using an Electrodetachable Microcoil," AJNR, Mar./Apr. 1993, pp. 334-336, vol. 14.
Sadato, A. et al., "Immediately Detachable Coil for Aneurysm Treatment," AJRN, Aug. 1995, pp. 1459-1462, vol. 16.
Salazar, A. E., "Experimental Myocardial Infarction," Circulation Research, Nov. 1961, vol. IX.
Samuelsson L. et al., "Electrolytic Destruction of Tissue in the Normal Lung of the Pig," Acta Radiologica Diagnosis, 1981, pp. 9-14, vol. 22.
Samuelsson, L. et al., "Electrocoagulation," Acta Radiologica Diagnosis, 1982, pp. 459-462, vol. 23.
Sawyer et al. "Bio-Electric Phenomena as an Etiological Factor in Intravascular Thrombosis," Am. J. Physiol., 1953, pp. 103-107, vol. 175.
Sawyer, P. N. et al., "Electrical Potential Differences Across the Normal Aorta and Aortic Grafts of Dogs," Am. J. Physiol., Oct. 1953, pp. 113-117, vol. 175.
Serbinenko, F. A., "Balloon Catheterization and Occlusion of Major Cerebral Vessels," J. Neurosurg., Aug. 1974, vol. 41.
Serbinenko, F., "Balloon Catherization and Occlusion of Major Cerebral Vessels," J. Neurosurg., 1974, pp. 125-145, vol. 41.
Setton, A. et al., "Interventional Neuroradiology," Current Opinion in Neurology and Neurosurgery, 1992, pp. 870-880, vol. 5.
Shah, P. M. et al. "Pseudoaneurysm of Anterior Tibial Artery After Occlusion From Blunt Trauma: Nonoperative Management," The Journal of Trauma, 1985, pp. 656-657, vol. 25, No. 7.
Shimizu, S. et al., "Tissue Response of a Small Saccular Aneurysm After Incomplete Occlusion With a Guglielmi Detachable Coil," AJNR, Apr. 1999, pp. 546-548, vol. 20.
Sorteberg, A. et al., "Effect of Guglielmi Detachable Coils on Intraaneurysmal Flow: Experimental Study in Canines," AJNR, Feb. 2002, pp. 288-294, vol. 23.
Sosman, M. C. et al., "Aneurysms of the Internal Carotid Artery and the Circle of Willis, From a Roentgenological Viewpoint," The American Journal of Roentgenology and Radium Therapy, Jan.-Jun. 1926, vol. XV.
Steiner, L., "Gamma Knife Radiosurgery in Arteriovenous Malformations of the Brain," 6 pages.
Strother, C. ed., "Electrothrombosis of Saccular Aneurysms Via Endovascular Approach: Part 1 and Part 2", AJNR, 2002, pp. 1011-1012, vol. 22.
Strother, C., "Electrothrombosis of Saccular Aneurysms Via Endovascular Approach Part 1 and Part 2," AJNR, May 2001, pp. 1010-1012, vol. 22.
Strother, C.M., "Electrothrombosls of Saccular Aneurysms Via Endovascular Approach: Part 1 and Part 2," Historical Perspective, AJNR, May 2001, pp. 1011-1012, vol. 22.
Taki et al., "Radiopaque Solidifying Liquids for Releasable Balloon Technique: A Technique Note," Surg. Neurol., 1980, pp. 140-142, vol. 13.
Taki et al., "Selection and Combination of Various Endovascular Techniques in the Treatment of Giant Aneurysms," J. Neurosurg., 1992, pp. 37-42, vol. 77.
Taki, W. et al., "Balloon Embolization of a Giant Aneurysm Using a Newly Developed Catheter," Surg. Neurol., Nov. 1979, pp. 363-365, vol. 12.
Taki, W. et al., "Radiopaque Solidifying Liquids for Releasable Balloon Technique: A Technical Note," Surg. Neurol., Feb. 1980, pp. 140-142, vol. 13.
Target Therapeutic Dec. 3, 1991 letter to Food and Drug Administration with Submission of Supplemental IDE-G900241-Detachable Platinum Coil.
Target Therapeutics Catalogue 1993-95, 1997, 2003.
Target Therapeutics, "History of the Guglielmi Detachable Coil," History of the GDC, Oct. 1995, pp. 1-6.
Terbrugge, K., "Duram AVMs of the Posterior Fossa: Clinical Presentation, Classification, Angiographic Evaluation and Treatment," 4 pages.
Thompson et al., "Transcatheter Electrocoagulation: A Therapeutic Angiographic Technique for Vessel Occlusion," Invest. Radiol., 1977, pp. 146-153, vol. 12.
Thompson et al., "Transcatheter Electrocoagulation: Experimentsl Evaluation of the Anode," Invest. Radiol., 1979, pp. 41-47, vol. 14.
