Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUSRE42973 E1
Tipo de publicaciónConcesión
Número de solicitudUS 11/452,186
Fecha de publicación29 Nov 2011
Fecha de presentación13 Jun 2006
Fecha de prioridad13 Feb 1996
También publicado comoUS6750902
Número de publicación11452186, 452186, US RE42973 E1, US RE42973E1, US-E1-RE42973, USRE42973 E1, USRE42973E1
InventoresEran Steinberg, Yury Prilutsky
Cesionario originalScenera Technologies, Llc
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Camera network communication device
US RE42973 E1
Resumen
A communication device for interconnecting a digital camera to a communication network for downloading data to a remote computer. The device has a network communication port for establishing communication with a network via a pre-defined protocol and communication mode, and has a camera communication port such as a serial, parallel, SCSI, USB or Irda-port that imitates the back end application of a PC, for connection to a digital camera for sending and receiving data to and from the camera. The camera communication port is also used for input of programming and setup data to the communication device from a PC. The device can be programmed to operate on the data directly, such as in the case of data for storage or operational direction, and/or direct the data to the camera. The device may also have a Smart card socket into which a user can insert a card to input data, such as user and camera I.D., user authorization, image marking, camera operational parameters, remote computer/destination address, etc. The device can be programmed to perform encryption, authentication, watermarking and fingerprinting procedures, as well as structuring the data for transmission over a particular network, and to automatically perform operations, such as at specific times or in response to data input.
Imágenes(10)
Previous page
Next page
Reclamaciones(16)
1. A communication device comprising:
(a) camera communication means for sending and receiving data to and from a digital camera;
(b) network communication means for sending and receiving said data through any one of a plurality of networks, to and from a destination device; and
(c) processor means coupled to the camera communication means and the network communication means, the processor means containing programming instructions for,
initiating a download of the data from the digital camera in response to a user input,
automatically initiating a download of the data from the digital camera in response to determining that image storage capacity of the digital camera exceeds a predetermined amount, and
performing operations on the data, including any combination at least one of, encrpyting at least a portion of the data, creating authentication data, and regulating selected data for transmission to multiple destinations.
2. A communication device as recited in claim 1 wherein said destination device is a printer.
3. A communication device as recited in claim 1 wherein said communication device has a unique identification.
4. A communication device as recited in claim 3 wherein said communication device sends said unique identification as part of said data to be transmitted to said destination device.
5. A method for transmitting digital data from a camera to a destination device said method comprising:
(a) performing operations by use of a communication device, said operations including
(i) initiating a download of the data from the digital camera in response to a user input;
(ii) automatically initiating a download of the data from the digital camera in response to determining that image storage capacity of the digital camera exceeds a predetermined amount; and
(iii) performing operations on the data, including any combinationat least one of, encrypting at least a portion of the data, creating authentication data, and regulating elected selected data for transmission to multiple destinations; and
(iv) structuring said camera data within said communication device to a compatible protocol for transmission through one or more types of communication networks to a destination device.
6. A method as recited in claim 5 wherein said destination device is printer.
7. A method as recited in claim 5 further comprising:
(a) transmitting unencrypted digital camera data to a first said destination device; and
(b) transmitting said authentication data to a second said destination device.
8. A digital camera comprising:
(a) means for converting light to digital image data;
(b) port means for receiving and sending digital data;
(c) means for transmitting and receiving said digital data to and from a destination device by way of a communication network; and
(d) means for automatically performing the following programmed operations upon occurrence of a condition, including
i. initiating a download of the data from the digital camera to the destination device in response to a user input,
ii. automatically initiating a download of the dots from the digital camera to the destination in response to determining that image storage capacity of the digital camera exceeds a predetermined amount, and
iii. prior to transmitting the data performing operations on the data, including any combinationat least one of, encrypting at least a portion of the data, creating authentication data, and regulating selected data for transmission to multiple destinations.
9. A communication devicedigital camera as recited in claim 8 wherein said operation is receiving additional information from a remote destination.
10. A communication devicedigital camera as recited in claim 9 wherein said additional information is for accompanying specific image data.
11. A communication devicedigital camera as recited in claim 9 wherein said additional information is operational instructions.
12. A digital camera as recited in claim 8 wherein said condition includes said camera receiving a signal from said remote destination.
13. A digital camera as recited in claim 8 wherein said condition includes said camera programmed to perform a said operation at a specific time.
14. A digital camera as recited in claim 13 wherein said digital data includes (a) camera identification data; and (b) user identification data.
15. A digital camera as recited in claim 8 further comprising means for including identification of said camera along with said data representing said particular image.
16. A digital camera as recited in claim 15 further comprising means for including a unique number with each said data representing said particular image.
Descripción

This application is a Reissue Application of U.S. patent application Ser. No. 09/467,747, filed Dec. 12, 1999, which is a continuation-in-part of the following U.S. Patent. application Ser. No.: 09/105,594 filed Jun. 26, 1998 now U.S. Pat. No. 6,628,325; Ser. No. 09/353,915 filed Jul. 15, 1999; now U.S. Pat. No. 6,433,818, Ser. No. 09/187,706 filed Nov. 6, 1998; Ser. No. 09/211,992 filed Dec. 14, 1998; Ser. No. 09/313,131 filed May 17, 1999; Ser. No. 09/335,219 filed Jun. 17, 1999; Ser. No. 09/105,593 filed Jun. 26, 1998;and Ser. No. 08/896,711 filed Jul. 18, 1997, which is a continuation of Ser. No. 08/601,368 filed Feb. 13, 1996; and Ser. No. 09/232,055 filed Jan. 15, 1999 (now U.S. Pat. No. 5,862,218), which is a CIP of Ser. No. 08/627,441 filed Apr. 4, 1996.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to digital still and video cameras and communication systems, and more particularly to a communication device providing a communication interface between a digital camera and a network system.

2. Brief Description of the Prior Art

Portable digital cameras are generally treated as PC peripheral devices. With conventional digital cameras, a user takes pictures until the camera memory/disk is filled and then downloads the digital image data to a PC. The camera needs to be either connected to the PC, for example through a cable, or a removable storage device such as a PCMCIA card must be manually transferred from the camera to the PC. The need to regularly make a direct, physical connection to a PC reduces the portable nature of digital cameras. In addition, downloading images to a PC is a local operation. In order to move images into the internet, the user must apply another set of commands on the local PC. Such a system is described in U.S. Pat. No. 5,475,441 by Parulski et al. Cameras are also incorporated into integrated systems for displaying an image, such as a visual surveillance system in a retail store. U.S. Pat. No. 5,444,483 by Maeda discloses a system including a digital camera with processing circuitry for display on a television screen.

Another limitation of conventional digital cameras is that there is no direct way to identify an image once it is loaded onto the PC. Additional information must be added manually, such as operator name, account number, camera of origin, etc. Also, there is no way of securing the images to assure that an operator does not alter them once loaded into a PC, or that the images will not be viewed by an unauthorized person as part of the transmission of the images from the PC to a remote location.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide an apparatus to serve as an interface for enabling a user of a portable still and or video digital camera to send image data directly from the camera to a communication network for transmission and downloading to a remote network location or remote computer.

It is a further object of the present invention to provide an apparatus enabling a user of a conventional digital camera designed to only download directly to a PC, to send camera data directly from the camera to a communication network for transmission and downloading to a remote network location or remote computer.

It is a still further object of the present invention to provide an apparatus that performs operations to secure the camera data against unauthorized use during transmission through an insecure communications network, and storage in an otherwise unsecure remote destination.

It is a still further object of the present invention to provide an apparatus for downloading image data from a variety of digital cameras to a remote computer through a selected communication network by means of an interface selected from a group, including but not limited to a modem, an ethernet adapter, a router, a hub, or infrared and other wireless connection.

It is another object of the present invention to provide an apparatus that can receive and encrypt and/or mark image data from a camera and transmit the encrypted/marked -data to a remote computer.

It is an object of the present invention to provide an apparatus that can receive image data from a camera and transmit the data to a remote computer along with additional annotation data including but not limited to time and date, user information, location information, and camera information.

It is an object of the present invention to provide an apparatus for connecting a digital camera output to a remote computer, the apparatus being responsive to a Smart Card to program the apparatus and the camera, and to allow an authorized user to operate the apparatus.

It is another object of the present invention to provide an apparatus for use with a digital camera, that can control the camera by means of programming, or in response to information/direction from a remote computerized destination.

It is another objective of the present invention to provide an apparatus for use with:a digital camera, that can be programmed by a PC using the same interface on the apparatus that would later be used to communicate with the camera.

It is a still further objective of the present invention to provide a still and or video digital camera capable of downloading image data to a remote computer through a selected communication network by means of an interface selected from the group including but not limited to a modem, an ethernet adapter, a router, a hub, or infrared or other wireless connection.

It is another objective of the present invention to provide a digital camera, and a device for use with a digital camera, that automatically performs operations dependent on camera or device programming, or in response to information/direction from a remote computerized destination.

Briefly, a preferred embodiment of the present invention includes a communication device for interconnecting a digital camera to a communication network for downloading data to a remote computer. The device has a network communication port for establishing communication with a network via a pre-defined protocol and communication mode, and has a camera communication port such as a serial, parallel, SCSI, USB or Irda-port that imitates the back end application of a PC, for connection to a digital camera for sending and receiving data to and from the camera. The camera communication port is also used for input of programming and setup data to the communication device from a PC. The device can be programmed to operate on the data directly, such as in the case of data for storage or operational direction, and/or direct the data to the camera. The device may also have a Smart card socket into which a user can insert a card to input data, such as user and camera I.D., user authorization, image marking, camera operational parameters, remote computer/destination address, etc. The device can be programmed to perform encryption, authentication, watermarking and fingerprinting procedures, as well as structuring the data for transmission over a particular network, and to automatically perform operations, such as at specific times or in response to data input.

An advantage of the present invention is that a digital camera user can download image camera data to a remote computer or network site and therefore avoid the concern of the need to connect the camera or its removable device to a local computer in order to perform such operation.

Another advantage of the present invention is that it gives the camera user the capability of automatically securing the camera data, for example by encrypting or marking the data prior to sending it over a communication system and downloading it to a computer.

Another advantage of the present invention is that it adds functionality to cameras that are not designed specifically to perform the task of connection to a remote network.

A further advantage of the present invention is that it provides an apparatus with a connection to a camera that is programmable for customized operations.

Another advantage of the present invention is that it provides an apparatus that enables a user to send data from a digital camera through a network to a plurality of destinations of a variety of types, such as network printers and remote archives.

IN THE DRAWING

FIG. 1 illustrates the communication device of the present invention interconnected to a camera and communication network;

FIG. 2 illustrates a device that connects to a camera through a removable card interface;

FIG. 3 is a block diagram of the communication device;

FIG. 4 illustrates the communication device connected to a network through one or more types of network connections;

FIG. 5 illustrates a communication device connected to more than one network;

FIG. 6 demonstrates various ways of interconnecting the communication device to a camera;

FIG. 7 summarizes various programming and operational options;

FIG. 8 summarizes various operations that the communication device can perform on images;

FIG. 9 shows an alternate embodiment wherein the communication device is integrated with a camera;

FIG. 10 illustrates an embodiment of the present invention wherein a communication device is configured for connecting data from a camera directly to a video/TV receiver;

FIG. 11 illustrates a communication device configured for sending different data to separate destinations;

FIG. 12 illustrates a communication device configured for distinguishing two sets of data and sending one set to one location and another to a second location.

FIG. 13 illustrates a plurality of cameras each communicating through a communication device to a single destination;

FIG. 14 is a flow chart illustrating automation related to the communication device;

FIG. 15 is a flow chart illustrating automation related to the destination device;

FIG. 16 presents summaries of types of data that can be sent from the destination to the communication device, and processing that can be done by the destination; and

FIG. 17 is a flow chart illustrating automation in a camera having a built-in communication device.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to FIG. 1 of the drawing, a preferred embodiment of the communication device 10 of the present invention is illustrated in use with a digital camera 12, PC 14, communication network 16 and a remote destination 18, which can be any type of network object, such as a PC, a printer, phone switch, server, etc. The device 10 has a camera communication port 20 for interconnection to either the camera 12 as indicated by cable 22 to port 24, or to the PC 14 through cable 26. The dashed lines 28 are to indicate that either the camera 12 or PC 14 can be connected to port 20. The device 10 has a network communication port 30 shown connected to the network 16 through line 32, and a Smart card port 34 for installation of a Smart card 36. The connection between the remote destination 18 to the network 16 is indicated by line 38. The communication device 10 includes any of various communication or network apparatus for sending data through the network 16.

The use of the communication device 10 involves first programming it as required. Programming is accomplished through use of a PC 14 connected to port 20 and/or through data entry from the Smart card 36 through the port 34 and/or from a remote computer at destination 18 by way of the network 16. Examples of programming options will be given in the following detailed description. Generally, the device 10 can be programmed to send instructions and data to the camera and to perform operations on data received from the camera, and to send data to the specified remote destination 18 by way of the network 16. Typical uses of the Smart card are for entry of additional data such as a user I.D., camera ID, an address or phone number of the remote destination/network site 18, operational instructions to the camera 12 and communication device 10, etc.

The primary function of the communication device 10 is to perform the necessary operations required to receive data from the camera 12 and then to send the data to the remote destination 18 by way of a selected communication media indicated by network 16. Other operations/functions will be described in the following specification.

The input 20 of the device 10 imitates the back end application of a PC, thus becoming transparent to the camera that operates as if it is communicating to a PC. The communication device 10 establishes communication with a network 16 via a predefined protocol and communication mode. The device 10 receives image data and other information data from a camera 12, and secures the data and structures it according to the required protocol, performs any other programmed operations, and then sends the data through the network for transmission to a destination device 18, such as a computer, printer, server, phone switch, etc., placing the data in assigned locations as defined by the device ID or commands. Communication between the device 10 and the destination device can be bi-directional, i.e. a destination device host 18 can download information to the communication device 10 as well as receive information. Any and all types of media are included in the spirit of the present invention. Particular embodiments of the communication device 10 include the functions of one or more devices including a telephone modem, ethernet adapter, a router, hub, etc. The device 10 can also be configured to transmit through a wireless communication link, such as satellite communication, etc. Signals include infrared, or any RF frequency such as UHF, VHF, or microwave.

In wireless communication between the device 10 and destination 18, line 32 is replaced with a wireless connect inn between the device 10 and the network 16, as indicated by antenna/emitter 40 on the communication device 10 and transceiver 42 connected to the network 16.

FIG. 1 also shows wireless communication between the camera 12 and communication device 10, indicated by a transceiver 44 connected to the camera port 24, and an antenna/emitter 46 on the communication device 10 for sending and receiving data between the camera 12 and device 10. All types of radiated signals are included in the spirit of the invention, the particular type depending on such factors as distance and environment, etc.

Because the device 10 is programmable, there is significant flexibility in its use. For example, device 10 can be programmed to perform functions automatically, for example to receive instruction from a destination device/host computer 16 to direct the camera to take a picture at a particular time of day, or every hour and/or to download images or upload information at a specific time from the camera. The device 10 can be programmed by a destination device 18 to operate a camera “off-line”. After uploading the instruction to the device 10, the communication can be terminated. The device 10 can keep the instructions and send them to the camera appropriately.

In another example, the device 10 can be programmed to automatically connect to the network 16 when the camera image data storage is full, or partially full, and then to download the image data and subsequently disconnect from the network 16. Upon completion of downloading and receiving a confirmation from the destination 18, the device 10 can continue by deleting the image data from the camera.

The communication device 10, or camera if it is programmable, can also be loaded with information to accompany an image, and this information can be included, for example, in an image header. Examples of valuable information may include an account number and a camera ID. The device 10 can be programmed to automatically include this information with image data downloaded to a destination. Such identification avoids confusion as to the source of the image.

The communication device is designed with selected features permanently programmed. An alternate embodiment of the present invention includes permanent programming to allow downloading of data only to a specific destination. Such fixed programming helps avoid theft of the device or camera for a different use. In general, it is a specific feature of the present invention to provide a device with permanent programming for any specific purpose.

Another alternate embodiment includes fixed programming to automatically request and receive a camera ID from the destination device 18, and/or smart card 36 when connected to either of these. The camera ID is then included along with image data. A still further embodiment includes permanent programming to read and increment a counter and assign a unique number to each image received. In this way each image has associated with it a unique number, and the ID of the camera that secured the image. The programming for these functions will be understood by those skilled in the art, and is not shown. The required clock, counter, ROM and other necessary circuit components are illustrated in block form in FIG. 3. In an embodiment wherein the communication device is integrated with a digital camera, the camera ID is programmed into ROM, and therefore no additional request or receiving of a camera ID is required. The operation of including an image number is accomplished in the same manner as with the separate communication device. The integrated camera and communication device will be more fully described in the following text in reference to FIG. 9 of the drawing.

Other embodiments of the communication device 10 include the incorporation of visual 48 and sound 50 indicators to inform a user concerning operations that need to be accomplished. These can function either off or on line. For example, the alarm/sound indicator 50 can be programmed to sound, and/or the visual indicator can light if the device 10 is programmed to connect the camera to the network at a specific time and there is no connection. The indicators can also give notice when the image storage has reached a certain level. A visual display 52 is optional for presentation of useful information such as the remaining number of images to be sent to a destination 18, the remaining time required for transmission, notice of connection to a camera 12, and notice of connection to a destination 18. Internally, the device 10 includes a counter to maintain the image count for display as discussed above, and may optionally also include a clock for use in indicating the date and time of receiving an image on the display 52.

An alternate construction 54 of a device that is functionally similar to device 10 is shown in FIG. 2 wherein the connection from the device 54 to a camera 56, or to the PC 14 is made through a removable storage interface such as a PCMCIA card, SamrtMedia CompactFlash Clik! Card, etc. For example, a PCMCIA card 36 can be placed in the camera card slot 58 and camera data can be downloaded to the card 36. The card 36 can then be placed in the device 54 slot 60, and the camera data can be loaded into the device 54 for processing and transmission through connection 62 to a destination 20. An alternate embodiment is also indicated in FIG. 2, wherein a PCMCIA card extension 64 is provided for installation in the PCMCIA card slot 58 of the camera 56. Other configurations and types of connections in the design of the communication device will be apparent to those skilled in the art and these are to be included in the spirit of the present invention.

Referring to FIG. 3, the internal structure of the communication device 10 is shown in block form. A processor 66 performs operations according to specific programming generally indicated by the image processing block 68, and coordinates the activation of the communication device 10. Specifically noted in the processor block 66 are the operations of maintaining the time and date (clock 70), for inclusion with image data to indicate the time and date of the image processing. The processor also keeps an account of the number of images received and sent (block 72), for display on the LED screen 52, and processes additional data (block 74) for various purposes, including user data to be included with image data. In addition, the processor performs security operations when programmed to do so (block 76). Typically, a ROM 78 is provided to store permanently programmed data, and a RAM 80 is used for temporary storage. Specific camera communication apparatus includes a camera connection controller 82, and an optional infrared transceiver 84 for a wireless connection to the camera. The camera controller 82 connects to the camera through port 20 and/or the transceiver 84, and additional connective hardware as indicated in FIG. 1. The network communication apparatus similarly includes, in addition to the processor and memory blocks, a network connection controller 86, communicating with the network through line 32 and/or connected to a modem 88 through bus 90 and then to the network through a modem output bus 92 and/or a bus 94 to a transceiver 96 to the antenna/emitter 40 via a bus 98 for a wireless connection to the network. Similarly, the camera connection controller 82 is optionally connected via bus 83 to a transceiver 84 connected through bus 85 to antenna/emitter 46 for communication with the camera 12. The user indicators are operated through a user interface controller 108. The indicators include a battery condition indicator 110, the alarm light 48, the sound alarm 50, a power switch 112, and the LED display 52. The power supply 114 is also indicated with options including a battery 116, an AC battery charging supply input 118, a phone line power connection 120 and a line 122 from an alternate power bus, not shown.

FIG. 4 illustrates accommodation of a number of types of network connections with a single communication device 124, including device circuitry 126 similar to that shown in FIG. 3, including a modem 128 and also an Ethernet adapter 130, a router 132, a hub 134, an infrared link 136 and/or any wireless connection 138. The device 124 can be configured to provide compatible data format for any one or more of the possible types of network connections, either individually or simultaneously. In the case of simultaneous output to more than one media, the device 124 includes a separate output for each type of connection. The various selected connection types can each transmit through a corresponding part of network 16 to a single computer or remote network node 18, or they can each output to a different remote destination, such as illustrated in FIG. 5 where output from a camera 12 is sent by a communication device 140 by way of an ethernet adapter 130 through a network 139 to a first remote computer 142, and also by way of a wireless connection/transceiver 138 to a transceiver 42, through a network 141 to a second remote computer 146, or alternately to the computer 142 as indicated by line 148.

The communication devices described in this disclosure can be connected to a camera by any of a variety of port types. This is illustrated in FIG. 6 showing a camera 150 connected to a communication device 152 by way of serial ports 154, 156, SCSI ports 158, 160, IrDa ports 162, 164, parallel ports 166, 168 and USB ports 170, 172 from communication device 152 to the camera 150. The device 152 can have any combination of outputs and other features as described for communication devices elsewhere in this disclosure. As shown, the device 152 has an output port 174 and an optional Smart card port 176 for use with a Smart card 36. The various interconnecting lines or media are simply noted as lines 178, each configured appropriately for the type of port. In the case of infrared communication the corresponding line 178 is not a physical communication cable but rather an unobstructed line of view. The camera and communication device can have one or more of the ports shown in FIG. 6. The spirit of the present invention includes other communication lines or media between the camera and communication device in addition to those shown in reference to FIG. 6, and between the communication device and a remote computer in addition to those illustrated in reference to FIG. 4. Such variations will be apparent to those skilled in the art.

As discussed above, the communication device of the present invention provides downloading of camera images onto computerized systems in an automated manner. The communication device is programmed to include information about the camera, the remote computer and intervening network and the corresponding method of transporting the information.

In addition to these more general features of the communication device, numerous programming and operational options are included in the spirit of the present invention, examples of which are given in the lists of FIG. 7. The types of connections from the communication device to a network were illustrated in detail in FIG. 4. These options are also listed in FIG. 7 under the heading “Device Connection to Network”. Such connections require specific ordering/arranging of data known as protocols. Typical protocols are listed in FIG. 7 under “Device to Network Protocols”. A user will also often find it convenient to include the camera serial number or any other unique identification, along with the image information. Certain types of camera information are listed under “Device Information Re Camera”, and this and other camera information are programmed into a device by use of the Smart card installed for example in port 34 of FIG. 1, or by use of a PC by way of port 20, or from a remote computer at 18 as illustrated in FIG. 1, or by other means that will be apparent to those skilled in the art.

In the same way, information regarding the identity by the particular communication device, and other information can be programmed into the device. Examples include a unique communication device ID, the date and time maintained by a built-in clock, the number of images stored and/or downloaded, and the numbers retained on a consecutive image counter in the communication device. These features are also listed in FIG. 7 under DEVICE GENERATED INFORMATION.

The communication device is also programmed with information concerning the destination 18, which normally will be a remote PC, but could be some other apparatus such as a video monitor or a printer, etc. This type of information is listed under “Device Information Re Destination” in FIG. 7.

Requiring a user password avoids the possibility that an unauthorized person will alter data. Phone number and IP address data can also be loaded into the communication device, and are listed under “Operational Information for Devices and/or Camera” in FIG. 7. Detailed examples of operations to be performed on images will be discussed in reference to FIG. 8.

The communication device programming also includes instructions that are then sent by the communication device to the camera, examples of which are listed in FIG. 7 under “Instruction to Camera From Device”.

The purpose of the communication device is to receive information from the camera and then to store it, or modify it, and/or add to it according to the program and data, and send the required data to the network. Examples of data received from the camera are listed in FIG. 7 under “Device Information From Camera”. Examples of operations performed on image data are included in the list of FIG. 8. A particular embodiment includes the device programmed to add identifiers to the image, such as including the date and time of image acquisition, the user's name, a unique camera I.D. or image I.D. and the date and time of transmission. This data can be placed on the image, or in an image header, or outside the image area. The communication device can also be programmed to mark, i.e. watermark or finger print, which are invisible marks, the images for the purpose of deterring unauthorized use, and/or it can be programmed to prepare image authentication data, or to encrypt the entire set of image data to prevent any unauthorized person from viewing the image. For example, the communication device can be programmed to store and encrypt selected image data points for comparison with data from corresponding locations of a questionable image at a later time.

It is noted in FIG. 8 that the device can also perform other operations such as compressing or expanding files, and parsing files and converting them to different formats.

The specific items listed in FIGS. 7 and 8, and discussed above concerning programming of the communication device are all given by way of example. The basic objective of the present invention is to provide a communication device that will allow a digital camera to be connected to one or more types of communication networks for downloading of data to, and receiving data from a remote destination, which is typically a computer. Details of the circuitry and programming of the communication device do not need to be described in this disclosure because those skilled in the art of digital apparatus will understand how to design the device to perform the operations disclosed and claimed herein.

The embodiments of the present invention illustrated above are preferred embodiments. The communication device is particularly useful in these forms in that it allows existing digital cameras that do not have the functionality to connect to a network, to be connected to any of a variety of communication networks for transmission of image data and receiving instructions. Existing digital cameras do not have to be modified to function with the communication device of the present invention because an interconnection is made through an existing camera port using the existing protocol.

An alternate embodiment of the present invention is illustrated in FIG. 9 wherein a communication device 180 is integrated inside a digital camera 182. containing a digital camera section 184. The novel digital camera 182 can send and receive data to and from a communication network. The camera 182 in this embodiment has a serial port 186 for connection to a line 188 to a PC for receiving programming data, for use in a downloading image data directly to a PC, as in a conventional digital camera. The camera 182 also has one or more communication ports 190 for connection to one or more lines 192 to a communication network. The network communication options discussed for example in reference to FIGS. 4 and 5 also apply to the device 180 of FIG. 9. The operation of the device portion 180, and various features such as the display, indicators, etc. are the same as discussed above in regard to the external communication devices such as 10 or 124. Port 190 is for acceptance of a Smart card 36. Other optional features are not repeated in FIG. 9 for simplicity and to avoid redundant discussion.

FIG. 10 illustrates an embodiment of the invention wherein a communication device 192 is configured for connecting data from a camera 194 directly to a video/TV receiver 196. This connectivity allows both preview of live images from the camera as well as post-view or playback of either still images, or video when applicable.

FIGS. 11 and 12 illustrate communication devices that are configured for transmission to separate destinations. FIG. 11 illustrates a case where the camera 198 is capable of outputting first and second sets of data on lines 200 and 202 respectively, to a communication device 204, and wherein it is desirable to send a first set of data to a first destination 206 and a second set of data to a second destination 208. For example, a journalist may want to send high resolution data to his private PC at destination 206 and send low resolution data to a potential customer for preview at destination 208 prior to placing a purchase order for the image.

Other applications include “escrow” security transmissions where images “first data” are sent to a first location 206, and other information “second data” is automatically sent to a second location/recipient 208. In the case of secured images, an authenticated image can be sent to a first location such as 206 and an image signature and/or authentication data can be sent to a second location 208. Similarly, encrypted or watermarked data can be sent to a first location, and original data to a second location.

In the case where the camera cannot provide both the first and second data, the second data can be prepared by the communication device, as illustrated in FIG. 12. In this case, the camera 210 only outputs original image data. The communication device 212 is programmed to create encrypted image data and/or authentication data, or include other data, and then output first selected data to a first destination/location 206 and a second set of data to location/destination 208.

As referred to in the above description, the device of the present invention performs operations in an automated manner. Novel methods of operation of the communication device and/or integrated camera device will now be described in greater detail.

The communication devices described above, used in a system, for example the system described in FIG. 1 wherein a programmable communication device 10 interconnects a camera 12 with a destination 18, or a similar system with a communication device integrated with a camera as described in reference to FIG. 9, provide a structure capable of automatic and intelligent operation. The computerized destination 18 can be of various configurations, including a single PC or a network server.

The method and apparatus of the present invention in automatic operation has great utility when a plurality of communication devices, either as separate devices or integrated with a camera, are in service and attempts are made to download image data. Image data requires a large memory, and downloading from a number of communication devices is time consuming. Networks encountering such a load of image data can easily be overloaded, requiring either large increases in network band width, or a method of organizing the downloading in an automated manner. Such automation is a particularly useful feature of an embodiment of the present invention and is illustrated in FIG. 13 where three sets of cameras 214, 216, and 218 and communication devices 220, 222, and 224 are connected to a single destination 226 through a network 228.

Various ways of automating the transfer of image data from the cameras to the destination will be understood by those skilled in the art of automation after reading the description of the invention. A preferred embodiment involves programming the devices 220, 222, and 224 to automatically “re-dial” for a hook-up with the destination when a busy signal is received. The destination simply accepts a first call and ignores subsequent calls until the processing of the first call is complete. An alternate method includes the destination storing the numbers of the calling communication devices in the order received, and then notifying the next device in line when the destination is ready for accepting the next download. This approach has an advantage over the re-dialing approach in guaranteeing each device its priority.

Referring now to FIG. 14, an example is illustrated wherein a communication device is programmed to perform automatic operations. Block 230 (set up device) represents the programming that is accomplished through use of a PC 14, Smart card 36, or the computer/destination 18 through a network 16. FIG. 14 is a simplified example of programmed decisions made by a communication device. Details of programming for such operations are well understood by those skilled in the art and therefore are not described in detail.

The example of FIG. 14 illustrates the communication device, for example device 10, programmed to query the camera communication port 20 to determine if a camera is connected. The communication device, for example, can be programmed to check for a camera connection (block 232) at periodic intervals, or at certain times of the day. If the camera is connected, the communication device can then receive and evaluate data from the camera, an operation which can be fully automatic if the camera is programmed to receive and respond to commands through line 22. If not, a user can manually trigger the camera 12 to download the data to the communication device. In either the case of automatic or manual download to the communication device, block 234 represents this function. Block 236 indicates an option for a compatible camera 12, wherein the communication device queries the camera to determine what percentage of the image storage capacity is filled. If it exceeds a certain predetermined amount, for example 75%, the communication device responds by instructing the camera 12 to download the image data (block 234). If not, the device can continue to check for a camera connection and image memory available on a periodic basis, and/or at certain times.

Once image data is loaded, the communication device can respond to programming to perform any of a variety of operations as discussed above, such as encrypting, creating authentication data and relegating selected data for subsequent transmission to one or more destinations. This is indicated simply as block 238.

The communication device can be programmed to send the relegated data at certain times. This programming is symbolically indicated by block 240, and at the programmed time the device checks the output port 30 (FIG. 1) to determine if a connection is made to a network (block 242). If so, the communication device further checks to determine if the destination is connected and ready. This is indicated by block 244 for a single destination and by blocks 246 and 248 for two separate destinations, although any number of destinations are within the scope of the present invention.

Once the communication device determines that the destination is ready, the data is transmitted as indicated by blocks 250, 252 and 254. Block 250 also indicates an option indicating programming of the communication device to include a unique ID with the transmitted data to connect the data to a specific location, i.e. database, within the destination. The purpose of FIG. 14 is primarily to illustrate automation within the communication devices of the present invention. Automation is also possible in the destination 18, and in the camera 12 in those cases where the camera 12 is programmable.

FIG. 15 will now be used to discuss automation within the destination 18. It should also be understood that the present invention includes combinations in which automation occurs in the communication device, camera and destination, or in any combination of the three to accomplish required programming objectives.

Block 258 of FIG. 15 symbolizes programming of the destination 18 to perform operations, examples of which will be described in reference to the various blocks of FIG. 15. Block 260 indicates the destination determining if the communication device is connected to the network. The destination can be programmed to check for a connection at various intervals or times of day, etc. The destination can also be programmed to respond to a signal from the communication device indicating a requirement to transmit data. Both of these options, either an active query to the communication device or a response from the communication device are included in the step indicated by block 260.

Once connection is established between the destination and the communication device, the destination can send instructions to the communication device as indicated by block 262. As with block 260, this action by the destination can be self initiated or in response to an instruction received from the communication device to send data. The data is then received by the destination (block 264) and processed (block 266). The communication device can be either separate from the camera or integrated with it.

FIG. 16 lists examples of data that can be sent by a destination to a communication device including instructions to the communication device to direct the camera to take a picture at a set time or at certain intervals. Account identification, titles or other information can be sent for inclusion in an image header, or for watermarking, etc. Operational data can be sent to inform the user when and where to take a picture. A map showing where to take a picture can be sent, for example, which can be displayed by the user on a camera visual display, and corrective notices can be sent informing the user of any problems with the downloaded image data such as chronic underexposure, focus problems, etc. The destination can also send instructions to the communication device to check camera memory, download data, encrypt data, etc., all controlled by the destination.

Upon receiving data from the communication device (block 264), the destination can automatically process the data according to specific programmed objectives (block 266). A number of possibilities are included in FIG. 16 under “Data Processing by Destination”. In cases where data is received in unencrypted form, it can encrypt and store the data, or it can decrypt encrypted data and print images automatically or archive them. The destination 18 can also automatically distribute selected data items to other remote locations, such as on the web, or e-mail at a low resolution image for inspection prior to a sale. The destination can also store authentication data of an original image and create corresponding authentication data from a questionable image, and compare the two sets of authentication data to determine the validity of the questionable image.

In summary of the automatic features of the invention, the destination, for example a server, can call the communication device to notify it of a particular time to send data to a server, for example based on local and remote network load, server processing load, server storage capacity, fulfillment (printing), system load, and other factors. As explained above, there may be querying/handshaking between the communication device and the server to determine if there are sufficient images to send, i.e. to determine the space available in the image storage memory of the communication device or camera-device. Alternatively, the communication device can query the destination to initiate the sending of data.

Another automatic feature of the present invention is the automatic inclusion of prescribed information along with image data, such information including for example, a unique ID, date, time, etc.

This disclosure incorporates by reference the disclosures of the following U.S. patent application Ser. No.: 09/353,915 filed Jul. 15, 1999; Ser. No. 09/187,706 filed Nov. 6, 1998; Ser. No. 09/211,992 filed Dec. 14; 1998; Ser. No. 09/313,131 filed May 17, 1999; Ser. No. 09/335,219 filed Jun. 17, 1999; Ser. No. 09/105,593 filed Jun. 26, 1998; ser. No. 08/896,711 filed Jul. 18, 1997, which is a continuation of Ser. No. 08/601,368 filed Feb. 13, 1996; and Ser. No. 09/232,055 filed Jan. 15, 1999 (now U.S. Pat. No. 5,862,218), which is a CIP of Ser. No. 08/627,441 filed Apr. 4, 1996. Closely related to the information included with an image is a phone number or network IP received by the device or camera for automatic dialing to a destination. The communication device can also automatically receive images and related information by querying the destination at preprogrammed times/intervals. Another automatic feature includes automatic downloading based on priority when some users have priority over others.

FIG. 17 applies to the integrated camera-device of FIG. 9. The camera-device is first programmed as indicated by block 268. A picture is taken (block 270), and the programmed operations are performed (block 272). The camera-device can then check memory to determine if data should be downloaded (block 274). If memory space is low, the camera-device will check for a network connection, (block 276) and alternatively also display a notice to the user of low storage capacity available (block 278). Once a connection is made to the network, the data is downloaded (block 280). In general, all of the features discussed relative to the communication device 10 apply also to the camera 182 with an integrated communication device 180 as illustrated in FIG. 9, except for those comments that refer to the external connection between the camera and the communications device.

Although the present invention has been described above in terms of a specific embodiment, it is anticipated that alterations and modifications thereof will no doubt become apparent to those skilled in the art. It is therefore intended that the following claims be interpreted as covering all such alterations and modifications as fall within the true spirit and scope of the invention.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US414837221 Sep 197710 Abr 1979General Motors CorporationResistor coded theft deterrent system
US445814223 Abr 19823 Jul 1984Hecon CorporationProgrammed electronic keycorder unit
US471496217 Feb 198722 Dic 1987Levine Alfred BDual electronic camera, previewing, and control
US483556315 Abr 198830 May 1989Autostudio CorporationElectronic recording camera with front projector
US48537338 Jul 19881 Ago 1989Olympus Optical Company LimitedProgram rewritable camera
US500339913 Nov 198926 Mar 1991Sony CorporationCamera with exchangeable lens device
US50274013 Jul 199025 Jun 1991Soltesz John ASystem for the secure storage and transmission of data
US50363445 Nov 199030 Jul 1991Minolta Camera Kabushiki KaishaPhotographic camera
US51248148 Jun 198923 Jun 1992Fuji Photo Film Co., Ltd.Video tape recorder with an integrated camera
US513845920 Nov 199011 Ago 1992Personal Computer Cameras, Inc.Electronic still video camera with direct personal computer (pc) compatible digital format output
US515040716 Dic 199122 Sep 1992Chan Steve S CSecured data storage devices
US51537291 Feb 19916 Oct 1992Fuji Photo Film Co., Ltd.Digital electronic still camera automatically determining conditions of a memory cartridge
US516483615 Jul 199117 Nov 1992Eastman Kodak CompanyVisual exposure feedback apparatus for electronic imaging system
US518263514 Jul 199226 Ene 1993Sanyo Electric Co., Ltd.Color still picture transmission system
US518416919 Abr 19912 Feb 1993Fuji Photo Film Co., Ltd.Photography mode input systems
US519885127 Ene 199230 Mar 1993Nikon CorporationCamera system
US52203665 Dic 199115 Jun 1993Camera World, Inc.Message receiving data back for camera
US523150126 May 199227 Jul 1993Asahi Kogaku Kogyo Kabushiki KaishaStill video apparatus
US526073519 Jun 19929 Nov 1993Minolta Camera Kabushiki KaishaCamera system
US526079511 May 19929 Nov 1993Asahi Kogaku Kogyo Kabushiki KaishaElectronic still camera having remote control device
US52720253 May 199121 Dic 1993Wheeler Douglas EPhotograph and associated graphics with associated digitized formatting, and method of production and use thereof
US530305026 May 199212 Abr 1994Sony CorporationVideo camera apparatus
US530710014 Jun 199326 Abr 1994Fuji Photo Film Co., Ltd.Magnetic recording/reproducing apparatus for a camera having pressure roller
US532543017 Oct 199128 Jun 1994Toven Technologies Inc.Encryption apparatus for computer device
US538302727 Feb 199217 Ene 1995Lifetouch National School Studios Inc.Portrait printer system with digital image processing editing
US538998929 Oct 199314 Feb 1995Eastman Kodak CompanyCamera for recording digital and pictorial images on photographic film
US539235625 Ago 199321 Feb 1995Fujitsu LimitedMobile telephone terminal and method of preventing unlawful use thereof
US53965463 Oct 19917 Mar 1995ViscorpIn a data communication system
US540446321 Oct 19924 Abr 1995Eastman Kodak CompanyIn a microprocessor system
US54165108 Mar 199316 May 1995Stereographics CorporationCamera controller for stereoscopic video system
US542868521 Ene 199327 Jun 1995Fujitsu LimitedIC memory card and method of protecting data therein
US54328714 Ago 199311 Jul 1995Universal Systems & Technology, Inc.Systems and methods for interactive image data acquisition and compression
US544270414 Ene 199415 Ago 1995Bull Nh Information Systems Inc.Secure memory card with programmed controlled security access control
US544270627 Feb 199215 Ago 1995Hughes Aircraft CompanySecure mobile storage
US544448325 Feb 199422 Ago 1995Ricoh Company, Ltd.Digital electronic camera apparatus for recording still video images and motion video images
US544649121 Dic 199329 Ago 1995Hitachi, Ltd.Multi-point video conference system wherein each terminal comprises a shared frame memory to store information from other terminals
US546739627 Oct 199314 Nov 1995The Titan CorporationData processing system
US547544110 Dic 199212 Dic 1995Eastman Kodak CompanyElectronic camera with memory card interface to a computer
US547726429 Mar 199419 Dic 1995Eastman Kodak CompanyElectronic imaging system using a removable software-enhanced storage device
US547754224 Mar 199419 Dic 1995Hitachi, Ltd.Method and appartus for controlling multimedia information communication
US548528430 Dic 199216 Ene 1996Canon Kabushiki KaishaImage processing system for performing color image data calibration
US549929424 May 199512 Mar 1996The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationDigital camera with apparatus for authentication of images produced from an image file
US551756918 Mar 199414 May 1996Clark; Dereck B.Methods and apparatus for interfacing an encryption module with a personal computer
US552419410 Feb 19954 Jun 1996Canon Kabushiki KaishaData communication apparatus
US554388528 Jun 19946 Ago 1996Nikon CorporationCamera system
US555064613 Sep 199327 Ago 1996Lucent Technologies Inc.Image communication system and method
US556819230 Ago 199522 Oct 1996Intel CorporationMethod and apparatus for processing digital video camera signals
US557710727 Jul 199419 Nov 1996Canon Kabushiki KaishaCommunication terminal apparatus for displaying whether any of a plurality of other communication terminal apparatuses is receiving an image
US55816135 Jul 19943 Dic 1996Canon Kabushiki KaishaFor a copying apparatus
US55943195 Jun 199614 Ene 1997Motorola, Inc.Battery pack having theft deterrent circuit
US559473623 Dic 199414 Ene 1997Sharp Kabushiki KaishaImage-information storage regenerating device
US560636110 May 199525 Feb 1997Davidsohn; JohnVideophone interactive mailbox facility system and method of processing information
US560636528 Mar 199525 Feb 1997Eastman Kodak CompanyInteractive camera for network processing of captured images
US562363717 May 199622 Abr 1997Telequip CorporationEncrypted data storage card including smartcard integrated circuit for storing an access password and encryption keys
US56254107 Abr 199529 Abr 1997Kinywa WashinoVideo monitoring and conferencing system
US563367820 Dic 199527 May 1997Eastman Kodak CompanyElectronic still camera for capturing and categorizing images
US56362095 May 19943 Jun 1997Perlman; Stephen G.Modem to support multiple site call conferenced data communications
US564213525 Mar 199424 Jun 1997Sony CorporationFor storing binary input picture data having a black-and-white picture
US564240128 Jun 199424 Jun 1997Nec CorporationSystem and method of authenticating a service request in a mobile communication system
US565086131 May 199422 Jul 1997Canon Kabushiki KaishaImage processing method and apparatus for application to an image file or image communication apparatus
US566615924 Abr 19959 Sep 1997Eastman Kodak CompanyElectronic camera system with programmable transmission capability
US566651616 Dic 19939 Sep 1997International Business Machines CorporationProtected programmable memory cartridge having selective access circuitry
US566887624 Jun 199416 Sep 1997Telefonaktiebolaget Lm EricssonSystem for granting access to an electronic service
US567400328 Abr 19957 Oct 1997Andersen; David B.Mechanisms for accessing unique features of telephony networks from a protocol-Independent data transport interface
US56779537 Jun 199514 Oct 1997Spyrus, Inc.System and method for access control for portable data storage media
US56895631 Jun 199518 Nov 1997Motorola, Inc.Method and apparatus for efficient real-time authentication and encryption in a communication system
US569685021 Dic 19959 Dic 1997Eastman Kodak CompanyAutomatic image sharpening in an electronic imaging system
US56993591 Jun 199516 Dic 1997Fujitsu LimitedAudio-video and control interfaces for multi-media personal computer packet communication
US57088564 Feb 199713 Ene 1998Eastman Kodak CompanyRental camera with locking device to deter customer reuse after completed exposure
US572415530 Dic 19943 Mar 1998Olympus Optical Co., Ltd.Electronic imaging system
US5737491 *28 Jun 19967 Abr 1998Eastman Kodak CompanyElectronic imaging system capable of image capture, local wireless transmission and voice recognition
US573986424 Ago 199414 Abr 1998Macrovision CorporationApparatus for inserting blanked formatted fingerprint data (source ID, time/date) in to a video signal
US57487443 Jun 19965 May 1998Vlsi Technology, Inc.Secure mass storage system for computers
US57487638 May 19955 May 1998Digimarc CorporationImage steganography system featuring perceptually adaptive and globally scalable signal embedding
US574889812 Ago 19965 May 1998Nec CorporationImage data communication system
US575127115 May 199612 May 1998Koninklijke Ptt Nederland N.V.Processor system comprising a processor and a memory field for containing a computer interface
US57518094 Feb 199712 May 1998Intel CorporationApparatus and method for securing captured data transmitted between two sources
US57520854 Feb 199712 May 1998Eastman Kodak CompanyRental camera with key-opening lock to deter customer reuse after completed exposure
US575422728 Sep 199519 May 1998Ricoh Company, Ltd.Digital electronic camera having an external input/output interface through which the camera is monitored and controlled
US576842621 Oct 199416 Jun 1998Digimarc CorporationGraphics processing system employing embedded code signals
US57845813 May 199621 Jul 1998Intel CorporationApparatus and method for operating a peripheral device as either a master device or a slave device
US580185624 Jul 19961 Sep 1998Eastman Kodak CompanySecure photographic systems
US581479823 May 199729 Sep 1998Motorola, Inc.Method and apparatus for personal attribute selection and management using prediction
US581557724 Mar 199729 Sep 1998Innovonics, Inc.Methods and apparatus for securely encrypting data in conjunction with a personal computer
US582540811 Ene 199620 Oct 1998Casio Computer Co., Ltd.Portable compact imaging and displaying apparatus
US583514021 Jun 199510 Nov 1998Matsushita Electric Industrial Co., Ltd.Remote-control method and apparatus for rotating image device
US583911927 Sep 199617 Nov 1998Xerox CorporationMethod of electronic payments that prevents double-spending
US585247228 Sep 199522 Dic 1998Intel CorporationMethod and apparatus for connecting video sources and video sinks
US58619188 Ene 199719 Ene 1999Flashpoint Technology, Inc.Method and system for managing a removable memory in a digital camera
US586221728 Mar 199619 Ene 1999Fotonation, Inc.In a digital camera system
US58622184 Abr 199619 Ene 1999Fotonation, Inc.Method and apparatus for in-camera image marking and authentication
US586232527 Sep 199619 Ene 1999Intermind CorporationComputer-based communication system and method using metadata defining a control structure
US587020716 Jul 19929 Feb 1999Fuji Xerox Co., Ltd.Facsimile system
US587814210 Jun 19962 Mar 1999Information Resource Engineering, Inc.Pocket encrypting and authenticating communications device
US588077012 Sep 19979 Mar 1999Technical Visions, Inc.Apparatus and method for utilizing display phone set-up time to provide third party controlled messaging
US58871459 Ene 199723 Mar 1999Sandisk CorporationRemovable mother/daughter peripheral card
US589303729 Oct 19966 Abr 1999Eastman Kodak CompanyCombined electronic/silver-halide image capture system with cellular transmission capability
US58961283 May 199520 Abr 1999Bell Communications Research, Inc.System and method for associating multimedia objects for use in a video conferencing system
US589877914 Abr 199727 Abr 1999Eastman Kodak CompanyPhotograhic system with selected area image authentication
US59032167 May 199711 May 1999Sutsos; PeteSecurity structure unlocking system for use by emergency response and authorized personnel
US6038295 *17 Jun 199714 Mar 2000Siemens AktiengesellschaftApparatus and method for recording, communicating and administering digital images
US6167469 *18 May 199826 Dic 2000Agilent Technologies, Inc.Digital camera having display device for displaying graphical representation of user input and method for transporting the selected digital images thereof
Otras citas
Referencia
1"FlashPath SmartMedia Card Floppy Disk Adapter," Product Description, PC Mall [internet publication] URL: http://www.pcmall.com/pcmall/shop/detail.asp?d-pno=210863.
2Early, et al., The VideoPhone 2500-Video Telephony on the Public Switched Telephone Network, 1993, AT&T Technical Journal, pp. 22-23.
3Early, et al., The VideoPhone 2500—Video Telephony on the Public Switched Telephone Network, 1993, AT&T Technical Journal, pp. 22-23.
4JP 05-083435 (Konica Corp), (abstract). Apr. 2, 1993. In: Patent Abstracts of Japan [online].
5JP-05-030247 (Fuji Xerox Co Ltd), abstract, Feb. 5, 1993 In: Patent Abstracts of Japan [online].
6JP-07-184176 (Sharp Corp), abstract, Jul. 21, 1995 In: Patent Abstracts of Japan [online].
7JP-07-202982 (Olympus Optical Co. Ltd.) abstract, Apr. 8, 1995 In: Patent Abstracts of Japan (online).
8JP-08-070306 (Fujitsu Ltd.) abstract, Dec. 3, 1996 In: Patent Abstracts of Japan (online).
9JP-08-102837 (Matsushita Electric IND Co Ltd), abstract, Apr. 16, 1996 In: Patent Abstracts of Japan [Online].
10JP-08-228321 (Ricoh Co Ltd), abstract, Sep. 3, 1996 In: Patent Abstracts of Japan [online].
11JP-08-256325 (Olympus Optical Co. Ltd.) abstract, Jan. 10, 1996 In: Patent Abstracts of Japan [online].
12JP-09-149315 (Asahi Optical Co Ltd), abstract, Jun. 6, 1997 In: Patent Abstracts of Japan [online].
13JP-09-322114 (Fuji Photo Film Co Ltd), abstract, Dec. 12, 1997. In: Patent Abstracts of Japan [online].
14JP-10-051721 (Ricoh Co Ltd), abstract, Feb. 20, 1998. In: Patent Abstracts of Japan [online].
15JP-10-105658 (Matsushita Electric IND Co Ltd), abstract, Apr. 24, 1998 In: Patent Abstracts of Japan [online].
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US8471904 *19 Sep 200625 Jun 2013Intel CorporationHidden security techniques for wireless security devices
US20080068457 *19 Sep 200620 Mar 2008Clemens Jonathan PHidden security techniques for wireless security devices
Clasificaciones
Clasificación de EE.UU.348/211.3, 348/207.1
Clasificación internacionalH04N5/232, H04N5/225, G06F1/00, H04N1/21, H04N1/34, G09C3/00, H04N1/00, G06F12/14, G06F21/00, H04N5/77, H04L12/58, G06T1/00, H04N1/32, H04N5/907, H04N7/18, H04N5/775, H04N5/765, G07C9/00, G03B7/091, H04N1/44, H04N7/16, H04N7/173, H04N7/167
Clasificación cooperativaH04N21/6131, H04N7/165, H04N2201/0049, G06F21/85, H04N2201/3236, H04N21/25891, H04N2201/3235, H04N7/185, H04N1/00925, H04N1/0097, H04N21/812, H04N2201/3233, H04N1/00965, G06F12/1408, H04N1/00307, H04N5/775, H04N1/2112, H04N1/32144, G03B2217/243, H04N2201/3274, H04N2201/0034, H04N1/32122, H04N1/00312, H04N5/23203, H04N1/00214, H04N5/907, H04N1/32101, H04N5/77, H04N1/34, H04N21/23892, H04N1/4413, H04N5/765, H04N2201/0062, H04N2101/00, H04N2201/0051, G03B7/091, H04N1/00281, H04N1/00204, G03B2217/244, H04N1/32128, H04N7/17318, H04N2201/0084, H04N2201/0074, H04N1/4486, H04N21/8358, H04N7/167, H04N2201/0015, H04N1/2158, H04N5/232, H04N1/00344, H04N5/772
Clasificación europeaH04N5/765, H04N5/232, H04N1/00C23, H04N1/00C3, H04N1/21B3, H04N5/77, H04N21/61D4, G03B7/091, H04N1/44S2, H04N21/2389B, H04N1/32C15D, H04N1/44A2, H04N21/8358, H04N5/232C, H04N1/32C, H04N21/81C, H04N5/77B, H04N1/32C19, H04N7/18D2, H04N7/173B2, H04N7/167, H04N21/258U3, H04N7/16E3, H04N1/00C3G3, G06F21/85, H04N1/00V2, H04N1/00W1, H04N1/00C7F, H04N1/00W3, H04N1/21B7