USRE43716E1 - Method of fast switching control for different operation systems operated in computer - Google Patents

Method of fast switching control for different operation systems operated in computer Download PDF

Info

Publication number
USRE43716E1
USRE43716E1 US13/158,699 US201113158699A USRE43716E US RE43716 E1 USRE43716 E1 US RE43716E1 US 201113158699 A US201113158699 A US 201113158699A US RE43716 E USRE43716 E US RE43716E
Authority
US
United States
Prior art keywords
operating system
kernel program
executing
event
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/158,699
Inventor
Szu-Chung Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Getac Technology Corp
Original Assignee
Getac Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Getac Technology Corp filed Critical Getac Technology Corp
Priority to US13/158,699 priority Critical patent/USRE43716E1/en
Application granted granted Critical
Publication of USRE43716E1 publication Critical patent/USRE43716E1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/4401Bootstrapping
    • G06F9/4406Loading of operating system

Definitions

  • the present invention relates to a control method for computer devices operated with multiple operation systems and, more particularly, to a fast switching control method for different operation systems operated within computers.
  • the conventional method in computer technology is to install an operating system (OS) in a computer so that when the computer is booted, the OS, the device drivers, and the specified applications in a hard disk of the computer will be loaded and executed after the basic booting process.
  • OS operating system
  • a typical application is to use a computer in conjunction with a multimedia player or a household appliance to become a well-performed computer system.
  • a second operation system is additionally installed in another partition of the original hard disk, so as to that it can provide the function of multimedia players or intelligent appliances and shortening booting time of the personal computer.
  • the primary objective of the present invention is to provide a method of fast switching control for different operation system being applicable to the computer. Through the present invention, the switching between more than two different operations systems installed in a computer can be speeded up effectively.
  • Another objective of the present invention is to provide a method of fast switching control for multiple operation systems being applicable to the computer.
  • a second operation system kernel program memory region is arranged in the system memory, and the second operation system kernel program is loaded into the second operation system kernel program memory region. Through the operation of the second operation system kernel program memory region, the computer can operate fast when it is switched to the second operation system.
  • the present invention at least installs a first operation system, a second operation system and the second operation system kernel program in the hard disk of the computer.
  • the hard disk is divided into a first partition and a second partition, with the first partition installs with the first operating system, and the second partition installs with the second operating system and the second operation system kernel program.
  • a second operation system kernel program memory region is established in the system memory, and the second operation system kernel program is loaded into the memory region.
  • the second operation system kernel program preloaded from the second operation system kernel program memory region is executed, so that the computer is switched from executing the first operation system to executing the second operation system.
  • the first operation system is windows operation system
  • the second operation system is embedded operation system.
  • the operation sequence of the computer after booting process is loading and executing the first operation system, detecting the event signal, loading and executing the second operation system, and switching back to executing the first operation system.
  • the operation sequence of the computer after booting process also may be loading and executing the second system, detecting the event signal, executing the second operation system, and switching back to the first operation system.
  • the present invention allows the computer installs with two or more operation systems at meanwhile.
  • the computer can be switched from executing the first operation system to executing the second operation system through second operation system kernel program loaded from the second operation system kernel program memory region arranged in the system memory of computer.
  • IA intelligent appliance
  • the switching between the operations systems also achieves the switching between the functions of multimedia playing and intelligent appliance.
  • FIG. 1 is a system functional block diagram in accordance with the present invention
  • FIG. 2 is the first part of the control flowchart of a first embodiment
  • FIG. 3 is the second part of the control flowchart of the first embodiment
  • FIG. 4 is the first part of the control flowchart of a second embodiment.
  • FIG. 5 is the second part of the control flowchart of the second embodiment.
  • a computer 100 comprises a central processing unit (CPU) 11 , a first bus bridge 12 , and a second bus bridge 13 .
  • the central processing unit 11 is connected to the first bus bridge 12 through a system bus.
  • the first bus bridge 12 is connected to a system memory 14 and is connected to a display 15 through a display interface 150 .
  • the second bus bridge 13 is connected to a BIOS memory 16 .
  • the BIOS memory 16 stores a BIOS program 161 and a power on self test (POST) program 162 , both required for booting the computer.
  • POST power on self test
  • the second bus bridge 13 is connected to a hard disk interface 170 through a bus.
  • the hard disk interface 170 is connected to a hard disk 17 .
  • the hard disk 17 serves as a data storage for the computer 100 .
  • the hard disk 17 is divided into a first partition 171 and a second partition 172 .
  • the first partition 171 is installed with a first operating system 171 a.
  • the operating system 171 a can be a known Windows operating system.
  • the first partition 171 is also installed with various device drivers 171 b and applications 171 c required for the computer 100 to operate.
  • the second partition 172 of the hard disk 17 stores a second operating system 172 a and a second operating system kernel program 172 b.
  • the second operating system 172 a can be a Linux-based operating system or other types of operating systems, such as Tiny Windows-based operating system or embedded operating system.
  • the second partition 172 also stores multimedia drivers 172 c and applications 172 d operating under the second operating system 172 a.
  • the multimedia drivers 172 c and the applications 172 d include drivers and applications for CD, digital music device, VCD, TV signal receiver, and so on.
  • the second bus bridge 13 of the computer 100 is connected to a keyboard controller 2 through a bus 130 .
  • the keyboard controller 2 is connected to a keyboard BIOS 21 , a keyboard 22 , and a mouse 23 .
  • the keyboard controller 2 is connected to an event signal generation unit 24 .
  • the event signal generation unit 24 comprises at least a button or an element capable of generating an operation signal. Under the user's operation, the event signal generation unit 24 generates a first event signal s 1 of multimedia playing mode to the keyboard controller 2 , and a second event signal s 2 of normal computer operation mode to the keyboard controller 2 .
  • the first and second event signals s 1 and s 2 can also be generated by pressing a pre-defined key of the keyboard 22 .
  • the event signal generation unit 24 can be defined as a control key for fast activating a default multimedia player.
  • the event signal generation unit 24 can be installed on the panel of the corresponding multimedia player, a button on the computer, or a button on a remote control.
  • FIGS. 2 and 3 show a control flowchart of the embodiment in FIG. 1 .
  • the following detail description refers to FIGS. 1 , 2 and 3 .
  • step 101 When the computer 100 is powered on (step 101 ), the computer 100 enters a series of basic system booting procedures (step 102 ). That is, the computer 100 loads and executes the BIOS program 161 and the POST program 162 from the BIOS memory 16 . Then, the computer 100 loads and executes the first operating system 171 a of the first partition 171 of the hard disk 17 (step 103 ), and then the computer 100 enters a normal computer operation mode (step 104 ).
  • the computer 100 After loading and executing the first operating system 171 a, the computer 100 establishes a second operating system kernel program memory region 141 in the system memory 14 (step 105 ), and loads the second operating system kernel program 172 b from the second partition 172 of the hard disk 17 to the second operating system kernel program memory region 141 (step 106 ) with a protected mode to reside the second operating system kernel program 172 b in the system memory 14 .
  • the second operating system kernel program 172 b can be stored in a compressed format to save the space required in the second operating system kernel program memory region 141 .
  • the computer When the computer is operated in the normal operation mode, it can detect whether the first event signal s 1 is generated (step 107 ). That is, when the user presses the event signal generation unit 24 or a pre-defined hot key of the keyboard 22 , the first event signal s 1 is detected by the keyboard controller 2 and sent to the central processing unit 11 of the computer 100 (step 108 ).
  • the central processing unit 11 When the central processing unit 11 receives the first event signal s 1 , the second operation system kernel program 172 b preloaded in the second operation system kernel program memory region 141 is executed (step 109 ), and switches the computer 100 to executing the second operation system 172 a (step 110 ) from executing the first operation system 171 a. After that, the operation mode of the computer is switched from the first operation system 171 a to the second operation system 172 a (step 111 ). Thus, the user can switch the computer 100 to execute the second operation system 172 a when he in need, and progressively achieves the object and efficiency of fast switching.
  • the computer 100 can load and execute the multimedia driver 172 c and application 172 d in necessary for the second operation system 172 a (step 112 ).
  • step 113 If the second event signal s 2 is detected (step 113 ) after operating the computer 100 in the second operation system 172 a, the computer stops executing the second operation system kernel program 172 b, and stops executing the multimedia driver 172 c and the application 172 d operated under the second operation system 172 a (step 114 ). Then the first operation system 171 a is awaked to make the computer 100 going back to the normal operation mode (step 115 ). Thus, the computer 100 can fast switching back to the first operation system 171 a without rebooting the first operation system 171 a.
  • the second operation system 172 a is designed for controlling the executing of the household appliance and multimedia playing device, such as CD player, digital music device, VCD, TV signal receiver, etc. Except for that the user can choose operating the computer 100 in the normal operation mode, the user also can fast switch the computer between executing the functions of multimedia playing devices and household appliances.
  • multimedia playing device such as CD player, digital music device, VCD, TV signal receiver, etc.
  • the operation sequence of the computer 100 after booting process is loading and executing the first operation system 17 a, detecting the event signals, loading and executing the second operation system 172 a, and switching back to executing the first operation system 171 a.
  • the operation sequence of the computer after booting process also may be loading and executing the second system 172 a, detecting the event signals, executing the second operation system 172 a, and switching back to the first operation system 171 a.
  • FIG. 4 and FIG. 5 show a system functional block diagram of a second embodiment in accordance with the present invention.
  • the computer 100 When the computer 100 is powered on (step 201 ), the computer 100 enters the basic system booting steps (step 202 ). Meanwhile, the computer 100 loads and executes the BIOS program 161 and the POST program 162 from the basic input output system memory 16 . Then, the computer 100 loads and executes the second operating system 172 a of the first partition 172 of the hard disk 17 (step 203 ).
  • the computer 100 After loading and executing the second operating system 172 a, the computer 100 establishes a second operating system kernel program memory region 141 in the system memory 14 (step 204 ), and loads the second operating system kernel program 172 b from the second partition 172 of the hard disk 17 to the second operating system kernel program memory region 141 (step 205 ) with a protected mode to reside in the system memory 14 .
  • step 206 whether the first event signal s 1 is generated is detected (step 206 ), i.e., when the user presses the event signal generation unit 24 or a pre-defined key of the keyboard 22 , the first event signal s 1 is detected by the keyboard controller 2 and sent to the central processing unit 11 of the computer 100 (step 207 ).
  • the central processing unit 11 When the central processing unit 11 receives the first event signal s 1 , the second operation system kernel program 172 b preloaded in the second operation system kernel program memory region 141 is executed (step 208 ).
  • the computer 100 can load and execute the multimedia driver 172 c and the application 172 d in necessary for the second operation system 172 a (step 209 ).
  • the computer 100 stops executing the second operation system 172 a (step 211 ). That is, the computer 100 stops executing the second operation system kernel program 172 b, and stops executing the multimedia driver 172 c and the application 172 d operated under the second operation system 172 a.
  • the computer 100 loads and executes the first operation system 171 a of the first partition 171 of the hard disk 17 (step 212 ), so that the computer 100 can enter the first operation system.
  • the computer 100 also can be switched to execute any operation system between different operation systems.

Abstract

A method of fast switching control for different operation systems operated in computer is provided, including installing a first operating system, a second operating system and a second operating system kernel program in a hard disk of the computer. An event signal generation unit is connected to the computer. When the computer completes the booting process, the first operating system is loaded and executed, the second operating system kernel program memory region is established in a system memory, and the second operating system kernel program is loaded into the second operating system kernel program memory region. When the computer detects that a preset event signal is generated from the event signal generation unit, the second operation system kernel program preloaded in the second operating system kernel program memory region is executed, so that the computer is switched from executing the first operation system to executing the second operation system.

Description

This application is a reissue application of U.S. Pat. No. 7,549,041 B2. This application claims priority to Taiwanese patent application no. 94130760, filed Sep. 7, 2005.
FIELD OF THE INVENTION
The present invention relates to a control method for computer devices operated with multiple operation systems and, more particularly, to a fast switching control method for different operation systems operated within computers.
BACKGROUND OF THE INVENTION
The conventional method in computer technology is to install an operating system (OS) in a computer so that when the computer is booted, the OS, the device drivers, and the specified applications in a hard disk of the computer will be loaded and executed after the basic booting process.
As the computer becomes more powerful, the application fields become wider and wider, and different functions of computers are also developed by many computer manufacturers to meet the particle demands. For example, a typical application is to use a computer in conjunction with a multimedia player or a household appliance to become a well-performed computer system.
SUMMARY OF THE INVENTION
However, because the hardware structure and the functions are different between the computer and the multimedia player or household appliances, it is difficult for a computer system integrated with a multimedia player or appliances to be booted in a speed as fast as turning on-off switch of household appliances. Although the industrial suppliers have provided different operating systems for normal computer operation mode and multimedia mode operations, the computer system still needs to read the operating system from the hard disk at the beginning of the booting process before operating in the multimedia mode. That is, the user must boot the computer and wait for the computer to complete the basic input operation system (BIOS) activation, power on self test (POST), peripheral detection and driving, operation system activation, system configuration, and so on, and then execute the multimedia playing.
Traditionally, in order to speed up booting time of a personal computer, a second operation system is additionally installed in another partition of the original hard disk, so as to that it can provide the function of multimedia players or intelligent appliances and shortening booting time of the personal computer.
However, when the above method is adopted, it provides the choices to the user between executing the normal functions of computers and executing the functions multimedia player or intelligent appliances, but when the computer system begins to execute operation system and save data in hard disk, the speed of data saving will be limited seriously.
The primary objective of the present invention is to provide a method of fast switching control for different operation system being applicable to the computer. Through the present invention, the switching between more than two different operations systems installed in a computer can be speeded up effectively.
Another objective of the present invention is to provide a method of fast switching control for multiple operation systems being applicable to the computer. In the present invention, a second operation system kernel program memory region is arranged in the system memory, and the second operation system kernel program is loaded into the second operation system kernel program memory region. Through the operation of the second operation system kernel program memory region, the computer can operate fast when it is switched to the second operation system.
To realize the above objects, the present invention at least installs a first operation system, a second operation system and the second operation system kernel program in the hard disk of the computer. The hard disk is divided into a first partition and a second partition, with the first partition installs with the first operating system, and the second partition installs with the second operating system and the second operation system kernel program. When the computer completes the booting process with the first operation system, a second operation system kernel program memory region is established in the system memory, and the second operation system kernel program is loaded into the memory region. When the computer detects an event signal generated from the event generation unit, the second operation system kernel program preloaded from the second operation system kernel program memory region is executed, so that the computer is switched from executing the first operation system to executing the second operation system. The first operation system is windows operation system, and the second operation system is embedded operation system.
In the preferred embodiment of the present invention as above description, the operation sequence of the computer after booting process is loading and executing the first operation system, detecting the event signal, loading and executing the second operation system, and switching back to executing the first operation system. In actual applications, the operation sequence of the computer after booting process also may be loading and executing the second system, detecting the event signal, executing the second operation system, and switching back to the first operation system.
In comparison with the conventional technologies, the present invention allows the computer installs with two or more operation systems at meanwhile. When a user needs to conduct specified function, the computer can be switched from executing the first operation system to executing the second operation system through second operation system kernel program loaded from the second operation system kernel program memory region arranged in the system memory of computer. In actual applications, if the computer is integrated with an intelligent appliance (IA) or a multimedia playing function, the switching between the operations systems also achieves the switching between the functions of multimedia playing and intelligent appliance.
These and other objects, features and advantages of the invention will be apparent to those skilled in the art, from a reading of the following brief description of the drawings, the detailed description of the preferred embodiment, and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention can be understood in more detail by reading the subsequent detailed description in conjunction with the examples and references made to the accompanying drawings, wherein:
FIG. 1 is a system functional block diagram in accordance with the present invention;
FIG. 2 is the first part of the control flowchart of a first embodiment;
FIG. 3 is the second part of the control flowchart of the first embodiment;
FIG. 4 is the first part of the control flowchart of a second embodiment; and
FIG. 5 is the second part of the control flowchart of the second embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
With reference to the drawings and in particular to FIG. 1, which shows a system functional block diagram of a first embodiment in accordance with the present invention, a computer 100 comprises a central processing unit (CPU) 11, a first bus bridge 12, and a second bus bridge 13. The central processing unit 11 is connected to the first bus bridge 12 through a system bus. The first bus bridge 12 is connected to a system memory 14 and is connected to a display 15 through a display interface 150.
The second bus bridge 13 is connected to a BIOS memory 16. The BIOS memory 16 stores a BIOS program 161 and a power on self test (POST) program 162, both required for booting the computer.
The second bus bridge 13 is connected to a hard disk interface 170 through a bus. The hard disk interface 170 is connected to a hard disk 17. The hard disk 17 serves as a data storage for the computer 100. The hard disk 17 is divided into a first partition 171 and a second partition 172. The first partition 171 is installed with a first operating system 171a. The operating system 171a can be a known Windows operating system. When the computer 100 is booted with the first operating system 171a, the computer 100 operates under the first operating system 171a. The first partition 171 is also installed with various device drivers 171b and applications 171c required for the computer 100 to operate.
The second partition 172 of the hard disk 17 stores a second operating system 172a and a second operating system kernel program 172b. The second operating system 172a can be a Linux-based operating system or other types of operating systems, such as Tiny Windows-based operating system or embedded operating system.
The second partition 172 also stores multimedia drivers 172c and applications 172d operating under the second operating system 172a. In actual applications, the multimedia drivers 172c and the applications 172d include drivers and applications for CD, digital music device, VCD, TV signal receiver, and so on.
The second bus bridge 13 of the computer 100 is connected to a keyboard controller 2 through a bus 130. The keyboard controller 2 is connected to a keyboard BIOS 21, a keyboard 22, and a mouse 23.
The keyboard controller 2 is connected to an event signal generation unit 24. The event signal generation unit 24 comprises at least a button or an element capable of generating an operation signal. Under the user's operation, the event signal generation unit 24 generates a first event signal s1 of multimedia playing mode to the keyboard controller 2, and a second event signal s2 of normal computer operation mode to the keyboard controller 2. The first and second event signals s1 and s2 can also be generated by pressing a pre-defined key of the keyboard 22.
In actual applications, the event signal generation unit 24 can be defined as a control key for fast activating a default multimedia player. The event signal generation unit 24 can be installed on the panel of the corresponding multimedia player, a button on the computer, or a button on a remote control.
FIGS. 2 and 3 show a control flowchart of the embodiment in FIG. 1. The following detail description refers to FIGS. 1, 2 and 3.
When the computer 100 is powered on (step 101), the computer 100 enters a series of basic system booting procedures (step 102). That is, the computer 100 loads and executes the BIOS program 161 and the POST program 162 from the BIOS memory 16. Then, the computer 100 loads and executes the first operating system 171a of the first partition 171 of the hard disk 17 (step 103), and then the computer 100 enters a normal computer operation mode (step 104).
After loading and executing the first operating system 171a, the computer 100 establishes a second operating system kernel program memory region 141 in the system memory 14 (step 105), and loads the second operating system kernel program 172b from the second partition 172 of the hard disk 17 to the second operating system kernel program memory region 141 (step 106) with a protected mode to reside the second operating system kernel program 172b in the system memory 14. The second operating system kernel program 172b can be stored in a compressed format to save the space required in the second operating system kernel program memory region 141.
When the computer is operated in the normal operation mode, it can detect whether the first event signal s1 is generated (step 107). That is, when the user presses the event signal generation unit 24 or a pre-defined hot key of the keyboard 22, the first event signal s1 is detected by the keyboard controller 2 and sent to the central processing unit 11 of the computer 100 (step 108).
When the central processing unit 11 receives the first event signal s1, the second operation system kernel program 172b preloaded in the second operation system kernel program memory region 141 is executed (step 109), and switches the computer 100 to executing the second operation system 172a (step 110) from executing the first operation system 171a. After that, the operation mode of the computer is switched from the first operation system 171a to the second operation system 172a (step 111). Thus, the user can switch the computer 100 to execute the second operation system 172a when he in need, and progressively achieves the object and efficiency of fast switching.
After completing the step of switching the computer 100 from executing the first operation system 171a to executing the second operation system 172a, the computer 100 can load and execute the multimedia driver 172c and application 172d in necessary for the second operation system 172a (step 112).
If the second event signal s2 is detected (step 113) after operating the computer 100 in the second operation system 172a, the computer stops executing the second operation system kernel program 172b, and stops executing the multimedia driver 172c and the application 172d operated under the second operation system 172a (step 114). Then the first operation system 171a is awaked to make the computer 100 going back to the normal operation mode (step 115). Thus, the computer 100 can fast switching back to the first operation system 171a without rebooting the first operation system 171a.
In actual application, the second operation system 172a is designed for controlling the executing of the household appliance and multimedia playing device, such as CD player, digital music device, VCD, TV signal receiver, etc. Except for that the user can choose operating the computer 100 in the normal operation mode, the user also can fast switch the computer between executing the functions of multimedia playing devices and household appliances.
In the first embodiment of the present invention as above description, the operation sequence of the computer 100 after booting process is loading and executing the first operation system 17a, detecting the event signals, loading and executing the second operation system 172a, and switching back to executing the first operation system 171a. In actual applications, the operation sequence of the computer after booting process also may be loading and executing the second system 172a, detecting the event signals, executing the second operation system 172a, and switching back to the first operation system 171a.
Please refer to FIG. 4 and FIG. 5, those shows a system functional block diagram of a second embodiment in accordance with the present invention. When the computer 100 is powered on (step 201), the computer 100 enters the basic system booting steps (step 202). Meanwhile, the computer 100 loads and executes the BIOS program 161 and the POST program 162 from the basic input output system memory 16. Then, the computer 100 loads and executes the second operating system 172a of the first partition 172 of the hard disk 17 (step 203).
After loading and executing the second operating system 172a, the computer 100 establishes a second operating system kernel program memory region 141 in the system memory 14 (step 204), and loads the second operating system kernel program 172b from the second partition 172 of the hard disk 17 to the second operating system kernel program memory region 141 (step 205) with a protected mode to reside in the system memory 14.
When the computer 100 operates under the second operation system 172a, whether the first event signal s1 is generated is detected (step 206), i.e., when the user presses the event signal generation unit 24 or a pre-defined key of the keyboard 22, the first event signal s1 is detected by the keyboard controller 2 and sent to the central processing unit 11 of the computer 100 (step 207).
When the central processing unit 11 receives the first event signal s1, the second operation system kernel program 172b preloaded in the second operation system kernel program memory region 141 is executed (step 208).
After completing above steps, the computer 100 can load and execute the multimedia driver 172c and the application 172d in necessary for the second operation system 172a (step 209).
If the second event signal s2 is detected when the computer 100 operates under the second operation system 172a (step 210), the computer 100 stops executing the second operation system 172a (step 211). That is, the computer 100 stops executing the second operation system kernel program 172b, and stops executing the multimedia driver 172c and the application 172d operated under the second operation system 172a.
Then, the computer 100 loads and executes the first operation system 171a of the first partition 171 of the hard disk 17 (step 212), so that the computer 100 can enter the first operation system. According to above description, the computer 100 also can be switched to execute any operation system between different operation systems.
While the invention has been described in connection with what is presently considered to the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangement included within the spirit and scope of the appended claims.

Claims (18)

1. A method of fast switching control for different operation operating systems pre-installed in a computer with a hard disk storage, a system memory, a basic input output system and an event signal generation unit, the hard disk storage at least stored with a first operation operating system, a second operation operating system and a second operation operating system kernel program, and wherein the event signal generation unit is a user operated element for generating event signals for switching between the first and second operation operating systems, the method comprising the following steps:
(a) completing a basic system booting process of the computer;
(b) loading and executing the first operation operating system in from the hard disk storage;
(c) establishing a second operating system kernel diagram program memory region in the system memory;
(d) loading the second operation operating system kernel program from the hard disk storage into the second operating system kernel diagram program memory region without starting execution of the second operation operating system and without stopping execution of the first operating system;
(e) detecting whether the event signal generation unit generates a preset first event signal by operation of the user;
(f) executing the second operation operating system kernel program preloaded in the second operation operating system kernel program memory region when the first event signal is detected; and
(g) switching the computer from executing the first operation operating system to executing the second operation operating system.
2. The method as claimed in claim 1, wherein the hard disk storage is divided into a first partition and a second partition, with the first partition installed with the first operating system, and the second partition installed with the second operating system and the second operation operating system kernel program.
3. The method as claimed in claim 2, wherein the first operation operating system is a windows operation operating system and the second operating system is an embedded operation operating system.
4. The method as claimed in claim 2, wherein the second partition storage also stores at least one device driving program and application program adapted to supporting the second operation operating system.
5. The method as claimed in claim 1, further comprising the following steps after step (g):
(h) detecting whether the event signal generation unit generates a preset second event signal by operation of the user;
(i) stopping executing the second operation operating system when the second event signal is detected; and
(j) awaking the first operation operating system and switching the computer to execute the first operation operating system.
6. A method of fast switching control for different operating systems in a computer with a first memory, a basic input output system and an event generation unit, wherein the event generation unit is a user operated element for generating events for switching between a first operating system and a second operating system, the method comprising:
loading and executing the first operating system;
establishing a second operating system kernel program memory region in the first memory;
loading the second operating system kernel program into the second operating system kernel program memory region without starting execution of the second operating system and without stopping execution of the first operating system;
detecting whether the event generation unit generates a first event by operation of the user;
executing the second operating system kernel program preloaded in the second operating system kernel program memory region when the first event is detected; and
switching the computer from executing the first operating system to executing the second operating system.
7. The method as claimed in claim 6, wherein the first operating system is a windows operating system and the second operating system is an embedded operating system.
8. The method as claimed in claim 6, further comprising:
detecting whether the event generation unit generates a second event by operation of the user;
stopping executing the second operating system when the second event is detected; and
awaking and executing the first operating system.
9. A system for controlling a plurality of operating systems, comprising:
a storage storing a first operating system, a second operating system, and a second operating system kernel program;
a system memory;
a generation unit that generates signals for switching between the first and second operating systems based on user operation; and
a processor configured to:
load the first operating system from the storage;
execute the first operating system;
establish a memory region in the system memory;
load the second operating system kernel program from the storage into the memory region without starting execution of the second operating system and without stopping execution of the first operating system;
detect whether the generation unit generates a preset first event signal by operation of a user;
execute the second operating system kernel program in response to the first event signal generated by the generation unit; and
switch from executing the first operating system to executing the second operating system.
10. The system as claimed in claim 9, wherein the storage is divided into a first partition and a second partition, with the first partition installed with the first operating system, and the second partition installed with the second operating system and the second operating system kernel program.
11. The system as claimed in claim 10, wherein the first operating system is a windows operating system and the second is an embedded operating system.
12. The system as claimed in claim 10, wherein the second partition stores at least one device driving program and application program adapted to supporting the second operating system.
13. The system as claimed in claim 9, the processor further configured to:
detect whether the generation unit generates a second event signal;
stop executing the second operating system when the second event signal is detected; and
awake and execute the first operating system.
14. A system for controlling a plurality of operating systems, comprising:
a first operating system;
a second operating system;
a system memory;
an event generation unit that generates events for switching between the first and second operating systems based on operation of a user; and
a processor configured to:
load and execute the first operating system;
establish a second operating system kernel program memory region in the system memory;
load the second operating system kernel program into the second operating system kernel program memory region without starting execution of the second operating system and without stopping execution of the first operating system;
detect whether the event generation unit generates a preset first event by operation of the user;
execute the second operating system kernel program when the first event is detected; and
switch from executing the first operating system to executing the second operating system.
15. The system as claimed in claim 14, wherein the first operating system is a windows operating system and the second operating system is an embedded operating system.
16. The system as claimed in claim 14, the processor further configured to:
detect whether the event generation unit generates a second event;
stop executing the second operating system when the second event is detected; and
awake and execute the first operating system.
17. A method of switching control for different operating systems in a computer including a storage, a system memory, a basic input output system and an event signal generation unit, the storage including a first operating system, a second operating system and a second operating system kernel program, and wherein the event signal generation unit is a user operated element for generating event signals for switching between the first and second operating systems, the method comprising:
loading the first operating system from the storage;
executing the first operating system;
establishing a second operating system kernel program memory region in the system memory;
loading the second operating system kernel program from the storage into the second operating system kernel program memory region without starting execution of the second operating system and without stopping execution of the first operating system;
detecting whether the event signal generation unit generates a preset first event signal by operation of the user;
executing the second operating system kernel program preloaded in the second operating system kernel program memory region when the first event signal is detected; and
switching from executing the first operating system to executing the second operating system when the first event signal in detected.
18. A system configured to control a plurality of operating systems, comprising:
a storage storing a first operating system, a second operating system, and a second operating system kernel program;
a system memory; and
processor configured to:
load the first operating system from the storage;
execute the first operating system;
establish a second operating system kernel program memory region in the system memory;
load the second operating system kernel program from the storage into the second operating system kernel program memory region without starting execution of the second operating system and without stopping execution of the first operating system;
detect a first event associated with an operation of the user and generated by an event signal generation unit;
execute the second operating system kernel program preloaded in the second operating system kernel program memory region when the first event is detected; and
switch from executing the first operating system to executing the second operating system based on the detected first event.
US13/158,699 2005-09-07 2011-06-13 Method of fast switching control for different operation systems operated in computer Active 2027-07-15 USRE43716E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/158,699 USRE43716E1 (en) 2005-09-07 2011-06-13 Method of fast switching control for different operation systems operated in computer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW94130760 2005-09-07
TW094130760A TWI279678B (en) 2005-09-07 2005-09-07 Method for fast switching between different operating systems in computer device with multiple operating systems
US11/302,241 US7549041B2 (en) 2005-09-07 2005-12-14 Method of fast switching control for different operation systems operated in computer
US13/158,699 USRE43716E1 (en) 2005-09-07 2011-06-13 Method of fast switching control for different operation systems operated in computer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/302,241 Reissue US7549041B2 (en) 2005-09-07 2005-12-14 Method of fast switching control for different operation systems operated in computer

Publications (1)

Publication Number Publication Date
USRE43716E1 true USRE43716E1 (en) 2012-10-02

Family

ID=37763234

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/302,241 Ceased US7549041B2 (en) 2005-09-07 2005-12-14 Method of fast switching control for different operation systems operated in computer
US13/158,699 Active 2027-07-15 USRE43716E1 (en) 2005-09-07 2011-06-13 Method of fast switching control for different operation systems operated in computer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/302,241 Ceased US7549041B2 (en) 2005-09-07 2005-12-14 Method of fast switching control for different operation systems operated in computer

Country Status (4)

Country Link
US (2) US7549041B2 (en)
JP (1) JP2007073025A (en)
DE (1) DE102006005126A1 (en)
TW (1) TWI279678B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110141360A1 (en) * 2009-12-11 2011-06-16 Samsung Electronics Co., Ltd. Selective booting method and broadcast receiving apparatus using the same
US8955746B2 (en) 2012-09-27 2015-02-17 Intel Corporation Providing a locking technique for electronic displays
US20190026104A1 (en) * 2017-07-24 2019-01-24 Sevone, Inc. System, method, and apparatus for zero downtime operating system transformation
US10491486B2 (en) 2008-10-29 2019-11-26 Sevone, Inc. Scalable performance management system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI279724B (en) * 2005-09-07 2007-04-21 Mitac Technology Corp Method for fast activating execution of computer multimedia playing from standby mode
KR100746026B1 (en) * 2006-01-04 2007-08-06 삼성전자주식회사 Apparatus and method for installing software
US20080126879A1 (en) * 2006-09-27 2008-05-29 Rajeev Tiwari Method and system for a reliable kernel core dump on multiple partitioned platform
TWI362612B (en) 2007-09-05 2012-04-21 Htc Corp System and electronic device using multiple operating systems and operating method thereof
KR101288700B1 (en) * 2008-03-14 2013-08-23 미쓰비시덴키 가부시키가이샤 Multi-operating system(os) start device, computer-readable recording medium, and multi-os start method
CN102890637B (en) * 2009-06-01 2016-07-06 宇瞻科技股份有限公司 Electronic installation and installation instant start operation system method
US8862299B2 (en) 2011-11-16 2014-10-14 Flextronics Ap, Llc Branding of electrically propelled vehicles via the generation of specific operating output
US8898443B2 (en) 2010-10-01 2014-11-25 Z124 Multi-operating system
US8949823B2 (en) 2011-11-16 2015-02-03 Flextronics Ap, Llc On board vehicle installation supervisor
US9008906B2 (en) 2011-11-16 2015-04-14 Flextronics Ap, Llc Occupant sharing of displayed content in vehicles
US9088572B2 (en) 2011-11-16 2015-07-21 Flextronics Ap, Llc On board vehicle media controller
US9116786B2 (en) 2011-11-16 2015-08-25 Flextronics Ap, Llc On board vehicle networking module
US9173100B2 (en) 2011-11-16 2015-10-27 Autoconnect Holdings Llc On board vehicle network security
US9043073B2 (en) 2011-11-16 2015-05-26 Flextronics Ap, Llc On board vehicle diagnostic module
TWI482021B (en) * 2012-02-23 2015-04-21 Wistron Corp Method for sharing peripheral devices in dual operating systems, and electronic device using the same
CN103294545B (en) 2012-02-23 2017-07-04 纬创资通股份有限公司 Method for switching dual operating systems and electronic device
CN103294562B (en) 2012-02-23 2017-03-01 纬创资通股份有限公司 Method for sharing peripheral device by dual operating systems and electronic device
US8615766B2 (en) 2012-05-01 2013-12-24 Concurix Corporation Hybrid operating system
JP5715658B2 (en) * 2013-05-11 2015-05-13 レノボ・シンガポール・プライベート・リミテッド Method for constructing a safe operating environment in a computer, computer program, and computer
JP5819350B2 (en) * 2013-06-13 2015-11-24 株式会社日立製作所 Computer system and startup method
KR102205836B1 (en) 2014-01-29 2021-01-21 삼성전자 주식회사 Task Scheduling Method and Apparatus
TWI767548B (en) * 2021-02-02 2022-06-11 台灣積體電路製造股份有限公司 Methods and systems for operating user devices having multiple operating systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010018717A1 (en) 2000-02-29 2001-08-30 International Business Machines Corporation Computer system, operating system switching system, operating system mounting method, operating system switching method, storage medium, and program transmission apparatus
US20040237086A1 (en) 1997-09-12 2004-11-25 Hitachi, Ltd. Multi OS configuration method and computer system
US20050182922A1 (en) 2004-02-18 2005-08-18 International Business Machines Corporation Computer systems with several operating systems coexisting thereon and swapping between these operating systems
CN1673962A (en) 2004-03-25 2005-09-28 Lg电子株式会社 Computer system having multi-operation system and method for changing operating system in computer system
US20050273663A1 (en) 2004-05-21 2005-12-08 Samsung Electronics Co., Ltd. Computer system, method, and medium for switching operating system
US20070022421A1 (en) 2003-04-09 2007-01-25 Eric Lescouet Operating systems
US20070055860A1 (en) 2005-09-07 2007-03-08 Szu-Chung Wang Method of fast booting for computer multimedia playing from standby mode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003196096A (en) * 2001-12-07 2003-07-11 Internatl Business Mach Corp <Ibm> Computer system, its starting control method and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040237086A1 (en) 1997-09-12 2004-11-25 Hitachi, Ltd. Multi OS configuration method and computer system
US20010018717A1 (en) 2000-02-29 2001-08-30 International Business Machines Corporation Computer system, operating system switching system, operating system mounting method, operating system switching method, storage medium, and program transmission apparatus
US20070022421A1 (en) 2003-04-09 2007-01-25 Eric Lescouet Operating systems
US20050182922A1 (en) 2004-02-18 2005-08-18 International Business Machines Corporation Computer systems with several operating systems coexisting thereon and swapping between these operating systems
CN1673962A (en) 2004-03-25 2005-09-28 Lg电子株式会社 Computer system having multi-operation system and method for changing operating system in computer system
US20050216722A1 (en) 2004-03-25 2005-09-29 Lg Electronics Inc. Computer system having multi-operation system and method for changing operating system in computer system
US20050273663A1 (en) 2004-05-21 2005-12-08 Samsung Electronics Co., Ltd. Computer system, method, and medium for switching operating system
US20070055860A1 (en) 2005-09-07 2007-03-08 Szu-Chung Wang Method of fast booting for computer multimedia playing from standby mode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Communication from the German Patent Office, dated Feb. 19, 2008.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10491486B2 (en) 2008-10-29 2019-11-26 Sevone, Inc. Scalable performance management system
US20110141360A1 (en) * 2009-12-11 2011-06-16 Samsung Electronics Co., Ltd. Selective booting method and broadcast receiving apparatus using the same
US9066039B2 (en) * 2009-12-11 2015-06-23 Samsung Electronics Co., Ltd. Selective booting method and broadcast receiving apparatus using the same
US8955746B2 (en) 2012-09-27 2015-02-17 Intel Corporation Providing a locking technique for electronic displays
US20190026104A1 (en) * 2017-07-24 2019-01-24 Sevone, Inc. System, method, and apparatus for zero downtime operating system transformation
US10540172B2 (en) * 2017-07-24 2020-01-21 Sevone, Inc. System, method, and apparatus for zero downtime operating system transformation

Also Published As

Publication number Publication date
DE102006005126A1 (en) 2007-03-15
TWI279678B (en) 2007-04-21
TW200712875A (en) 2007-04-01
US20070055857A1 (en) 2007-03-08
JP2007073025A (en) 2007-03-22
US7549041B2 (en) 2009-06-16

Similar Documents

Publication Publication Date Title
USRE43716E1 (en) Method of fast switching control for different operation systems operated in computer
US7840793B2 (en) Method of fast booting for computer multimedia playing from standby mode
US7496744B2 (en) Method for booting computer multimedia system with high speed data storage
US7735098B2 (en) Method for executing computer programs in accordance with preset execution priority
US7228408B2 (en) Computer system capable of operating in multiple operation modes and the operating method thereof
US9201661B2 (en) Booting method and electronic device
US7464258B2 (en) Method of displaying foreground visual data in foreground and executing system booting in background for computer system
US7447928B2 (en) Method for booting computer multimedia systems with a hot key standby state
JP2009516244A (en) Direct computing experience
US20060200691A1 (en) Cancellation of initiation of hibernation process
CN101526901A (en) Method and device for viewing files in computer
US7900030B2 (en) Method for determining a rebooting action of a computer system and related computer system
US7620758B2 (en) System and method for fast activation and playing using a multimedia playback control module to load and execute core program
US7447890B2 (en) Method for fast activation and playing of multimedia data with non-fixed data storage media
US20070079111A1 (en) Activating method of computer multimedia function
US7930528B2 (en) Method for status indication of activating application including indication of operating system bootup process with light emitting section prior to application activation
US20090070491A1 (en) Method for executing target programs with compound quick keys
KR101461002B1 (en) Chassis button to activate graphical user interface to enable user to select diagnostics and/or recovery
US7401214B2 (en) Method for executing computer function options with intelligent memory for computer-based multimedia system
JP5659892B2 (en) Information processing apparatus, portable terminal apparatus, and log output control method in information processing apparatus
US8345011B2 (en) Method for express execution of playing computer multimedia data with device group activation
JP2007257445A (en) Information equipment and starting method therefor
US6845415B2 (en) Computing system capable of controlling disk loading and disk unloading operations of an optical disk drive
KR100631966B1 (en) Computer device and peripheral device with multi-booting power button and method for booting the same
KR200316563Y1 (en) Computer device and peripheral device with multi-booting power button

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: 11.5 YR SURCHARGE- LATE PMT W/IN 6 MO, LARGE ENTITY (ORIGINAL EVENT CODE: M1556); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12