Thompson et al., "Vessel Occlusion With Transcatheter Electrocoagulation," Cardio Vasc. Intervent. Radiol., 1980, pp. 244-253, vol. 3.
Thompson et al., "Vessel Occlusion With Transcatheter Electrocoagulation: Initial Clinical Experience," Radiol., 1979, pp. 335-340, vol. 133.
Thompson, W. M. et al., "Vessel Occlusion With Transcatheter Electrocoagulation," Cardiovasc. Intervent. Radiol., 1980, pp. 244-255, vol. 3, No. 4.
Thompson, W. M. et al., "Vessel Occlusion With Transcatheter Electrocoagulation: Initial Clinical Experience," Radiology, Oct. -Dec. 1979, pp. 335-340, vol. 133.
Tragardh, Bengi et al., "Intravascular Electrically Inducted Thrombosis in the Dog," Radiology, Oct.-Dec. 1976, pp. 55-56, vol. 121.
U.S. Appl. No. 07/840,211, filed Feb. 24, 1992, Guglielmi et al.
Vinuela, F. et al., "Electrolytically Detachable Microcoils," AJNR, Mar./Apr. 1993, pp. 337-339, vol. 14.
Vinuela, F. et al., "Embolization of Brain AVMs With Liquids," 4 pages.
Wallace et al., "Therapeutic Vascular Occlusion Utilizing Steel Coil Technique: Clinical Applications," American J. Roentgenology,1976, pp. 381-387, vol. 127.
Wallace, S. et al., "Steel Coil Embolus and its Therapeutic Applications," Abrams Angiography, 1983, pp. 2151-2173, Third Edition, vol. III.
Werner, S. C. et al., "Aneurysm of the Internal Carotid Artery Within the Skull," The Joumal of the American Medical Association, Jan.-Jun. 1941, pp. 578-582, vol. 116.
White Jr., R. I. et al., "Therapeutic Embolization With Long-Term Occluding Agents and Their Effects on Embolized Tissues," Radiology, Dec. 1977, pp. 677-687, vol. 125.
Wiebers, D. O. et al., "Impact of Unruptured Intracranial Aneurysms on Public Health in the United States," Stroke, Oct. 1992, pp. 1416-1419, vol. 23, No. 10.
Wiebers, D. O. et al., "The Significance of Unruptured Intracranial Saccular Aneurysms," J. Neurosurg., Jan. 1987, pp. 23-29, vol. 66.
Workman, M. et al., "Thrombus Formation at the Neck of Cerebral Aneurysms During Treatment With Guglielmi Detachable Coils," Ajnr, Oct. 2002, pp. 1568-1576, vol. 23.
Xinan, H. "Transcatheter Electrocoagulation: A Preliminary Experimental Study," Chinese Journal of Radiology, Apr. 1987, pp. 241-245.
Xinan, H. et al., "Vascular Embolization Utilizing Transcatheter Electrocoagulation In Combination With Steel Coil: An Experimental Study," Chinese Journal of Radiology, Mar. 1988, pp. 180-183.
Yang et al., "Platinum Wire: A New Transvascular Embolic Agent," AJNR, May/Jun. 1988, pp. 547-550, vol. 9.
Yoneda, S. et al., "Electrothrombosis of Ateriovenous Malformation," Neurologia Medico-Chirurgica, 1997, pp. 19-28, vol. 17, Part I, No. 1.
Yoneda, S. et al., "Treatment of Spontaneous Carotid-Cavernous Fistula," Neurol. Med. Chir., 1979, pp. 141-147, vol. 10.
Yoshida, K., "Experimental Studies on the Production and Treatment of the Carotid Thrombosis in Dogs," Archiv fur Japanische Chirurgie, May 1964, pp. 502-524, vol. 33, No. 3.
Yuen, T. G. H. et al., "Tissue Response to Potential Neuroprosthetic Materials Implanted Subdurally," Biomaterials, Mar. 1987, pp. 138-140, vol. 8.
Zollikofer, C. et al.,"A Combination of Stainless Steel Coil and Compressed Ivalon: A New Technique for Embolization of Large Arteries and Arteriovenous Fistulas," Radiology, Jan.-Mar. 1981, pp. 229-231, vol. 138.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867622B2 (en) 2014-04-11 2018-01-16 Microvention, Inc. Implant delivery system
US10980544B2 (en) 2014-04-11 2021-04-20 Microvention, Inc. Implant delivery system

Also Published As

Publication number Publication date
US6083220A (en) 2000-07-04
US5855578A (en) 1999-01-05
US5947962A (en) 1999-09-07
US6066133A (en) 2000-05-23
US6010498A (en) 2000-01-04
US5976126A (en) 1999-11-02
US5944714A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
USRE42662E1 (en) Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
USRE42625E1 (en) Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5925037A (en) Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5540680A (en) Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
USRE42756E1 (en) Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY