Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUSRE43875 E1
Tipo de publicaciónConcesión
Número de solicitudUS 12/323,228
Fecha de publicación25 Dic 2012
Fecha de presentación25 Nov 2008
Fecha de prioridad29 Sep 2004
También publicado comoEP1804638A1, EP1804638B1, EP2329759A1, EP2329759B1, US7366376, US20060067620, USRE45512, WO2006037132A1
Número de publicación12323228, 323228, US RE43875 E1, US RE43875E1, US-E1-RE43875, USRE43875 E1, USRE43875E1
InventoresMilen Shishkov, Brett Eugene Bouma, Guillermo J. Tearney
Cesionario originalThe General Hospital Corporation
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
System and method for optical coherence imaging
US RE43875 E1
Resumen
Apparatus and method are provided for transmitting at least one electro-magnetic radiation is provided. In particular, at least one optical fiber having at least one end extending along a first axis may be provided. Further, a light transmissive optical arrangement may be provided in optical cooperation with the optical fiber. The optical arrangement may have a first surface having a portion that is perpendicular to a second axis, and a second surface which includes a curved portion. The first axis can be provided at a particular angle that is more than 0° and less than 90° with respect to the second axis.
Imágenes(11)
Previous page
Next page
Reclamaciones(37)
1. An apparatus for transmitting at least one electro-magnetic radiation, comprising:
at least one optical fiber having at least one end extending along a first axis and, when in operation, transmitting at least one electromagnetic radiation to a sample; and
a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion, wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis,
wherein the curved portion has a first radius of a first curvature in a first plane lying along the first and second axes, and a second radius of a second curvature in a second plane which is perpendicular to the first plane, and wherein the first radius is different from the second radius, and wherein the first curvature is different from the second curvature.
2. The apparatus according to claim 1, wherein the portion is adapted to at least partially reflect at least one portion of the at least one electro-magnetic radiation, and wherein the curved portion is adapted to transmit the at least one portion of the at least one electro-magnetic radiation there through.
3. The apparatus according to claim 1, wherein the curved portion has a first curvature in a first plane perpendicular to the first axis, and a second curvature in a second plane perpendicular to a third axis, wherein the first plane is different from the second plane, and wherein the first curvature is different from the second curvature.
4. The apparatus according to claim 3, wherein a further angle between the first axis and the third axis is approximately 90°.
5. The apparatus according to claim 1, wherein the particular angle is at least an angle for a total internal reflection between the light transmissive optical arrangement and a medium external thereto.
6. The apparatus according to claim 1, wherein the portion of the first surface is a reflective surface.
7. The apparatus according to claim 1, wherein the portion of the first surface has a metal layer.
8. The An apparatus according to claim 1 for transmitting at least one electro-magnetic radiation, comprising:
at least one optical fiber having at least one end extending along a first axis; and
a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion, wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis,
wherein the curved portion has a first radius of a first curvature in a first plane lying along the first and second axes, and a second radius of a second curvature in a second plane which is perpendicular to the first plane, and wherein the first radius is different from the second radius, and wherein the first curvature is different from the second curvature, wherein the at least one optical fiber and the light transmissive optical arrangement are formed as a single piece from the same material.
9. The An apparatus according to claim 1 for transmitting at least one electro-magnetic radiation, comprising:
at least one optical fiber having at least one end extending along a first axis; and
a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion, wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis,
wherein the curved portion has a first radius of a first curvature in a first plane lying along the first and second axes, and a second radius of a second curvature in a second plane which is perpendicular to the first plane, and wherein the first radius is different from the second radius, and wherein the first curvature is different from the second curvature, and
wherein the at least one optical fiber has at least one first region and at least one second region, the first region being adapted to guide the at least one electro-magnetic radiation, and the second region having non-guiding properties of the at least one electro-magnetic radiation, and wherein the first and second regions are positioned approximately along the first axis.
10. The apparatus according to claim 1, wherein the second plane is provided at approximately the particular angle with respect to the second axis and at approximately twice the particular angle with respect to the first axis.
11. The apparatus according to claim 1, wherein the light transmissive optical arrangement is configured to concentrate the at least one electro-magnetic radiation at a focal point which is provided outside of the apparatus, and wherein the focal point is provided approximately at an intersection of the first and second planes.
12. An The apparatus for transmitting at least one electro-magnetic radiation, comprising:
at least one optical fiber having at least one end extending along a first axis;
a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion, wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis; and according to claim 1, further comprising
a sheath having a substantially transparent portion, wherein the light transmissive optical arrangement is arranged within the substantially transparent portion.
13. An The apparatus according to claim 12, further comprising for transmitting at least one electro-magnetic radiation, comprising:
at least one optical fiber having at least one end extending along a first axis;
a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion, wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis; and
a sheath having a substantially transparent portion, wherein the light transmissive optical arrangement is arranged within the substantially transparent portion,
wherein the curved portion has a first radius of a first curvature in a first plane lying along the first and second axes, and a second radius of a second curvature in a second plane which is perpendicular to the first plane, wherein the first radius is different from the second radius, and wherein the first curvature is different from the second curvature, and wherein the first and second curvatures have properties which effectuate a reduction of astigmatism caused by the substantially transparent portion.
14. An The apparatus for transmitting at least one electro-magnetic radiation, comprising:
at least one optical fiber having at least one end extending along a first axis; and
a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion,
wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis, wherein the curved portion has a first curvature in a first plane perpendicular to the first axis, and a second curvature in a second plane perpendicular to a third axis, wherein the first plane is different from the second plane, and wherein the first curvature is different from the second curvature, and according to claim 13,
wherein the first and second curvatures have properties which effectuate a reduction of aberration.
15. The apparatus according to claim 14, wherein the first and second curvatures have properties which effectuate a reduction of astigmatism.
16. An apparatus for transmitting at least one electro-magnetic radiation, comprising:
at least one optical fiber having at least one end extending along a first axis; and
a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion,
wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis, wherein the at least one optical fiber includes first and second optical fibers, and wherein at least one of the first and second optical fibers is at least partially rotated.
17. The apparatus according to claim 16, further comprising a translation stage configured to translate at least one of the first and second optical fibers approximately along the first axis.
18. An The apparatus for transmitting at least one electro-magnetic radiation, comprising:
at least one optical fiber having at least one end extending along a first axis; and
a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion,
wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis, wherein the curved portion has a first curvature in a first plane perpendicular to the first axis, and a second curvature in a second plane perpendicular to a third axis, wherein the first plane is different from the second plane, and wherein the first curvature is different from the second curvature, and according to claim 16, wherein the first and second curvatures have properties which effectuate a reduction of astigmatism at the focal point.
19. A method for transmitting at least one electro-magnetic radiation, comprising:
providing at least one optical fiber having at least one end extending along a first axis;
when in operation, transmitting at least one electromagnetic radiation to a sample; and
providing a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion,
wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis, wherein the curved portion has a first radius of a first curvature in a first plane lying along the first and second axes, and a second radius of a second curvature in a second plane which is perpendicular to the first plane, wherein the first radius is different from the second radius, and wherein the first curvature is different from the second curvature.
20. The method according to claim 19, wherein the portion is adapted to at least partially reflect at least one portion of the at least one electro-magnetic radiation, and wherein the curved portion is adapted to transmit the at least one portion of the at least one electro-magnetic radiation there through.
21. The method according to claim 20, wherein the curved portion has a first curvature in a first plane perpendicular to the first axis, and a second curvature in a second plane perpendicular to a third axis, wherein the first plane is different from the second plane, and wherein the first curvature is different from the second curvature.
22. The method according to claim 21, wherein a further angle between the first axis and the third axis is approximately 90°.
23. The method according to claim 19, wherein the particular angle is at least an angle for a total internal reflection between the light transmissive optical arrangement and a medium external thereto.
24. The method according to claim 19, wherein the portion of the first surface is a reflective surface.
25. The method according to claim 19, wherein the portion of the first surface has a metal layer.
26. An The method according to claim 19, for transmitting at least one electro-magnetic radiation, comprising:
providing at least one optical fiber having at least one end extending along a first axis; and
providing a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion,
wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis, wherein the curved portion has a first radius of a first curvature in a first plane lying along the first and second axes, and a second radius of a second curvature in a second plane which is perpendicular to the first plane, wherein the first radius is different from the second radius, and wherein the first curvature is different from the second curvature, and wherein the at least one optical fiber and the light transmissive optical arrangement are formed as a single piece from the same material.
27. An The method according to claim 19, for transmitting at least one electro-magnetic radiation, comprising:
providing at least one optical fiber having at least one end extending along a first axis; and
providing a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion,
wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis, wherein the curved portion has a first radius of a first curvature in a first plane lying along the first and second axes, and a second radius of a second curvature in a second plane which is perpendicular to the first plane, wherein the first radius is different from the second radius, and wherein the first curvature is different from the second curvature, and wherein the at least one optical fiber has at least one first region and at least one second region, the first region being adapted to guide the at least one electro-magnetic radiation, and the second region having non-guiding properties of the at least one electro-magnetic radiation, and wherein the first and second regions are positioned along the first axis.
28. The method according to claim 19, wherein the second plane is provided at approximately the particular angle with respect to the second axis and at approximately twice the particular angle with respect to the first axis.
29. The method according to claim 19, wherein the light transmissive optical arrangement is configured to concentrate the at least one electro-magnetic radiation at a focal point which is provided outside of the apparatus, and wherein the focal point is provided approximately at an intersection of the first and second planes.
30. An The method for transmitting at least one electro-magnetic radiation, comprising:
providing at least one optical fiber having at least one end extending along a first axis; and
providing a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion,
wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axisaccording to claim 19, wherein the light transmissive optical arrangement is arranged within a substantially transparent portion of a sheath.
31. The method according to claim 30, for transmitting at least one electro-magnetic radiation, comprising: providing at least one optical fiber having at least one end extending along a first axis; and providing a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion, wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis, wherein the curved portion has a first radius of a first curvature in a first plane lying along the first and second axes, and a second radius of a second curvature in a second plane which is perpendicular to the first plane, wherein the first radius is different from the second radius, and wherein the first curvature is different from the second curvature, wherein the light transmissive optical arrangement is arranged within a substantially transparent portion of a sheath, and wherein the first and second curvatures have properties which effectuate a reduction of astigmatism caused by the substantially transparent portion.
32. An The method for transmitting at least one electro-magnetic radiation, comprising:
providing at least one optical fiber having at least one end extending along a first axis; and
providing a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion,
wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis, wherein the curved portion has a first curvature in a first plane perpendicular to the first axis, and a second curvature in a second plane perpendicular to a third axis, wherein the first plane is different from the second plane, and wherein the first curvature is different from the second curvature, and according to claim 19, wherein the first and second curvatures have properties which effectuate a reduction of aberration.
33. The method according to claim 32, wherein the first and second curvatures have properties which effectuate a reduction of astigmatism.
34. A method for transmitting at least one electro-magnetic radiation, comprising:
providing at least one optical fiber having at least one end extending along a first axis; and
providing a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion,
wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis, wherein the at least one optical fiber includes first and second optical fibers, and wherein one of the first and second optical fibers is at least partially rotated.
35. The method according to claim 34, further comprising a translation stage configured to translate at least one of the first and second optical fibers approximately along the first axis.
36. An The method for transmitting at least one electro-magnetic radiation, comprising:
providing at least one optical fiber having at least one end extending along a first axis;
providing a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first surface having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion,
wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis; and concentrating the at least one electro-magnetic radiation at a focal point which is provided outside of the apparatus, according to claim 19, wherein the first and second curvatures have properties which effectuate a reduction of astigmatism at the focal point.
37. An apparatus for transmitting at least one electro-magnetic radiation, comprising:
at least one optical fiber having at least one end extending along a first axis; and
a light transmissive optical arrangement provided in optical cooperation with the at least one optical fiber, the optical arrangement including a first planar surface provided in position to first receive an electromagnetic radiation from the at least one optical fiber and having a portion that is approximately perpendicular to a second axis, and a second surface which includes a curved portion, wherein the first axis is provided at a particular angle that is more than 0° and less than 90° with respect to the second axis,
wherein the curved portion has a first radius of a first curvature in a first plane lying along the first and second axes, and a second radius of a second curvature in a second plane which is perpendicular to the first plane, and wherein the first radius is different from the second radius, and wherein the first curvature is different from the second curvature.
Descripción
CROSS-REFERENCE TO RELATED APPLICATION(S)

The present invention claims priority from U.S. patent application Ser. No. 60/614,228 filed on Sep. 29, 2004, the entire disclosure of which incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

The invention was made with the U.S. Government support under Grant Number DAMD17-99-2-9001 awarded by the U.S. Department of the Army. Thus, the U.S. Government has certain rights in the invention.

FIELD OF THE INVENTION

The present invention relates generally to imaging probes and systems for imaging biological samples, and more particularly, to optical fiber probes and optical imaging systems which are capable of using such probes for imaging of the biological samples.

BACKGROUND INFORMATION

In vivo optical imaging of internal organs of a patient is commonly performed through a fiber-optic catheter. Many clinical areas such as cardiology, interventional radiology and gastroenterology require a small diameter, rotating optical probe or catheter to generate r-□ cross-sectional images. In addition, the rotating catheter may be pulled back along a longitudinal direction to obtain three dimensional images of the tissue volume of interest. For this application, a catheter providing a focused optical beam and connectivity to the imaging system may be an important device. The optical imaging system can include optical frequency domain imaging and optical coherence tomography.

Generally, ideal characteristics of fiber-optic catheters may include: a) a narrow diameter, b) a high flexibility, and c) a low optical aberration. Since an optical fiber can easily be produced with a diameter less that 250 μm, fiber-optic probes have the potential for minimally invasive access to small vessels and narrow spaces within living subjects. Typically, catheters are directed to locations of interest through the use of a guide-wire that is placed under fluoroscopic guidance. To achieve compatibility with the guide-wire, and additionally to protect the optical fiber, catheters typically utilize an outer transparent sheath. The optical fiber can be placed inside of the sheath and is free to rotate or translate longitudinally. Light transmitted through the fiber is directed to a path perpendicular to the longitudinal axis of the catheter and focused to a point outside of the sheath, within the tissue of interest. As the light propagates through the sheath, its focal properties are modified by refraction at the inner and outer surface of the sheath. In other words, the sheath acts as a lens. Due to the cylindrical shape of the sheath, however, its lens characteristics may be undesirable and, in particular, can introduce significant aberrations. One of the most significant aberrations of the sheath is astigmatism, an effect that increases dramatically when using narrow diameter sheaths. Light rays passing through an optical element having astigmatism would exhibit two distinct foci, one focus for rays in the sagittal plane and another focus for rays in the orthogonal, tangential plane. An arrangement (e.g., a catheter) that overcomes this limitation would improve optical imaging, and may have widespread applications in medicine and biology, in particular.

One approach to overcome astigmatism introduced by the sheath can be to match the index of refraction of the sheath with the medium outside of an inside of the sheath. For biological imaging, this can be approximated by using a sheath having an index of refraction approximately equal to that of water, and to fill the lumen of the sheath with water or a substance of approximately equal index of refraction. It is highly desirable for the optical imaging catheter to enable both rotation and longitudinal pull-back of the components internal to the sheath. Although a rotation of the internal components within a water-filled sheath is possible, a longitudinal pull-back is problematic due to the viscosity of the fluid and turbulence. A more desirable solution may be to compensate the astigmatism of the sheath using other optical components, and to operate the catheter with air or another gas occupying the void between the internal components and the sheath.

It is known in the art that miniature lenses, having diameters approximately equal to that of standard optical communications fibers, can be used to shape the light emitted from an optical fiber to form a focal spot external to the fiber. It is also well-known that these devices can collect light from a focal spot and transmit that light backward through the optical fiber.

FIGS. 1a-1d show exemplary conventional configurations for combining miniature lenses and optical fiber. For example, in order to achieve a small package size, approximately equal to the diameter of optical fibers (less than approximately 500 μm), a gradient-index (GRIN or SELFOC) lens 25 is typically used. Commonly, the protective outer layer 10 of a glass optical fiber is partially stripped back from an end of the fiber 15, and a lens 25 is fixed to the fiber using optical adhesive or optical epoxy. In the case of a gradient-index lens, light emitted from the core 20 of the fiber follows a path whose marginal rays 30 describe a sinusoid. Through an appropriate selection of the index-of-refraction profile in the material of the lens and the lens length, the focal properties of the light emitted from the lens can be controlled. A common configuration for such a lens-fiber combination provides a focal spot 35 at a predetermined distance from the distal face of the lens. In addition to a lens, a beam deflector such as a prism 90 can be used to redirect the light 85 emitted from the lens to illuminate a focus 80 located transversely with respect to the axis of the fiber. In order to minimize a back-reflection from the lens and to improve the mechanical integrity of the device, the lens may be directly bonded or fusion spliced to the optical fiber. Alternatively, a spacer 105 that includes a glass cylinder of homogeneous index of refraction can be inserted between the fiber 100 and the lens 115 to allow for beam expansion 110 prior to focusing. A prism or beam deflector 120 can further be used to redirect the beam to a focal spot 125 located at a position with a transverse offset with respect to the axis of the fiber.

For each of the probes illustrated in FIGS. 1a-1c, the length of the lens and spacer must be carefully controlled and the elements carefully aligned to achieve the desired focal characteristics for a specific application. As a result, such probes are difficult to manufacture. Additionally, these designs lack mechanical integrity and require an additional structure, such as an outer protective sleeve, to avoid mechanical failure. This requirement may result in a larger probe diameter and longer rigid length than otherwise might be possible.

Ball lenses that include a single spherical particle of glass can alternatively be used to produce a focus from light emitted from an optical fiber. In this case, as shown in FIG. 1d, the light 130 emitted from the fiber is refracted at the surface of the sphere 135. The ball lens can be positioned at the distal end of the fiber or can be formed directly from the material of the fiber by controlled heating and melting of the glass. During the heating process, a portion of the light-guiding core of the fiber 125 can be destroyed and the light can diffract to a larger beam size at the ball-lens external surface 135 producing improved focal characteristics 140. An important aspect of the device shown in FIG. 1 is that the ball lens is fabricated by melting and reforming the distal end of an optical fiber is that the surface of the ball is approximately spherical over the portion where light is transmitted. Additionally, a beam deflector such as a prism cannot be directly bonded to the spherical surface of the ball lens, thus requiring an additional housing for its positioning and mechanical fixture.

Therefore, there is a need to overcome at least some of the deficiencies described herein above.

SUMMARY OF THE INVENTION

In order to overcome at least some of the deficiencies described above, exemplary embodiments of sculptured optical fiber probes and optical imaging systems that use such probes can provided for performing imaging of a biological sample according to the present invention. In one exemplary embodiment, the probe can be used to provide a focused optical beam with light from the imaging system, to collect light reflected from the biological sample, convey it back to the imaging system, as well as to scan the focused optical beam across the biological sample in two or three spatial dimensions. The application of the imaging system using the sculptured optical probe according to the present invention can include intravascular imaging, cardio vascular imaging, and gastrointestinal tract imaging.

According to an exemplary embodiment of the present invention, apparatus and method are provided for transmitting at least one electro-magnetic radiation is provided. In particular, at least one optical fiber having at least one end extending along a first axis may be provided. Further, a light transmissive optical arrangement may be provided in optical cooperation with the optical fiber. The optical arrangement may have a first surface having a portion (e.g., a planar portion) that is perpendicular to a second axis, and a second surface which includes a curved portion. The first axis can be provided at a particular angle that is more than 0° and less than 90° with respect to the second axis.

In one exemplary embodiment of the present invention, the portion may be adapted to at least partially reflect at least one portion of the at least one electro-magnetic radiation, and the curved portion can be adapted to transmit the at least one portion of the at least one electro-magnetic radiation there through. The curved portion may have a first curvature in a first plane perpendicular to the first axis, and a second curvature in a second plane perpendicular to a third axis. For example, the first plane can be different from the second plane, and the first curvature may be different from the second curvature. A further angle between the first axis and the third axis may be approximately 90°.

According to another exemplary embodiment of the present invention, the particular angle may be at least an angle for a total internal reflection between the light transmissive optical arrangement and a medium external thereto. The portion of the first surface may be a reflective surface and/or may have a metal layer. Further, the optical fiber and the light transmissive optical arrangement may be formed as a single piece from the same material. The optical fiber can have at least one first region and at least one second region, the first region being adapted to guide the at least one electro-magnetic radiation, and the second region having non-guiding properties of the at least one electro-magnetic radiation. Further, the first and second regions can be positioned along the first axis.

A sheath having a substantially transparent portion may be provided, and the light transmissive optical arrangement may be arranged within the substantially transparent portion. In addition, the first and second curvatures may have properties which effectuate a reduction of astigmatism caused by the substantially transparent portion. The first and second curvatures may have properties which effectuate a reduction of astigmatism. The optical fiber may include first and second optical fibers, one of which can be rotated (e.g., at a substantially uniform rotational speed of greater than about 30 revolutions per second). A translation stage configured to translate at least one of the first and second optical fibers can be provided along a longitudinal direction. The first and/or second optical fibers may be single mode fibers with a nominal cutoff wavelength. The nominal cutoff wavelength of the first and/or second optical fibers may be between about 900 nm and 1300 nm.

According to another exemplary embodiment of the present invention, the first and second curvatures may have properties which effectuate a reduction of astigmatism. The optical fiber may include first and second optical fibers, and the first optical finer and/or the second optical fiber may be at least partially rotated. A translation stage may be provided which is configured to translate the first optical fiber and/or the second optical fiber approximately along the first axis. The light transmissive optical arrangement can be configured to concentrate the electro-magnetic radiation at a focal point which is provided outside of the apparatus. The first and second curvatures may have properties which effectuate a reduction of astigmatism at the focal point.

These and other objects, features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which:

FIG. 1a is a diagram of a conventional arrangement of miniature lenses and beam directors which includes a gradient-index lens for focusing light from an optical fiber;

FIG. 1b is a diagram of a conventional arrangement of miniature lenses and beam directors which includes a gradient-index lens and prism for focusing light from the optical fiber;

FIG. 1c is a diagram of a conventional arrangement of miniature lenses and beam directors which includes a gradient-index lens and prism with a spacer between the fiber and the lens for focusing light from the optical fiber;

FIG. 1d is a diagram of a conventional arrangement of miniature lenses and beam directors which includes a ball lens formed by heating tip of optical fiber for focusing light from the optical fiber.

FIG. 2a is a side longitudinal side view of an exemplary embodiment of a sculptured tip optical fiber probe for imaging according to the present invention; and

FIG. 2b is a cross-sectional view of the probe shown in FIG. 2a;

FIG. 3 is a graph of exemplary calculations of probe parameters to achieve a desired focal distance in air;

FIG. 4 is a graph of exemplary calculations of probe parameters to achieve a desired focal distance in water;

FIG. 5a is a schematic diagram illustrating a first exemplary fabrication step for producing the exemplary sculptured tip fiber probe according to the present invention;

FIG. 5b is a schematic diagram illustrating a second exemplary fabrication step for producing the sculptured tip fiber probe according to the present invention;

FIG. 5c is a schematic diagram illustrating a third exemplary fabrication step for producing the sculptured tip fiber probe according to the present invention;

FIG. 5d is a schematic diagram illustrating a fourth exemplary fabrication step for producing the sculptured tip fiber probe according to the present invention;

FIG. 5e is a schematic diagram illustrating a fifth exemplary fabrication step for producing the sculptured tip fiber probe according to the present invention;

FIG. 6a is an exemplary image of the exemplary probe according to the present invention after a ball lens thereof if formed;

FIG. 6b is an exemplary image of the exemplary probe according to the present invention after polishing an angled facet of the ball lens;

FIG. 7 is an exemplary image of human skin in vivo acquired using the probe shown in FIGS. 6a and 6b;

FIG. 8 is an illustration of an exemplary embodiment of a rotary junction according to the present invention which can be used with the probe shown in FIGS. 6a and 6b;

FIG. 9 is a block diagram of an exemplary embodiment of an optical system based on optical frequency domain imaging which is adapted to utilize the probe of FIGS. 6a and 6b; and

FIG. 10 is a block diagram of an exemplary embodiment of an optical system based on spectral-domain optical coherence tomography which is adapted to utilize the probe of FIGS. 6a and 6b.

Throughout the drawings, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components, or portions of the illustrated embodiments. Moreover, while the present invention will now be described in detail with reference to the Figures, it is done so in connection with the illustrative embodiments.

DETAILED DESCRIPTION

FIG. 2 depicts an exemplary embodiment of a sculptured tip optical fiber probe according to the present invention. Features of this exemplary embodiment of the probe can include a optical fiber 150 (e.g., preferably a single-mode fiber), in which a distal end of the optical fiber can include a portion of a prolate spheroidal ball 160, monolithic with the fiber. A prolate spheroid may be characterized by a sphere that has been pulled or extended along an axis separating its poles. Over a predetermined (e.g., small) portion 195 of the surface of the ball 160, the surface can be characterized as having two distinct radii of curvature, R1 170 and R2 180 (as shown in a side view of FIG. 2a, and an end view of FIG. 2b) of the fiber distal end. The radius of curvature R1 170 is greater than the physical radius Rb 172 of the ball. The radius of curvature R2 180 is approximately equivalent to the physical radius 172.

The distal end of the fiber can be further characterized by an approximately flat surface 190 oriented at an angle with respect to the axis of the fiber. The surface 190 is configured to deflect light emitted from the fiber (denoted as the dashed line in FIG. 2a) so that the light passes through a surface of the ball 195 to a focus 200. The distal end of the fiber is further characterized by a region 210 in which the light-guiding core 155 of the fiber is absent so as to allow light from the core to diffract, and thus illuminate a significant fraction of the surface 195. The region 210, having a particular length (L) 215, can be fabricated through a destruction procedure of the core by heat or by fusion splicing a core-less fiber to an end of a fiber having a light-guiding core. In the latter case, the ball lens 160 and surface 190 can be fabricated from the material of the core-less fiber. Specific methods for fabricating the exemplary probe shown in FIGS. 2a and 2b, and for controlling the radii of curvature 170, 180 are described as follows.

The exemplary embodiment of the probe shown in FIGS. 2a and 2b provide certain desired characteristics, e.g., the radii of curvature 170, 180 are distinct and independently controllable in the fabrication process. This attribute is advantageous since it permits for a compensation of astigmatism introduced by the catheter sheath. As light passes through a spherical surface, it likely experiences a refraction. The effective focal length of for collimated light refracted by transmission through a spherical surface is given by the equation

f = n m R n b - n m ,
where nm is the index of refraction of the medium outside the surface, nb is the index of refraction inside the surface and R is the radius of curvature. The effective focal length for the exemplary probe shown in FIGS. 2a and 2b may have two distinct values; one associated with R1 and another associated with R2.

Through an appropriate selection of R1 and R2, the focal length difference between the sagittal and tangential plane rays that results from the sheath can be compensated, and an astigmatism-free focus, external to the sheath, can be produced. For biomedical imaging, the catheter may be immersed in tissue or fluid having an index of refraction approximately equal to that of water. In such case, with air inside the sheath, the refractive power of the sheath is negative. In other words, the sheath can act to defocus the light propagating across it. The refractive power of the sheath, however, may act, e.g., only along one axis. Along the longitudinal axis of the sheath, there is likely no refractive power. An exemplary design for the probe likely has R1>R2.

The effective focal length of the surface 190 can also be determined by the separation of L 215 between the light guiding core 155 and the surface 190, in addition to the radii of curvature 170, 180. FIG. 3 shows a graph of an exemplary calculation representing pairs of exemplary acceptable values for L and R that can yield various focal distances. The dependent axis 250 of FIG. 3 represents the difference between L and R in units of microns, and the horizontal axis 252 represents two-times the value of R in units of microns. Each of the curves of this figure represent different focal distances: 1.0 mm (label 254), 1.5 mm (label 256), 2.0 mm (label 258), 2.5 mm (label 260), 3.0 mm (label 262), and 50 mm (label 264). The exemplary calculation the results of which are shown in FIG. 3 can be based on a probe made from fused silica surrounded by air.

FIG. 4 depicts an exemplary graph of a similar calculation in which an exemplary fused silica probe may be immersed in water. The dependent axis 266 of FIG. 4 represents the difference between L and R in units of microns and the horizontal axis 268 represents two-times the value of R in units of microns. Each of the curves of this figure represent different focal distances: 1.0 mm (label 270), 1.5 mm (label 272), 2.0 mm (label 274), 2.5 mm (label 276), 3.0 mm (label 280), and 50 mm (label 282).

FIGS. 5a-5e depict exemplary products produced by fabrications steps which can be used to produce the example embodiment of the optical imaging probe shown in FIGS. 2a and 2b. Standard telecommunications fiber (e.g., SMF-28 shown in FIG. 5a) can include a protective acrylic jacket 300 having a diameter of 250 μm, a glass cladding 305 having a diameter of 125 μm, and a light-guiding core 310, in which the mode-field diameter can nominally be 9 μm. The fabrication of the exemplary imaging probe can begins by stripping off a section of the acrylic jacket to expose the glass cladding (see FIG. 5a). A length of homogeneous glass fiber 315 having, e.g., the same diameter as the SMF-28 cladding can then be fusion-spliced to the fiber 305 and cleaved to a predetermined length (see FIG. 5b).

The fiber fusion-splicing procedure is well-known in the art as a method for affixing two optical fibers while introducing low insertion loss and back-reflection. Fusion splicing fibers of dissimilar diameters can also be performed in cases where a more significant beam expansion is desirable. A ball lens 325 can be produced at the end of the homogenous glass fiber 315 (see FIG. 5c), e.g., using a fiber fusion workstation, such as Vytran FFS-2000. Parameters including temperature, duration and insertion rate determine the volume of the fiber tip 320 that is melted. In this manner, the radius 330 of the resulting ball and the distance 335 between the center of the ball and the splice between the homogeneous fiber 320 and the light-guiding fiber 340 can be ascertained. Following the formation of the ball, the distal end of probe can be polished to produce an angled face 345 (see FIG. 5d). Machines for polishing optical fiber and miniature optical components are readily available, and can produce high-quality optical surface with high-degrees of flatness and smoothness.

The angle 350 used for the exemplary graph of FIG. 3 can be selected so that all rays of light emitted from the single mode fiber 305 may be incident upon the polished surface 345 at an angle 350 that is greater than that of total internal reflection. For this exemplary configuration, the surface 345 can acts as a nearly perfect reflector, deflecting the light to the upper surface 325 of the ball. Alternatively, the angle can be arbitrarily determined, and a coating such as gold or aluminum may be used to achieve a high degree of reflectivity from the face 345. In the case of an applied coating, the distal tip of the probe can be protected by applying an acrylic coat 355 as, e.g., a final fabrication step (see FIG. 5e).

FIGS. 6a and 6b show exemplary images which can illustrate various stages of the formation/fabrication of the exemplary embodiment of the probe according to the present invention. For example, the image of FIG. 6a may approximately correspond to the illustration of FIG. 5c following the formation of the ball 370 at a distal end of a fiber 375. In addition, the image of FIG. 6b may approximately correspond to the illustration of FIG. 5d following the polishing of the ball 370 to create an angled face 380.

FIG. 7 shows an exemplary optical coherence tomography (“OCT”) image which can be acquired using the exemplary probe shown in FIGS. 6a and 6b. The sample in FIG. 7 is a ventral portion of a finger of a human subject. The upper most thin, dark layer 400 corresponds to the stratum corneum, the lighter region just below the stratum corneum corresponds to the epidermis 410 and the dark underlying band 420 to the dermis.

For intravascular or intralumenal imaging, an exemplary catheter shown in FIG. 2a can be used in conjunction with an optical rotary junction permitting rotation. FIG. 8 shows an exemplary embodiment of a rotary junction using a pair of collimators, 12 and 18 which can be used with the exemplary probe shown in FIGS. 2a and 2b. One of the collimating lenses 18 can be attached (either directly or indirectly) to a tubular structure 26. The distal end of the fiber 21 may be inserted into a connector ferrule 28 which is positioned inside a sleeve 34. A matching connector with a connector housing case 33 and ferrule 32 can be inserted to the sleeve 34.

This exemplary arrangement facilitates an optical transmission between two fibers 21, 31. The tubular structure 26 is connected to a housing 39 via a bearing 36. The tubular structure 26 may also be connected to a rotational motor 37 via a belt or gear 38. The motor 37 can rotate the tubular structure 26 and thereby the collimator 18. The housing 39 may be mounted to a translation stage 40 that is provided on a stationary rail 41, e.g., for a pull-back operation. The rotary junction provides optical transmission between a non-rotating fiber 11 and a rotating fiber 31 while permitting an interchange of the alternate fibers 31 at the connector housing 33.

In one exemplary embodiment of the present invention, the optical fibers 11, 21, 31 can be single mode optical fibers. According to other exemplary embodiments of the present invention, each of the fibers 11, 21, 31 may be a multimode fiber, a polarization maintaining fiber, and/or a photonic crystal fiber. The fibers 11, 21 can be fused to the lenses 12, 18, thus dramatically reducing a back-reflection and increasing throughput. The collimating lenses 12, 18 may alternately be aspheric refractive lenses or axial gradient index lenses. The optics surfaces of the lenses 12, 18 may be antireflection coated at an operating wavelength range of light. The wavelength range includes 800+/−100 nm, 1000-1300 nm, or 1600-1800 nm. The focal length of the lenses 12, 18 can be selected to provide a beam diameter of about 100 μm to 1000 μm. The overall throughput from the fibers 11, 21, 31 can typically be greater than 70%, and the back-reflection may be less than −55 dB.

The tubular structure 26 may be a hollow motor shaft and the motor 37 is positioned coaxially to the tubular structure 26; e.g., the belt or gear 38, may not be needed. The polishing angle of the connectors 28, 32 can be between about 4 degrees and 10 degrees with respect to the surface normal to minimize back reflection. The connector housing 33 preferably provides a snap-one connection, e.g., similar to the SC type and may be equipped with a built-in end-protection gate.

FIG. 9 shows an exemplary embodiment of an optical frequency domain imaging (“OFDI”) system which can used the rotary junction and catheter as described above. For example, the light source may be a wavelength swept laser 81. The rotary junction 39 may be connected to a sample arm of an interferometer which includes a 10/90 coupler 82, an attenuator 84, a polarization controller 86, circulators 88, 89, a length matching fiber 90, a collimating lens 92, and a reference mirror 94. The detection circuit may include a 50/50 coupler 96, a polarization controller 98, polarization beam splitters 99, 101, dual balanced receivers 103, 104, electrical filters 106, 107, and a data acquisition board 111. The data acquisition board 111 may be connected to a computer 112, and can be in communication with a trigger circuit 114, a motor controller 94, and the translation stage 41, 42. The operating principle of OCT is well known in the art. in order to provide dual-balanced detection and polarization diverse detection simultaneously, the polarization controller 98 is configured to allow the birefringence of the two fiber paths from the coupler to be matched. Another polarization controller 86 in the reference arm may be adjusted to split the reference light with an equal ratio at each of the polarization beam splitters 101, 102. Corresponding polarization states following the splitters, labeled x or y, can be directed to dual-balanced receivers 103, 104.

FIG. 10 shows an exemplary embodiment of a spectral-domain OCT system which is configured to be used with the rotary junction and catheter according to the present invention described above. The light source 121 may include a low coherence broadband source, a pulsed broadband source, and/or a wavelength varying source with repetition synchronized to the readout rate of a camera 122. The camera 122 can utilize a detector array 124 based on charge coupled devices and/or CMOS imager. The interference signal can be directed to the detector array 124 using a collimator 126, a diffraction element such as a grating arrangement 128, and a focusing lens 131. The operating principle of OCT is well known in the art, and are incorporated herein.

The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. For example, the invention described herein is usable with the exemplary methods, systems and apparatus described in U.S. Provisional Patent Appn. No. 60/514,769 filed Oct. 27, 2003, and International Patent Application No. PCT/US03/02349 filed on Jan. 24, 2003, the disclosures of which are incorporated by reference herein in their entireties. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. In addition, all publications, patents and patent applications referenced above are incorporated herein by reference in their entireties.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US23397544 Mar 194125 Ene 1944Westinghouse Electric & Mfg CoSupervisory apparatus
US30907532 Ago 196021 May 1963Exxon Research Engineering CoEster oil compositions containing acid anhydride
US360148010 Jul 196824 Ago 1971Physics Int CoOptical tunnel high-speed camera system
US385600016 May 197324 Dic 1974Machido Seisakusho KkEndoscope
US38724071 Sep 197218 Mar 1975Us NavyRapidly tunable laser
US394112120 Dic 19742 Mar 1976The University Of CincinnatiFocusing fiber-optic needle endoscope
US397321924 Abr 19753 Ago 1976Cornell Research Foundation, Inc.Very rapidly tuned cw dye laser
US398350713 Ene 197528 Sep 1976Research CorporationTunable laser systems and method
US40308272 Dic 197421 Jun 1977Institut National De La Sante Et De La Recherche Medicale (Inserm)Apparatus for the non-destructive examination of heterogeneous samples
US403083122 Mar 197621 Jun 1977The United States Of America As Represented By The Secretary Of The NavyPhase detector for optical figure sensing
US41403645 Dic 197720 Feb 1979Olympus Optical Co., Ltd.Variable field optical system for endoscopes
US414136223 May 197727 Feb 1979Richard Wolf GmbhLaser endoscope
US42249293 Nov 197830 Sep 1980Olympus Optical Co., Ltd.Endoscope with expansible cuff member and operation section
US429573823 Jun 198020 Oct 1981United Technologies CorporationFiber optic strain sensor
US430081630 Ago 197917 Nov 1981United Technologies CorporationWide band multicore optical fiber
US43033004 Feb 19801 Dic 1981Thomson-CsfRotary-joint device providing for an optical waveguide transmission
US44286438 Abr 198131 Ene 1984Xerox CorporationOptical scanning system with wavelength shift correction
US447949929 Ene 198230 Oct 1984Alfano Robert RMethod and apparatus for detecting the presence of caries in teeth using visible light
US453324723 Ago 19826 Ago 1985International Standard Electric CorporationOptical transmission system
US458534912 Sep 198429 Abr 1986Battelle Memorial InstituteMethod of and apparatus for determining the position of a device relative to a reference
US460103630 Sep 198215 Jul 1986Honeywell Inc.Rapidly tunable laser
US460762211 Abr 198526 Ago 1986Charles D. FritchFiber optic ocular endoscope
US463149826 Abr 198523 Dic 1986Hewlett-Packard CompanyCW Laser wavemeter/frequency locking technique
US465032728 Oct 198517 Mar 1987Oximetrix, Inc.Optical catheter calibrating assembly
US47446568 Dic 198617 May 1988Spectramed, Inc.Disposable calibration boot for optical-type cardiovascular catheter
US475170631 Dic 198614 Jun 1988The United States Of America As Represented By The Secretary Of The ArmyLaser for providing rapid sequence of different wavelengths
US477049228 Oct 198613 Sep 1988Spectran CorporationPressure or strain sensitive optical fiber
US482790720 Nov 19879 May 1989Teac Optical Co., Ltd.Intra-observation apparatus
US483411112 Ene 198730 May 1989The Trustees Of Columbia University In The City Of New YorkHeterodyne interferometer
US486883414 Sep 198819 Sep 1989The United States Of America As Represented By The Secretary Of The ArmySystem for rapidly tuning a low pressure pulsed laser
US487731424 May 198831 Oct 1989Olympus Optical Co., Ltd.Objective lens system for endoscopes
US489090122 Dic 19872 Ene 1990Hughes Aircraft CompanyColor corrector for embedded prisms
US489240611 Ene 19889 Ene 1990United Technologies CorporationMethod of and arrangement for measuring vibrations
US490516915 Jun 198927 Feb 1990The United States Of America As Represented By The United States Department Of EnergyMethod and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation
US490963118 Dic 198720 Mar 1990Tan Raul YMethod for film thickness and refractive index determination
US492530213 Abr 198815 May 1990Hewlett-Packard CompanyFrequency locking device
US492800524 Ene 198922 May 1990Thomson-CsfMultiple-point temperature sensor using optic fibers
US496544126 Feb 198923 Oct 1990Commissariat A L'energie AtomiqueMethod for the scanning confocal light-optical microscopic and indepth examination of an extended field and devices for implementing said method
US496559913 Nov 198923 Oct 1990Eastman Kodak CompanyScanning apparatus for halftone image screen writing
US499383425 Sep 198919 Feb 1991Fried. Krupp GmbhSpectrometer for the simultaneous measurement of intensity in various spectral regions
US499897223 Mar 198912 Mar 1991Thomas J. FogartyReal time angioscopy imaging system
US50391933 Abr 199013 Ago 1991Focal Technologies IncorporatedFibre optic single mode rotary joint
US504088930 May 198620 Ago 1991Pacific Scientific CompanySpectrometer with combined visible and ultraviolet sample illumination
US504593619 Jul 19893 Sep 1991Keymed (Medical And Industrial Equipment) LimitedLaser scanning imaging apparatus and method of ranging
US504650118 Ene 198910 Sep 1991Wayne State UniversityAtherosclerotic identification
US506533127 May 198612 Nov 1991Vachon Reginald IApparatus and method for determining the stress and strain in pipes, pressure vessels, structural members and other deformable bodies
US508549628 Mar 19904 Feb 1992Sharp Kabushiki KaishaOptical element and optical pickup device comprising it
US512095325 Jun 19909 Jun 1992Harris Martin RScanning confocal microscope including a single fibre for transmitting light to and receiving light from an object
US512198312 Dic 199016 Jun 1992Goldstar Co., Ltd.Stereoscopic projector
US512773010 Ago 19907 Jul 1992Regents Of The University Of MinnesotaMulti-color laser scanning confocal imaging system
US519747016 Jul 199030 Mar 1993Eastman Kodak CompanyNear infrared diagnostic method and instrument
US52027452 Mar 199213 Abr 1993Hewlett-Packard CompanyPolarization independent optical coherence-domain reflectometry
US520865116 Jul 19914 May 1993The Regents Of The University Of CaliforniaApparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes
US52126673 Feb 199218 May 1993General Electric CompanyLight imaging in a scattering medium, using ultrasonic probing and speckle image differencing
US521453817 Jun 199125 May 1993Keymed (Medical And Industrial Equipment) LimitedOptical apparatus
US522800123 Ene 199113 Jul 1993Syracuse UniversityOptical random access memory
US524136417 Oct 199131 Ago 1993Fuji Photo Film Co., Ltd.Confocal scanning type of phase contrast microscope and scanning microscope
US524887621 Abr 199228 Sep 1993International Business Machines CorporationTandem linear scanning confocal imaging system with focal volumes at different heights
US52501869 Oct 19925 Oct 1993Cetus CorporationHPLC light scattering detector for biopolymers
US526264416 Dic 199216 Nov 1993Southwest Research InstituteRemote spectroscopy for raman and brillouin scattering
US52755949 Nov 19904 Ene 1994C. R. Bard, Inc.Angioplasty system having means for identification of atherosclerotic plaque
US529188521 Nov 19918 Mar 1994Kowa Company Ltd.Apparatus for measuring blood flow
US52938723 Abr 199115 Mar 1994Alfano Robert RMethod for distinguishing between calcified atherosclerotic tissue and fibrous atherosclerotic tissue or normal cardiovascular tissue using Raman spectroscopy
US529387326 Ago 199215 Mar 1994Siemens AktiengesellschaftMeasuring arrangement for tissue-optical examination of a subject with visible, NIR or IR light
US530417320 Jul 199319 Abr 1994Massachusetts Institute Of TechnologySpectral diagonostic and treatment system
US530481016 Jul 199119 Abr 1994Medical Research CouncilConfocal scanning optical microscope
US530575914 May 199126 Abr 1994Olympus Optical Co., Ltd.Examined body interior information observing apparatus by using photo-pulses controlling gains for depths
US531738930 May 199031 May 1994California Institute Of TechnologyMethod and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography
US531802416 Dic 19917 Jun 1994Massachusetts Institute Of TechnologyLaser endoscope for spectroscopic imaging
US532150129 Abr 199214 Jun 1994Massachusetts Institute Of TechnologyMethod and apparatus for optical imaging with means for controlling the longitudinal range of the sample
US53480033 Sep 199220 Sep 1994Sirraya, Inc.Method and apparatus for chemical analysis
US535379017 Ene 199211 Oct 1994Board Of Regents, The University Of Texas SystemMethod and apparatus for optical measurement of bilirubin in tissue
US538346718 Nov 199224 Ene 1995Spectrascience, Inc.Guidewire catheter and apparatus for diagnostic imaging
US539423516 Mar 199428 Feb 1995Ando Electric Co., Ltd.Apparatus for measuring distortion position of optical fiber
US541101622 Feb 19942 May 1995Scimed Life Systems, Inc.Intravascular balloon catheter for use in combination with an angioscope
US541932317 Nov 198930 May 1995Massachusetts Institute Of TechnologyMethod for laser induced fluorescence of tissue
US543900018 Nov 19938 Ago 1995Spectrascience, Inc.Method of diagnosing tissue with guidewire
US544105315 Sep 199215 Ago 1995University Of Kentucky Research FoundationApparatus and method for multiple wavelength of tissue
US545020322 Dic 199312 Sep 1995Electroglas, Inc.Method and apparatus for determining an objects position, topography and for imaging
US545480730 Dic 19933 Oct 1995Boston Scientific CorporationMedical treatment of deeply seated tissue using optical radiation
US545932519 Jul 199417 Oct 1995Molecular Dynamics, Inc.High-speed fluorescence scanner
US545957016 Mar 199317 Oct 1995Massachusetts Institute Of TechnologyMethod and apparatus for performing optical measurements
US54651472 Jun 19947 Nov 1995Massachusetts Institute Of TechnologyMethod and apparatus for acquiring images using a ccd detector array and no transverse scanner
US548670128 Mar 199423 Ene 1996Prometrix CorporationMethod and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness
US54915245 Oct 199413 Feb 1996Carl Zeiss, Inc.Optical coherence tomography corneal mapping apparatus
US549155229 Mar 199413 Feb 1996Bruker MedizintechnikOptical interferometer employing mutually coherent light source and an array detector for imaging in strongly scattered media
US552633810 Mar 199511 Jun 1996Yeda Research & Development Co. Ltd.Method and apparatus for storage and retrieval with multilayer optical disks
US555508714 Jun 199410 Sep 1996Fuji Photo Film Co., Ltd.Method and apparatus for employing a light source and heterodyne interferometer for obtaining information representing the microstructure of a medium at various depths therein
US556210025 May 19948 Oct 1996Massachusetts Institute Of TechnologyMethod for laser induced fluorescence of tissue
US556598616 Mar 199515 Oct 1996Kn+E,Uml U+Ee Ttel; AlexanderStationary optical spectroscopic imaging in turbid objects by special light focusing and signal detection of light with various optical wavelengths
US556626715 Dic 199415 Oct 1996Ceram Optec Industries Inc.Flat surfaced optical fibers and diode laser medical delivery devices
US55833427 Sep 199510 Dic 1996Hamamatsu Photonics K.K.Laser scanning optical system and laser scanning optical apparatus
US559066028 Mar 19947 Ene 1997Xillix Technologies Corp.Apparatus and method for imaging diseased tissue using integrated autofluorescence
US560048630 Ene 19954 Feb 1997Lockheed Missiles And Space Company, Inc.Color separation microlens
US56010877 Jun 199511 Feb 1997Spectrascience, Inc.System for diagnosing tissue with guidewire
US56218307 Jun 199515 Abr 1997Smith & Nephew Dyonics Inc.Rotatable fiber optic joint
US562333629 Abr 199422 Abr 1997Raab; MichaelMethod and apparatus for analyzing optical fibers by inducing Brillouin spectroscopy
US563583025 Oct 19953 Jun 1997Matsushita Electric Industrial Co., Ltd.Optical magnetic field sensor employing differently sized transmission lines
US56431761 Feb 19951 Jul 1997Power Analytics CorporationEndoscopic instrument with variable viewing angle
US564992410 Ene 199522 Jul 1997Trimedyne, Inc.Medical device for irradiation of tissue
US569737314 Mar 199516 Dic 1997Board Of Regents, The University Of Texas SystemOptical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies
US56983977 Jun 199516 Dic 1997Sri InternationalUp-converting reporters for biological and other assays using laser excitation techniques
US571063026 Abr 199520 Ene 1998Boehringer Mannheim GmbhMethod and apparatus for determining glucose concentration in a biological sample
US57163247 Jun 199510 Feb 1998Fuji Photo Film Co., Ltd.Endoscope with surface and deep portion imaging systems
US571939918 Dic 199517 Feb 1998The Research Foundation Of City College Of New YorkImaging and characterization of tissue based upon the preservation of polarized light transmitted therethrough
US57307319 Jul 199624 Mar 1998Thomas J. FogartyPressure-based irrigation accumulator
US573527621 Mar 19957 Abr 1998Lemelson; JeromeMethod and apparatus for scanning and evaluating matter
US574080828 Oct 199621 Abr 1998Ep Technologies, IncSystems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US57483186 Ago 19965 May 1998Brown University Research FoundationOptical stress generator and detector
US574859822 Dic 19955 May 1998Massachusetts Institute Of TechnologyApparatus and methods for reading multilayer storage media using short coherence length sources
US578435219 Ago 199721 Jul 1998Massachusetts Institute Of TechnologyApparatus and method for accessing data on multilayered optical media
US57856517 Jun 199528 Jul 1998Keravision, Inc.Distance measuring confocal microscope
US579529525 Jun 199618 Ago 1998Carl Zeiss, Inc.OCT-assisted surgical microscope with multi-coordinate manipulator
US580182618 Feb 19971 Sep 1998Williams Family Trust BSpectrometric device and method for recognizing atomic and molecular signatures
US580308221 Abr 19978 Sep 1998Staplevision Inc.Omnispectramammography
US58072617 Jun 199515 Sep 1998Sextant Medical CorporationNoninvasive system for characterizing tissue in vivo
US581071918 Jun 199622 Sep 1998Fuji Photo Film Co., Ltd.Endoscope
US581714410 Oct 19966 Oct 1998Latis, Inc.Method for contemporaneous application OF laser energy and localized pharmacologic therapy
US584002331 Ene 199624 Nov 1998Oraevsky; Alexander A.Optoacoustic imaging for medical diagnosis
US584007523 Ago 199624 Nov 1998Eclipse Surgical Technologies, Inc.Dual laser device for transmyocardial revascularization procedures
US584299528 Jun 19961 Dic 1998Board Of Regents, The Univerisity Of Texas SystemSpectroscopic probe for in vivo measurement of raman signals
US58430007 May 19961 Dic 1998The General Hospital CorporationOptical biopsy forceps and method of diagnosing tissue
US58430524 Oct 19961 Dic 1998Benja-Athon; AnuthepIrrigation kit for application of fluids and chemicals for cleansing and sterilizing wounds
US584782721 Jun 19968 Dic 1998Carl Zeiss Jena GmbhCoherence biometry and coherence tomography with dynamic coherent
US586227321 Feb 199719 Ene 1999Kaiser Optical Systems, Inc.Fiber optic probe with integral optical filtering
US586575423 Ago 19962 Feb 1999Purdue Research Foundation Office Of Technology TransferFluorescence imaging system and method
US58672683 Oct 19972 Feb 1999Optical Coherence Technologies, Inc.Optical fiber interferometer with PZT scanning of interferometer arm optical length
US587144927 Dic 199616 Feb 1999Brown; David LloydDevice and method for locating inflamed plaque in an artery
US587287925 Nov 199616 Feb 1999Boston Scientific CorporationRotatable connecting optical fibers
US587785614 May 19972 Mar 1999Carl Zeiss Jena GmbhMethods and arrangement for increasing contrast in optical coherence tomography by means of scanning an object with a dual beam
US588700922 May 199723 Mar 1999Optical Biopsy Technologies, Inc.Confocal optical scanning system employing a fiber laser
US589258321 Ago 19976 Abr 1999Li; Ming-ChiangHigh speed inspection of a sample using superbroad radiation coherent interferometer
US591083914 Mar 19978 Jun 1999The Regents Of The University Of CaliforniaWhite light velocity interferometer
US591276413 Mar 199715 Jun 1999Olympus Optical Co., Ltd.Endoscope optical system and image pickup apparatus
US592037324 Sep 19976 Jul 1999Heidelberg Engineering Optische Messysteme GmbhMethod and apparatus for determining optical characteristics of a cornea
US592039026 Jun 19976 Jul 1999University Of North CarolinaFiberoptic interferometer and associated method for analyzing tissue
US592192631 Dic 199713 Jul 1999University Of Central FloridaThree dimensional optical imaging colposcopy
US592659222 Mar 199620 Jul 1999Optiscan Pty LtdOptical fibre confocal imager with variable near-confocal control
US594992913 Ene 19997 Sep 1999Boston Scientific CorporationRotatably connecting optical fibers
US59514823 Oct 199714 Sep 1999Intraluminal Therapeutics, Inc.Assemblies and methods for advancing a guide wire through body tissue
US595573727 Oct 199721 Sep 1999Systems & Processes Engineering CorporationChemometric analysis for extraction of individual fluorescence spectrum and lifetimes from a target mixture
US595635517 Jun 199721 Sep 1999Massachusetts Institute Of TechnologyMethod and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US596806428 Feb 199719 Oct 1999Lumend, Inc.Catheter system for treating a vascular occlusion
US597569725 Nov 19982 Nov 1999Oti Ophthalmic Technologies, Inc.Optical mapping apparatus with adjustable depth resolution
US59831251 Sep 19959 Nov 1999The Research Foundation Of City College Of New YorkMethod and apparatus for in vivo examination of subcutaneous tissues inside an organ of a body using optical spectroscopy
US598734623 Dic 199616 Nov 1999Benaron; David A.Device and method for classification of tissue
US599169731 Dic 199623 Nov 1999The Regents Of The University Of CaliforniaMethod and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media
US599469017 Mar 199830 Nov 1999Kulkarni; Manish D.Image enhancement in optical coherence tomography using deconvolution
US59952231 Jun 199830 Nov 1999Power; Joan FleuretteApparatus for rapid phase imaging interferometry and method therefor
US60024802 Jun 199814 Dic 1999Izatt; Joseph A.Depth-resolved spectroscopic optical coherence tomography
US600431431 Mar 199721 Dic 1999Carl Zeiss, Inc.Optical coherence tomography assisted surgical apparatus
US60061282 Jun 199821 Dic 1999Izatt; Joseph A.Doppler flow imaging using optical coherence tomography
US601044928 Feb 19974 Ene 2000Lumend, Inc.Intravascular catheter system for treating a vascular occlusion
US601421421 Ago 199711 Ene 2000Li; Ming-ChiangHigh speed inspection of a sample using coherence processing of scattered superbroad radiation
US601619722 Sep 199718 Ene 2000Ceramoptec Industries Inc.Compact, all-optical spectrum analyzer for chemical and biological fiber optic sensors
US60209635 Dic 19971 Feb 2000Northeastern UniversityOptical quadrature Interferometer
US603372126 Oct 19947 Mar 2000Revise, Inc.Image-based three-axis positioner for laser direct write microchemical reaction
US60442886 Nov 199728 Mar 2000Imaging Diagnostics Systems, Inc.Apparatus and method for determining the perimeter of the surface of an object being scanned
US604551121 Abr 19974 Abr 2000Dipl-Ing. Lutz OttDevice and evaluation procedure for the depth-selective, noninvasive detection of the blood flow and/or intra and/or extra-corporeally flowing liquids in biological tissue
US604874226 Feb 199811 Abr 2000The United States Of America As Represented By The Secretary Of The Air ForceProcess for measuring the thickness and composition of thin semiconductor films deposited on semiconductor wafers
US605361315 May 199825 Abr 2000Carl Zeiss, Inc.Optical coherence tomography with new interferometer
US606969827 Ago 199830 May 2000Olympus Optical Co., Ltd.Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object
US60914962 Jun 199818 Jul 2000Zetetic InstituteMultiple layer, multiple track optical disk access by confocal interference microscopy using wavenumber domain reflectometry and background amplitude reduction and compensation
US609198410 Oct 199718 Jul 2000Massachusetts Institute Of TechnologyMeasuring tissue morphology
US611164515 May 199829 Ago 2000Massachusetts Institute Of TechnologyGrating based phase control optical delay line
US611712830 Abr 199812 Sep 2000Kenton W. GregoryEnergy delivery catheter and method for the use thereof
US612051628 Feb 199819 Sep 2000Lumend, Inc.Method for treating vascular occlusion
US613400327 Feb 199617 Oct 2000Massachusetts Institute Of TechnologyMethod and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US613401022 Ene 199917 Oct 2000Lucid, Inc.Imaging system using polarization effects to enhance image quality
US613403326 Feb 199817 Oct 2000Tyco Submarine Systems Ltd.Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems
US61415775 Mar 199931 Oct 2000University Of Central FloridaThree dimensional optical imaging colposcopy
US615152216 Mar 199921 Nov 2000The Research Foundation Of CunyMethod and system for examining biological materials using low power CW excitation raman spectroscopy
US61594454 Dic 199712 Dic 2000Nycomed Imaging AsLight imaging contrast agents
US616082611 Jun 199912 Dic 2000Massachusetts Institute Of TechnologyMethod and apparatus for performing optical frequency domain reflectometry
US616103114 Oct 199712 Dic 2000Board Of Regents Of The University Of WashingtonOptical imaging methods
US616637321 Jul 199826 Dic 2000The Institute For Technology DevelopmentFocal plane scanner with reciprocating spatial window
US61742919 Mar 199816 Ene 2001Spectrascience, Inc.Optical biopsy system and methods for tissue diagnosis
US617566930 Mar 199816 Ene 2001The Regents Of The Universtiy Of CaliforniaOptical coherence domain reflectometry guidewire
US618527116 Feb 19996 Feb 2001Richard Estyn KinsingerHelical computed tomography with feedback scan control
US619186220 Ene 199920 Feb 2001Lightlab Imaging, LlcMethods and apparatus for high speed longitudinal scanning in imaging systems
US619367615 Abr 199827 Feb 2001Intraluminal Therapeutics, Inc.Guide wire assembly
US619895630 Sep 19996 Mar 2001Oti Ophthalmic Technologies Inc.High speed sector scanning apparatus having digital electronic control
US620198912 Mar 199813 Mar 2001Biomax Technologies Inc.Methods and apparatus for detecting the rejection of transplanted tissue
US620841511 Jun 199827 Mar 2001The Regents Of The University Of CaliforniaBirefringence imaging in biological tissue using polarization sensitive optical coherent tomography
US620888724 Jun 199927 Mar 2001Richard H. ClarkeCatheter-delivered low resolution Raman scattering analyzing system for detecting lesions
US621592530 May 199710 Abr 2001Nec CorporationOptical combination of photoreceptor and optical fiber
US62450261 Jul 199912 Jun 2001Farallon Medsystems, Inc.Thermography catheter
US624934926 Sep 199719 Jun 2001Vincent LauerMicroscope generating a three-dimensional representation of an object
US624938123 Abr 199919 Jun 2001Sony CorporationIlluminating method and illuminating device
US626323430 Sep 199717 Jul 2001Leica Microsystems Heidelberg GmbhConfocal surface-measuring device
US62646105 May 200024 Jul 2001The University Of ConnecticutCombined ultrasound and near infrared diffused light imaging system
US627237622 Ene 19997 Ago 2001Cedars-Sinai Medical CenterTime-resolved, laser-induced fluorescence for the characterization of organic material
US627487122 Oct 199814 Ago 2001Vysis, Inc.Method and system for performing infrared study on a biological sample
US628201126 Jun 200028 Ago 2001Massachusetts Institute Of TechnologyGrating based phase control optical delay line
US629701828 Ene 20002 Oct 2001Ljl Biosystems, Inc.Methods and apparatus for detecting nucleic acid polymorphisms
US630809213 Oct 199923 Oct 2001C. R. Bard Inc.Optical fiber tissue localization device
US632441927 Oct 199827 Nov 2001Nejat GuzelsuApparatus and method for non-invasive measurement of stretch
US634103626 Feb 199922 Ene 2002The General Hospital CorporationConfocal microscopy with multi-spectral encoding
US635369330 May 20005 Mar 2002Sanyo Electric Co., Ltd.Optical communication device and slip ring unit for an electronic component-mounting apparatus
US63596929 Jul 199919 Mar 2002Zygo CorporationMethod and system for profiling objects having multiple reflective surfaces using wavelength-tuning phase-shifting interferometry
US637412822 Nov 199916 Abr 2002Fuji Photo Film Co., Ltd.Blood vessel imaging system
US637734930 Mar 199923 Abr 2002Carl Zeiss Jena GmbhArrangement for spectral interferometric optical tomography and surface profile measurement
US638491530 Mar 19987 May 2002The Regents Of The University Of CaliforniaCatheter guided by optical coherence domain reflectometry
US639331213 Oct 199921 May 2002C. R. Bard, Inc.Connector for coupling an optical fiber tissue localization device to a light source
US639496419 May 200028 May 2002Spectrascience, Inc.Optical forceps system and method of diagnosing and treating tissue
US639694112 Jun 200028 May 2002Bacus Research Laboratories, Inc.Method and apparatus for internet, intranet, and local viewing of virtual microscope slides
US642116413 Jun 200116 Jul 2002Massachusetts Institute Of TechnologyInterferometeric imaging with a grating based phase control optical delay line
US64454854 Ene 20013 Sep 2002At&T Corp.Micro-machine polarization-state controller
US644594431 Ene 20003 Sep 2002Scimed Life SystemsMedical scanning system and related method of scanning
US64594874 Sep 20011 Oct 2002Gang Paul ChenSystem and method for fabricating components of precise optical path length
US646331325 Mar 19998 Oct 2002Thomas R. WinstonSystems for guiding a medical instrument through a body
US646984629 Jun 200122 Oct 2002RikenGrism
US647515915 Mar 19995 Nov 2002S. Ward CasscellsMethod of detecting vulnerable atherosclerotic plaque
US647521011 Feb 20005 Nov 2002Medventure Technology CorpLight treatment of vulnerable atherosclerosis plaque
US64774038 Ago 20005 Nov 2002Asahi Kogaku Kogyo Kabushiki KaishaEndoscope system
US64854136 Mar 199826 Nov 2002The General Hospital CorporationMethods and apparatus for forward-directed optical scanning instruments
US648548221 Jul 200026 Nov 2002Scimed Life Systems, Inc.Rotational and translational drive coupling for catheter assembly
US65015515 Oct 199931 Dic 2002Massachusetts Institute Of TechnologyFiber optic imaging endoscope interferometer with at least one faraday rotator
US650187814 Dic 200031 Dic 2002Nortel Networks LimitedOptical fiber termination
US651753228 Dic 199911 Feb 2003Palomar Medical Technologies, Inc.Light energy delivery head
US653881717 Oct 200025 Mar 2003Aculight CorporationMethod and apparatus for optical coherence tomography with a multispectral laser source
US654980119 May 200015 Abr 2003The Regents Of The University Of CaliforniaPhase-resolved optical coherence tomography and optical doppler tomography for imaging fluid flow in tissue with fast scanning speed and high velocity sensitivity
US65527966 Abr 200122 Abr 2003Lightlab Imaging, LlcApparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography
US655630517 Feb 200029 Abr 2003Veeco Instruments, Inc.Pulsed source scanning interferometer
US655685329 Sep 199829 Abr 2003Applied Spectral Imaging Ltd.Spectral bio-imaging of the eye
US655832420 Nov 20016 May 2003Siemens Medical Solutions, Inc., UsaSystem and method for strain image display
US656408722 Jul 199913 May 2003Massachusetts Institute Of TechnologyFiber optic needle probes for optical coherence tomography imaging
US65640895 Mar 200213 May 2003University Hospital Of ClevelandOptical imaging device
US65675853 Abr 200120 May 2003Optiscan Pty LtdZ sharpening for fibre confocal microscopes
US661507125 Jun 19992 Sep 2003Board Of Regents, The University Of Texas SystemMethod and apparatus for detecting vulnerable atherosclerotic plaque
US66227324 Mar 200223 Sep 2003Corazon Technologies, Inc.Methods and devices for reducing the mineral content of vascular calcified lesions
US668078023 Dic 199920 Ene 2004Agere Systems, Inc.Interferometric probe stabilization relative to subject movement
US668588517 Dic 20013 Feb 2004Purdue Research FoundationBio-optical compact dist system
US668700714 Dic 20003 Feb 2004Kestrel CorporationCommon path interferometer for spectral image generation
US66870107 Sep 20003 Feb 2004Olympus CorporationRapid depth scanning optical imaging device
US66870365 Nov 20013 Feb 2004Nuonics, Inc.Multiplexed optical scanner technology
US670118131 May 20012 Mar 2004Infraredx, Inc.Multi-path optical catheter
US67210945 Mar 200113 Abr 2004Sandia CorporationLong working distance interference microscope
US673814417 Dic 199918 May 2004University Of Central FloridaNon-invasive method and low-coherence apparatus system analysis and process control
US674135520 Nov 200125 May 2004Robert Bosch GmbhShort coherence fiber probe interferometric measuring device
US675746725 Jul 200029 Jun 2004Optical Air Data Systems, LpOptical fiber system
US679017526 Oct 200014 Sep 2004Pentax CorporationEndoscope system
US680696324 Nov 200019 Oct 2004Haag-Streit AgMethod and device for measuring the optical properties of at least two regions located at a distance from one another in a transparent and/or diffuse object
US681674324 Ene 20019 Nov 2004University Of Kentucky Research FoundationMethods and apparatus for in vivo identification and characterization of vulnerable atherosclerotic plaques
US683178129 Nov 200114 Dic 2004The General Hospital CorporationConfocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
US683949623 Jun 20004 Ene 2005University College Of LondonOptical fibre probe for photoacoustic material analysis
US688243231 Jul 200119 Abr 2005Zygo CorporationFrequency transform phase shifting interferometry
US69038204 Jun 20047 Jun 2005Tomophase CorporationMeasurements of substances using two different propagation modes of light through a common optical path
US69091052 Mar 200021 Jun 2005Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V.Method and device for representing an object
US694907222 Sep 200327 Sep 2005Infraredx, Inc.Devices for vulnerable plaque detection
US696112327 Sep 20021 Nov 2005The Texas A&M University SystemMethod and apparatus for obtaining information from polarization-sensitive optical coherence tomography
US698029916 Oct 200227 Dic 2005General Hospital CorporationSystems and methods for imaging a sample
US700623118 Oct 200128 Feb 2006Scimed Life Systems, Inc.Diffraction grating based interferometric systems and methods
US701983828 May 200428 Mar 2006Duke UniversitySystem and method for low coherence broadband quadrature interferometry
US70616225 Ago 200213 Jun 2006Case Western Reserve UniversityAspects of basic OCT engine technologies for high speed optical coherence tomography and light source and other improvements in optical coherence tomography
US709935827 Ene 200629 Ago 2006Santec CorporationTunable laser light source
US713032013 Nov 200331 Oct 2006Mitutoyo CorporationExternal cavity laser with rotary tuning element
US714283529 Sep 200328 Nov 2006Silicon Laboratories, Inc.Apparatus and method for digital image correction in a receiver
US719046421 Ene 200513 Mar 2007Medeikon CorporationLow coherence interferometry for detecting and characterizing plaques
US723124330 Oct 200112 Jun 2007The General Hospital CorporationOptical methods for tissue analysis
US723663721 Nov 200126 Jun 2007Ge Medical Systems Information Technologies, Inc.Method and apparatus for transmission and display of a compressed digitized image
US724248021 Ene 200510 Jul 2007Medeikon CorporationLow coherence interferometry for detecting and characterizing plaques
US726749431 Ene 200611 Sep 2007Finisar CorporationFiber stub for cladding mode coupling reduction
US73047985 Mar 20044 Dic 2007Fujitsu LimitedSpectroscopic apparatus
US733636620 Ene 200626 Feb 2008Duke UniversityMethods and systems for reducing complex conjugate ambiguity in interferometric data
US735571624 Ene 20038 Abr 2008The General Hospital CorporationApparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US73557215 May 20048 Abr 2008D4D Technologies, LlcOptical coherence tomography imaging
US73590629 Dic 200415 Abr 2008The Regents Of The University Of CaliforniaHigh speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure
US736637629 Sep 200529 Abr 2008The General Hospital CorporationSystem and method for optical coherence imaging
US73915201 Jul 200524 Jun 2008Carl Zeiss Meditec, Inc.Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver
US760939122 May 200727 Oct 2009Robert Eric BetzigOptical lattice microscopy
US2001004713724 Ene 200129 Nov 2001University Of Kentucky Research Foundation, Kentucky CorporationMethods and apparatus for in vivo identification and characterization of vulnerable atherosclerotic plaques
US200200165333 May 20017 Feb 2002Marchitto Kevin S.Optical imaging of subsurface anatomical structures and biomolecules
US2002004802510 Dic 200125 Abr 2002Hideyuki TakaokaOptical system and optical apparatus
US2002004802628 Mar 200125 Abr 2002Fumio IsshikiLaser interferometer displacement measuring system, exposure apparatus, and elecron beam lithography apparatus
US2002005254730 Oct 20012 May 2002Fuji Photo Film Co., Ltd.Endoscope apparatus
US200200574311 Mar 200116 May 2002Fateley William G.System and method for encoded spatio-spectral information processing
US2002006434126 Nov 200130 May 2002Fauver Mark E.Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition
US20020076152 *14 Dic 200020 Jun 2002Hughes Richard P.Optical fiber termination
US2002008520913 Nov 20014 Jul 2002Mittleman Daniel M.Interferometric imaging system and method
US2002009132230 Nov 200111 Jul 2002Joseph ChaikenMethod and apparatus for noninvasive assessment of skin condition and diagnosis of skin abnormalities
US200200936624 Sep 200118 Jul 2002Chen Gang PaulSystem and method for fabricating components of precise optical path length
US2002010985131 Jul 200115 Ago 2002Deck Leslie L.Frequency transform phase shifting interferometry
US2002012224629 Nov 20015 Sep 2002Tearney Guillermo J.Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
US200201409426 Ago 20013 Oct 2002Fee Michale SeanAcousto-optic monitoring and imaging in a depth sensitive manner
US2002015821116 Abr 200131 Oct 2002Dakota Technologies, Inc.Multi-dimensional fluorescence apparatus and method for rapid and highly sensitive quantitative analysis of mixtures
US2002016135727 Dic 200131 Oct 2002Anderson R. RoxMethod and apparatus for EMR treatment
US200201636226 Abr 20017 Nov 2002Paul MagninApparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography
US2002016815827 Jun 200214 Nov 2002Asahi Kogaku Kogyo Kabushiki KaishaFiber bundle and endoscope apparatus
US200201724852 Abr 200121 Nov 2002Keaton Gregory L.Optical wavelength filtering apparatus with depressed-index claddings
US2002018362331 May 20015 Dic 2002Jing TangMulti-path optical catheter
US200201882047 Jun 200112 Dic 2002Mcnamara Edward I.Fiber optic endoscopic gastrointestinal probe
US2002019644622 Ene 200226 Dic 2002Roth Jonathan E.Method and apparatus for polarization-sensitive optical coherence tomography
US2002019845730 Abr 200226 Dic 2002Tearney Guillermo J.Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US2003002315321 Dic 199930 Ene 2003Joseph A. IzattDoppler flow imaging using optical coherence tomography
US2003002673517 Dic 20016 Feb 2003Nolte David D.Bio-optical compact disk system
US2003002811426 Dic 20016 Feb 2003Texas Heart InstituteMethod and apparatus for detecting vulnerable atherosclerotic plaque
US2003003081617 Ene 200213 Feb 2003Eom Tae BongNonlinearity error correcting method and phase angle measuring method for displacement measurement in two-freqency laser interferometer and displacement measurement system using the same
US200300821059 Ago 20021 May 2003Alan FischmanMethods and devices for detection and therapy of atheromatous plaque
US2003009075324 Jul 200215 May 2003Olympus Optical Co., Ltd.Optical system and device using the same
US2003009704831 May 200122 May 2003Ryan S. EricReferencing optical catheters
US2003010891131 Jul 200212 Jun 2003Chromeon GmbhArrangement and method for multiple-fluorescence measurement
US2003012013721 Dic 200126 Jun 2003Romuald PawluczykRaman spectroscopic system with integrating cavity
US2003013510121 Dic 200117 Jul 2003Advanced Cardiovascular Systems, Inc.System and methods for imaging within a body lumen
US200301376695 Ago 200224 Jul 2003Rollins Andrew M.Aspects of basic OCT engine technologies for high speed optical coherence tomography and light source and other improvements in optical coherence tomography
US2003016495224 Ago 20014 Sep 2003Nikolaj DeichmannMethod and apparatus for three-dimensional optical scanning of interior surfaces
US200301716915 Ago 200211 Sep 2003Casscells S. WardMethod and apparatus for detecting vulnerable atherosclerotic plaque
US2003017433914 Feb 200318 Sep 2003Feldchtein Felix I.Method for studying a sample and optical interferometer for doing the same
US200301997698 Abr 200223 Oct 2003Adrian PodoleanuApparatus for high resolution imaging of moving organs
US2003021671914 Feb 200320 Nov 2003Len DebenedictisMethod and apparatus for treating skin using patterns of optical energy
US200302207499 Abr 200327 Nov 2003Zhongping ChenPhase-resolved functional optical coherence tomography: simultaneous imaging of the stokes vectors, structure, blood flow velocity, standard deviation and birefringence in biological samples
US2003023644320 Mar 200325 Dic 2003Cespedes Eduardo IgnacioMethods and apparatus for the identification and stabilization of vulnerable plaque
US2004000265030 Nov 20011 Ene 2004Evgenia MandrusovAgents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US200400542681 Mar 200118 Mar 2004Rinat EsenalievContinuous optoacoustic monitoring of hemoglobin concentration and hematocrit
US2004007220013 Nov 200115 Abr 2004Rudolf RiglerDetection of nucleic acid polymorphisms
US2004007584116 Oct 200222 Abr 2004Fiso Technologies, Inc.System and method for measuring an optical path difference in a sensing interferometer
US2004007794910 Ene 200222 Abr 2004Blofgett David W.Assessment of tooth structure using laser based ultrasonics
US2004008624511 Jul 20036 May 2004Farroni Julia A.Optical fiber
US2004010063127 Nov 200227 May 2004Mark BashkanskyMethod and apparatus for reducing speckle in optical coherence tomography images
US2004010068110 Ago 200127 May 2004Anders BjarklevOptical wavelength converter
US200401260486 Oct 20031 Jul 2004Dave Digant P.Fiber-based optical low coherence tomography
US200401331912 Dic 20038 Jul 2004Masayuki MomiuchiLaser device for medical treatment system
US2004015082916 Abr 20025 Ago 2004Peter KochInterferometric arrangement for determining the transit time of light in a sample
US2004015083023 Ene 20045 Ago 2004Chan Winston KongInterferometer having a scanning mirror
US200401529892 Ene 20045 Ago 2004Jayanth PuttappaSpeckle pattern analysis method and system
US2004016518424 Feb 200426 Ago 2004Pentax CorporationConfocal probe
US200401665933 Dic 200326 Ago 2004Nolte David D.Adaptive interferometric multi-analyte high-speed biosensor
US2004021280822 Sep 200328 Oct 2004Olympus Optical Co., Ltd.Optical probe system
US2004023993827 May 20042 Dic 2004Duke UniversitySystem for fourier domain optical coherence tomography
US2004025447428 Jun 200416 Dic 2004Eric SeibelOptical fiber scanner for performing multimodal optical imaging
US2004026384316 Abr 200430 Dic 2004Knopp Kevin J.Raman spectroscopy system and method and specimen holder therefor
US2005001813328 Abr 200427 Ene 2005The Cleveland Clinic FoundationMethod and apparatus for measuring a retinal sublayer characteristic
US2005001820124 Ene 200327 Ene 2005De Boer Johannes FApparatus and method for ranging and noise reduction of low coherence interferometry lci and optical coherence tomography oct signals by parallel detection of spectral bands
US200500352954 Jun 200417 Feb 2005Brett BoumaProcess and apparatus for a wavelength tuning source
US200500468375 Mar 20043 Mar 2005Fujitsu LimitedSpectroscopic apparatus
US2005005768016 Sep 200317 Mar 2005Agan Martin J.Method and apparatus for controlling integration time in imagers
US2005005775613 Abr 200417 Mar 2005Massachusetts Institute Of TechnologySystems and methods for phase measurements
US2005007554712 Oct 20047 Abr 2005Feiling WangCoherence-gated optical glucose monitor
US2005008353427 Ago 200421 Abr 2005Riza Nabeel A.Agile high sensitivity optical sensor
US2005011956730 Dic 20042 Jun 2005Cardiac Pacemakers, Inc.Methods using a dual balloon telescoping guiding catheter
US2005016530314 Dic 200428 Jul 2005Martin KleenCatheter device
US200501714389 Dic 20044 Ago 2005Zhongping ChenHigh speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure
US2006010385012 Nov 200418 May 2006Alphonse Gerard ASingle trace multi-channel low coherence interferometric sensor
US200601463395 Dic 20056 Jul 2006Fujinon CorporationOptical tomographic apparatus
US2006015519326 Ene 200113 Jul 2006National Research Center Of CanadaVisible-near infrared spectroscopy in burn injury assessment
US2006018404825 Oct 200517 Ago 2006Vahid SaadatTissue visualization and manipulation system
US2006019335225 Abr 200531 Ago 2006Changho ChongTunable fiber laser light source
US200602449738 Sep 20042 Nov 2006Seok-Hyun YunMethod and apparatus for performing optical imaging using frequency-domain interferometry
US2007001920826 Sep 200625 Ene 2007Fuji Photo Film Co., Ltd.Optical tomography apparatus
US200700704961 Jun 200629 Mar 2007Gweon Dae GConfocal self-interference microscopy from which side lobe has been removed
US2007008601311 Oct 200619 Abr 2007Zygo CorporationInterferometry method and system including spectral decomposition
US2007013300211 Oct 200614 Jun 2007Duke UniversitySystems and methods for endoscopic angle-resolved low coherence interferometry
US2007022300618 Ene 200727 Sep 2007The General Hospital CorporationSystems and methods for performing rapid fluorescence lifetime, excitation and emission spectral measurements
US2007029127720 Jun 200720 Dic 2007Everett Matthew JSpectral domain optical coherence tomography system
US2008000219719 Jun 20073 Ene 2008Ke-Xun SunGrating angle magnification enhanced angular sensor and scanner
US2008004922028 Ago 200728 Feb 2008Federico IzziaSpectroscopic microscopy with image-driven analysis
DE4105221A120 Feb 199112 Sep 1991Jenoptik Jena GmbhLight conductor guide for medical microscope viewer - is provided by feeding light conductor through support system for microscope
DE4309056B420 Mar 199324 May 2006Häusler, Gerd, Prof. Dr.Verfahren und Vorrichtung zur Ermittlung der Entfernung und Streuintensität von streuenden Punkten
DE10351319B431 Oct 200320 Oct 2005Med Laserzentrum Luebeck GmbhInterferometer für die optische Kohärenztomographie
DE19542955C217 Nov 199518 Feb 1999Schwind Gmbh & Co Kg HerbertEndoskop
EP0110201A27 Nov 198313 Jun 1984Központi Elelmiszeripari Kutato IntezetApparatus for providing radiation of controlled spectral composition
EP0251062B119 Jun 198722 Dic 1993Fujitsu LimitedDual balanced optical signal receiver
EP0590268B114 Mar 19861 Jul 1998Massachusetts Institute Of TechnologyFiber Optic Probe System for Spectrally Diagnosing Tissue
EP0617286B116 Feb 199422 Dic 1999Wallac OyBiospecific solid phase carrier
EP0728440B126 Feb 19964 Oct 2001Lutz OttMethod and device for deep-selective, non-invasive detection of muscle activity
EP0933096B112 Ene 19992 Ene 2008International Business Machines CorporationLaser for dermal ablation
EP1324051A117 Dic 20022 Jul 2003Robert C. BrayMotion measuring device
EP1426799A318 Nov 200318 May 2005Matsushita Electric Industrial Co., Ltd.Optical demultiplexer, optical multi-/demultiplexer, and optical device
FR2738343B1 Título no disponible
GB1257778A Título no disponible
GB2030313A Título no disponible
GB2209221B Título no disponible
GB2298054B Título no disponible
JP4135550B2 Título no disponible
JP4135551B2 Título no disponible
JP5509417B2 Título no disponible
JP6073405B2 Título no disponible
JP2002214127A Título no disponible
JP2007271761A Título no disponible
WO2004034869A38 Oct 20038 Jul 2004Arieh SherAtherectomy system with imaging guidewire
WO2004057266A819 Dic 200320 Ene 2005Zeiss CarlInterferometer system and measuring device
WO2004066824A326 Ene 200429 Dic 2004Brett E BoumaSystem and method for identifying tissue using low-coherence interferometry
WO2004088361A331 Mar 20047 Abr 2005Gen Hospital CorpSpeckle reduction in optical coherence tomography by path length encoded angular compounding
WO2004105598A120 May 20049 Dic 2004Boston Scientific LimitedSystems and methods for dynamic optical imaging
WO2005000115A121 Jun 20046 Ene 2005Infraredx, Inc.Intraluminal spectroscope with wall-contacting probe
WO2005047813A18 Sep 200426 May 2005The General Hospital CorporationMethod and apparatus for performing optical imaging using frequency-domain interferometry
WO2005054780A124 Nov 200416 Jun 2005The General Hospital CorporationMethod and apparatus for three-dimensional spectrally encoded imaging
WO2005082225A128 Feb 20059 Sep 2005Optiscan Pty LtdOptical element
WO2006004743A328 Jun 200519 Abr 2007Xingde LiOptical fiber scanner for performing multimodal optical imaging
WO2006014392A11 Jul 20059 Feb 2006The General Hospital CorporationEndoscopic imaging probe comprising dual clad fibre
WO2006039091A312 Sep 200527 Jul 2006Gen Hospital CorpSystem and method for optical coherence imaging
WO2006059109A11 Dic 20058 Jun 2006Ic Innovations LimitedMethod for the analysis of cells
WO2006124860A115 May 200623 Nov 2006The General Hospital CorporationArrangements, systems and methods capable of providing spectral-domain optical coherence reflectometry for a sensitive detection of chemical and biological sample
WO2006130797A331 May 200618 Ene 2007Brett Eugene BoumaSpectral encoding heterodyne interferometry techniques for imaging
WO2007028531A130 Ago 200615 Mar 2007Carl Zeiss Meditec AgMethod of bioimage data processing for revealing more meaningful anatomic features of diseased tissues
WO2007038787A129 Sep 20065 Abr 2007General Hospital CorporationMethod and apparatus for optical imaging via spectral encoding
WO2007083138A119 Ene 200726 Jul 2007Perkinelmer Singapore Pte Ltd.Improvements in and relating to imaging of biological samples
WO2007084995A319 Ene 20073 Jul 2008Gen Hospital CorpMethods and systems for optical imaging of epithelial luminal organs by beam scanning thereof
Otras citas
Referencia
1A. Ymeti et al., "Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor", Biosensors and Bioelectronics, Elsevier Science Publishers, 2005, pp. 1417-1421.
2Abbas, G.L., V.W.S. Chan et al., "Local-Oscillator Excess-Noise Suppression for Homodyne and Heterodyne-Detection", Optics Letters, vol. 8, pp. 419-421, Aug. 1983 issue.
3Abbas, G.L., V.W.S. Chan et al., "Local-Oscillator Excess-Noise Suppression for Homodyne and Heterodyne-Detection," Optics Letters, vol. 8, pp. 419-421, Aug. 1983 issue.
4Acioli, L. H., M. Ulman, et al. (1991). "Femtosecond Temporal Encoding in Barium-Titanate." Optics Letters 16(24): 1984-1986.
5Adrain, Alyn L. et al. (1997) "High-Resolution Endoluminal Sonography is a Sensitive Modality for the Identification of Barrett's Meaplasia" Gastrointestinal Endoscopy vol. 46, No. 2, pp. 147-151.
6Agrawal, G.P., "Population Pulsations and Nondegenerate 4-Wave Mixing in Semiconductor-Lasers and Amplifiers", Journal Of The Optical Society Of America B-Optical Physics, vol. 5, pp. 147-159, Jan. 1998.
7Agrawal, G.P., "Population Pulsations and Nondegenerate 4-Wave Mixing in Semiconductor-Lasers and Amplifiers," Journal Of The Optical Society Of America B-Optical Physics, vol. 5, pp. 147-159, Jan. 1998.
8Aigouy, L., A. Lahrech, et al. (1999). "Polarization effects in apertureless scanning near-field optical microscopy: an experimental study." Optics Letters 24(4): 187-189.
9Aizu, Y et al. (1991) "Bio-Speckle Phenomena and Their Application to the Evaluation of Blood Flow" Optics and Laser Technology, vol. 23, No. 4, Aug. 1, 1991.
10Akiba, M., K. P. Chan, et al. (2003). "Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras." Optics Letters 28(10): 816-818.
11Akiba, Masahiro et al. "En-face optical coherence imaging for three-dimensional microscopy", SPIE, 2002, pp. 8-15.
12Akkin, T., D. P. Dave, et al. (2003). "Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity." Lasers in Surgery and Medicine 33(4): 219-225.
13Akkin, T., D. P. Dave, et al. (2003). "Surface analysis using phase sensitive optical low coherence reflectometry." Lasers in Surgery and Medicine: 4-4.
14Akkin, T., D. P. Dave, et al. (2004). "Detection of neural activity using phase-sensitive optical low-coherence reflectometry." Optics Express 12(11): 2377-2386.
15Akkin, T., T. E. Milner, et al. (2002). "Phase-sensitive measurement of birefringence change as an indication of neural functionality and diseases." Lasers in Surgery and Medicine: 6-6.
16Anderson, R. Rox et al. (1983) "Selective Photothennolysis" Precise Microsurgery by Selective Absorption of Pulsed Radiation Science vol. 220, No. 4596, pp. 524-527.
17Anderson, R. Rox et al. (1983) "Selective Photothermolysis Precise Microsurgery by Selective Absorption of Pulsed Radiation" Science vol. 220, No. 4596, pp. 524-527.
18Andreas Zumbusch et al. "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering", Physical Review Letters 1999, 82 (20): 4142-4145.
19Andreas Zumbusch et al. "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,", Physical Review Letters 1999, 82 (20): 4142-4145.
20Andretzky, P. et al., "Optical Coherence Tomography by Spectral Radar: Improvement of Signal-to-Noise Ratio", The International Society for Optical Engineering, USA, vol. 3915, 2000.
21Andretzky, P. et al., "Optical Coherence Tomography by Spectral Radar: Improvement of Signal-to-Noise Ratio," The International Society for Optical Engineering, USA, vol. 3915, 2000.
22Andretzky, P., Lindner, M.W., Herrmann, J.M., Schultz, A., Konzog, M., Kiesewetter, F., Haeusler, G. (1999). "Optical coherence tomography by ‘spectral radar’: Dynamic range estimation and in vivo measurements of skin." Proceedings of SPIE—The International Society for Optical Engineering 3567: pp. 78-87.
23Andretzky, P., Lindner, M.W., Herrnann, J.M., Schultz, A., Konzog, M., Kiesewetter, F., Haeusler, G. (1999). "Optical coherence tomography by ‘spectral radar’: Dynamic range estimation and in vivo measurements of skin." Proceedings of SPIE—The International Society for Optical Engineering 3567: pp. 78-87.
24Antcliff, R. J., M. R. Stanford, et al. (2000). "Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis." Ophthalmology 107(3): 593-9.
25Antcliff, R. J., T. J. ffytche, et al. (2000). "Optical coherence tomography of melanocytoma." American Journal of Ophthalmology 130(6): 845-7.
26Anvari, B., B. S. Tanenbaum, et al. (1995). "A Theoretical-Study of the Thermal Response of Skin to Cryogen Spray Cooling and Pulsed-Laser Irradiation—Implications for Treatment of Port-Wine Stain Birthmarks." Physics in Medicine and Biology 40(9): 1451-1465 .
27Anvari, B., B. S. Tanenbaum, et al. (1995). "A Theoretical-Study of the Thermal Response of Skin to Cryogen Spray Cooling and Pulsed-Laser Irradiation—Implications for Treatment of Port-Wine Stain Birthmarks." Physics in Medicine and Biology 40(9): 1451-1465.
28Anvari, B., T. E. Milner, et al. (1995). "Selective Cooling of Biological Tissues—Application for Thermally Mediated Therapeutic Procedures." Physics in Medicine and Biology 40(2): 241-252.
29Arend, O., M. Ruffer, et al. (2000). "Macular circulation in patients with diabetes mellitus with and without arterial hypertension." British Journal of Ophthalmology 84(12): 1392-1396.
30Arimoto, H. And Y. Ohtsuka (1997). "Measurements of the complex degree of spectral coherence by use of a wave-front-folded interferometer." Optics Letters 22(13): 958-960.
31Australian Examiner's Report mailed May 27, 2008 for Australian patent application No. 2003210669.
32Azzolini, C., F. Patelli, et al. (2001). "Correlation between optical coherence tomography data and biomicroscopic interpretation of idiopathic macular hole." American Journal of Ophthalmology 132(3): 348-55.
33Baba, T., K. Ohno-Matsui, et al. (2002). "Optical coherence tomography of choroidal neovascularization in high myopia." Acta Ophthalmoloqica Scandinavica 80(1): 82-7.
34Bail, M. A. H., Gerd; Herrmann, Juergen M.; Lindner, Michael W.; Ringler, R. (1996). "Optical coherence tomography with the "spectral radar": fast optical analysis in volume scatterers by short-coherence interferometry." Proc. SPIE, 2925: p. 298-303.
35Bail, M. A. H., Gerd; Herrmann, Juergen M.; Lindner, Michael W.; Ringler, R. (1996). "Optical coherence tomography with the "spectral radar": fast optical analysis in volume scatterers by short-coherence interferometry."Proc. SPIE, 2925: p. 298-303.
36Ballif, J. et al., "Rapid and Scalable Scans at 21 m/s in optical Low-Coherence Reflectometry", Optics Letters, vol. 22, pp. 757-759, Jun. 1997.
37Ballif, J. et al., "Rapid and Scalable Scans at 21 m/s in optical Low-Coherence Reflectometry," Optics Letters, vol. 22, pp. 757-759, Jun. 1997.
38Baney, D. M. And W. V. Sorin (1993). "Extended-Range Optical Low-Coherence Reflectometry Using a Recirculating Delay Technique." Ieee Photonics Technology Letters 5(9): 1109-1112.
39Baney, D. M. and W. V. Sorin 1993). "Extended-Range Optical Low-Coherence Reflectometry Using a Recirculating Delay Technique." Ieee Photonics Technology Letters 5(9): 1109-1112.
40Baney, D. M., B. Szafraniec, et al. (2002). "Coherent optical spectrum analyzer." Ieee Photonics Technology Letters 14(3): 355-357.
41Barakat, R. (1981). "Bilinear Constraints between Elements of the 4by4 Mueller-Jones Transfer-Matrix of Polarization Theory." Optics Communications 38(3): 159-161.
42Barakat, R. (1993). "Analytic Proofs of the Arago-Fresnel Laws for the Interference of Polarized-Light." Journal of the Optical Society of America a-Optics Image Science and Vision 10(1): 180-185.
43Barakat, Richard, "Statistics of the Stokes Parameters," J. Opt. Soc. Am. B., vol. 4, No. 7, Jul. 1987, pp. 1256-1263.
44Barbastathis, G. and D. J. Brady (1999). "Multidimensional tomographic imaging using volume holography." Proceedings of the Ieee 87(12): 2098-2120.
45Barbastathis, G. and D. J. Brady (1999). "Multidimensional tomographic imaging using volume holography." Proceedings of the leee 87(12): 2098-2120.
46Bardal, S., A. Kamal, et al. (1992). "Photoinduced Birefringence in Optical Fibers—a Comparative-Study of Low-Birefringence and High-Birefringence Fibers." Optics Letters 17(6): 411-413.
47Barfuss et al (1989) "Modified Optical Frequency Doniain Reflectometry with High spatial Resolution for Components of integrated optic Systems", Journal of Lightwave Technology, IEEE vol. 7., No. 1.
48Barfuss H. et al., "Modified Optical Frequency-Domain Reflectometry with High Spatial-Resolution for Components of Integrated Optic Systems", Journal Of Lightwave Technology, vol. 7, pp. 3-10, Jan. 1989.
49Barfuss H. et al., "Modified Optical Frequency-Domain Reflectometry with High Spatial-Resolution for Components of Integrated Optic Systems," Journal Of Lightwave Technology, vol. 7, pp. 3-10, Jan. 1989.
50Barr, H et al. (2005) "Endoscopic Therapy for Barrett's Oesophaugs" Gut vol. 54:875-884.
51Barry Cense et al., "Spectral-domain polarization-sensitive optical coherence tomography at 850nm", Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, 2005, pp. 159-162.
52Barsky, S. H., S. Rosen, et al. (1980). "Nature and Evolution of Port Wine Stains—Computer-Assisted Study." Journal of Investigative Dermatology 74(3): 154-157.
53Barton, J. K., A. J. Welch, et al. (1998). "Investigating pulsed dye laser-blood vessel interaction with color Doppler optical coherence tomography." Optics Express 3.
54Barton, J. K., A. Rollins, et al. (2001). "Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling." Physics in Medicine and Biology 46.
55Barton, J. K., J. A. Izatt, et al. (1999). "Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images." Dermatology 198(4): 355-361.
56Bashkansky, et al., "Signal Processing for Improving Field Cross-Correlation Function in Optical Coherence Tomography", Optics & Photonics News, vol. 9, pp. 8137-8138, May 1998.
57Bashkansky, et al., "Signal Processing for Improving Field Cross-Correlation Function in Optical Coherence Tomography," Optics & Photonics News, vol. 9, pp. 8137-8138, May 1998.
58Bashkansky, M. and J. Reintjes (2000). "Statistics and reduction of speckle in optical coherence tomography." Optics Letters 25(8): 545-547.
59Bashkansky, M., M. D. Duncan, et al. (1997). "Subsurface defect detection in ceramics by high-speed high-resolution optical coherent tomography." Optics Letters 22 (1): 61-63.
60Baumgartner, A., C. K. Hitzenberger, et al. (1998). "Signal and resolution enhancements in dual beam optical coherence tomography of the human eye." Journal of Biomedical Optics 3(1): 45-54.
61Baumgartner, A., C. K. Hitzenberger, et al. (2000). "Resolution-improved dual-beam and standard optical coherence tomography: a comparison." Graefes Archive for Clinical and Experimental Ophthalmology 238(5): 385-392.
62Baumgartner, A., S. Dichtl, et al. (2000). "Polarization-sensitive optical coherence tomography of dental structures." Caries Research 34(1): 59-69.
63Beaud, P. et al., "Optical Reflectometry with Micrometer Resolution for the Investigation of Integrated Optical-Devices", Leee Journal of Quantum Electronics, vol. 25, pp. 755-759, Apr. 1989.
64Beaud, P. et al., "Optical Reflectometry with Micrometer Resolution for the Investigation of Integrated Optical-Devices," Leee Journal of Quantum Electronics, vol. 25, pp. 755-759, Apr. 1989.
65Beaurepaire, E., L. Moreaux, et al. (1999). "Combined scanning optical coherence and two-photon-excited fluorescence microcopy." Optics Letters 24(14): 969-971.
66Beaurepaire, E., L. Moreaux, et al. (1999). "Combined scanning optical coherence and two-photon-excited fluorescence microscopy." Optics Letters 24(14): 969-971.
67Beaurepaire, E., P. Gleyzes, et at. (1998). Optical coherence microscopy for the in-depth study of biological structures: System based on a parallel detection scheme, Proceedings of SPIE—The International Society for Optical Engineering.
68Bechara, F. G., T. Gambichler, et al. (2004). "Histomorphologic correlation with routine histology and optical coherence tomography." Skin Research and Technology 10 (3): 169-173.
69Bechmann, M., M. J. Thiel, et al. (2000). "Central corneal thickness determined with optical coherence tomography in various types of glaucoma. [see comments]." British Journal of Ophthalmology 84(11): 1233-7.
70Beddow et al, (May 2002) "Improved Performance Interferomater Designs for Optical Coherence Tomography", IEEE Optical Fiber Sensors Conference, pp. 527-530.
71Bek, T. and M. Kandi (2000). "Quantitative anomaloscopy and optical coherence tomography scanning in central serous chorioretinopathy." Acta Ophthalmologica Scandinavica 78(6): 632-7.
72Benoit, A. M., K. Naoun, et al. (2001). "Linear dichroism of the retinal nerve fiber layer expressed with Mueller matrices." Applied Optics 40(4): 565-569.
73Bernet, S et al: "Quantitative Imaging of Complex Samples by Spiral Phase Contrast Microscopy", Optics Express, May 9, 2006.
74Berovic, N. "Observation of Brillion scattering from single muscle fibers", European Biophysics Journal, 1989, vol. 17, pp. 69-74.
75Bickel, S. William et al., "Stokes Vectors, Mueller Matrices, and Polarized Scattered Light," Am. J. Phys., vol. 53, No. 5, May 1985 pp. 468-478.
76Bicout, D., C. Brosseau, et al. (1994). "Depolarization of Multiply Scattered Waves by Spherical Diffusers—Influence of the Size Parameter." Physical Review E 49(2): 1767-1770.
77Bilenca A et al: "The Role of Amplitude and phase in Fluorescence Coherence Imaging: From Wide Filed to Nanometer Depth Profiling", Optics IEEE, May 5, 2007.
78Bingid U. et al., "Fibre-Optic Laser-Assisted Infrared Tumour Diagnostics (FLAIR); Infrared Tomour Diagnostics" Journal of Physics D. Applied Physics, vol. 38, No. 15, Aug. 7, 2005.
79Blanchot, L., M. Lebec, et al. (1997). Low-coherence in depth microscopy for biological tissues imaging: Design of a real time control system. Proceeding of SPIE—The International Society for Optical Engineering.
80Blanchot, L., M. Lebec, et al. (1997). Low-coherence in depth microscopy for biological tissues imaging: Design of a real time control system. Proceedings of SPIE—The International Society for Optical Engineering.
81Blumenthal, E. Z. and R. N. Weinreb (2001). "Assessment of the retinal nerve fiber layer in clinical trials of glaucoma neuroprotection. [Review] [36 refs]." Survey of Ophthalmology 45(Suppl 3): S305-12; discussion S332-4.
82Blumenthal, E. Z., J. M. Williams, et al. (2000). "Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography." Ophthalmology 107(12): 2278-82.
83Boas et al., "Diffusing temporal light correlation for burn diagnosis", SPIE, 1999, 2979:468-477.
84Boogert, Jolanda Van Den et al. (1999) "Endoscopic Ablation Therapy for Barrett's Esophagua with High-Grade Dysplasia: A Review" The American Journal of Gastroenterology vol. 94, No. 5, pp. 1153-1160.
85Boppart, S. A., B. E. Bouma, et al. (1996). "Imaging developing neural morphology using optical coherence tomography." Journal of Neuroscience Methods 70.
86Boppart, S. A., B. E. Bouma, et al. (1996). "Imaging developing neural morphology using optical coherene tomography." Journal of Neuroscience Methods 70.
87Boppart, S. A., B. E. Bouma, et al. (1997). "Forward-imaging instruments for optical coherence tomography." Optics Letters 22.
88Boppart, S. A., B. E. Bouma, et al. (1998). "Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography." Radiology 208: 81-86.
89Boppart, S. A., J. Hermann, et al. (1999). "High-resolution optical coherence tomography-guided laser ablation of surgical tissue." Journal of Surgical Research 82(2): 275-84.
90Boppart, S. A., J. Herrmann, et al. (1999). "High-resolution optical coherence tomography-guided laser ablation of surgical tissue." Journal of Surgical Research 82(2): 275-84.
91Bouma, B et al. (1994) "Hybrid Mode Locking of a Flash-Lamp-Pumped Ti: Al2O3 Laser" Optics Letters vol. 19, No. 22, pp. 1858-1860.
92Bouma, B et al. (1995) "High Resolution Optical Coherence Tomography Imaging Using a Mode-Locked Ti: Al2O3 Laser Source" Optics Letters vol. 20, No. 13, pp. 1486-1488.
93Bouma, B. E. and G. J. Tearney (2002). "Clinical imaging with optical coherence tomography." Academic Radiology 9(8): 942-953.
94Bouma, B. E. and J. G. Fujimoto (1996). "Compact Kerr-lens mode-locked resonators." Optics Letters 21.
95Bouma, B. E. and J. G. Fujimoto (1996). "Compact Kerr-lens mode-locked resonators." Optics Letters 21. 134-136.
96Bouma, B. E., G. J. Tearney, et al. (1996). "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography." Optics Letters 21(22): 1839.
97Bouma, B. E., G. J. Tearney, et al. (2000). "High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography." Gastrointestinal Endoscopy 51(4): 467-474.
98Bouma, B. E., G. J. Tearney, et al. (2003). "Evaluation of intracoronary stenting by intravascular optical coherence tomography." Heart 89(3): 317-320.
99Bouma, B. E., L. E. Nelson, et al. (1998). "Optical coherence tomographic imaging of human tissue at 1.55 mu m and 1.81 mu m using Er and Tm-doped fiber sources." Journal of Biomedical Optics 3.
100Bouma, B. E., L. E. Nelson, et al. (1998). "Optical coherence tomographic imaging of human tissue at 1.55 mu m and 1.81 mu m using Er and Tm-doped fiber sources." Journal of Biomedical Optics 3. 76-79.
101Bouma, B. E., M. Ramaswamy-Paye, et al. (1997). "Compact resonator designs for mode-locked solid-state lasers." Applied Physics B (Lasers and Optics) B65.
102Bouma, B. E., M. Ramaswamy-Paye, et al. (1997). "Compact resonator designs for mode-locked solid-state lasers." Applied Physics B (Lasers and Optics) B65. 213-220.
103Bouma, Brett et al., "Power-Efficient Nonreciprocal Interferometer and Linear-Scanning Fiber-Optic Catheter for Optical Coherence Tomography", Optics Letters, vol. 24, pp. 531-533, Apr. 1999.
104Bouma, Brett et al., "Power-Efficient Nonreciprocal Interferometer and Linear-Scanning Fiber-Optic Catheter for Optical Coherence Tomography," Optics Letters, vol. 24, pp. 531-533, Apr. 1999.
105Bourquin, S., P. Seitz, et al. (2001). "Optical coherence topography based on a two-dimensional smart detector array." Optics Letters 26(8): 512-514.
106Bourquin, S., V. Monterosso, et al. (2000). "Video-rate optical low-coherence reflectometry based on a linear smart detector array." Optics Letters 25(2): 102-104.
107Bouzid, A., M. A. G. Abushagur, et al. (1995). "Fiber-optic four-detector polarimeter." Optics Communications 118(3-4): 329-334.
108Bowd, C., L. M. Zangwill, et al. (2001). "Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function." Investigative Ophthalmology & Visual Science 42(9): 1993-2003.
109Bowd, C., L. M. Zangwill, et al. (2002). "Imaging of the optic disc and retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender." Journal of the Optical Society of America, A, Optics, Image Science, & Vision 19(1): 197-207.
110Bowd, C., R. N. Weinreb, et al. (2000). "The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography." Archives of Ophthalmology 118(1): 22-6.
111Brand, S., J. M. Poneros, et al. (2000). "Optical coherence tomography in the gastrointestinal tract." Endoscopy 32(10): 796-803.
112Bréhonnet, F. Le Roy et al., "Optical Media and Target Characterization by Mueller Matrix Decomposition," J. Phys. D: Appl. Phys. 29, 1996, pp. 34-38.
113Bréhonnet, F. Le Roy et al., "Optical Media Media and Target Characterization by Mueller Matrix Decomposition," J. Phys. D: Appl. Phys. 29, 1996, pp. 34-38.
114Brezinski, M. E. And J. G. Fujimoto (1999). "Optical coherence tomography: high-resolution imaging in nontransparent tissue." IEEE Journal of Selected Topics in Quantum Electronics 5(4): 1185-1192.
115Brezinski, M. E., G. J. Tearney, et al. (1996). "Imaging of coronary artery microstructure (in vitro) with optical coherence tomography." American Journal of Cardiology 77 (1): 92-93.
116Brezinski, M. E., G. J. Tearney, et al. (1996). "Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology." Circulation 93(6): 1206-1213.
117Brezinski, M. E., G. J. Tearney, et al. (1997). "Assessing atherosclerotic plaque morphology: Comparison of optical coherence tomography and high frequency intravascular ultrasound." Heart 77(5): 397-403.
118Brink, H. B. K. and G. J. Vanblokland (1988). "Birefringence of the Human Foveal Area Assessed Invivo with Mueller-Matrix Ellipsometry." Journal of the Optical Society of America a-Optics Image Science and Vision 5(1): 49-57.
119Brinkman, Ralf et al. (1996) "Analysis of Cavitation Dynamics During Pulsed Laser Tissue Ablation by Optical On-Line Monitoring" IEEE Journal of Selected Topics in Quantum Electronics vol. 2, No. 4, pp. 826-835.
120Brinkmeyer, E. et al., "Efficient Algorithm for Non-Equidistant Interpolation of Sampled Data", Electronics Letters, vol. 28, p. 693, Mar. 1992.
121Brinkmeyer, E. et al., "Efficient Algorithm for Non-Equidistant Interpolation of Sampled Data," Electronics Letters, vol. 28, p. 693, Mar. 1992.
122Brinkmeyer, E. et al., "High-Resolution OCDR in Dispersive Wave-Guides", Electronics Letters, vol. 26, pp. 413-414, Mar. 1990.
123Brinkmeyer, E. et al., "High-Resolution OCDR in Dispersive Wave-Guides," Electronics Letters, vol. 26, pp. 413-414, Mar. 1990.
124Brosseau, C. and D. Bicout (1994). "Entropy Production in Multiple-Scattering of Light by a Spatially Random Medium." Physical Review E 50(6): 4997-5005.
125Brown, Stanley B. et al. (2004) "The Present and Future Role of Photodynamic Therapy in Cancer Treatment" The Lancet Oncology vol. 5, pp. 497-508.
126Burgoyne, C. F., D. E. Mercante, et al. (2002). "Change detection in regional and volumetric disc parameters using longitudinal confocal scanning laser tomography." Ophthalmology 109(3): 455-66.
127C.J. Stewart et al., "A comparison of two laser-based methods for determination of burn scar perfusion: Laser Doppler versus laser speckle imaging", Elsevier Ltd., 2005, vol. 31, pp. 744-752.
128Cameron, Brent D. et al., "Measurement and Calculation of the Two-Dimensional Backscattering Mueller Matrix of a Turbid Medium," Optics Letters, vol. 23, No. 7, Apr. 1, 1998, pp. 485-487.
129Candido, R. and T. J. Allen (2002). "Haemodynamics in microvascular complications in type 1 diabetes." Diabetes-Metabolism Research and Reviews 18(4): 286-304.
130Canto, Marcia Irene et al (1999) "Vital Staining and Barrett's Esophagus" Gastrointestinal Endoscopy vol. 49, No. 3, part 2, pp. 12-16.
131Cense, B., N. Nassif, et al. (2004). "Ultrahigh-Resolution High-Speed Retinal Imaging Using Spectral-Domain Optical Coherence Tomography." Optics Express 12(11): 2435-2447.
132Cense, B., T. C. Chen, et al. (2004). "Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography." Investigative Ophthalmology & Visual Science 45(8): 2606-2612.
133Cense, Barry et al., "In Vivo Birefringence and Thickness Measurements of the Human Retinal Nerve Fiber Layer Using Polarization-Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 121-125.
134Cense, Barry et al., "In Vivo Depth-Resolved Birefringence Measurements of the Human Retinal Nerve Fiber Layer by Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 27, No. 18, Sep. 15, 2002, pp. 1610-1612.
135Chance, B., J. S. Leigh, et al. (1988). "Comparison of Time-Resolved and Time-Unresolved Measurements of Deoxyhemoglobin in Brain." Proceedings of the National Academy of Sciences of the United States of America 85(14): 4971-4975.
136Chang, E. P., D. A. Keedy, et al. (1974). "Ultrastructures of Rabbit Corneal Stroma—Mapping of Optical and Morphological Anisotropies." Biochimica Et Biophysica Acta 343(3): 615-626.
137Chang, E. P., D. A. Keedy, et al. (1974). "Ultrastructures of Rabbit Corneal Stroma—Mapping of Optical and Morphological Anistropies." Biochimica Et Biophysica Acta 343(3): 615-626.
138Chartier, T., A. Hideur, et al. (2001). "Measurement of the elliptical birefringence of single-mode optical fibers." Applied Optics 40(30): 5343-5353.
139Chauhan, B. C., J. W. Blanchard, et al. (2000). "Technique for Detecting Serial Topographic Changes in the Optic Disc and Peripapillary Retina Using Scanning Laser Tomograph." Invest Ophthalmol Vis Sci 41: 775-782.
140Chen, Z. P., T. E. Milner, et al. (1997). "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography." Optics Letters 22(14): 1119-1121.
141Chen, Z. P., T. E. Milner, et al. (1997). "Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media." Optics Letters 22(1): 64-66.
142Chen, Z. P., Y. H. Zhao, et al. (1999). "Optical Doppler tomography." Ieee Journal of Selected Topics in Quantum Electronics 5(4): 1134-1142.
143Cheong, W. F., S. A. Prahl, et al. (1990). "A Review of the Optical-Properties of Biological Tissues." Ieee Journal of Quantum Electronics 26(12): 2166-2185.
144Chernikov, S. V., Y. Zhu, et al. (1997). "Supercontinuum self-Q-switched ytterbium fiber laser." Optics Letters 22(5): 298-300.
145Chinn, S.R. et al., "Optical Coherence Tomography Using a Frequency-Tunable Optical Source", Optics Letters, vol. 22, pp. 340-342, Mar. 1997.
146Chinn, S.R. et al., "Optical Coherence Tomography Using a Frequency-Tunable Optical Source," Optics Letters, vol. 22, pp. 340-342, Mar. 1997.
147Cho, S. H., B. E. Bouma, et al. (1999). "Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:AI/sub 2/0/sub 3/ laser with a multiple-pass cavity." Optics Letters 24(6): 417-419.
148Choma, M. A., C. H. Yang, et al. (2003). "Instantaneous quadrature low-coherence interferometry with 3×3 fiber-optic couplers." Optics Letters 28(22): 2162-2164.
149Choma, M. A., M. V. Sarunic, et al. (2003). "Sensitivity advantage of swept source and Fourier domain optical coherence tomography." Optics Express 11(18): 2183-2189.
150Choplin, N. T. and D. C. Lundy (2001). "The sensitivity and specificity of scanning laser polarimetry in the detection of glaucoma in a clinical setting." Ophthalmology 108 (5): 899-904.
151Christens Barry, W. A., W. J. Green, et al. (1996). "Spatial mapping of polarized light transmission in the central rabbit cornea." Experimental Eye Research 62(6): 651-662.
152Chvapil, M., D. P. Speer, et al. (1984). "Identification of the depth of burn injury by collagen stainability." Plastic & Reconstructive Surgery 73(3): 438-41.
153Cioffi, G. A. (2001). "Three common assumptions about ocular blood flow and glaucoma." Survey of Ophthalmology 45: S325-S331.
154Clark et al., "Tracking Speckle Patterns with Optical Correlation", SPIE, 1992, 1772:77-87.
155Coleman, A. L. (1999). "Glaucoma." Lancet 354(9192): 1803-10.
156Collaborative Normal-Tension Glaucoma Study Group (1998). "Comparison of Glaucomatous Progression Between Untreated Patients With Normal Tension Glaucoma and Patients with Therapeutically Reduced Intracular Pressures." Am J Ophthalmol 126: 487-97.
157Collaborative Normal-Tension Glaucoma Study Group (1998). "Comparison of Glaucomatous Progression Between Untreated Patients With Normal Tension Glaucoma and Patients with Therapeutically Reduced Intraocular Pressures." Am J Ophthalmol 126: 487-97.
158Collaborative Normal-Tension Glaucoma Study Group (1998). "The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma." Am J Ophthalmol 126: 498-505.
159Collaborative Normal-Tension Glaucoma Study Group (2001). "Natural History of Normal-Tension Glaucoma." Ophthalmlogy 108: 247-253.
160Collaborative Normal-Tension Glaucoma Study Group (2001). "Natural History of Normal-Tension Glaucoma." Ophthalmology 108: 247-253.
161Colston, B. W., M. J. Everett, et al. (1998). "Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography." Applied Optics 37(16): 3582-3585.
162Colston, B. W., U. S. Sathyam, et al. (1998). "Dental OCT." Optics Express 3(6): 230-238.
163Congdon, N. G., D. S. Friedman, et al. (2003). "Important causes of visual impairment in the world today." Jama-Journal of the American Medical Association 290(15): 2057-2060.
164Cregan, R. F., B. J. Mangan, et al. (1999). "Single-mode photonic band gap guidance of light in air." Science 285(5433): 1537-1539.
165D. Fu et al., "Non-invasive quantitative reconstruction of tissue elasticity using an iterative forward approach", Phys. Med. Biol. 2000 (45): 1495-1509.
166D. Huang et al., "Optical Coherence Tomography", Science, vol. 254, pp. 1178-1181, Nov. 1991.
167D. Huang et al., "Optical Coherence Tomography," Science, vol. 254, pp. 1178-1181, Nov. 1991.
168D. Yelin et al., "Three-dimensional imaging using spectral encoding heterodyne interferometry", Optics Letters, Jul. 15, 2005, vol. 30, No. 14, pp. 1794-1796.
169DalMolin, M., A. Galtarossa, et al. (1997). "Experimental investigation of linear polarization in high-birefringence single-mode fibers." Applied Optics 36(12): 2526-2528.
170Danielson, B. L. and C. D. Whittenberg (1987). "Guided-Wave Reflectometry with Micrometer Resolution." Applied Optics 26(14): 2836-2842.
171Danielson, B.L. et al., "Absolute Optical Ranging Using Low Coherence Interferometry", Applied Optics, vol. 30, p. 2975, Jul. 1991.
172Danielson, B.L. et al., "Absolute Optical Ranging Using Low Coherence Interferometry," Applied Optics, vol. 30, p. 2975, Jul. 1991.
173Database Biosis Biosciences Information Service, Philadelphia, PA, US; Oct. 2006, Yelin D. et al: "Three-Dimensional Miniature Endoscopy".
174Database Compendex Engineering Information, Inc., New York, NY, US; Mar. 5, 2007, Yelin, Dvir et al: "Spectral-Domain Spectrally-Encoded Endoscopy".
175Dave, D. P. and T. E. Milner (2000). "Doppler-angle measurement in highly scattering media." Optics Letters 25(20): 1523-1525.
176Davé, Digant P. et al., "Polarization-Maintaining Fiber-Based Optical Low-Coherence Reflectometer for Characterization and Ranging of Birefringence," Optics Letters, vol. 28, No. 19, Oct. 1, 2003, pp. 1775-1777.
177David J. Briers, "Speckle fluctuations and biomedical optics: implications and applications", Optical Engineering, 1993, 32(2):277-283.
178David J. Briers, "Speckle fluctuations and biomedical optics: implications and applications", Optical Engineering, 1993, 32(2):277-283.Clark et al., "Tracking Speckle Patterns with Optical Correlation", SPIE, 1992, 1772:77-87.
179de Boer, J. F., C. E. Saxer, et al. (2001). "Stable carrier generation and phase-resolved digital data processing in optical coherence tomography." Applied Optics 40(31): 5787-5790.
180de Boer, J. F., T. E. Milner, et al. (1998). Two dimensional birefringence imaging in biological tissue using phase and polarization sensitive optical coherence tomography. Trends in Optics and Photonics (TOPS): Advances in Optical Imaging and Photon Migration, Orlando, USA, Optical Society of America, Washington, DC 1998.
181De Boer, Johannes F. et al., "Determination of the Depth-Resolved Stokes Parameters of Light Backscattered from Turbid Media by use of Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 24, No. 5, Mar. 1, 1999, pp. 300-302.
182De Boer, Johannes F. et al., "Imaging Thermally Damaged Tissue by Polarization Sensitive Optical Coherence Tomography," Optics Express, vol. 3, No. 6, Sep. 14, 1998, pp. 212-218.
183De Boer, Johannes F. et al., "Improved Signal-to-Noise Ratio in Spectral-Domain Compared with Time-Domain Optical Coherence Tomography," Optics Letters, vol. 28, No. 21, Nov. 1, 2003, pp. 2067-2069.
184De Boer, Johannes F. et al., "Polarization Effects in Optical Coherence Tomography of Various Viological Tissues," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, No. 4, Jul./Aug. 1999, pp. 1200-1204.
185De Boer, Johannes F. et al., "Review of Polarization Sensitive Optical Coherence Tomography and Stokes Vector Determination," Journal of Biomedical Optics, Jul. 2002, vol. 7, No. 3, pp. 359-371.
186De Boer, Johannes F. et al., "Review of Polarization Sensitive Optical Coherence Tomography and Stokes Vector Determination," Journal of Biomedical Optics, vol. 7, No. 3, Jul. 2002, pp. 359-371.
187De Boer, Johannes F. et al., "Two-Dimensional Birefringence Imaging in Biological Tissue by Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 22, No. 12, Jun. 15, 1997, pp. 934-936.
188Deckelbaum, Lawrence I. (1994) "Coronary Laser Angioplasty" Lasers in Surgery and Medicine vol. 14, pp. 101-110.
189Deckelbaum, Lawrence I. (1994) "Coronary Lasers Angioplasty" Laser in Surgery and Medicine vol. 14, pp. 101-110.
190Degroot, P. and L. Deck (1993). "3-Dimensional Imaging by Sub-Nyquist Sampling of White-Light Interferograms." Optics Letters 18(17): 1462-1464.
191Denk, W., J. H. Strickler, et al. (1990). "2-Photon Laser Scanning Fluorescence Microscopy." Science 248(4951): 73-76.
192Descour, M. R., A. H. O. Karkkainen, et al. (2002). "Toward the development of miniaturized Imaging systems for detection of pre-cancer." Ieee Journal of Quantum Electronics 38(2): 122-130.
193Desjardins A.E., et al., "Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging", Optics Express, May 15, 2006, vol. 14, No. 11, pp. 4736-4745.
194Dettwiller, L. (1997). "Polarization state interference: A general investigation." Pure and Applied Optics 6(1): 41-53.
195Devesa, Susan S. et al. (1998) "Changing Patterns in the Incidence of Esophegeal and Gastric Carcinoma in the United States." American Cancer Society vol. 83, No. 10 pp. 2049-2053.
196DiCarlo, C. D., W. P. Roach, et al. (1999). "Comparison of optical coherence tomography imaging of cataracts with histopathology." Journal of Biomedical Optics 4.
197DiCarlo, C. D., W. P. Roach, et al., (1999). "Comparison of optical coherence tomography imaging of cataracts with histopathology." Journal of Biomedical Optics 4.
198Ding, Z., Y. Zhao, et al. (2002). "Real-time phase-resolved optical coherence tomography and optical Doppler tomography." Optics Express 10(5): 236-245.
199Dobrin, P. B. (1996). "Effect of histologic preparation on the cross-sectional area of arterial rings." Journal of Surgical Research 61(2): 413-5.
200Donohue, D. J., B. J. Stoyanov, et al. (1995). "Numerical Modeling of the Corneas Lamellar Structure and Birefringence Properties." Journal of the Optical Society of America a-Optics Image Science and Vision 12(7): 1425-1438.
201Doornbos, R. M. P., R. Lang, et al. (1999). "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy." Physics in Medicine and Biology 44(4): 967-981.
202Dorrer, C. et al., "Spectral Resolution and Sampling Issues in Fourier-Transform Spectral Interferometry", Journal of the Optical Society of America B-Optical Physics, vol. 17, pp. 1795-1802, Oct. 2000.
203Dorrer, C. et al., "Spectral Resolution and Sampling Issues in Fourier-Transform Spectral Interferometry," Journal of the Optical Society of America B-Optical Physics, vol. 17, pp. 1795-1802, Oct. 2000.
204Drexler, W., A. Baumgartner, et al. (1997). "Biometric investigation of changes in the anterior eye segment during accommodation." Vision Research 37(19): 2789-2800.
205Drexler, W., A. Baumgartner, et al. (1997). "Submicrometer precision biometry of the anterior segment of the human eye." Investigative Ophthalmology & Visual Science 38(7): 1304-1313.
206Drexler, W., A. Baumgartner, et al. (1998). "Dual beam optical coherence tomography: signal identification for ophthalmologic diagnosis." Journal of Biomedical Optics 3 (1): 55-65.
207Drexler, W., C. K. Hitzenberger, et al. (1995). "Measurement of the Thickness of Fundus Layers by Partial Coherence Tomography." Optical Engineeering 34(3): 701-710.
208Drexler, W., C. K. Hitzenberger, et al. (1995). "Measurement of the Thickness of Fundus Layers by Partial Coherence Tomography." Optical Engineering 34(3): 701-710.
209Drexler, W., C. K. Hitzenberger, et al. (1996). "(Sub)micrometer precision biometry of the human eye by optical coherence tomography and topography." Investigative Ophthalmology & Visual Science 37(3): 4373-4374.
210Drexler, W., C. K. Hitzenberger, et al. (1998). "Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry." Experimental Eye Research 66(1): 25-33.
211Drexler, W., C. K. Hitzenberger, et al. 1996). "(Sub)micrometer precision biometry of the human eye by optical coherence tomography and topography." Investigative Ophthalmology & Visual Science 37(3): 4374-4374.
212Drexler, W., D. Stamper, et al. (2001). "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis." Journal of Rheumatology 28(6): 1311-8.
213Drexler, W., H. Sattmann, et al. (2003). "Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography." Archives of Ophthalmology 121(5): 695-706.
214Drexler, W., O. Findl, et al. (1997). "Clinical feasibility of dual beam optical coherence topography and tomography for ophthalmologic diagnosis." Investigative Ophthalmology & Visual Science 38(4): 1038-1038.
215Drexler, W., O. Findl, et al. (1998). "Partial coherence interferometry: A novel approach to biometry in cataract surgery." American Journal of Ophthalmology 126(4): 524-534.
216Drexler, W., U. Morgner, et al. (2001). "Ultrahigh-resolution ophthalmic optical coherence tomography. [erratum appears in Nat Med May 2001;7(5):636.]." Nature Medicine 7(4): 502-7.
217Drexler, W., U. Morgner, et al. (2001). "Ultrahigh-resolution ophthalmic optical coherence tomography. [erratum appears in Nat Med May 2001;7(5):636]." Nature Medicine 7(4): 502-7.
218Drexler, W., U. Morgner, et al. (2001). "Ultrahigh-resolution ophthalmic optical coherence tomography." Nature Medicine 7(4): 502-507.
219Droog, E. J., W. Steenbergen, et al. (2001). "Measurement of depth of burns by laser Doppler perfusion imaging." Burns 27(6): 561-8.
220Droog, E. J., W. Steenberger, et al. (2001). "Measurement of depth of burns by laser Doppler perfusion imaging." Burns 27(6): 561-8.
221Dubois Arnaud et al., "Ultrahigh-resolution OCT using white-light interference microscopy", Proceedings of SPIE, 2003, vol. 4956, pp. 14-21.
222Dubois, A., K. Grieve, et al. (2004). "Ultrahigh-resolution full-field optical coherence tomography." Applied Optics 43(14): 2874-2883.
223Dubois, A., L. Vabre, et al. (2002). "High-resolution full-field optical coherence tomography with a Linnik microscope." Applied Optics 41(4): 805-812.
224Ducros, M. G., J. D. Marsack, et al. (2001). "Primate retina imaging with polarization-sensitive optical coherence tomography." Journal of the Optical Society of America a-Optics Image Science and Vision 18(12): 2945-2956.
225Ducros, M., M. Laubscher, et al. (2002). "Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array." Optics Communications 202(1-3): 29-35.
226Ducros, Mathieu G. et al., "Polarization Sensitive Optical Coherence Tomography of the Rabbit Eye," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, No. 4, Jul./Aug. 1999, pp. 1159-1167.
227Dudley, J.M. et al., "Cross-Correlation Frequency Resolved Optical Gating Analysis of Broadband Continuum Generation in Photonic Crystal Fiber: Simulations and Experiments", Optics Express, vol. 10, p. 1215, Oct. 2002.
228Dudley, J.M. et al., "Cross-Correlation Frequency Resolved Optical Gating Analysis of Broadband Continuum Generation in Photonic Crystal Fiber: Simulations and Experiments," Optics Express, vol. 10, p. 1215, Oct. 2002.
229Duncan, A., J. H. Meek, et al. (1995). "Optical Pathlength Measurements on Adult Head, Calf and Forearm and the Head of the Newborn-Infant Using Phase-Resolved Optical Spectroscopy." Physics in Medicine and Biology 40(2): 295-304.
230Eickhoff, W. et al., "Optical Frequency-Domain Reflectometry in Single-Mode Fiber", Applied Physics Letters, vol. 39, pp. 693-695, 1981.
231Eickhoff, W. et al., "Optical Frequency-Domain Reflectometry in Single-Mode Fiber," Applied Physics Letters, vol. 39, pp. 693-695, 1981.
232Eigensee, A., G. Haeusler, et al. (1996). "New method of short-coherence interferometry in human skin (in vivo) and in solid volume scatterers." Proceedings of SPIE—The International Society for Optical Engineering 2925: 169-178.
233Eisebeiss, W., J. Marotz, et al. (1999). "Reflection-optical multispectral imaging for objective determination of burn depth." Burns 25(8): 697-704.
234Eisenbeiss, W., J. Marotz, et al. (1999). "Reflection-optical multispectral imaging method for objective determination of burn depth." Burns 25(8): 697-704.
235Elbaum, M., M. King, et al. (1972). "Wavelength-Diversity Technique for Reduction of Speckle Size." Journal of the Optical Society of America 62(5): 732-&.
236Elliott, K. H. "The use of commercial CCD cameras as linear detectors in the physics undergraduate teaching laboratory", European Journal of Physics 19, 1998, pp. 107-117.
237Elliott, K. H. "The use of commercial CCD cameras as linear detectors in the physics undergraduate teaching laboratory", European Journal of Physics, 1998, pp. 107-117.
238Erdelyi et al. "Generation of diffraction-free beams for applications in optical microlithography", J. Vac. Sci. Technol. B 15 (12), Mar./Apr. 1997, pp. 287-292.
239Ervin, J. C., H. G. Lemij, et al. (2002). "Clinician change detection viewing longitudinal stereophotographs compared to confocal scanning laser tomography in the LSU Experimental Glaucoma (LEG) Study." Ophthalmology 109(3): 467-81.
240Essenpreis, M., C. E. Elwell, et al. (1993). "Spectral Dependence of Temporal Point Spread Functions in Human Tissues." Applied Optics 32(4): 418-425.
241Eun, H. C. (1995). "Evaluation of skin blood flow by laser Doppler flowmetry. [Review] [151 refs]." Clinics in Dermatology 13(4): 337-47.
242European communication dated May 15, 2008 for European patent application No. 05819917.5.
243European Official Action dated Dec. 2, 2008 for EP 07718117.0.
244European Patent Office Search Report dated Nov. 20, 2007 for European Application No. 05791226.3.
245European Patent Office Search report for Application No. 01991092.6-2305 dated Jan. 12, 2006.
246European Search Report dated Apr. 13, 2011 for European Patent Application No. 10185617.7.
247European Search Report issued May 5, 2009 for European Application No. 01991471.2.
248Evans, J. A., J. M. Poneros, et al. (2004). "Application of a histopathologic scoring system to optical coherence tomography (OCT) images to identify high-grade dysplasia in Barrett's esophagus." Gastroenterology 126(4): A51-A51.
249Evans, John A. et al. (2006) "Optical Coherence Tomography to Identify Intramucosal Carcinoma and High-Grade Dysplasia in Barrett's Esophagus" Clinical Gastroenterology and Hepatology vol. 4, pp. 38-3.
250Everett, M.J. et al., "Birefringence Characterization of Biological Tissue by Use of Optical Coherence Tomography," Optics Letters, vol. 23, No. 3, Feb. 1, 1998, pp. 228-230.
251Facchini et al., "An endoscopic system for DSPI", Optik, 1993, 95(1):27-30.
252Falk, Gary W. et al. (1997) "Surveillance of Patients with Barrett's Esophagus for Dysplasia and Cancer with Ballon Cytology" Gastrorenterology vol. 112, pp. 1787-1797.
253Feldchtein, F. I., G. V. Gelikonov, et al. (1998). "Endoscopic applications of optical coherence tomography." Optics Express 3(6): 250-270.
254Feldchtein, F. I., G. V. Gelikonov, et al. (1998). "Endoscopic applications of optical coherence tomography." Optics Express 3(6): 257-270.
255Feldchtein, F. I., G. V. Gelikonov, et al. (1998). "In vivo OCT imaging of hard and soft tissue of the oral cavity." Optics Express 3(6): 239-250.
256Fercher, A. F., C. Hitzenberger, et al. (1991). "Measurement of Intraocular Optical Distances Using Partially Coherent Laser-Light." Journal of Modern Optics 38(7): 1327-1333.
257Fercher, A. F., C. K. Hitzenberger, et al. (1993). "In-Vivo Optical Coherence Tomography." American Journal of Ophthalmology 116(1): 113-115.
258Fercher, A. F., C. K. Hitzenberger, et al. (1994). In-vivo dual-beam optical coherence tomography. Proceedings of SPIE—The International Society for Optical Engineering.
259Fercher, A. F., C. K. Hitzenberger, et al. (1995). "Measurement of Intraocular Distances by Backscattering Spectral Interferometry." Optics Communications 117(1-2): 43-48.
260Fercher, A. F., C. K. Hitzenberger, et al. (1996). Ocular partial coherence interferometry. Proceedings of SPIE—The International Society for Optical Engineering.
261Fercher, A. F., C. K. Hitzenberger, et al. (2000). "A thermal light source technique for optical coherence tomography." Optics Communications 185(1-3): 57-64.
262Fercher, A. F., C. K. Hitzenberger, et al. (2001). "Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography." Optics Express 9(12): 610-615.
263Fercher, A. F., C. K. Hitzenberger, et al. (2002). "Dispersion compensation for optical coherence tomography depth- scan signals by a numerical technique." Optics Communications 204(1-6): 67-74.
264Fercher, A. F., C. K. Hitzenberger, et al.(1995). "Measurement of Intraocular Distances by Backscattering Spectral Interferometry." Optics Communications 117(1-2): 43-48.
265Fercher, A. F., H. C. Li, et al. (1993). "Slit Lamp Laser-Doppler Interferometer." Lasers in Surgery and Medicine 13(4): 447-452.
266Fercher, A. F., K. Mengedoht, et at. (1988). "Eye-Length Measurement by Interferometry with Partially Coherent-Light." Optics Letters 13(3): 186-188.
267Fercher, A. F., K. Mengedoht, et at. (1998). "Eye-Length Measurement by Interferometry with Partially Coherent-Light." Optics Letters 13(3): 186-188.
268Fercher, A. F., W. Dexler, et al. (1994) Measurement of optical distances by optical spectrum modulation. Proceedings of SPIE—The International Society for Optical Engineering.
269Fercher, A. F., W. Drexler, et al. (1994). Measurement of optical distances by optical spectrum modulation. Proceedings of SPIE—The International Society for Optical Engineering.
270Fercher, A. F., W. Drexler, et al. (1997). "Optical ocular tomography." Neuro- Ophthalmology 18(2): 39-49.
271Fercher, A. F., W. Drexler, et al. (2003). "Optical coherence tomography—principles and applications." Reports on Progress in Physics 66(2): 239-303.
272Fercher, Adolf "Optical Coherence Tomography," Journal of Biomedical Optics, vol. 1, pp. 157-173, Apr. 1996.
273Fercher, Adolf"Optical Coherence Tomography", Journal of Biomedical Optics, vol. 1, pp. 157-173, Apr. 1996.
274Fernaández, Cabrera Delia et al. "Automated detection of retinal layer structures on optical coherence tomography images", Optics Express vol. 13, No. 25, Oct. 4, 2005, pp. 10200-10216.
275Ferreira, L.A. et al., "Polarization-Insensitive Fiberoptic White-Light Interferometry", Optics Communications, vol. 114, pp. 386-392, Feb. 1995.
276Ferreira, L.A. et al., "Polarization-Insensitive Fiberoptic White-Light Interferometry," Optics Communications, vol. 114, pp. 386-392, Feb. 1995.
277Ferro, P., M. Haelterman, et al. (1991). "All-Optical Polarization Switch with Long Low-Birefringence Fiber." Electronics Letters 27(16): 1407-1408.
278Ferro, P., M. Haelterman, et al. (1991). "All-Optical Polarization Switch with Long-Low Birefringence Fiber." Electronics Letters 27(16): 1407-1408.
279Fetterman, M. R., D. Goswami, et al. (1998). "Ultrafast pulse shaping: amplification and characterization." Optics Express 3(10): 366-375.
280Findl, O., W. Drexler, et al. (2001). "Improved prediction of intraocular lens power using partial coherence interferometry." Journal of Cataract and Refractive Surgery 27 (6): 861-867.
281Findl, O., W. Drexler, et al. (2001). "Improved prediction of intraocular lens power using partial coherence interferometry." Journal of Cataract and Refractive Surgery 27(6): 861-867.
282Fork, R. L., C. H. B. Cruz, et al. (1987). "Compression of Optical Pulses to 6 Femtoseconds by Using Cubic Phase Compensation." Optics Letters 12(7): 483-485.
283Foschini, G. J. and C. D. Poole (1991). "Statistical-Theory of Polarization Dispersion in Single-Mode Fibers." Journal of Lightwave Technology 9(11): 1439-1456.
284Fox, J.A. et al; "A New Galvanometric Scanner for Rapid tuning of C02 Lasers" New York, IEEE, US Vol. Apr. 7, 1991.
285Francia, C., F. Bruyere, et al. (1998). "PMD second-order effects on pulse propagation in single-mode optical fibers." Ieee Photonics Technology Letters 10(12): 1739-1741.
286French, P.M.W. et al. (1993) "Continuous-wave Mode-Locked Cr4−: YAG Laser" Optics Letters vol. 18, No. 1, pp. 39-41.
287Fried, D., R. E. Glena, et al. (1995). "Nature of Light-Scattering in Dental Enamel and Dentin at Visible and near-Infrared Wavelengths." Applied Optics 34(7): 1278-1285.
288Fried, Daniel et al., "Imaging Caries Lesions and Lesion Progression with Polarization Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 7, No. 4, Oct. 2002, pp. 618-627.
289Froehly, J. et al. (2003) "Multiplexed 3D Imaging Using Wavelength Encoded Spectral Interferometry: A Proof of Principle" Optics Communications vol. 222, pp. 127-136.
290Fujii, Yohji, "High-Isolation Polarization-Independent Optical Circulator", Journal of Lightwave Technology, vol. 9, pp. 1239-1243, Oct. 1991.
291Fujimoto et al., "High Resolution in Vivo Intra-Arterial Imaging with Optical Coherence Tomography", Official Journal of the British Cardiac Society, vol. 82, pp. 128-133 Heart, 1999.
292Fujimoto et al., "High Resolution in Vivo Intra-Arterial Imaging with Optical Coherence Tomography," Official Journal of the British Cardiac Society, vol. 82, pp. 128-133 Heart, 1999.
293Fujimoto, J. G., M. E. Brezinski, et al. (1995). "Optical Biopsy and Imaging Using Optical Coherence Tomography." Nature Medicine 1(9): 970-972.
294Fukasawa, A. and H. Iijima (2002). "Optical coherence tomography of choroidal osteoma." American Journal of Ophthalmology 133(3): 419-21.
295Fymat, A. L. (1981). "High-Resolution Interferometric Spectrophotopolarimetry." Optical Engineering 20(1): 25-30.
296G. J. Tearney et al., "Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis", CLEO 2001, vol. 56, pp. 307-307.
297Galtarossa, A., L. Palmieri, et al. (2000). "Measurements of beat length and perturbation length in long single-mode fibers." Optics Letters 25(6): 384-386.
298Galtarossa, A., L. Palmieri, et al. (2000). "Statistical characterization of fiber random birefringence." Optics Letters 25(18): 1322-1324.
299Gandjbakhche, A. H., P. Mills, et al. (1994). "Light-Scattering Technique for the Study of Orientation and Deformation of Red-Blood-Cells in a Concentrated Suspension." Applied Optics 33(6): 1070-1078.
300Ganz, Robert A. et al. (2004) "Complete Ablation of Esophageal Epithelium with a Balloon-based Bipolar Electrode: A Phased Evaluation in the Porcine and in the Human Esophagus" Gastrointestinal Endoscopy vol. 60, No. 6, pp. 1002-1010.
301Garcia, N. and M. Nieto-Vesperinas (2002). "Left-handed materials do not make a perfect lens." Physical Review Letters 88(20).
302Gelikono, V. M. et al. (Oct. 1, "Two-Wavelength Optical Coherence Tomography" Radio physics and Quantum Electronics, Kluwer Academic Publishers-Consultants. vol. 47, No. 10-1.
303Gelikono, V. M. et al. Oct. 1, 2004 "Two-Wavelength Optical Coherence Tomography" Radio physics and Quantum Electronics, Kluwer Academic Publishers-Consultants. vol. 47, No. 10-1.
304Gelikonov, V. M., G. V. Gelikonov, et al. (1995). "Coherent Optical Tomography of Microscopic Inhomogeneities in Biological Tissues." Jetp Letters 61(2): 158-162.
305Georgakoudi, Irene et al. (2001) "Fluorescence, Reflectance, and Light-Scattering Spectroscopy for Evaluating Dysplasia in Patients with Barrett's Esophagus" Gastroenterology vol. 120, pp. 1620-1629.
306George, N. and A. Jain (1973). "Speckle Reduction Using Multiple Tones of Illumination." Applied Optics 12(6): 1202-1212.
307Gibson, G. N., R. Klank, et al. (1996). "Electro-optically cavity-dumped ultrashort-pulse Ti:sapphire oscillator." Optics Letters 21(14): 1055.
308Gil, J. J. (2000). "Characteristic properties of Mueller matrices." Journal of the Optical Society of America a-Optics Image Science and Vision 17(2): 328-334.
309Gil, J. J. and E. Bernabeu (1987). "Obtainment of the Polarizing and Retardation Parameters of a Nondepolarizing Optical-System from the Polar Decomposition of Its Mueller Matrix." Optik 76(2): 67-71.
310Gladkova, N. D., G. A. Petrova, et al. (2000). "In vivo optical coherence tomography imaging of human skin: norm and pathology." Skin Research and Technology 6 (1): 6-16.
311Glaessl, A., A. G. Schreyer, et al. (2001). "Laser surgical planning with magnetic resonance imaging-based 3-dimensional reconstructions for intralesional Nd : YAG laser therapy of a venous malformation of the neck." Archives of Dermatology 137(10): 1331-1335.
312Glance, B., "Polarization Independent Coherent Optical Receiver", Journal of Lightwave Technology, vol. LT-5, p. 274, Feb. 1987.
313Glance, B., "Polarization Independent Coherent Optical Receiver," Journal of Lightwave Technology, vol. LT-5, p. 274, Feb. 1987.
314Gloesmann, M., B. Hermann, et al. (2003). "Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography." Investigative Ophthalmology & Visual Science 44(4): 1696-1703.
315Glombitza, U., "Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Wave-Guides", Journal of Lightwave Technology, vol. 11, pp. 1377-1384, Aug. 1993.
316Glombitza, U., "Coherent Frequency-Domain Reflectometry for Characterization of Single-Mode Integrated-Optical Wave-Guides," Journal of Lightwave Technology, vol. 11, pp. 1377-1384, Aug. 1993.
317Goldberg, L. and D. Mehuys (1994). "High-Power Superluminescent Diode Source." Electronics Letters 30(20): 1682-1684.
318Goldsmith, J. A., Y. Li, et al. (2005). "Anterior chamber width measurement by high speed optical coherence tomography." Ophthalmology 112(2): 238-244.
319Goldstein, L. E., J. A. Muffat, et al. (2003). "Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer's disease." Lancet 361(9365): 1258-1265.
320Golubovic, B. et al., "Optical Frequency-Domain Reflectometry Using Rapid Wavelength Tuning of a Cr4+:Forsterite Laser", Optics Letters, vol. 11, pp. 1704-1706, Nov. 1997.
321Golubovic, B. et al., "Optical Frequency-Domain Reflectometry Using Rapid Wavelength Tuning of a Cr4+:Forsterite Laser," Optics Letters, vol. 11, pp. 1704-1706, Nov. 1997.
322Golubovic, B., B. E. Bouma, et al. (1996). "Thin crystal, room-temperature Cr/sup 4 +/:forstefite laser using near-infrared pumping." Optics Letters 21(24): 1993-1995.
323Golubovic, B., B. E. Bouma, et al. (1996). "Thin crystal, room-temperature Cr/sup 4+/:forstefite laser using near-infrared pumping." Optics Letters 21(24): 1993-1995.
324Gonick, Maria M., et al (2002) "Visualization of Blood Microcirculation Parameters in Human Tissues by Time Integrated Dynamic Speckles Analysis" vol. 972, No. 1, Oct. 1, 2002.
325Gonzalez, S. and Z. Tannous (2002). "Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma." Journal of the American Academy of Dermatology 47(6): 869-874.
326Gordon, M. O. and M. A. Kass (1999). "The Ocular Hypertension Treatment Study: design and baseline description of the participants." Archives of Ophthalmology 117(5): 573-83.
327Götzinger, Erich et al., "Measurement and Imaging of Birefringent Properties of the Human Cornea with Phase-Resolved, Polarization-Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 94-102.
328Grayson, T. P., J. R. Torgerson, et al. (1994) "Observation of a Nonlocal Pancharatnam Phase-Shift in the Process of Induced Coherence without Induced Emission." Physical Review A 49(1): 626-628.
329Grayson, T. P., J. R. Torgerson, et al. (1994). "Observation of a Nonlocal Pancharatnam Phase-Shift in the Process of Induced Coherence without Induced Emission." Physical Review A 49(1): 626-628.
330Greaney, M. J., D. C. Hoffman, et al. (2002). "Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma." Investigative Ophthalmology & Visual Science 43(1): 140-5.
331Greenfield, D. S., H. Bagga, et al. (2003). "Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography." Archives of Ophthalmology 121(1): 41-46.
332Greenfield, D. S., R. W. Knighton, et al. (2000). "Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry." American Journal of Ophthalmology 129(6): 715-722.
333Griffin, R. A., D. D. Sampson, et al. (1995). "Coherence Coding for Photonic Code-Division Multiple-Access Networks." Journal of Lightwave Technology 13(9): 1826-1837.
334Groner, Warren et al., "Orthogonal Polarization Spectral Imaging: A New Method for Study of the Microcirculation," Nature Medicine Inc., vol. 5 No. 10, Oct. 1999, pp. 1209-1213.
335Groner, Warren et al., "Orthogonal Polarization Spectral Imaging: A New Method for Study of the Microcirculation," Nature Medicine Inc., vol. 5, No. 10, Oct. 1999, pp. 1209-1213.
336Guedes, V., J. S. Schuman, et al. (2003). "Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes." Ophthalmology 110(1): 177-189.
337Gueugniaud, P. Y., H. Carsin, et al. (2000). "Current advances in the initial management of major thermal burns. [Review] [76 ref]." Intensive Care Medicine 26(7): 848-56.
338Gueugniaud, P. Y., H. Carsin, et al. (2000). "Current advances in the initial management of major thermal burns. [Review] [76 refs]." Intensive Care Medicine 26(7): 848-56.
339Guido, S. and R. T. Tranquillo (1993). "A Methodology for the Systematic and Quantitative Study of Cell Contact Guidance in Oriented Collagen Gels—Correlation of Fibroblast Orientation and Gel Birefringence." Journal of Cell Science 105: 317-331.
340Guo, Bujin et al., "Laser-based mid-infrared reflectance imaging of biological tissues", Optics Express, Jan. 12, 2004, vol. 12, No. 1, pp. 208-219.
341Guo, Shuguang et al., "Depth-Resolved Birefringence and Differential Optical Axis Orientation Measurements with Finer-based Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 29, No. 17, Sep. 1, 2004, pp. 2025-2027.
342Gurses-Ozden, R., H. Ishikawa, et al. (1999). "Increasing sampling density improves reproducibility of optical coherence tomography measurements." Journal of Glaucoma 8(4): 238-41.
343Guzzi, R. (1998). "Scattering Theory from Homogeneous and Coated Spheres." 1-11.
344Haberland, U. B., Vladimir; Schmitt, Hans J. (1996). "Optical coherent tomography of scattering media using electrically tunable near-infrared semiconductor laser." Applied Optics Draft Copy.
345Haberland, U. H. P. et al., "Chirp Optical Coherence Tomography of Layered Scattering Media", Journal of Biomedical Optics, vol. 3, pp. 259-266, Jul. 1998.
346Haberland, U. H. P. et al., "Chirp Optical Coherence Tomography of Layered Scattering Media," Journal of Biomedical Optics, vol. 3, pp. 259-266, Jul. 1998.
347Haberland, U. R., Walter; Blazek, Vladimir; Schmitt, Hans J. (1995). "Investigation of highly scattering media using near-infrared continuous wave tunable semiconductor laser." Proc. SPIE, 2389: 503-512.
348Hajima Tanaka et al., "New Method of Superheterodyne Light Beating Spectroscopy for Brillouin-Scattering Using Frequency-Tunable Lasers", Physical Review Letters 1995, 74 (9): 1609-1612.
349Hajime Tanaka et al., "New Method of Superheterodyne Light Beating Spectroscopy for Brillouin-Scattering Using Frequency-Tunable Lasers", Physical Review Letters 1995, 74 (9): 1609-1612.
350Hale, G. M. and M. R. Querry (1973). "Optical-Constants of Water in 200-Nm to 200-Mum Wavelength Region." Applied Optics 12(3): 555-563.
351Hale, G. M. And M. R. Querry (1973). "Optical-Constants of Water in 200-Nm to 200-Mum Wavelength Region." Appplied Optics 12(3): 555-563.
352Hammer, D. X., R. D. Ferguson, et al. (2002). "Image stabilization for scanning laser ophthalmoscopy." Optics Express 10(26): 1542.
353Hammer, Daniel X. et al., "Spectrally Resolved White-Light Interferometry for Measurement of Ocular Dispersion", Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 16, pp. 2092-2102, Sep. 1999.
354Hammer, Daniel X. et al., "Spectrally Resolved White-Light Interferometry for Measurement of Ocular Dispersion," Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 16, pp. 2092-2102, Sep. 1999.
355Hara, T., Y. Ooi, et al. (1989). "Transfer Characteristics of the Microchannel Spatial Light-Modulator." Applied Optics 28(22): 4781-4786.
356Hariri, Lida P. et al. "Endoscopic Optical Coherence Tomography and Laser-Induced Fluorescence Spectroscopy in a Murine Colon Cancer Model", Laser in Surgery and Medicine, vol. 38, 2006, pp. 305-313.
357Harland, C. C., S. G. Kale, et al. (2000). "Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound." British Journal of Dermatology 143(2): 281-289.
358Hartl, I., X. D. Li, et al. (2001). "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber." Optics Letters 26(9): 608-610.
359Harvey, K. C. et al., "External-Cavity Diode-Laser Using a Grazing-Incidence Diffraction Grating", Optics Letters, vol. 16, pp. 910-912, Jun. 1991.
360Harvey, K. C. et al., "External-Cavity Diode-Laser Using a Grazing-Incidence Diffraction Grating," Optics Letters, vol. 16, pp. 910-912, Jun. 1991.
361Hassenstein, A., A. A. Bialasiewicz, et al. (2000). "Optical coherence tomography in uveitis patients." American Journal of Ophthalmologv 130(5): 669-70.
362Hassenstein, A., A. A. Bialasiewicz, et al. (2000). "Optical coherence tomography in uveitis patients." American Journal of Ophthalmology 130(5): 669-70.
363Hattenhauer, M. G., D. H. Johnson, et al. (1998). "The probability of blindness from open-angle glaucoma. [see comments]." Ophthalmology 105(11): 2099-104.
364Hausler, G., J. M. Herrmann, et al. (1996). "Observation of light propagation in volume scatterers with 10(11)-fold slow motion." Optics Letters 21(14): 1087-1089.
365Hausler, Gerd et al., "‘Coherence Radar’ and ‘Spectral Radar’ New Tools for Dermatological Diagnosis", Journal of Biomedical Optics, vol. 3, pp. 21-31, Jan. 1998.
366Hausler, Gerd et al., "‘Coherence Radar’ and ‘Spectral Radar’ New Tools for Dermatological Diagnosis," Journal of Biomedical Optics, vol. 3, pp. 21-31, Jan. 1998.
367Hazebroek, H. F. and A. A. Holscher (1973). "Interferometric Ellipsometry." Journal of Physics E-Scientific Instruments 6(9): 822-826.
368Hazebroek, H. F. and W. M. Visser (1983). "Automated Laser Interferometric Ellipsometry and Precision Reflectometry." Journal of Physics E-Scientific Instruments 16(7): 654-661.
369He, Z. Y., N. Mukohzaka, et al. (1997). "Selective image extraction by synthesis of the coherence function using two-dimensional optical lock-in amplifier with microchannel spatial light modulator." Ieee Photonics Technology Letters 9(4): 514-516.
370Hee, M. R., C. A. Puliafito, et al. (1995). "Quantitative assessment of macular edema with optical coherence tomography." Archives of Ophthalmology 113(8): 1019-29.
371Hee, M. R., C. A. Puliafito, et al. (1998). "Topography of diabetic macular edema with optical coherence tomography." Ophthalmology 105(2): 360-70.
372Hee, M. R., J. A. Izatt, et al. (1993). "Femtosecond Transillumination Optical Coherence Tomography." Optics Letters 18(12): 950-952.
373Hee, M. R., J. A. Izatt, et al. (1995). "Optical coherence tomography of the human retina." Archives of Ophthalmology 113(3): 325-32.
374Hee, Michael R. et al., "Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging", Journal of the Optical Society of America B (Optical Physics), vol. 9, p. 903-908, Jun. 1992.
375Hee, Michael R. et al., "Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging," J. Opt. Soc. Am. B., , vol. 9, No. 6, Jun. 1992, pp. 903-908.
376Hee, Michael R. et al., "Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging," J. Opt. Soc. Am. B., vol. 9, No. 6, Jun. 1992, pp. 903-908.
377Hee, Michael R. et al., "Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging," Journal of the Optical Society of America B (Optical Physics), vol. 9, p. 903-908, Jun. 1992.
378Hellmuth, T. and M. Welle (1998). "Simultaneous measurement of dispersion, spectrum, and distance with a fourier transform spectrometer." Journal of Biomedical Optics 3(1): 7-11.
379Hemenger, R. P. (1989). "Birefringence of a medium of tenuous parallel cylinders." Applied Optics 28(18): 4030-4034.
380Henry, M. (1981). "Fresnel-Arago Laws for Interference in Polarized-Light—Demonstration Experiment." American Journal of Physics 49(7): 690-691.
381Herz, P. R., Y. Chen, et al. (2004). "Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography." Optics Letters 29(19): 2261-2263.
382Hirakawa, H., H. Iijima, et al. (1999). "Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa." American Journal of Ophthalmology 128(2): 185-91.
383Hitzenberger, C. K. and A. F. Fercher (1999). "Differential phase contrast in optical coherence tomography." Optics Letters 24(9): 622-624.
384Hitzenberger, C. K., A. Baumgartner, et al. (1994). "Interferometric Measurement of Corneal Thickness with Micrometer Precision." American Journal of Ophthalmology 118(4): 468-476.
385Hitzenberger, C. K., A. Baumgartner, et al. (1998). "Dispersion induced multiple signal peak splitting in partial coherence interferometry." Optics Communications 154 (4): 179-185.
386Hitzenberger, C. K., A. Baumgartner, et al. (1999). "Dispersion effects in partial coherence interferometry: Implications for intraocular ranging." Journal of Biomedical Optics 4(1): 144-151.
387Hitzenberger, C. K., M. Danner, et al. (1999). "Measurement of the spatial coherence of superluminescent diodes." Journal of Modern Optics 46(12): 1763-1774.
388Hitzenberger, C. K., M. Sticker, et al. (2001). "Differential phase measurements in low-coherence interferometry without 2 pi ambiguity." Optics Letters 26(23): 1864-1866.
389Hitzenberger, Christopher K. et al., "Measurement and Imaging of Birefringence and Optic Axis Orientation by Phase Resolved Polarization Sensitive Optical Coherence Tomography," Optic Express, vol. 9, No. 13, Dec. 17, 2001, pp. 780-790.
390Hitzenberger, Christopher K. et al., "Measurement and Imaging of Birefringence and Optic Axis Orientation by Phase Resolved Polarization Sensitive Optical Coherence Tomography," Optics Express, vol. 9, No. 13, Dec. 17, 2001, pp. 780-790.
391Ho, W. Y. et al. (2005) "115 KHz Tuning Repetition Rate Ultrahigh-Speed Wavelength-Swept Semiconductor Laser" Optics Letters col. 30, No. 23, pp. 3159-3161.
392Hoeling, B. M., A. D. Fernandez, et al. (2000). "An optical coherence microscope for 3-dimensional imaging in developmental biology." Optics Express 6(7): 136-146.
393Hoeling, B. M., A. D. Fernandez, et al. (2000). "An optical coherence microscopy for 3-dimensional imaging in developmental biology." Optics Express 6(7): 136-146.
394Hoerauf, H., C. Scholz, et al. (2002). "Transscleral optical coherence tomography: a new imaging method for the anterior segment of the eye." Archives of Ophthalmology 120(6): 816-9.
395Hoffmann, K., M. Happe, et al. (1998). "Optical coherence tomography (OCT) in dermatology." Journal of Investigative Dermatology 110(4): 583-583.
396Hoh, S. T., D. S. Greenfield, et al. (2000). "Optical coherence tomography and scanning laser polarimetry in normal, ocular hypertensive, and glaucomatous eyes." American Journal of Ophthalmology 129(2): 129-35.
397Hohenleutner, U., M. Hilbert, et al. (1995). "Epidermal Damage and Limited Coagulation Depth with the Flashlamp-Pumped Pulsed Dye-Laser—a Histochemical-Study." Journal of Investigative Dermatology 104(5): 798-802.
398Holland, A. J. A., H. C. O. Martin, et al. (2002). "Laser Doppler imaging prediction of burn wound outcome in children." Burns 28(1): 11-17.
399Hotate Kazuo et al., "Optical Coherence Domain Reflectometry by Synthesis of Coherence Function", Journal of Lightwave Technology, vol. 11, pp. 1701-1710, Oct. 1993.
400Hotate Kazuo et al., "Optical Coherence Domain Reflectometry by Synthesis of Coherence Function," Journal of Lightwave Technology, vol. 11, pp. 1701-1710, Oct. 1993.
401Hotate, K. and T. Okugawa (1994). "Optical Information-Processing by Synthesis of the Coherence Function." Journal of Lightwave Technology 12(7): 1247-1255.
402Hourdakis, C. J. and A. Perris (1995). "A Monte-Carlo Estimation of Tissue Optical-Properties for Use in Laser Dosimetry." Physics in Medicine and Biology 40(3): 351-364.
403Hrabovsky, M., "Theory of speckle dispacement and decorrelation: application in mechanics", SPIE, 1998, 3479:345-354.
404Hrabovsky, M., "Theory of speckle dispacement and decorrelation: application in mechnics", SPIE, 1998, 3479:345-354.
405Hu, Z., F. Li, et al. (2000). "Wavelength-tunable narrow-linewidth semiconductor fiber-ring laser." IEEE Photonics Technology Letters 12(8): 977-979.
406Huang, F., W. Yang, et al. (2001). "Quadrature spectral interferometric detection and pulse shaping." Optics Letters 26(6): 382-384.
407Huang, X. R. and R. W. Knighton (2002). "Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter." Journal of Biomedical Optics 7(2): 199-204.
408Huang, Xiang-Run et al., "Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects," Investigative Ophthalmology & Visual Science, vol. 45, No. 9, Sep. 2004, pp. 3073-3080.
409Huang, Xiang-Run et al.,"Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects," Investigative Ophthalmology & Visual Science, vol. 45, No. 9, Sep. 2004, pp. 3073-3080.
410Huber, R., M. Wojtkowski, et al. (2005). "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles." Optics Express 13(9): 3513-3528.
411Hunter, D. G., J. C. Sandruck, et al. (1999). "Mathematical modeling of retinal birefringence scanning." Journal of the Optical Society of America a-Optics Image Science and Vision 16(9): 2103-2111.
412Hurwitz, H. H. and R. C. Jones (1941). "A new calculus for the treatment of optical systems II. Proof of three general equivalence theorems." Journal of the Optical Society of America 31(7): 493-499.
413Huttner, B., B. Gisin, et al. (1999). "Distributed PMD measurement with a polarization-OTDR in optical fibers." Journal of Lightwave Technology 17(10): 1843-1848.
414Huttner, B., B. Gisin, et al. (1999). "Distributed PMD measurement with a polarization-OTDR in optics fibers." Journal of Lightwave Technology 17(10): 1843-1848.
415Huttner, B., C. De Barros, et al. (1999). "Polarization-induced pulse spreading in birefringent optical fibers with zero differential group delay." Optics Letters 24(6): 370-372.
416Huttner, B., J. Reecht, et al. (1998). "Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry." Ieee Photonics Technology Letters 10(10): 1458-1460.
417Hyde, S. C. W., N. P. Barry, et al. (1995). "Depth-Resolved Holographic Imaging through Scattering Media by Photorefraction." Optics Letters 20(11): 1331-1333.
418Hyde, S. C. W., N. P. Barry, et al. (1995). "Sub-100-Mu-M Depth-Resolved Holographic Imaging through Scattering Media in the near-Infrared." Optics Letters 20(22): 2330-2332.
419Iftimia, N. V., B. E. Bouma, et al. (2004). "Adaptive ranging for optical coherence tomography." Optics Express 12(17): 4025-4034.
420Iida, T., N. Hagimura, et al. (2000). "Evaluation of central serous chorioretinopathy with optical coherence tomography." American Journal of Ophthalmology 129(1): 16-20.
421Imai, M., H. Iijima, et al. (2001). "Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy. [republished in Am J Ophthalmol. Sep. 2001:132(3):458-61 ; 11530091.]." American Journal of Ophthalmology 132(1): 81-4.
422Imai, M., H. Iijima, et al. (2001). "Optical coherence tomography of tractional macular elevations in eyes with proliferative diabetic retinopathy. [republished in Am J Ophthalmol. Sep. 2001;132(3):458-61 ; 11530091.]." American Journal of Ophthalmology 132(1): 81-4.
423Indebetouw, G. and P. Klysubun (2000). "Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography." Optics Letters 25(4): 212-214.
424Inoue, Kyo et al., "Nearly Degenerate 4-Wave-Mixing in a Traveling-Wave Semiconductor-Laser Amplifier", Applied Physics Letters, vol. 51, pp. 1051-1053, 1987.
425Inoue, Kyo et al., "Nearly Degenerate 4-Wave-Mixing in a Traveling-Wave Semiconductor-Laser Amplifier," Applied Physics Letters, vol. 51, pp. 1051-1053, 1987.
426Inoue, Yusuke et al: "Varible Phase-Contrast Fluorescence Spectrometry for Fluorescently Strained Cells", Applied Physics Letters, Sep. 18, 2006.
427International Preliminary Report on Patentability dated Jun. 7, 2007 for PCT/US2005/042408.
428International Preliminary Report on Patentability mailed Apr. 12, 2007 for PCT/US2005/035711.
429International Search Report and Written Opinion dated Aug. 11, 2008 for International Application No. PCT/US2008/058703.
430International Search Report and Written Opinion dated Dec. 20, 2004 for PCT/US04/10152.
431International Search Report and Written Opinion dated Feb. 2, 2009 for International Application No. PCT/US2008/071786.
432International Search Report and Written Opinion dated Feb. 24, 2009 for PCT/US2008/076447.
433International Search Report and Written Opinion dated Feb. 28, 2007 for International Application No. PCT/US2006/038277.
434International Search Report and Written Opinion dated Jan. 15, 2009 for International Application No. PCT/US2008/074863.
435International Search Report and Written Opinion dated Jan. 30, 2009 for International Application No. PCT/US2008/081834.
436International Search Report and Written Opinion dated Jul. 17, 2008 for International Application No. PCT/US2008/057450.
437International Search Report and Written Opinion dated Jun. 10, 2009 for PCT/US08/075456.
438International Search Report and Written Opinion dated Mar. 23, 2006 for PCT/US2005/042408.
439International Search Report and Written Opinion dated May 26, 2008 for International Application No. PCT/US2008/051404.
440International Search Report and Written Opinion for PCT/US2007/081982 dated Oct. 19, 2007.
441International Search Report and Written Opinion mailed Jul. 18, 2008 for PCT/US2008/057533.
442International Search Report and Written Opinion mailed Jul. 4, 2008 for PCT/US2008/051432.
443International Search Report and Written Opinion mailed Jun. 10, 2008 for PCT/US2008/051335.
444International Search Report and Written Opinion mailed Mar. 14, 2005 for PCT/US2004/018045.
445International Search Report and Written Opinion mailed Mar. 7, 2006 for PCT/US2005/035711.
446International Search Report for International Patent application No. PCT/US2001/049704.
447International Search Report for International Patent application No. PCT/US2004/039454.
448International Search Report for International Patent application No. PCT/US2005/023664.
449International Search Report for International Patent application No. PCT/US2005/030294.
450International Search Report for International Patent application No. PCT/US2005/039740.
451International Search Report for International Patent application No. PCT/US2005/043951.
452International Written Opinion for International Patent application No. PCT/US2004/039454.
453International Written Opinion for International Patent application No. PCT/US2005/023664.
454International Written Opinion for International Patent application No. PCT/US2005/039740.
455International Written Opinion for International Patent application No. PCT/US2005/043951.
456International Written Opinion for International Patent application No. PCT/US2006/016677 filed Apr. 28, 2006.
457International Written Opinion for International Patent application No. PCT/US2006/018865 filed May 5, 2006.
458Invitation of Pay Additional Fees mailed Aug. 7, 2008 for International Application No. PCT/US2008/062354.
459Invitation of Pay Additional Fees mailed Jul. 20, 2008 for International Application No. PCT/US2007/081982.
460Ip, M. S., B. J. Baker, et al. (2002). "Anatomical outcomes of surgery for idiopathic macular hole as determined by optical coherence tomography." Archives of Ophthalmology 120(1): 29-35.
461Ishikawa, Hiroshi et al. "Macular Segmentation with optical coherence tomography", Investigative Ophthalmology & Visual Science, vol. 46, No. 6, Jun. 2005, pp. 2012-2017.
462Ismail, R., V. Tanner, et al. (2002). "Optical coherence tomography imaging of severe commotio retinae and associated macular hole." British Journal of Ophthalmology 86(4): 473-4.
463Ivanov, A. P. et al., "Interferometric Study of the Spatial Structure of a Light-Scattering Medium", Journal of Applied Spectroscopy, vol. 28, pp. 518-525, 1978.
464Ivanov, A. P. et al., "Interferometric Study of the Spatial Structure of a Light-Scattering Medium," Journal of Applied Spectroscopy, vol. 28, pp. 518-525, 1978.
465Ivanov, A. P. et al., "New Method for High-Range Resolution Measurements of Light Scattering in Optically Dense Inhomogeneous Media", Optics Letters, vol. 1, pp. 226-228, Dec. 1977.
466Ivanov, A. P. et al., "New Method for High-Range Resolution Measurements of Light Scattering in Optically Dense Inhomogeneous Media," Optics Letters, vol. 1, pp. 226-228, Dec. 1977.
467Izatt, J. A., M. D. Kulkami, et al. (1997). "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography." Optics Letters 22(18): 1439-1441.
468Izatt, J. A., M. D. Kulkarni, et al. (1996). "Optical coherence tomography and microscopy in gastrointestinal tissues." IEEE Journal of Selected Topics in Quantum Electronics 2(4): 1017.
469Izatt, J. A., M. R. Hee, et al. (1994). "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography." Archives of Ophthalmology 112 (12): 1584-9.
470Izatt, J. A., M. R. Hee, et al. (1994). "Optical Coherence Microscopy in Scattering Media." Optics Letters 19(8): 590-592.
471J. M. Schmitt et al., (1999) "Speckle in Optical Coherence Tomography: An Overview", SPIE vol. 3726, pp. 450-461.
472Jacques, S. L., J. R. Roman, et al. (2000). "Imaging superficial tissues with polarized light." Lasers in Surgery and Medicine 26(2): 119-129.
473Jacques, S. L., J. S. Nelson, et al. (1993). "Pulsed Photothermal Radiometery of Port-Wine-Stain Lesions." Applied Optics 32(13): 2439-2446.
474Jacques, S. L., J. S. Nelson, et al. (1993). "Pulsed Photothermal Radiometry of Port-Wine-Stain Lesions." Applied Optics 32(13): 2439-2446.
475Jacques, Steven L. (1993) "Role of Tissue Optics and Pulse Duration on Tissue Effects During High-Power Laser Irradiation" Applied Optics vol. 32, No. 13, pp. 2447-2454.
476Jang, I. K., B. D. MacNeill, et al. (2002). "In-vivo characterization of coronary plaques in patients with ST elevation acute myocardial infarction using optical coherence tomography (OCT)." Circulation 106(19): 698-698 3440 Suppl. S,.
477Jang, I. K., B. E. Bouma, et al. (2002). "Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound." Journal of the American College of Cardiology 39(4): 604-609.
478Jang, I. K., G. J. Tearney, et al. (2000). "Comparison of optical coherence tomography and intravascular ultrasound for detection of coronary plaques with large lipid-core in living patients." Circulation 102(18): 509-509.
479Jang, I. K., G. J. Tearney, et al. (2000). "Comparison of optical coherence tomography and intravascular ultrasound for detection of coronary plaques with large lipid-core in living patients."Circulation 102(18): 509-509.
480Japanese Notice of Reasons for Rejection dated Jul. 14, 2009 for Japanese Patent application No. 2006-503161.
481Jeng, J. C., A. Bridgeman, et al. (2003). "Laser Doppler imaging determines need for excision and grafting in advance of clinical judgment: a prospective blinded trial." Burns 29(7): 665-670.
482Jeng, J. C., A. Bridgeman, et al. (2003). "Laser Doppler imaging determines need for excision and grafting in advance of clinical judgment: a prospective blined trial." Burns 29(7): 665-670.
483Jerath, Maya R. et al (1992) "Dynamic Optical Property Changes: Implications for Reflectance Feedback Control of Photocoagulation" Journal of Photochemical,.Photobiology. B: Biol vol. 16, pp. 113-126.
484Jerath, Maya R. et al (1992) "Dynamic Optical Property Changes: Implications for Reflectance Feedback Control of Photocoagulation" Journal of Photochemical..Photobiology. B; Biol vol. 16, pp. 113-126.
485Jerath, Maya R. et al. (1993) "Calibrated Real-Time Control of Lesion Size Based on Reflectance Images" Applied Optics vol. 32, No. 7, pp. 1200-1209.
486Jerath, Maya R. et al. (1993) "Calibrated Real-Time Control of Lesion Size Based on Reflectance Images"Applied Optics vol. 32, No. 7, pp. 1200-1209.
487Jesser, C. A., S. A. Boppart, et al. (1999). "High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology." British Journal of Radiology 72: 1170-1176.
488Jiao, Shuliang et al., "Contrast Mechanisms in Polarization-Sensitive Mueller-Matrix Optical Coherence Tomography and Application in Burn Imaging," Applied Optics, vol. 42, No. 25, Sep. 1, 2003, pp. 5191-5197.
489Jiao, Shuliang et al., "Depth-Resolved Two-Dimensional Stokes Vectors of Backscattered Light and Mueller Matrices of Biological Tissue Measured with Optical Coherence Tomography," Applied Optics, vol. 39, No. 34, Dec. 1, 2000, pp. 6318-6324.
490Jiao, Shuliang et al., "Jones-Matrix Imaging of Biological Tissues with Quadruple-Channel Optical Coherence Tomography," Journal of Biomedical Optics, vol. 7, No. 3, Jul. 2002, pp. 350-358.
491Jiao, Shuliang et al., "Optical-Fiber-Based Mueller Optical Coherence Tomography," Optics Letters, vol. 28, No. 14, Jul. 15, 2003, pp. 1206-1208.
492Jiao, Shuliang et al., "Two-Dimensional Depth-Resolved Mueller Matrix of Biological Tissue Measured with Double-Beam Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 27, No. 2, Jan. 15, 2002, pp. 101-103.
493John M. Poneros, "Diagnosis of Barrett's esophagus using optical coherence tomography", Gastrointestinal Endoscopy clinics of North America, 14 (2004) pp. 573-588.
494Johnson, C. A., J. L. Keltner, et al. (2002). "Baseline visual field characteristics in the ocular hypertension treatment study." Ophthalmology 109(3): 432-7.
495Johnston, Mark H.(2005) "Technology Insight: Ablative Techniques for Barrett's Esophagus—Current and Emerging Trends" www.Nature.com/clinicalpractice/gasthep.
496Jonathan, Enock (2005) "Dual Reference Arm Low-Coherence Interferometer-Based Reflectometer For Optical Coherence Tomography (OCT) Application" Optics Communications vol. 252.
497Jones, R. C. (1941). "A new calculus for the treatment of optical systems I. Description and discussion of the calculus." Journal of the Optical Society of America 31(7): 488-493.
498Jones, R. C. (1941). "A new calculus for the treatment of optical systems III. The Sohncke theory of optical activity." Journal of the Optical Society of America 31 (7): 500-503.
499Jones, R. C. (1942). "A new calculus for the treatment of optical systems. IV." Journal of the Optical Society of America 32(8): 486-493.
500Jones, R. C. (1947). "A New Calculus for the Treament of Optical Systems .6. Experimental Determination of the Matrix." Journal of the Optical Society of America 37(2): 110-112.
501Jones, R. C. (1947). "A New Calculus for the Treatment of Optical Systems .5. A More General Formulation, and Description of Another Calculus." Journal of the Optical Society of America 37(2): 107-110.
502Jones, R. C. (1947). "A New Calculus for the Treatment of Optical Systems .6. Experimental Determination of the Matrix." Journal of the Optical Society of America 37(2): 110-112.
503Jones, R. C. (1948). "A New Calculus for the Treatment of Optical Systems .7. Properties of the N-Matrices." Journal of the Optical Society of America 38(8): 671-685.
504Jones, R. C. (1956). "New Calculus for the Treatment of Optical Systems .8. Electromagnetic Theory." Journal of the Optical Society of America 46(2): 126-131.
505Joo, Chulmin et al., Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging, Optics Letters, Aug. 15, 2005, vol. 30, No. 16, pp. 2131-2133.
506Jopson, R. M., L. E. Nelson, et al. (1999). "Measurement of second-order polarization-mode dispersion vectors in optical fibers." Ieee Photonics Technology Letters 11 (9): 1153-1155.
507Jopson, R. MThe ., L. E. Nelson, et al. (1999). "Measurement of second-order polarization-mode dispersion vectors in optical fibers." Ieee Photonics Technology Letters 11 (9): 1153-1155.
508Jost, B. M., A. V. Sergienko, et al. (1998). "Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera." Optics Express 3(2): 81-88.
509Jun Zhang et al. "Full Range Polarization-Sensitive Fourier Domain Optical Coherence Tomography" Optics Express, vol. 12, No. 24. Nov. 29, 2004.
510K.J. Koski et al., "Billouin imaging" Applied Physics Letters 87, 2005.
511K.J. Koski et al., "Brillouin imaging" Applied Physics Letters 87, 2005.
512Kaplan, B., E. Compain, et al. (2000). "Phase-modulated Mueller ellipsometry characterization of scattering by latex sphere suspensions." Applied Optics 39 (4): 629-636.
513Kaplan, B., E. Compain, et al. (2000). "Phase-modulated Mueller ellipsometry characterization of scattering by latex sphere suspensions." Applied Optics 39 (4); 629-636.
514Kass, M. A., D. K. Heuer, et al. (2002). "The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma." Archives of Ophthalmology 120(6): 701-13; discussion 829-30.
515Kasuga, Y., J. Arai, et al. (2000). "Optical coherence tomograghy to confirm early closure of macular holes." American Journal of Ophthalmology 130(5): 675-6.
516Kasuga, Y., J. Arai, et al. (2000). "Optical coherence tomography to confirm early closure of macular holes." American Journal of Ophthalmology 130(5): 675-6.
517Katrin Kneipp et al., "Single molecule detection using surface-enhanced Raman scattering (SERS)", Physical Review Letters 1997 78 (9): 1667-1670.
518Katrin Kneipp et al., "Single molecule detection using surface-enhanced Raman scattering (SERS)", Physical Review Letters 1997, 78 (9): 1667-1670.
519Kaufman, T., S. N. Lusthaus, et al. (1990). "Deep Partial Skin Thickness Burns—a Reproducible Animal-Model to Study Burn Wound-Healing." Burns 16(1): 13-16.
520Kazovsky, L. G. et al., "Heterodyne Detection Through Rain, Snow, and Turbid Media: Effective Receiver Size at Optical Through Millimeter Wavelenghths", Applied Optics, vol. 22, pp. 706-710, Mar. 1983.
521Kazovsky, L. G. et al., "Heterodyne Detection Through Rain, Snow, and Turbid Media: Effective Receiver Size at Optical Through Millimeter Wavelenghths," Applied Optics, vol. 22, pp. 706-710, Mar. 1983.
522Kemp, N. J., J. Park, et al. (2005). "High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography." Journal of the Optical Society of America a-Optics Image Science and Vision 22(3): 552-560.
523Kerrigan-Baumrind, L. A., H. A. Quigley, et al. (2000). "Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons." Investigative Ophthalmology & Visual Science 41(3): 741-8.
524Kerrigan-Baumrind, L. A., H. A. Quigley,et al. (2000). "Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons." Investigative Ophthalmology & Visual Science 41(3): 741-8.
525Kersey, A. D. et al., "Adaptive Polarization Diversity Receiver Configuration for Coherent Optical Fiber Communications", Electronics Letters, vol. 25, pp. 275-277, Feb. 1989.
526Kersey, A. D. et al., "Adaptive Polarization Diversity Receiver Configuration for Coherent Optical Fiber Communications," Electronics Letters, vol. 25, pp. 275-277, Feb. 1989.
527Kesen, M. R., G. L. Spaeth, et al. (2002). "The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma." American Journal of Ophthalmology 133(5): 613-6.
528Khan, Misban Huzaira et al. (2005) "Intradermally Focused Infrared Laser Pulses: Thermal Effects at Defined Tissue Depths" Lasers in Surgery and Medicine vol. 36, pp. 270-280.
529Kienle, A. and R. Hibst (1995). "A New Optimal Wavelength for Treatment of Port-Wine Stains." Physics in Medicine and Biology 40(10): 1559-1576.
530Kienle, A., L. Lilge, et al. (1996). "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue." Applied Optics 35(13): 2304-2314.
531Kim, B. Y. and S. S. Choi (1981). "Analysis and Measurement of Birefringence in Single-Mode Fibers Using the Backscattering Method." Optics Letters 6(11): 578-580.
532Kim, B.M. et al. (1998) "Optical Feedback Signal for Ultrashort Laser Pulse Ablation of Tissue" Applied Surface Science vol. 127-129, pp. 857-862.
533Kimel, S., L. O. Svaasand, et al. (1994). "Differential Vascular-Response to Laser Photothermolysis." Journal of Investigative Dermatology 103(5): 693-700.
534Kirkpatrick J. Sean et al. "Optical Assessment of Tissue Mechanical Properties", Proceedings of the SPIE—The International Society for Optical Engineering SPIE—vol. 4001, 2000, pp. 92-101.
535Kloppenberg, F. W. H., G. Beerthuizen, et al. (2001). "Perfusion of burn wounds assessed by Laser Doppler Imaging is related to burn depth and healing time." Burns 27(4): 359-363.
536Knighton, R. W. and X. R. Huang (2002). "Analytical methods for scanning laser polarimetry." Optics Express 10(21): 1179-1189.
537Knighton, R. W., X. R. Huang, et al. (2002). "Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment." Investigative Ophthalmology & Visual Science 43(2): 383-392.
538Knuettel, A. R. S., Joseph M.: Shay, M.; Knutson, Jay R. (1994). "Stationary low-coherence light imaging and spectroscopy using a CCD camera." Proc. SPIE, vol. 2135: p. 239-250.
539Knuttel, A. and J. M. Schmitt (1993). "Stationary Depth-Profiling Reflectometer Based on Low-Coherence Interferometery ." Optics Communications 102(3-4): 193-198.
540Knuttel, A. and J. M. Schmitt (1993). "Stationary Depth-Profiling Reflectometer Based on Low-Coherence Interferometry." Optics Communications 102(3-4): 193-198.
541Knuttel, A. and M. Boehlau-Godau (2000). "Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography." Journal of Biomedical Optics 5(1): 83-92.
542Knuttel, A., J. M. Schmitt, et al. (1994). "Low-Coherence Reflectometry for Stationary Lateral and Depth Profiling with Acoustooptic Deflectors and a CCD Camera." Optics Letters 19(4): 302-304.
543Ko T et al., "Ultrahigh resolution in vivo versus ex vivo OCT imaging and tissue preservation", Conference on Lasers and electro-optics, 2001, pp. 252-253.
544Kobayashi, M., H. Hanafusa, et al. (1991). "Polarization-Independent Interferometric Optical-Time-Domain Reflectometer." Journal of Lightwave Technology 9(5): 623-628.
545Kohlhaas, Andreas et al., "High-Resolution OCDR for Testing Integrated-Optical Waveguides: Dispersion-Corrupted Experimental Data Corrected by a Numerical Algorithm", Journal of Lightwave Technology, vol. 9, pp. 1493-1502, Nov. 1991.
546Kohlhaas, Andreas et al., "High-Resolution OCDR for Testing Integrated-Optical Waveguides: Dispersion-Corrupted Experimental Data Corrected by a Numerical Algorithm," Journal of Lightwave Technology, vol. 9, pp. 1493-1502, Nov. 1991.
547Kolios, M. C., M. D. Sherar, et al. (1995). "Large Blood-Vessel Cooling in Heated Tissues—a Numerical Study." Physics in Medicine and Biology 40(4): 477-494.
548Koozekanani, D., K. Boyer, et al. (2001). "Retinal thickness measurements from optical coherence tomography using a Markov boundary model." Ieee Transactions on Medical Imaging 20(9): 900-916.
549Kop, R. H. J. and R. Sprik (1995). "Phase-sensitive interferometry with ultrashort optical pulses." Review of Scientific Instruments 66(12): 5459-5463.
550Kramer, R. Z., J. Bella, et al. (1999). "Sequence dependent conformational variations of collagen triple-helical structure." Nature Structural Biology 6(5): 454-7.
551Kubba A.K. et al. (1999) "Role of p53 Assessment in Management of Barrett's Esophagus" Digestive Disease and Sciences vol. 44, No. 4, pp. 659-667.
552Kubba A.K. et al. (1999) "Role of p53 Assessment in Management of Barrett's Esophagus" Digestive Disease and Sciences vol. 44, No. 4. pp. 659-667.
553Kuipers E.J et al. (2005) "Diagnostic and Therapeutic Endoscopy" Journal of Surgical Oncology vol. 92, pp. 203-209.
554Kulkarni, et al., "Image Enhancement in Optical Coherence Tomography Using Deconvolution", Electronics Letters, vol. 33, pp. 1365-1367, Jul. 1997.
555Kulkarni, et al., "Image Enhancement in Optical Coherence Tomography Using Deconvolution," Electronics Letters, vol. 33, pp. 1365-1367, Jul. 1997.
556Kulkarni, M. D., T. G. van Leeuwen, et al. (1998). "Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography." Optics Letters 23(13): 1057-1059.
557Kuranov, R.V. et al., "Complementary Use of Cross-Polarization and Standard OCT for Differential Diagnosis of Patholgical Tissues," Optics Express, vol. 10, No. 15, Jul. 29, 2002, pp. 707-713.
558Kuranov, R.V. et al., "Complementary Use of Cross-Polarization and Standard OCT for Differential Diagnosis of Pathological Tissues," Optics Express, vol. 10, No. 15, Jul. 29, 2002, pp. 707-713.
559Kwon, Y. H., C. S. Kim, et al. (2001). "Rate of visual field loss and long-term visual outcome in primary open-angle glaucoma." American Journal of Ophthalmology 132(1): 47-56.
560Kwong, K. F., D. Yankelevich, et al. (1993). "400-Hz Mechanical Scanning Optical Delay-Line." Optics Letters 18(7): 558-560.
561Landers, J., I. Goldberg, et al. (2002). "Analysis of risk factors that may be associated with progression from ocular hypertension to primary open angle glaucoma." Clin Experiment Ophthalmogy 30(4): 242-7.
562Larkin, Kieran G., "Efficient Nonlinear Algorithm for Envelope Detection in White Light Interferometry", Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 13, pp. 832-843, Apr. 1996.
563Larkin, Kieran G., "Efficient Nonlinear Algorithm for Envelope Detection in White Light Interferometry," Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 13, pp. 832-843, Apr. 1996.
564Laszlo, A. and A. Venetianer (1998). "Heat resistance in mammalian cells: lessons and challenges. [Review] [52 refs]." Annals of the New York Academy of Sciences 851: 169-78.
565Laszlo, A. and A. Venetianer (1998). Heat esistance in mammalian cells: Lessons and challenges. Stress of Life. 851: 169-178.
566Laszlo, A. and A. Venetianer (1998). Heat resistance in mammalian cells: Lessons and challenges. Stress of Life. 851: 169-178.
567Lauer, V. "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope", Journal of Microscopy vol. 205, Issue 2, 2002, pp. 165-176.
568Lauer, V. "New approach to optical diffraction tomography yielding a vector equation of diffration tomography and a novel tomographic microscope", Journal of Microscopy vol. 205, Issue 2, 2002, pp. 165-176.
569Laufer, J., R. Simpson, et al. (1998). "Effect of temperature on the optical properties of ex vivo human dermis and subdermis." Physics in Medicine and Biology 43(9): 2479-2489.
570Lederer, D. E., J. S. Schuman, et al. (2003). "Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography." American Journal of Ophthalmology 135(6): 838-843.
571Lee, P. P., Z. W. Feldman, et al. (2003). "Longitudinal prevalence of major eye diseases." Archives of Ophthalmology 121(9): 1303-1310.
572Lees, S. et al., "Studies of Compact Hard Tissues and Collagen by Means of Brillouin Light Scattering", Connective Tissue Research, 1990, vol. 24, pp. 187-205.
573Lehrer, M. S., T. T. Sun, et al. (1998). "Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation." Journal of Cell Science 111(Pt 19): 2867-75.
574Leibowitz, H. M., D. E. Krueger, et al. (1980). "The Framingham Eye Study monograph: An ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973-1975." Survey of Ophthalmology 24(Suppl): 335-610.
575Leibowitz, H. M., D. E. Krueger, et al. (1980). "The Framingham Eye Study monograph: An opthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973-1975." Survey of Ophthalmology 24(Suppl): 335-610.
576Leitgeb, R. A., C. K. Hitzenberger, et al. (2003). "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography." Optics Letters 28(22): 2201-2203.
577Leitgeb, R. A., C. K. Hitzenberger, et al. (2003). "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography." Optics Letters28(22): 2201-2203.
578Leitgeb, R. A., L. Schmetterer, et al. (2003). "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography." Optics Express 11(23): 3116-3121.
579Leitgeb, R. A., L. Schmetterer, et al. (2004). "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography." Optics Letters 29 (2): 171-173.
580Leitgeb, R. A., W. Drexler, et al. (2004). "Ultrahigh resolution Fourier domain optical coherence tomography." Optics Express 12(10): 2156-2165.
581Leitgeb, R. et al., "Spectral measurement of Absorption by Spectroscopic Frequency-Domain Optical Coherence Tomography", Optics Letters, vol. 25, pp. 820-822, Jun. 2000.
582Leitgeb, R. et al., "Spectral measurement of Absorption by Spectroscopic Frequency-Domain Optical Coherence Tomography," Optics Letters, vol. 25, pp. 820-822, Jun. 2000.
583Leitgeb, R., C. K. Hitzenberger, et al. (2003). "Performance of fourier domain vs. time domain optical coherence tomography." Optics Express 11 (8): 889-894.
584Leitgeb, R., C. K. Hitzenberger, et al. (2003). "Performance of fourier domain vs. time domain optical coherence tomography." Optics Express 11(8): 889-894.
585Leitgeb, R., L. F. Schmetterer, et al. (2002). "Flow velocity measurements by frequency domain short coherence interferometry." Proc. SPIE 4619: 16-21.
586Leitgeb. R. A., L. Schmetterer, et al. (2003). "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography." Optics Express 11(23): 3116-3121.
587LeRoyBrehonnet, F. and B. LeJeune (1997). "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties." Progress in Quantum Electronics 21(2): 109-151.
588Leske, M. C., A. Heijl, et al. (1999). "Early Manifest Glaucoma Trial. Design and Baseline Data." Ophthalmology 106(11): 2144-2153.
589Leske, M. C., A. M. Connell, et al. (1995). "Risk factors for open-angle glaucoma. The Barbados Eye Study. [see comments]." Archives of Ophthalmology 113(7): 918-24.
590Leske, M. C., A. M. Connell, et al. (2001). "Incidence of open-angle glaucoma: the Barbados Eye Studies. The Barbados Eye Studies Group. [see comments]." Archives of Ophthalmology 119(1): 89-95.
591Lewis, Neil E. et al., (2006) "Applications of Fourier Transform Infrared Imaging Microscopy in Neurotoxicity", Annals New York Academy of Sciences, Dec. 17, 2006, vol. 820, pp. 234-246.
592Lewis, S. E., J. R. DeBoer, et al. (2005). "Sensitive, selective, and analytical improvements to a porous silicon gas sensor." Sensor and Actuators B: Chemical 110(1): 54-65.
593Lewis, S. E., J. R. DeBoer, et al. (2005). "Sensitive, selective, and analytical improvements to a porous silicon gas sensor." Sensors and Actuators B: Chemical 110(1): 54-65.
594Lexer, F. et al., "Wavelength-Tuning Interferometry of Intraocular Distances", Applied Optics, vol. 36, pp. 6548-6553, Sep. 1997.
595Lexer, F. et al., "Wavelength-Tuning Interferometry of Intraocular Distances," Applied Optics, vol. 36, pp. 6548-6553, Sep. 1997.
596Lexer, F., C. K. Hitzenberger, et al. (1999). "Dynamic coherent focus OCT with depth- independent transversal resolution." Journal of Modern Optics 46(3): 541-553.
597Li, X., C. Chudoba, et al. (2000). "Imaging needle for optical coherence tomography." Optics Letters 25: 1520-1522.
598Li, X., T. H. Ko, et al. (2001). "Intraluminal fiber-optic Doppler imaging catheter for structural and functional optical coherence tomography." Optics Letters 26: 1906-1908.
599Liddington, M. I. and P. G. Shakespeare (1996). "Timing of the thermographic assessment of burns." Burns 22(1): 26-8.
600Lin, Stollen et al., (1977) "A CW Tunable Near-infrared (1.085-1.175-mum) Raman Oscillator," Optics Letters, vol. 1, 96.
601Lin, Stollen et al., (1977) "A CW Tunable Near-infrared (1.085-1.175-μm) Raman Oscillator," Optics Letters, vol. 1, 96.
602Lindmo, T., D. J. Smithies, et al. (1998). "Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation." Physics in Medecine and Biology 43(10): 3045-3064.
603Lindmo, T., D. J. Smithies, et al. (1998). "Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation." Physics in Medicine and Biology 43(10): 3045-3064.
604Liptak David C. et al., (2007) "On the Development of a Confocal Rayleigh-Brillouin Microscope" American Institute of Physics vol. 78, 016106.
605Lisauskas B. Jennifer et al., "Investigation of Plaque Biomechanics from Intravascular Ultrasound Images using Finite Element Modeling", Proceedings of the 19th International Conference—IEEE Oct. 30-Nov. 2, 1997, pp. 887-888.
606Liu, J., X. Chen, et al. (1999). "New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating." IEEE Transactions on Biomedical Engineering 46(4): 420-8.
607Liu, J., X. Chen, et al. (1999). "New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating." IEEE Transactons on Biomedical Engineering 46(4): 420-8.
608Loree et al., "Mechanical Properties of Model Atherosclerotic Lesion Lipid Pools", Arteriosclerosis and Thrombosis, 1994, 14(2):230-234.
609Lu, Shih-Yau et al., "Homogeneous and Inhomogeneous Jones Matrices," J. Opt. Soc. Am. A., vol. 11, No. 2, Feb. 1994, pp. 766-773.
610Lu, Shih-Yau et al., "Homogenous and Inhomogeneous Jones Matrices," J. Opt. Soc. Am. A., vol. 11, No. 2, Feb. 1994, pp. 766-773.
611Luke, D. G., R. McBride, et al. (1995). "Polarization mode dispersion minimization in fiber-wound piezoelectric cylinders." Optics Letters 20(24): 2550-2552.
612M. Gualini Muddassir et al., "Recent Advancements of Optical Interferometry Applied to Medicine", IEEE Transactions on Medical Imaging, vol. 23, No. 2, Feb. 2004, pp. 205-212.
613M. Wussling et al., "Laser diffraction and speckling studies in skeletal and heart muscle", Biomed, Biochim, Acta, 1986, 45(1/2):S 23-S 27.
614M. Wussling et al., "Laser diffraction and speckling studies in skeletal and heart muscle", Biomed, Biochim. Acta, 1986, 45(1/2):S23-S 27.
615MacNeill, B. D., I. K. Jang, et al. (2004). "Focal and multi-focal plaque distributions in patients with macrophage acute and stable presentations of coronary artery disease." Journal of the American College of Cardiology 44(5): 972-979.
616Mahgerefteh, D. and C. R. Menyuk (1999). "Effect of first-order PMD compensation on the statistics of pulse broadening in a fiber with randomly varying birefringence." Ieee Photonics Technology Letters 11(3): 340-342.
617Maitland, D. J. and J. T. Walsh, Jr. (1997). "Quantitative measurements of linear birefringence during heating of native collagen." Lasers in Surgery & Medicine 20 (3): 310-8.
618Majaron, B., S. M. Srinivas, et al. (2000). "Deep coagulation of dermal collagen with repetitive Er : YAG laser irradiation." Lasers in Surgery and Medicine 26(2): 215-222.
619Mansuripur, M. (1991). "Effects of High-Numerical-Aperture Focusing on the State of Polarization in Optical and Magnetooptic Data-Storage Systems." Applied Optics 30(22): 3154-3162.
620Marc Nikles et al., "Brillouin gain spectrum characterization in single-mode optical fibers", Journal of Lightwave Technology 1997, 15 (10): 1842-1851.
621Marshall, G. W., S. J. Marshall, et al. (1997). "The dentin substrate: structure and properties related to bonding." Journal of Dentistry 25(6): 441-458.
622Martin, P. (1997). "Wound healing—Aiming for perfect skin regeneration." Science 276 (5309): 75-81.
623Martinez, O. E. (1987). "3000 Times Grating Compressor with Positive Group-Velocity Dispersion—Application to Fiber Compensation in 1.3-1.6 Mu-M Region." Ieee Journal of Quantum Electronics 23(1): 59-64.
624Martinez, O. E., J. P. Gordon, et al. (1984). "Negative Group-Velocity Dispersion Using Refraction." Journal of the Optical Society of America a-Optics Image Science and Vision 1(10): 1003-1006.
625Matcher, Stephen J. et al., "The Collagen Structure of Bovine Intervertebral Disc Studied Using Polarization-Sensitive Optical Coherence Tomography," Physics in Medicine and Biology, 2004, pp. 1295-1306.
626Maurice L. Roch et al. "Noninvasive Vascular Elastography: Theoretical Framework", IEEE Transactions on Medical Imaging, vol. 23, No. 2, Feb. 2004, pp. 164-180.
627McKenzie, A. L. (1990) "Physics of Thermal Processes in Laser-Tissue Interaction" Phys. Med. Biol vol. 35, No. 9, pp. 1175-1209.
628McKinney, J. D., M. A. Webster, et al. (2000). "Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source." Optics Letters 25(1): 4-6.
629Miglior, S., M. Casula, et al. (2001). "Clinical ability of Heidelberg retinal tomograph examination to detect glaucomatous visual field changes." Ophthalmology 108 (9): 1621-7.
630Milner, T. E., D. J. Smithies, et al. (1996). "Depth detennination of chromophores in human skin by pulsed photothermal radiometry." Applied Optics 35(19): 3379-3385.
631Milner, T. E., D. J. Smithies, et al. (1996). "Depth determination of chromophores in human skin by pulsed photothermal radiometry." Applied Optics 35(19): 3379-3385.
632Milner, T. E., D. M. Goodman, et al. (1995). "Depth Profiling of Laser-Heated Chromophores in Biological Tissues by Pulsed Photothermal Radiometry. " Journal of the Optical Society of America a-Optics Image Science and Vision 12 (7): 1479-1488.
633Milner, T. E., D. M. Goodman, et al. (1995). "Depth Profiling of Laser-Heated Chromophores in Biological Tissues by Pulsed Photothermal Radiometry." Journal of the Optical Society of America a-Optics Image Science and Vision 12 (7): 1479-1488.
634Milner, T. E., D. M. Goodman, et al. (1996). "Imaging laser heated subsurface chromophores in biological materials: Determination of lateral physical dimension." Physics in Medicine and Biology 41(1): 31-44.
635Milner, T. E., D. M. Goodman, et al. (1996). "Imaging laser heated subsurface chromophores in biological materials: Determination of lateral physical dimensions." Physics in Medicine and Biology 41(1): 31-44.
636Mishchenko, M. I and J. W. Hovenier (1995). "Depolarization of Light Backscattered by Randomly Oriented Nonspherical Particles." Optics Letters 20(12): 1356-&.
637Mishchenko, M. I. and J. W. Hovenier (1995). "Depolarization of Light Backscattered by Randomly Oriented Nonspherical Particles." Optics Letters 20(12): 1356-&.
638Mistlberger, A., J. M. Liebmann, et al. (1999). "Heidelberg retina tomography and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes." Ophthalmology 106(10): 2027-32.
639Mitsui, T. (1999). "High-speed detection of ballistic photons propagating through suspensions using spectral interferometry." Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 38(5A): 2978-2982.
640Mitsui, T. (1999). "High-speed detection of ballistic photons propagating through suspensions using spectral interferometry." Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers 38(5A): 2978-2982.
641Mitsui, Takahisa, "Dynamic Range of Optical Reflectometry with Spectral Interferometry", Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers, vol. 38, pp. 6133-6137, 1999.
642Mitsui, Takahisa, "Dynamic Range of Optical Reflectometry with Spectral Interferometry," Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers, vol. 38, pp. 6133-6137, 1999.
643Molteno, A. C., N. J. Bosma, et al. (1999). "Otago glaucoma surgery outcome study: long-term results of trabeculectomy—1976 to 1995." Ophthalmology 106(9): 1742-50.
644Moreau, Julien et al., "Full-Field Birefringence Imaging by Thermal-Light Polarization-Sensitive Optical Coherence Tomography. I. Theory," Applied Optics, vol. 42, No. 19, Jul. 1, 2003, pp. 3800-3810.
645Moreau, Julien et al., "Full-Field Birefringence Imaging by Thermal-Light Polarization-Sensitive Optical Coherence Tomography. II. Instrument and Results," Applied Optics, vol. 42, No. 19, Jul. 1, 2003, pp. 3811-3818.
646Morelli, J.G., et al (1986) "Tunable Dye Laser (577 nm) Treatment of Port Wine Stains" Lasers in Surgery and Medicine vol. 6, pp. 94-99.
647Morgan, Stephen P. et al., "Surface-Reflection Elimination in Polarization Imaging of Superficial Tissue," Optics Letters, vol. 28, No. 2, Jan. 15, 2003, pp. 114-116.
648Morgner, U., F. X. Kartner, et al. (1999). "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti sapphire laser (vol. 24, p. 411, 1999)." Optics Letters 24(13): 920-920.
649Morgner, U., F. X. Kartner, et al. (1999). "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti: sapphire laser (vol. 24, p. 411, 1999)." Optics Letters 24(13): 920-920.
650Morgner, U., W. Drexler, et al. (2000). "Spectroscopic optical coherence tomography." Optics Letters 25(2): 111-113.
651Motaghian Nezam, S.M. et al: "High-speed Wavelength-Swept Semiconductor laser using a Diffrection Grating and a Polygon Scanner in Littro Configuration" Optical Fiber Communication and the National Fiber Optic Engineers Conference Mar. 29, 2007.
652Motaghian Nezam, S.M.R. (2007) "increased Ranging Depth in optical Frequency Domain Imaging by Frequency Encoding" Optics Letters, vol. 32, No. 19, Oct. 1, 2007.
653Motz, J.T. et al: "Spectral-and Frequency-Encoded Fluorescence Imaging" Optics Letters, OSA, Optical Society of America, Washington, DC, US, vol. 30, No. 20, Oct. 15, 2005, pp. 2760-2762.
654Mourant, J. R., A. H. Hielscher, et al. (1998). "Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells." Cancer Cytopathology 84(6): 366-374.
655Muller, M., J. Squier, et al. (1998). "Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives." Journal of Microscopy-Oxford 191: 141-150.
656Muscat, S., N. McKay, et al. (2002). "Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography." Investigative Ophthalmology & Visual Science 43(6): 1791-5.
657Musch, D. C., P. R. Lichter, et al. (1999). "The Collaborative Initial Glaucoma Treatment Study. Study Design, Methods, and Baseline Characteristics of Enrolled Patients." Ophthalmology 106: 653-662.
658Musch, D. C., P. R. Lichter, et al. (1999). "The Collaborative Initial Glaucoma Treatment Study. Study Design, MethodsR, and Baseline Characteristics of Enrolled Patients." Ophthalmology 106: 653-662.
659N. V. Salunke et al., "Biomechanics of Atherosclerotic Plaque" Critical Reviews™ in Biomedical Engineering 1997, 25(3):243-285.
660N.V. Salunke et al., "Biomechanics of Atherosclerotic Plaque" Critical Review™ in Biomedical Engineering 1997, 25(3):243-285.
661Nadkarni, Seemantini K. et al (2005) "Charaterization of Atherosclerotic Plaques by Laser Speckle Imaging" Circulation vol. 112, pp. 885-892.
662Nadkarni, Seemantini K., et al., "Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images", Journal of Biomedical Optics, vol. 11 Mar./Apr. 2006, pp. 021006-1 -8.
663Naganuma, Kazunori et al., "Group-Delay Measurement Using the Fourier-Transform of an Interferometric Cross-Correlation Generated by White Light", Optics Letters, vol. 15, pp. 393-395, Apr. 1990.
664Naganuma, Kazunori et al., "Group-Delay Measurement Using the Fourier-Transform of an Interferometric Cross-Correlation Generated by White Light," Optics Letters, vol. 15, pp. 393-395, Apr. 1990.
665Nahen, Kester et al. (1999) "Investigations on Acosustic On-Line Monitoring of IR Laser Ablation of burned Skin" Lasers in Surgery and Medicine vol. 25, pp. 69-78.
666Nassif, N.A. et al., "In Vivo High-Resolution Video-Rate Spectral-Domain Optic Coherence Tomography of the Human Retina and Optic Nerve," Optics Express, vol. 12, No. 3, Feb. 9, 2004, pp. 367-376.
667Nassif, N.A. et al., "In Vivo High-Resolution Video-Rate Spectral-Domain Optical Coherence Tomography of the Human Retina and Optic Nerve," Optics Express, vol. 12, No. 3, Feb. 9, 2004, pp. 367-376.
668Nassif, Nader et al., "In Vivo Human Retinal Imaging by Ultrahigh-Speed Spectral Domain Optical Coherence Tomography," Optics Letters, vol. 29, No. 5, Mar. 1, 2004, pp. 480-482.
669Neerken, S., Lucassen, G. W., Bisschop, M.A., Lenderink, E., Nuijs, T.A.M. (2004). "Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography." Journal of Biomedical Optics 9(2): 274-281.
670Neerken, S., Lucassen, G.W., Bisschop, M.A., Lenderink, E., Nuijs, T.A.M. (2004). "Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography." Journal of Biomedical Optics 9(2): 274-281.
671Nelson, J. S., K. M. Kelly, et al. (2001). "Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography." Archives of Dermatology 137(6): 741-744.
672Neumann, R.A. et al. (1991) "Enzyme Histochemical Analysis of Cell Viability After Argon Laser-Induced Coagulation Necrosis of the Skin" Journal of the American Academy of Dermatology vol. 25, No. 6, pp. 991-998.
673Newson, T. P., F. Farahi, et al. (1988). "Combined Interferometric and Polarimetric Fiber Optic Temperature Sensor with a Short Coherence Length Source." Optics Communications 68(3): 161-165.
674Nicusor V. Iftimia et al., "A Portable, Low Coherence Interferometry Based Instrument for Fine Needle Aspiration Biopsy Guidance" Accepted to Review of Scientific Instruments, 2005.
675Nicusor V. Iftimia et al., "A Portable, Low Coherence Interferometry Based Instrument for Fine Needle Aspiration Biopsy Guidance," Accepted to Review of Scientific Instruments, 2005.
676Notice of Allowance dated Oct. 3, 2007 for U.S. Appl. No. 11/225,840.
677Notice of Allowance mailed Jun. 4, 2008 for U.S. Appl. No. 11/174,425.
678Notice of Reasons for Rejection and English translation for Japanese Patent Application No. 2002-538830 dated May 12, 2008.
679Notice of Reasons for Rejection and English translation for Japanese Patent Application No. 2002-538830.
680Notice of Reasons for Rejection mailed Dec. 2, 2008 for Japanese patent application No. 2000-533782.
681Notification Concerning Transmittal of Copy of International Preliminary Report on Patentability dated Oct. 13, 2005 for PCT/US04/10152.
682Notification Concerning Transmittal of International Preliminary Report on Patentability dated Oct. 13, 2005 for PCT/USO4/10152.
683Notification of the international Preliminary Report on Patentability mailed Oct. 21, 2005.
684November, L. J. (1993). "Recovery of the Matrix Operators in the Similarity and Congruency Transformations—Applications in Polarimetry." Journal of the Optical Society of America a-Optics Image Science and Vision 10(4): 719-739.
685Office Action dated Apr. 15, 2009 for U.S. Appl. No. 12/205,775.
686Office Action dated Apr. 17, 2009 for U.S. Appl. No. 11/537,343.
687Office Action dated Aug. 10, 2007 for U.S. Appl. No. 10/997,789.
688Office Action dated Aug. 13, 2009 for U.S. Appl. No. 10/136,813.
689Office Action dated Aug. 18, 2009 for U.S. Appl. No. 12/277,178.
690Office Action dated Aug. 21, 2008 for U.S. Appl. No. 11/505,700.
691Office Action dated Aug. 21, 2008 for U.S. Appl. No. 11/956,079.
692Office Action dated Aug. 24, 2006 for U.S. Appl. No. 10/137,749.
693Office Action dated Aug. 25, 2008 for U.S. Appl. No. 11/264,655.
694Office Action dated Aug. 6, 2009 for U.S. Appl. No. 11/624,455.
695Office Action dated Dec. 15, 2009 for U.S. Appl. No. 11/549,397.
696Office Action dated Dec. 18, 2006 for U.S. Appl. No. 10/501,276.
697Office Action dated Dec. 18, 2007 for U.S. Appl. No. 11/288,994.
698Office Action dated Dec. 21, 2007 for U.S. Appl. No. 11/264,655.
699Office Action dated Dec. 23, 2008 for U.S. Appl. No. 11/780,261.
700Office Action dated Dec. 6, 2006 for U.S. Appl. No. 10/997,789.
701Office Action dated Dec. 9, 2008 for U.S. Appl. No. 09/709,162.
702Office Action dated Feb. 17, 2009 for U.S. Appl. No. 11/211,483.
703Office Action dated Feb. 18, 2009 for U.S. Appl. No. 11/285,301.
704Office Action dated Feb. 18, 2009 for U.S. Appl. No. 11/697,012.
705Office Action dated Feb. 2, 2007 for U.S. Appl. No. 11/174,425.
706Office Action dated Feb. 23, 2009 for U.S. Appl. No. 11/956,129.
707Office Action dated Feb. 4, 2008 for U.S. Appl. No. 10/861,179.
708Office Action dated Jan. 10, 2008 for U.S. Appl. No. 11/410,937.
709Office Action dated Jan. 10, 2008 for U.S. Appl. No. 11/435,228.
710Office Action dated Jan. 11, 2008 for U.S. Appl. No. 11/445,990.
711Office Action dated Jan. 3, 2008 for U.S. Appl. No. 10/997,789.
712Office Action dated Jan. 9, 2010 for U.S. Appl. No. 11/624,455.
713Office Action dated Jul. 7, 2008 for U.S. Appl. No. 10/551,735.
714Office Action dated Jun. 30, 2008 for U.S. Appl. No. 11/670,058.
715Office Action dated Mar. 16, 2009 for U.S. Appl. No. 11/621,694.
716Office Action dated Mar. 28, 2007 for U.S. Appl. No. 11/241,907.
717Office Action dated May 15, 2009 for U.S. Appl. No. 11/537,123.
718Office Action dated May 23, 2007 for U.S. Appl. No. 10/406,751.
719Office Action dated May 23, 2007 for U.S. Appl. No. 10/551,735.
720Office Action dated Nov. 13, 2006 for U.S. Appl. No. 10/501,268.
721Office Action dated Nov. 20, 2006 for U.S. Appl. No. 09/709,162.
722Office Action dated Oct. 1, 2009 for U.S. Appl. No. 11/677,278.
723Office Action dated Oct. 11, 2007 for U.S. Appl. No. 11/534,095.
724Office Action dated Oct. 30, 2007 for U.S. Appl. No. 11/670,069.
725Office Action dated Oct. 6, 2009 for U.S. Appl. No. 12/015,642.
726Office Action dated Oct. 9, 2007 for U.S. Appl. No. 09/709,162.
727Office Action dated Sep. 11, 2008 for U.S. Appl. No. 11/624,334.
728Office Action mailed Oct. 1, 2008 for U.S. Appl. No. 11/955,986.
729Oh, Jung-Taek et al., "Polarization-Sensitive Optical Coherence Tomography for Photoelasticity Testing of Glass/Epoxy Composites," Optics Express, vol. 11, No. 14, Jul. 14, 2003, pp. 1669-1676.
730Oh, Jung-Taek et al., "Polarization-Sensitive Optical Coherence Tomography for Photoelasticity Testing of Glass/Expoxy Composites," Optics Express, vol. 11, No. 14, Jul. 14, 2003, pp. 1669-1676.
731Oh, W. Y., S. H. Yun, et al. (2005). "Wide tuning range wagelength-swept laser with two semiconductor optical amplifiers." Ieee Photonics Technology Letters 17(3): 678-680.
732Oh, W. Y., S. H. Yun, et al. (2005). "Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers." Ieee Photonics Technology Letters 17(3): 678- 680.
733Oh. W.Y. et al (2006) "Ultrahigh-Speed Optical Frequency Domain Imaging and Application to laser Ablation Monitoring" Applied Physics Letters, vol. 88.
734Oka, K. and T. Kato (1999). "Spectroscopic polarimetry with a channeled spectrum." Optics Letters 24(21): 1475-1477.
735Okoshi,Takanori, "Polarization-State Control Schemes for Heterodyne or Homodyne Optical Fiber Communications", Journal of Lightwave Technology, vol. LT-3, pp. 1232-1237, Dec. 1995.
736Okoshi,Takanori, "Polarization-State Control Schemes for Heterodyne or Homodyne Optical Fiber Communications," Journal of Lightwave Technology, vol. LT-3, pp. 1232-1237, Dec. 1995.
737Okugawa, T. and K. Rotate (1996). "Real-time optical image processing by synthesis of the coherence function using real-time holography." Ieee Photonics Technology Letters 8(2): 257-259.
738Oscar Eduardo Martinez, "3000 Times Grating Compress or with Positive Group Velocity Dispersion", IEEE, vol. QE-23, pp. 59-64, Jan. 1987.
739Oscar Eduardo Martinez, "3000 Times Grating Compress or with Positive Group Velocity Dispersion," IEEE, vol. QE-23, pp. 59-64, Jan. 1987.
740Oshima, M., R. Torii, et al. (2001). "Finite element simulation of blood flow in the cerebral artery." Computer Methods in Applied Mechanics and Engineering 191 (6-7): 661-671.
741Overholt, Bergein F. et al. (1999) "Photodynamic Therapy for Barrett's Esophagus: Follow-Up in 100 Patients" Gastrointestinal Endoscopy vol. 49, No. 1, pp. 1-7.
742P.F. Escobar et al., "Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of uterine cervix and vulva", Int. Journal of Gynecological Cancer 2004, 14, pp. 470-474.
743Pan, Y. T., H. K. Xie, et al. (2001). "Endoscopic optical coherence tomography based on a microelectromechanical mirror." Optics Letters 26(24): 1966-1968.
744Parisi, V., G. Manni, et al. (2001). "Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients." Ophthalmology 108(5): 905-12.
745Park, B. H., M. C. Pierce, et al. (2005). "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 mu m." Optics Express 13(11): 3931-3944.
746Park, B. Hyle et al., "Comment on Optical-Fiber-Based Mueller Optical Coherence Tomography," Optics Letters, vol. 29, No. 24, Dec. 15, 2004, pp. 2873-2874.
747Park, B. Hyle et al., "In Vivo Burn Depth Determination by High-Speed Fiber-Based Polarization Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 6 No. 4, Oct. 2001, pp. 474-479.
748Park, B. Hyle et al., "In Vivo Burn Depth Determination by High-Speed Fiber-Based Polarization Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 6. No. 4, Oct. 2001, pp. 474-479.
749Park, B. Hyle et al., "Jones Matrix Analysis for a Polarization-Sensitive Optical Coherence Tomography System Using Fiber-Optic Components," Optics Letters, vol. 29, No. 21, Nov. 1, 2004, pp. 2512-2514.
750Park, B. Hyle et al., "Real-Time Multi-Functional Optical Coherence Tomography," Optics Express, vol. 11, No. 7, Apr. 7, 2003, pp. 782-793.
751Park, B. Hyle et al., Comment on "Optical-Fiber-Based Mueller Optical Coherence Tomography," Optics Letters, vol. 29, No. 24, Dec. 15, 2004, pp. 2873-2874.
752Park, D. H., J. W. Hwang, et al. (1998). "Use of laser Doppler flowmetry for estimation of the depth of burns." Plastic and Reconstructive Surgery 101(6): 1516-1523.
753Parker K. J. et al., "Techniques for Elastic Imaging: A Review", IEEE Engineering in Medicine and Biology, Nov./Dec. 1996, pp. 52-59.
754Passy, R. et al., "Experimental and Theoretical Investigations of Coherent OFDR with Semiconductor-Laser Sources", Journal of Lightwave Technology, vol. 12, pp. 1622-1630, Sep. 1994.
755Passy, R. et al., "Experimental and Theoretical Investigations of Coherent OFDR with Semiconductor-Laser Sources," Journal of Lightwave Technology, vol. 12, pp. 1622-1630, Sep. 1994.
756Paul M. Ripley et al., "A comparison of Artificial Intelligence techniques for spectral classification in the diagnosis of human pathologies based upon optical biopsy", Journal of Optical Society of America, 2000, pp. 217-219.
757PCT International Preliminary Report on Patentability for Application No. PCT/US2005/043951 dated Jun. 7, 2007.
758PCT International Preliminary Report on Patentability for International Application No. PCT/US2004/038404 dated Jun. 2, 2006.
759PCT International Search Report and Written Opinion for Application No. PCT/US2004/023585 filed Jul. 23, 2004.
760PCT International Search Report and Written Opinion for Application No. PCT/US2006/031905 dated May 3, 2007.
761PCT International Search Report and Written Opinion for Application No. PCT/US2007/060319 dated Jun. 6, 2007.
762PCT International Search Report and Written Opinion for Application No. PCT/US2007/060481 dated May 23, 2007.
763PCT International Search Report and Written Opinion for Application No. PCT/US2007/060657 dated Aug. 13, 2007.
764PCT International Search Report and Written Opinion for Application No. PCT/US2007/060670 dated Sep. 21, 2007.
765PCT International Search Report and Written Opinion for Application No. PCT/US2007/060717 dated May 24, 2007.
766PCT International Search Report and Written Opinion for Application No. PCT/US2007/061463 dated Jan. 23, 2008.
767PCT International Search Report and Written Opinion for Application No. PCT/US2007/061481 dated Mar. 17, 2008.
768PCT International Search Report and Written Opinion for Application No. PCT/US2007/061815 dated Aug. 2, 2007.
769PCT International Search Report and Written Opinion for Application No. PCT/US2007/062465 dated Aug. 8, 2007.
770PCT International Search Report and Written Opinion for Application No. PCT/US2007/066017 dated Aug. 30, 2007.
771PCT International Search Report and Written Opinion for Application No. PCT/US2007/078254 dated Mar. 28, 2008.
772PCT International Search Report for Application No. PCT/US2006/016677 filed Apr. 28, 2006.
773PCT International Search Report for Application No. PCT/US2006/018865 filed May 5, 2006.
774PCT International Search Report for Application No. PCT/US2007/060787 dated Mar. 18, 2008.
775PCT International Search Report for Application No. PCT/US2007/068233 dated Feb. 21, 2008.
776Pendry, J. B., A. J. Holden, et al. (1999). "Magnetism from conductors and enhanced nonlinear nonlinear phenomena." Ieee Transactions on Microwave Theory and Techniques 47(11): 2075-2084.
777Pendry, J. B., A. J. Holden, et al. (1999). "Magnetism from conductors and enhanced nonlinear phenomena." Ieee Transactions on Microwave Theory and Techniques 47(11): 2075-2084.
778Penninckx, D. and V. Morenas (1999). "Jones matrix of polarization mode dispersion." Optics Letters 24(13): 875-877.
779Pfefer, Jorje at al. (2006) "Performance of the Aer-O-Scope, A Pneumatic, Self Propelling, Self Navigating Colonoscope in Animal Experiments" Gastrointestinal Endoscopy vol. 63, No. 5, pp. AB223.
780Pfefer, Jorje et al. (2006) "Performance of the Aer-O-Scope, A Pneumatic, Self Propelling, Self Navigating Colonoscope in Animal Experiments" Gastrointestinal Endoscopy vol. 63, No. 5, pp. AB223.
781Pierce, M. C., M. Shishkov, et al. (2005). "Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography." Optics Express 13(15): 5739-5749.
782Pierce, Mark C. et al., "Advances in Optical Coherence Tomography Imaging for Dermatology," The Society for Investigative Dermatology, Inc. 2004, pp. 458-463.
783Pierce, Mark C. et al., "Birefringence Measurements in Human Skin Using Polarization-Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 9, No. 2, Mar./Apr. 2004, pp. 287-291.
784Pierce, Mark C. et al., "Collagen Denaturation can be Quantified in Burned Human Skin Using Polarization-Sensitive Optical Coherence Tomography," Elsevier, Burns, 2004, pp. 511-517.
785Pierce, Mark C. et al., "Simultaneous Intensity, Birefringence, and Flow Measurements with High-Speed Fiber-Based Optical Coherence Tomography," Optics Letters, vol. 27, No. 17, Sep. 1, 2002, pp. 1534-1536.
786Pircher, M., E. Gotzinger, et al. (2003). "Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography." Optics Express 11(18): 2190-2197.
787Pircher, M., E. Gotzinger, et al. (2003). "Speckle reduction in optical coherence tomography by frequency compounding." Journal of Biomedical Optics 8(3): 565-569.
788Pircher, Michael et al., "Imaging Of Polarization Properties of Human Retina in Vivo with Phase Resolved Transversal PS-OCT," Optics Express, vol. 12, No. 24, Nov. 29, 2004 pp. 5940-5951.
789Pircher, Michael et al., "Three Dimensional Polarization Sensitive OCT of Human Skin In Vivo," 2004, Optical Society of America.
790Pircher, Michael et al., "Transversal Phase Resolved Polarization Sensitive Optical Coherence Tomography," Physics in Medicine & Biology, 2004, pp. 1257-1263.
791Podbielska, H. "Interferometric Methods and Biomedical Research", SPIE, 1999, 2732:134-141.
792Podoleanu, A. G. and D. A. Jackson (1999). "Noise analysis of a combined optical coherence tomograph and a confocal scanning ophthalmoscope." Applied Optics 38(10): 2116-2127.
793Podoleanu, A. G., G. M. Dobre, et al. (1998). "En-face coherence imaging using galvanometer scanner modulation." Optics Letters 23(3): 147-149.
794Podoleanu, A. G., J. A. Rogers, et al. (2000). "Three dimensional OCT images from retina and skin." Optics Express 7(9): 292-298.
795Podoleanu, A. G., M. Seeger, et al. (1998). "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry." Journal of Biomedical Optics 3(1): 12-20.
796Podoleanu, A. G., M. Seeger, et al. (1998). "Transversal and longitudinal images from the retina of the living eye using using low coherence reflectometry." Journal of Biomedical Optics 3(1): 12-20.
797Podoleanu, Adrian G., "Unbalanced Versus Balanced Operation in an Optical Coherence Tomography System", Applied Optics, vol. 39, pp. 173-182, Jan. 2000.
798Podoleanu, Adrian G., "Unbalanced Versus Balanced Operation in an Optical Coherence Tomography System," Applied Optics, vol. 39, pp. 173-182, Jan. 2000.
799Poneros, John M. et al. (2001) "Diagnosis of Specialized Intestinal Metaplasia by Optical Coherence Tomography" Gastroenterology vol. 120, pp. 7-12.
800Poole, C. D. (1988). "Statistical Treatment of Polarization Dispersion in Single-Mode Fiber." Optics Letters 13(8): 687-689.
801Povazay, B., K. Bizheva, et al. (2002). "Submicrometer axial resolution optical coherence tomography." Optics Letters 27(20): 1800-1802.
802Price, J. H. V. et al., "Tunable, Femtosecond Pulse Source Operating in the Range 1.06-1.33 mu m Based on an Yb3+-doped Holey Fiber Amplifier", Journal of the Optical Society of America B-Optical Physics, vol. 19, pp. 1286-1294, Jun. 2002.
803Price, J. H. V. et al., "Tunable, Femtosecond Pulse Source Operating in the Range 1.06-1.33 mu m Based on an Yb3+-doped Holey Fiber Amplifier," Journal of the Optical Society of America B-Optical Physics, vol. 19, pp. 1286-1294, Jun. 2002.
804Pyhtila John W. et al., "Determining nuclear morphology using an improved angle-resolved low coherence interferometry system", Optics Express, Dec. 15, 2003, vol. 11, No. 25, pp. 3473-3484.
805Pyhtila John W. et al., "Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry", Optics Society of America, 2004.
806Qi, B., A. P. Himmer, et al. (2004). "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror." Optics Communications 232(1-6): 123-128.
807Radhakrishnan, S., A. M. Rollins, et al. (2001). "Real-time optical coherence tomography of the anterior segment at 1310 nm." Archives of Ophthalmology 119(8): 1179-1185.
808Radhakrislman, S., A. M. Rollins, et al. (2001). "Real-time optical coherence tomography of the anterior segment at 1310 nm." Archives of Ophthalmology 119(8): 1179-1185.
809Ramasamy Manoharan et al., "Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy", Atherosclerosis, May 1993, 181-1930.
810Reid, Brian J. (2001) "p53 and Neoplastic Progression in Barrett's Esophagus" The American Journal of Gastroenterology vol. 96, No 5, pp. 1321-1323.
811Reid, Brian J. (2001) "p53 and Neoplastic Progression in Barrett's Esophagus" The American Journal of Gastroenterology vol. 96, No. 5, pp. 1321-1323.
812Ren, Hongwu et al., "Phase-Resolved Functional Optical Coherence Tomography: Simultaneous Imaging of In Situ Tissue Structure, Blood Flow Velocity, Standard Deviation, Birefringence, and Stokes Vectors in Human Skin," Optics Letters, vol. 27, No. 19, Oct. 1, 2002, pp. 1702-1704.
813Richards G.J. et al. (1997) "Laser Speckle Contrast Analysis (LASCA): A Technique for Measuring Capillary Blood Flow Using the First Order Statistics of Laser Speckle Patterns" Apr. 2, 1997.
814Richards-Kortum et al., "Spectral diagnosis of atherosclerosis using an optical fiber laser catheter", American Heart Journal, 1989, 118(2):381-391.
815Rogers, A. J. (1981). "Polarization-Optical Time Domain Reflectometry—a Technique for the Measurement of Field Distributions." Applied Optics 20(6): 1060-1074.
816Rollins, A. M. and J. A. Izatt (1999). "Optimal interferometer designs for optical coherence tomography." Optics Letters 24(21): 1484-1486.
817Rollins, A. M., R. Ung-arunyawee, et al. (1999). "Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design." Optics Letters 24(19): 1358-1360.
818Rollins, A. M., S. Yazdanfar, et al. (2000). "Imaging of human retinal hemodynamics using color Doppler optical coherence tomography." Investigative Ophthalmology & Visual Science 41(4): S548-S548.
819Rollins, A. M., S. Yazdanfar, et al. (2002). "Real-time in vivo colors Doppler optical coherence tomography." Journal of Biomedical Optics 7(1): 123-129.
820Rollins, et al., "In Vivo Video Rate Optical Coherence Tomography", Optics Express, vol. 3, pp. 219-229, Sep. 1998.
821Rollins, et al., "In Vivo Video Rate Optical Coherence Tomography," Optics Express, vol. 3, pp. 219-229, Sep. 1998.
822Roth, Jonathan E. et al., "Simplified Method for Polarization-Sensitive Optical Coherence Tomography," Optics Letters, vol. 26, No. 14, Jul. 15, 2001, pp. 1069-1071.
823Ruth, B. "blood flow determination by the laser speckle method", Int J Microcirc: Clin Exp, 1990, 9:21-45.
824S.B. Adams Jr. et al., "The use of polarization sensitive optical coherence tomography and elastography to assess connective tissue", Optical Soc. of American Washington 2002, p. 3.
825Sadhwani, Ajay et al., "Determination of Teflon thickness with laser speckle I. Potential for burn depth diagnosis", Optical Society of America, 1996, vol. 35, No. 28, pp. 5727-5735.
826Sampliner, Richard E. (2004) "Endoscopic Ablative Therapy for Barrett's Esophagus: Current Status" Gastrointestinal Endoscopy vol. 59, No. 1, pp. 66-69.
827Sampliner, Richard E. et al. (1996) "Reversal of Barrett's Esophagus with Acid Suppression and Multipolar Electrocoagulation: Preliminary Results" Gastrointestinal Endoscopy vol. 44, No. 5, pp. 532-535.
828Sandoz, P. (1997). "Wavelet transform as a processing tool in white-light interferometry." Optics Letters 22(14): 1065-1067.
829Sankaran, V., J. T. Walsh, et al. (2000). "Polarized light propagation through tissue phanto, ehms containing densely packed scatterers." Optics Letters 25(4): 239-241.
830Sankaran, V., M. J. Everett, et al. (1999). "Comparison of polarized-light propagation in biological tissue and phantoms." Optics Letters 24(15): 1044-1046.
831Sarunic, M. V., M. A. Choma, et al. (2005). "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3×3 fiber couplers." Optics Express 13(3): 957-967.
832Sathyam, U. S., B. W. Colston, et al. (1999). "Evaluation of optical coherence quantitation of analytes in turbid media by use of two wavelengths." Applied Optics 38(10): 2097-2104.
833Saxer, et al., High Speed Fiber-Based Polarization-Sensitive Optical Coherence Tomography of in Vivo Human Skin, Optical Society of America, vol. 25, pp. 1355-1357, Sep. 2000.
834Schmitt M. Joseph et al. "OCT elastography: imaging microscopic deformation and strain of tissue", Optics Express, vol. 3, No. 6, Sep. 14, 1998, pp. 199-211.
835Schmitt, J. M. (1997). "Array detection for speckle reduction in optical coherence microscopy." Physics in Medicine and Biology 42(7): 1427-1439.
836Schmitt, J. M. (1999). "Optical coherence tomography (OCT): A review." Ieee Journal of Selected Topics in Quantum Electronics 5(4): 1205-1215.
837Schmitt, J. M. and A. Knuttel (1997). "Model of optical coherence tomography of heterogeneous tissue." Journal of the Optical Society of America a-Optics Image Science and Vision 14(6): 1231-1242.
838Schmitt, J. M. et al, "Measurement of Optical-Properties of Biological Tissues By Low-Coherence Reflectometry," Applied Optics, vol. 32, pp. 6032-6042, Oct. 1993.
839Schmitt, J. M. et al., "Measurement of Optical-Properties O Biological Tissues By Low-Coherence Reflectometry" Applied Optics, vol. 32, pp. 6032-6042, Oct. 1993.
840Schmitt, J. M., M. J. Yadlowsky, et al. (1995). "Subsurface Imaging of Living Skin with Optical Coherence Microscopy." Dermatology 191(2): 93-98.
841Schmitt, J. M., S. H. Xiang, et al. (1998). "Differential absorption imaging with optical coherence tomography." Journal of the Optical Society of America a-Optics Image Science and Vision 15(9): 2288-2296.
842Schmitt, J. M., S. H. Xiang, et al. (1999). "Speckle in optical coherence tomography." Journal of Biomedical Optics 4(1): 95-105.
843Schmitt, J. M., S. H. Xiang, et al. (1999). "Speckle in optical coherence tomography." Journal of Biomedical Optics 4(1):95-105.
844Schmitt, J. M., S. L. Lee, et al. (1997). "An optical coherence microscope with enhanced resolving power in thick tissue." Optics Communications 142(4-6): 203-207.
845Schmitt, J.M. et al., "Cross-Polarized Backscatter in Optical Coherence Tomography of Biological Tissue," Optics Letters, vol. 23, No. 13, Jul. 1, 1998, pp. 1060-1062.
846Schoenenberger, Klaus et al., "Mapping of Birefringence and Thermal Damage in Tissue by use of Polarization-Sensitive Optical Coherence Tomography," Applied Optics, vol. 37, No. 25, Sep. 1, 1998, pp. 6026-6036.
847Sean J. Kirkpatrick et al., "Laser speckle microstrain measurements in vascular tissue", SPIE, 1999, 3598:121-129.
848Sean J. Kirkpatrick et al., "Micromechanical behavior of cortical bone as inferred from laser speckle data", Journal of Biomedical Materials Research, 1998, 39(3):373-379.
849Sennaroglu, Alphan at al. (1995) "Efficient Continuous-Wave Chromium-Doped YAG Laser" Journal of Optical Society of America vol. 12, No. 5, pp. 930-937.
850Sepchler, Stuart Jon. (1997) "Barrett's Esophagus: Should We Brush off this Balloning Problem?" Gastroenterology vol. 112, pp. 2138-2152.
851Shapo et al., "Intravascular strain imaging: Experiments on an Inhomogeneous Phantom", IEEE Ultrasonics Symposium 1996, 2:1177-1180.
852Shapo et al., "Ultrasonic displacement and strain imaging of coronary arteries with a catheter array", IEEE Ultrasonics Symposium 1995, 2:1511-1514.
853Sharma, P. et al.(2003) "Magnification Chromoendoscopy for the Detection of Intestinal Metaplasia and Dysplasia in Barrett's Oesophagus" Gut vol. 52, pp. 24-27.
854Sharma, P. et al.(2003) "Magnification Chromoendoscopy for the Detection of Intestinal Metaplasia and Dysplasia in Barrett's Oesophagus"Gut vol. 52, pp. 24-27.
855Shi, H., I. Nitta, et al. (1999). "Demonstation of phase correlation in multiwavelength mode-locked semiconductor diode lasers." Optics Letters 24(4): 238-240.
856Shi, H., I. Nitta, et al. (1999). "Demonstration of phase correlation in multiwavelength mode-locked semiconductor diode lasers." Optics Letters 24(4): 238-240.
857Shi, H., J. Finlay, et al. (1997). "Multiwavelength 10-GHz picosecond pulse generation from a single-strip semiconductor diode laser." Ieee Photonics Technology Letters 9(11): 1439-1441.
858Shi, H., J. Finlay, et al. (1997). "Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser." Ieee Photonics Technology Letters 9(11): 1439-1441.
859Shim M.G. et al., "Study of Fiber-Optic Probes For In vivo Medical Raman Spectroscopy" Applied Spectroscopy. vol. 53, No. 6, Jun. 1999.
860Shribak, Michael et al., "Techniques for Fast and Sensitive Measurements of Two-Dimensional Birefringence Distributions," Applied Optics, vol. 42, No. 16, Jun. 1, 2003, pp. 3009-3017.
861Siavash et al., "Self-Referenced Doppler Optical Coherence Tomography" Optics Letters, vol. 27, No. 23, Dec. 1, 2002.
862Siavash Yazdanfar et al., "In Vivo imaging in blood flow in human retinal vessels using color Doppler optical coherence tomography", SPIE, 1999 vol. 3598, pp. 177-184.
863Silberberg, Y. et al., "Passive-Mode Locking of a Semiconductor Diode-Laser," Optics Letters, vol. 9, pp. 507-509, Nov. 1984.
864Silberberg, Y. et al., "Passiv-Mode Locking of a Semiconductor Diode-Laser", Optics Letters, vol. 9, pp. 507-509, Nov. 1984.
865Simon, R. (1982). "The Connection between Mueller and Jones Matrices of Polarization Optics." Optics Communications 42(5): 293-297.
866Sir Randall, John et al., "Brillouin scattering in systems of biological significance", Phil. Trans. R. Soc. Lond. A 293, 1979, pp. 341-348.
867Smith, L. Montgomery et al., "Absolute Displacement Measurements Using Modulation of the Spectrum of White-Light in a Michelson Interferometer", Applied Optics, vol. 28, pp. 3339-3342, Aug. 1989.
868Smith, L. Montgomery et al., "Absolute Displacement Measurements Using Modulation of the Spectrum of White-Light in a Michelson Interferometer," Applied Optics, vol. 28, pp. 3339-3342, Aug. 1989.
869Smith, P. J. M., E.M.; Taylor, C.M.; Selviah, D.R.; Day, S.E.; Commander, L.G. "Variable-Focus Microleneses as a Potential Technology for Endoscopy."
870Smith, P. J. M., E.M.; Taylor, C.M.; Selviah, D.R.; Day, S.E.; Commander, L.G. (2000) "Variable-Focus Microlenses as a Potential Technology for Endoscopy." SPIE (vol. 3919), USA pp. 187-192.
871Smithies, D. J., T. Lindmo, et al. (1998). "Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation." Physics in Medicine and Biology 43(10): 3025-3044.
872Soetikno, Roy M. et al. (2003) "Endoscopic Mucosal resection" Gastrointestinal Endoscopy vol. 57, No. 4, pp. 567-579.
873Somervell, A.R.D. et al., "Direct Measurement Fringe Amplitude and Phase Using a Heterodyne Interferometer Operating in Broadband Light," Elsevier, Optics Communications, Oct. 2003.
874Somervell, A.R.D. et al., "Direct Measurement of Fringe Amplitude and Phase Using a Heterodyne Interferometer Operating in Broadband Light," Elsevier, Optics Communications, Oct. 2003.
875Sonnenschein, C. M. et al., "Signal-To-Noise Relationships for Coaxial Systems that Heterodyne Backscatter from Atmosphere", Applied Optics, vol. 10, pp. 1600-1604, Jul. 1971.
876Sonnenschein, C. M. et al., "Signal-To-Noise Relationships for Coaxial Systems that Heterodyne Backscatter from Atmosphere," Applied Optics, vol. 10, pp. 1600-1604, Jul. 1971.
877Sorin, W. V. And D. F. Gray (1992). "Simultaneous Thickness and Group Index Measurement Using Optical Low-Coherence Reflectometry." Ieee Photonics Technology Letters 4(1): 105-107.
878Sorin, W. V. et al., "A Simple Intensity Noise-Reduction Technique for Optical Low-Coherence Reflectometry", IEEE Photonics Technology Letters, vol. 4, pp. 1404-1406, Dec. 1992.
879Sorin, W. V. et al., "A Simple Intensity Noise-Reduction Technique for Optical Low-Coherence Reflectometry," IEEE Photonics Letters, vol. 4, pp. 1404-1406, Dec. 1992.
880Sorin, W. V. et al., "Measurement of Rayleigh Backscattering at 1.55 mu m with 32 mu m Spatial Resolution", IEEE Photonics Technology Letters, vol. 4, pp. 374-376, Apr. 1992.
881Sorin, W. V. et al., "Measurement of Rayleigh Backscattering at 1.55 mu m with 32 mu m Spatial Resolution," IEEE Photonics Technology Letters, vol. 4, pp. 374-376, Apr. 1992.
882Srinivas, Shyam M. et al., "Determination of Burn Depth by Polarization-Sensitive Optical Coherence Tomography," Journal of Biomedical Optics, vol. 9, No. 1, Jan./Feb. 2004, pp. 207-212.
883Statement under Article 19 and Reply to PCT Written Opinion for PCT International Application No. PCT/US2005/043951 dated Jun. 6, 2006.
884Sticker, M., C. K. Hitzenberger, et al. (2001). "Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography." Optics Letters 26(8): 518-520.
885Sticker, M., M. Pircher, et al. (2002). "En face imaging of single cell layers by differential phase-contrast optical coherence microscopy." Optics Letters 27(13): 1126-1128.
886Sticker, Markus (2002) En Face Imaging of Single Cell layers by Differential Phase-Contrast Optical Coherence Microscopy) Optics Letters, col. 27, No. 13, Jul. 1, 2002.
887Stifter, D. et al., "Polarisation-Sensitive Optical Coherence Tomography for Material Characterisation and Strain-Field Mapping," Applied Physics A 76, Materials Science & Processing, Jan. 2003, pp. 947-951.
888Stoller, P., B. M. Kim, et al. (2002). "Polarization-dependent optical second-harmonic imaging of a rat-tail tendon." Journal of Biomedical Optics 7(2): 205-214.
889Strasswimmer, John et al., "Polarization-Sensitive Optical Coherence Tomography of Invasive Basal Cell Carcinoma," Journal of Biomedical Optics, vol. 9, No. 2, Mar./Apr. 2004, pp. 292-298.
890Summons to attend Oral Proceedings dated Oct. 9, 2009 for European patent application No. 06813365.1.
891Sun, C. S. (2003). "Multiplexing of fiber-optic acoustic sensors in a Michelson interferometer configuration." Optics Letters 28(12): 1001-1003.
892Swanson, E. A. et al., "High-Speed Optical Coherence Domain Reflectometry," Optics Letters, vol. 17, pp. 151-153, Jan. 1992.
893Swanson, E. A. et al., "High-Speed Optical Coherence Domair Reflectometry", Optics Letters, vol. 17, pp. 151-153, Jan. 1992.
894Swanson, E. A., J. A. Izatt, et al. (1993). "In-Vivo Retinal Imaging by Optical Coherence Tomography." Optics Letters 18(21): 1864-1866.
895T. Yoshimura et al., "Statistical properties of dynamic speckles", J. Opt. Soc. Am A. 1986, 3(7):1032-1054.
896T. Yoshimura et al., "Statistical properties of dynamic speckles",J. Opt. Soc. Am A. 1986, 3(7):1032-1054.
897Takada, K. et al., "High-Resolution OFDR with Incorporated Fiberoptic Frequency Encoder", IEEE Photonics Technology Letters, vol. 4, pp. 1069-1072, Sep. 1992.
898Takada, K. et al., "High-Resolution OFDR with Incorporated Fiberoptic Frequency Encoder," IEEE Photonics Technology Letters, vol. 4, pp. 1069-1072, Sep. 1992.
899Takada, K., A. Himeno, et al. (1991). "Phase-Noise and Shot-Noise Limited Operations of Low Coherence Optical-Time Domain Reflectometry." Applied Physics Letters 59(20): 2483-2485.
900Takada, Kazumasa et al., "Narrow-Band light Source with Acoustooptic Tunable Filter for Optical Low-Coherence Reflectometry", IEEE Photonics Letters, vol. 8, pp. 658-660, May 1996.
901Takada, Kazumasa et al., "Narrow-Band light Source with Acoustooptic Tunable Filter for Optical Low-Coherence Reflectometry," IEEE Photonics Technology Letters, vol. 8, pp. 658-660, May 1996.
902Takada, Kazumasa et al., "New Measurement System for Fault Location in Optical Wave-Guide Devices Based on an Interometric-Technique", Applied Optics, vol. 26, pp. 1603-1606, May 1987.
903Takada, Kazumasa et al., "New Measurement System for Fault Location in Optical Wave-Guide Devices Based on an Interometric-Technique," Applied Optics, vol. 26, pp. 1603-1606, May 1987.
904Takagi, Yasunari, "Application of a microscope to Brillouin scattering spectroscopy", Review of Scientific Instruments, No. 12, Dec. 1992, pp. 5552-5555.
905Takenaka, H. (1973). "Unified Formalism for Polarization Optics by Using Group-Theory I (Theory)." Japanese Journal of Applied Physics 12(2): 226-231.
906Tang C. L. et al., "Transient effects in wavelength-modulated dye lasers", Applied Physics Letters, vol. 26, No. 9, May 1, 1975, pp. 534-537.
907Tang C. L. et al., "Wide-band electro-optical tuning of semiconductor lasers", Applied Physics Letters, vol. 30, No. 2, Jan. 15, 1977, pp. 113-116.
908Tan-no, N., T. Ichimura, et al. (1994). "Optical Multimode Frequency-Domain Reflectometer." Optics Letters 19(8): 587-589.
909Tanno, N., T. Ichimura, et al. (1994). "Optical Multimode Frequency-Domain Reflectometer." Optics Letters 19(8): 587-589.
910Targowski, P., M. Wojtkowski, et al. (2004). "Complex spectral OCT in human eye imaging in vivo." Optics Communications 229(1-6): 79-84.
911Tateda, Mitsuhiro et al., "Interferometric Method for Chromatic Dispersion Measurement in a Single-Mode Optical Fiber", IEEE Journal Of Quantum Electronics, vol. 17, pp. 404-407, Mar. 1981.
912Tateda, Mitsuhiro et al., "Interferometric Method for Chromatic Dispersion Measurement in a Single-Mode Optical Fiber," IEEE Journal of Quantum Electronics, vol. 17, pp. 404-407, Mar. 1981.
913Tearney et al., "High-Speed Phase -and Group Delay Scanning with a Grating Based Phase Control Delay Line", Optics Letters, vol. 22, pp. 1811-1813, Dec. 1997.
914Tearney et al., "High-Speed Phase -and Group Delay Scanning with a Grating Based Phase Control Delay Line," Optics Letters, vol. 22, pp. 1811-1813, Dec. 1997.
915Tearney et al., "Spectrally encoded miniature endoscopy" Optical Society of America; Optical Letters vol. 27, No. 6, Mar. 15, 2002; pp. 412-414.
916Tearney, et al., "In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography", Science, vol. 276, Jun. 1997.
917Tearney, et al., "In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography," Science, vol. 276, Jun. 1997.
918Tearney, G. J., B. E. Bouma, et al. (1996). "Rapid acquisition of in vivo biological images by use of optical coherence tomography." Optics Letters 21(17): 1408-1410.
919Tearney, G. J., B. E. Bouma, et al. (1996). "Rapid acquistion of in vivo biological images by use of optical coherence tomogaphy." Optics Letters 21(17): 1408-1410.
920Tearney, G. J., B. E. Bouma, et al. (1997). "In vivo endoscopic optical biopsy with optical coherence tomography." Science 276(5321): 2037-2039.
921Tearney, G. J., H. Yabushita, et al. (2003). "Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography." Circulation 107(1): 113-119.
922Tearney, G. J., I. K. Jang, et al. (2000). "Porcine coronary imaging in vivo by optical coherence tomography." Acta Cardiologica 55(4): 233-237.
923Tearney, G. J., M. E. Brezinski, et al. (1995). "Determination of the refractive index of highly scattering human tissue by optical coherence tomography." Optics Letters 20(21): 2258-2260.
924Tearney, G. J., M. E. Brezinski, et al. (1995). "Determination of the refractive ndex of highly scattering human tissue by optical coherence tomography." Optics Letters 20(21): 2258-2260.
925Tearney, G. J., M. E. Brezinski, et al. (1996). "Catheter-based optical imaging of a human coronary artery." Circulation 94(11): 3013-3013.
926Tearney, G. J., M. E. Brezinski, et al. (1997). "In vivo endoscopic optical biopsy with optical coherence tomography." Science 276(5321): 2037-9.
927Tearney, G. J., M. E. Brezinski, et al. (1997). "Optical biopsy in human gastrointestinal tissue using optical coherence tomography." American Journal of Gastroenterology 92(10): 1800-1804.
928Tearney, G. J., R. H. Webb, et al. (1998). "Spectrally encoded confocal microscopy." Optics Letters 23(15): 1152-1154.
929Tearney, G. J., S. A. Boppart, et al. (1996). "Scanning single-mode fiber optic catheter- endoscope for optical coherence tomography (vol. 21, p. 543, 1996)." Optics Letters 21(12): 912-912.
930Telle M. John, et al., "New method for electro-optical tuning of tunable lasers", Applied Physics Letters, vol. 24, No. 2, Jan. 15, 1974, pp. 85-87.
931Telle M. John, et al., "Very rapid tuning of cw dye laser", Applied Physics Letters, vol. 26, No. 10, May 15, 1975, pp. 572-574.
932Thompson et al., "Diffusive media characterization with laser speckle", Applied Optics, 1997, 36(16):3726-3734.
933Thompson et al., "Imaging in scattering media by use of laser speckle", Opt. Soc. Am. A., 14(9):2269-2277.
934Thompson et al., "Imaging in scattering media by use of laser speckle", Opt. Soc. Am. A., 1997, 14(9):2269-2277.
935Thomsen, Sharon et al. (1990) "Microscopic Correlates of Macroscopic Optical Property Changes During Thermal Coagulation of Myocardium" SPIE vol. 1202, pp. 2-11.
936Todorovi{hacek over (c)}, Milo{hacek over (s)} et al., "Determination of Local Polarization Properties of Biological Samples in the Presence of Diattenuation by use of Mueller Optical Coherence Tomography," Optics Letters, vol. 29, No. 20, Oct. 15, 2004, pp. 2402-2404.
937Toide, M. et al., "Two-Dimensional Coherent Detection Imaging in Multiple Scattering Media Based the Directional Resolution Capability of the Optical Heterodyne Method", Applied Physics B (Photophysics and Laser Chemistry), vol. B52, pp. 391-394, 1991.
938Toide, M. et al., "Two-Dimensional Coherent Detection Imaging in Multiple Scattering Media Based the Directional Resolution Capability of the Optical Heterodyne Method," Applied Physics B (Photophysics and Laser Chemistry), vol. B52, pp. 391-394, 1991.
939Tower, T. T. and R. T. Tranquillo (2001). "Alignment maps of tissues: I. Microscopic elliptical polarimetry." Biophysical Journal 81(5): 2954-2963.
940Tower, T. T. and R. T. Tranquillo (2001). "Alignment maps of tissues: II. Fast harmonic analysis for imaging." Biophysical Journal 81(5): 2964-2971.
941Tripathi, Renu et al., "Spectral Shaping for Non-Gaussian Source Spectra in Optical Coherence Tomography," Optics Letters, vol. 27, No. 6, Mar. 15, 2002, pp. 406-408.
942Troy, T. L. and S. N. Thennadil (2001). "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," Journal of Biomedical Optics 6 (2): 167-176.
943Troy, T. L. and S. N. Thennadil (2001). "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm." Journal of Biomedical Optics 6 (2): 167-176.
944Trutna, W. R. et al., "Continuously Tuned External-Cavity Semiconductor-Laser", Journal of Lightwave Technology, vol. 11, pp. 1279-1286, Aug. 1993.
945Trutna, W. R. et al., "Continuously Tuned External-Cavity Semiconductor-Laser," Journal of Lightwave Technology, vol. 11, pp. 1279-1286, Aug. 1993.
946Tsuyoshi Sonehara et al., "Forced Brillouin Spectroscopy Using Frequency-Tunable Continuous-Wave Lasers", Physical Review Letters 1995, 75 (23): 4234-4237.
947Tuchin, Valery V., "Coherent Optical Techniques for the Analysis of Tissue Structure and Dynamics," Journal of Biomedical Optics, 1999, 4(1):106-124.
948US National Library of Medicine (NLM), Bethesda, MD, US; Oct. 2007 (Oct. 2007), "Abstracts of the 19th Annual Symposium of Transcatheter Cardiovascular Therapeutics, Oct. 20-25, 2007, Washington, DC, USA."
949Uttam, Deepak et al., "Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique", Journal of Lightwave Technology, vol. 3, pp. 971-977, Oct. 1985.
950Uttam, Deepak et al., "Precision Time Domain Reflectometry in Optical Fiber Systems Using a Frequency Modulated Continuous Wave Ranging Technique," Journal of Lightwave Technology, vol. 3, pp. 971-977, Oct. 1985.
951Vabre, L., A. Dubois, et al. (2002). "Thermal-light full-field optical coherence tomography." Optics Letters 27(7): 530-532.
952Vakhtin, A. B., D. J. Kane, et al. (2003). "Common-path interferometer for frequency-domain optical coherence tomography." Applied Optics 42(34): 6953-6958.
953Vakhtin, A. B., K. A. Peterson, et al. (2003). "Differential spectral interferometry: an imaging technique for biomedical applications." Optics Letters 28(15): 1332-1334.
954Vakoc, B. J., S. H. Yun, et al. (2005). "Phase-resolved optical frequency domain imaging." Optics Express 13(14): 5483-5493.
955van Leeuwen, T. G., M. D. Kulkarni, et al. (1999). "High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography." Optics Letters 24(22): 1584-1586.
956Vansteenkiste, N., P. Vignolo, et al. (1993). "Optical Reversibility Theorems for Polarization—Application to Remote-Control of Polarization." Journal of the Optical Society of America a-Optics Image Science and Vision 10(10): 2240-2245.
957Vargas, O., E. K. Chan, et al. (1999). "Use of an agent to reduce scattering in skin." Lasers in Surgery and Medicine 24(2): 133-141.
958Victor S. Y. Lin et al., "A Porous Silicon-Based Optical Interferometric Biosensor", Science Magazine, vol. 278, pp. 840-843, Oct. 31, 1997.
959Victor S. Y. Lin et al., "A Porous Silicon-Based Optical Interferometric Biosensor," Science Magazine, vol. 278, pp. 840-843, Oct. 31, 1997.
960Vogel, Alfred et al. (2003) "Mechanisms of Pulsed Laser Ablation of Biological Tissues" American Chemical Society vol. 103, pp. 577-644.
961Vogel, Alfred et al. (2003) "Mechanisms of Pulsed Laser Ablation of Biological Tissues" American Society vol. 103, pp. 577-644.
962Von Der Weid, J. P. et al., "On the Characterization of Optical Fiber Network Components with Optical Frequency Domain Reflectometry", Journal of Lightwave Technology, vol. 15, pp. 1131-1141, Jul. 1997.
963Von Der Weid, J. P. et al., "On the Characterization of Optical Fiber Network Components with Optical Frequency Domain Reflectometry," Journal of Lightwave Technology, vol. 15, pp. 1131-1141, Jul. 1997.
964W. Drexler et al., "In Vivo Ultrahigh-Resolution Optical Coherence Tomography", Opt. Lett. vol. 24, pp. 1221-1223, Sep. 1999.
965W. Drexler et al., "In Vivo Ultrahigh-Resolution Optical Coherence Tomography," Optics Letters vol. 24, pp. 1221-1223, Sep. 1999.
966Wang, R. K. (1999). "Resolution improved optical coherence-gated tomography for imaging through biological tissues." Journal of Modern Optics 46(13): 1905-1912.
967Wang, X. J., T. E. Milner, et al. (1995). "Characterization of Fluid-Flow Velocity by Optical Doppler Tomography." Optics Letters 20(11): 1337-1339.
968Wang, X. J., T. E. Milner, et al. (1997). "Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography." Applied Optics 36(1): 144-149.
969Wang, Xiao-Jun et al., "Characterization of Dentin and Enamel by Use of Optical Coherence Tomography," Applied Optics, vol. 38, No. 10, Apr. 1, 1999, pp. 2092-2096.
970Wang, Xueding et al., "Propagation of Polarized Light in Birefringent Turbid Media: Time-Resolved Simulation," Optical Imaging Laboratory, Biomedical Engineering Program, Texas A&M University.
971Wang, Xuedong et al., (2001) "Propagation of Polarized Light in Birefringent Turbid Media: Time-Resolved Simulations," Optical Imaging Laboratory, Biomedical Engineering Program, Texas A&M University, Aug. 27, 2001, pp. 254-259.
972Wang, Y. M., J. S. Nelson, et al. (2003). "Optimal wavelength for ultrahigh-resolution optical coherence tomography." Optics Express 11(12): 1411-1417.
973Wang, Y. M., Y. H. Zhao, et al. (2003). "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber." Optics Letters 28(3): 182-184.
974Watkins, L. R., S. M. Tan, et al. (1999). "Determination of interferometer phase distributions by use of wavelets." Optics Letters 24(13): 905-907.
975Webb RH et al. "Confocal Scanning Laser Ophthalmoscope", Applied Optics 1987, 26 (8): 1492-1499.
976Wentworth, R. H. (1989). "Theoretical Noise Performance of Coherence-Multiplexed Interferometric Sensors." Journal of Lightwave Technology 7(6): 941-956.
977Westphal, V., A. M. Rollins, et al. (2002). "Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle." Optics Express 10(9): 397-404.
978Westphal, V., S. Yazdanfar, et al. (2002). "Real-time, high velocity-resolution color Doppler optical coherence tomography." Optics Letters 27(1): 34-36.
979Wetzel, J. (2001). "Optical coherence tomography in dermatology: a review." Skin Research and Technology 7(1): 1-9.
980Whelan, W.M. et al. (2005) "A novel Strategy for Monitoring Laser Thermal Therapy Based on Changes in Optothermal Properties of Heated Tissues" International Journal of Thermophysics vol. 26., No. 1, pp. 233-241.
981White, Brian R. et al., "In Vivo Dynamic Human Retinal Blood Flow Imaging Using Ultra-High-Speed Spectral Domain Optical Doppler Tomography," Optics Express, vol. 11, No. 25, Dec. 15, 2003, pp. 3490-3497.
982Williams, P. A. (1999). "Rotating-wave-plate Stokes polarimeter for differential group delay measurements of polarization-mode dispersion." Applied Optics 38(31): 6508-6515.
983Wojtkowski, M., A. Kowalczyk, et al. (2002). "Full range complex spectral optical coherence tomography technique in eye imaging." Optics Letters 27(16): 1415-1417.
984Wojtkowski, M., Bajraszewski, et al. (2003). "Real-time in vivo imaging by high-speed spectral optical coherence tomography." Optics Letters 28(19): 1745-1747.
985Wojtkowski, M., R. Leitgeb, et al. (2002). "Fourier domain OCT imaging of the human eye in vivo." Proc. SP1E 4619: 230-236.
986Wojtkowski, M., R. Leitgeb, et al. (2002). "Fourier domain OCT imaging of the human eye in vivo." Proc. SPIE 4619: 230-236.
987Wojtkowski, M., R. Leitgeb, et al. (2002). "In vivo human retinal imaging by Fourier domain optical coherence tomography." Journal of Biomedical Optics 7(3): 457-463.
988Wojtkowski, M., T. Bajraszewski, et al. (2003). "Real-time in vivo imaging by high-speed spectral optical coherence tomography." Optics Letters 28(19): 1745-1747.
989Wojtkowski, M., V. J. Srinivasan, et al. (2004). "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation." Optics Express 12(11): 2404-2422.
990Wolfgang Drexler et al., "Ultrahigh-resolution optical coherence tomography", Journal of Biomedical Optics Spie USA, 2004, pp. 47-74.
991Wong, B. J. F., Y. H. Zhao, et al. (2004). "Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 mu m and 1.3 mu m." Otolaryngology-Head and Neck Surgery 130(3): 334-338.
992Wong, B. J. F., Y. H. Zhao, et al. (2004). "Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 mu m and 1.3 mu m." Otolaryngology—Head and Neck Surgery 130(3): 334-338.
993Wong, Brian J.F. et al., "Optical Coherence Tomography of the Rat Cochlea," Journal of Biomedical Optics, vol. 5, No. 4, Oct. 2000, pp. 367-370.
994Wysocki, P.F. et al., "Broad-Spectrum, Wavelength-Swept, Erbium-Doped Fiber Laser at 1.55-Mu-M", Optics Letters, vol. 15, pp. 879-881, Aug. 1990.
995Wysocki, P.F. et al., "Broad-Spectrum, Wavelength-Swept, Erbium-Doped Fiber Laser at 1.55-Mu-M," Optics Letters, vol. 15, pp. 879-881, Aug. 1990.
996Yabushita, H. B., B. E.; Houser, S.L.; Aretz, H.T.; Jang, I.; Schlendorf, K.H.; Kauffman, C.R.; Shishkov, M.; Halpern, E.F.; Tearney, G.J. "Measurement of Thin Fibrous Caps in Atherosclerotic Plaques by Optics Coherence Tomography."
997Yabushita, H. B., et al. (2002) "Measurement of Thin Fibrous Caps in Atherosclerotic Plaques by Optical Coherence Tomography." American Heart Association, Inc, Circulation 2002;106;1640.
998Yamanari M. et al., "Polarization sensitive Fourier domain optical coherence tomography with continuous polarization modulation", Proc. of SPIE, vol. 6079, 2006.
999Yang, C. H., A. Wax, et al. (2000). "Interferometric phase-dispersion microscopy." Optics Letters 25(20): 1526-1528.
1000Yang, C. H., A. Wax, et al. (2001). "Phase-dispersion optical tomography." Optics Letters 26(10): 686-688.
1001Yang, C., A. Wax, et al. (2001). "Phase-dispersion optical tomography." Optics Letters 26(10): 686-688.
1002Yang, C., A. Wax, et al. (2001). "Phase-dispersion optical tomography."Optics Letters 26(10): 686-688.
1003Yang, C., A. Wax, et al. (2001). "Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics." Optics Letters 26(16): 1271-1273.
1004Yang, V. X. D., B. Qi, et al. (2003). "In vivo feasibility of endoscopic catheter-based Doppler optical coherence tomography." Gastroenterologv 124(4): A49-A50.
1005Yang, V. X. D., B. Qi, et al. (2003). "In vivo feasibility of endoscopic catheter-based Doppler optical coherence tomography." Gastroenterology 124(4): A49-A50.
1006Yang, V. X. D., M. L. Gordon, et al. (2002). "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation." Optics Communications 208(4-6): 209-214.
1007Yang, V. X. D., M. L. Gordon, et al. (2003). "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance." Optics Express 11(7): 794-809.
1008Yang, V. X. D., M. L. Gordon, et al. (2003). "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamic of Xenopus laevis." Optics Express 11(14): 1650-1658.
1009Yang, V. X. D., M. L. Gordon, et al. (2003). "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis." Optics Express 11(14): 1650-1658.
1010Yang, V. X. D., M. L. Gordon, et al. (2003). "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts." Optics Express 11(19): 2416-2424.
1011Yang, Ying et al., "Observations of Birefringence in Tissues from Optic-Fibre-Based Optical Coherence Tomography," Measurement Science and Technology, Nov. 2002, pp. 41-46.
1012Yao, G. and L. H. V. Wang (2000). "Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue." Applied Optics 39(4): 659-664.
1013Yao, Gang et al., "Propagation of Polarized Light in Turbid Media: Simulated Animation Sequences," Optics Express, vol. 7, No. 5, Aug. 28, 2000, pp. 198-203.
1014Yao, Gang et al., "Two-Dimensional Depth-Resolved Mueller Matrix Characterization of Biological Tissue by Optical Coherence Tomography," Optics Letters, Apr. 15, 1999, vol. 24, No. 8, pp. 537-539.
1015Yaqoob et al., (Jun. 2002) "High-Speed Wavelength-Multiplexed Fiber-Optic Sensors for Biomedicine," Sensors Proceedings of the IEEE, pp. 325-330.
1016Yasuno, Y. et al., "Birefringence Imaging of Human Skin by Polarization-Sensitive Spectral Interferometric Optical Coherence Tomography," Optics Letters, vol. 27, No. 20, Oct. 15, 2002 pp. 1803-1805.
1017Yasuno, Yoshiaki et al., "Polarization-Sensitive Complex Fourier Domain Optical Coherence Tomography for Jones Matrix Imaging of Biological Samples," Applied Physics Letters, vol. 85, No. 15, Oct. 11, 2004, pp. 3023-3025.
1018Yazdanfar, S. and J. A. Izatt (2002). "Self-referenced Doppler optical coherence tomography." Optics Letters 27(23): 2085-2087.
1019Yazdanfar, S., A. M. Rollins, et al. (2000). "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography." Optics Letters 25(19): 1448-1450.
1020Yazdanfar, S., A. M. Rollins, et al. (2000). "Noninvasive imaging and velocimetry of human retinal blood flow using color Doppler optical coherence tomography." Investigative Ophthalmology & Visual Science 41(4): S548-S548.
1021Yazdanfar, S., A. M. Rollins, et al. (2003). "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography." Archives of Ophthalmology 121(2): 235-239.
1022Yazdanfar, S., C. H. Yang, et al. (2005). "Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound." Optics Express 13(2): 410-416.
1023Yazdanfar, S., M. D. Kulkarni, et al. (1997). "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography." Optics Express 1 (13) : 424-431.
1024Yelin et al., "Double-clad Fiber for Endoscopy" Optical Society of America; Optical Letters vol. 29, No. 20, Oct. 16, 2005; pp. 2408-2410.
1025Yonghua et al., "Real-Time Phase-Resolved Functional Optical Hilbert Transformation" Optics Letters, vol. 27, No. 2, Jan. 15, 2002.
1026Yonghua et al., "Real-Time Phase-Resolved Functional Optical Hilbert Transformation" Optics Letters. vol. 27, No. 2, Jan. 15, 2002.
1027Youngquist, Robert C. et al., "Optical Coherence-Domain Reflectometry—A New Optical Evaluation Technique", Optics Letters, vol. 12, pp. 158-160, Mar. 1987.
1028Youngquist, Robert C. et al., "Optical Coherence-Domain Reflectometry—A New Optical Evaluation Technique," Optics Letters, vol. 12, pp. 158-160, Mar. 1987.
1029Yu, P. et al. "Imaging of tumor necroses using full-frame optical coherence imaging", Proceedings of SPIE vol. 4956, 2003, pp. 34-41.
1030Yun et al., (2004) "Removing the Depth-Degeneracy in Optical Frequency Domain Imaging with Frequency Shifting", Optics Express, vol. 12, No. 20.
1031Yun, S. H. et al., "Interrogation of Fiber Grating Sensor Arrays with a Wavelength-Swept Fiber Laser", Optics Letters, vol. 23, pp. 843-845, Jun. 1998.
1032Yun, S. H. et al., "Interrogation of Fiber Grating Sensor Arrays with a Wavelength-Swept Fiber Laser," Optics Letters, vol. 23, pp. 843-845, Jun. 1998.
1033Yun, S. H. et al., "Wavelength-Swept Fiber Laser with Frequency Shifted Feedback and Resonantly Swept Intra-Cavity Acoustooptic Tunable Filte," IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, pp. 1087-1096, Aug. 1997.
1034Yun, S. H. et al., "Wavelength-Swept Fiber Laser with Frequency Shifted Feedback and Resonantly Swept Intra-Cavity Acoustooptic Tunable Filter", IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, pp. 1087-1096, Aug. 1997.
1035Yun, S. H., C. Boudoux, et al. (2003). "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter." Optics Letters 28(20): 1981-1983.
1036Yun, S. H., C. Boudoux, et al. (2004). "Extended-cavity semiconductor wavelength- swept laser for biomedical imaging." Ieee Photonics Technology Letters 16(1): 293-295.
1037Yun, S. H., G. J. Tearney, et al. (2004). "Motion artifacts in optical coherence tomography with frequency-domain ranging." Optics Express 12(13): 2977-2998.
1038Yun, S. H., G. J. Tearney, et al. (2004). "Pulsed-source and swept-source spectral- domain optical coherence tomography with reduced motion artifacts." Optics Express 12(23): 5614-5624.
1039Yun, S. H., G. J. Tearney, et al. (2004). "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting." Optics Express 12(20): 4822-4828.
1040Yun, S.H. et al., "High-Speed Optical Frequency-Domain Imaging," Optics Express, vol. 11, No. 22, Nov. 3, 2003, pp. 2953-2963.
1041Yun, S.H. et al., "High-Speed Spectral-Domain Optical Coherence Tomography at 1.3 μm Wavelength," Optics Express, vol. 11, No. 26, Dec. 29, 2003, pp. 3598-3604.
1042Yung et al., "Phase-Domain Processing of Optical Coherence Tomography Images", Journal of Biomedical Optics, vol. 4, pp. 125-136, Jan. 1999.
1043Yung et al., "Phase-Domain Processing of Optical Coherence Tomography Images," Journal of Biomedical Optics, vol. 4, pp. 125-136, Jan. 1999.
1044Yung, K. M., "Phase-Domain Processing of Optical Coherence Tomography Images", Journal of Biomedical Optics, vol. 4, pp. 125-136, Jan. 1999.
1045Yung, K. M., "Phase-Domain Processing of Optical Coherence Tomography Images," Journal of Biomedical Optics, vol. 4, pp. 125-136, Jan. 1999.
1046Zhang et al, (Sep. 2004), "Fourier Domain Functional Optical Coherence Tomography", Saratov Fall Meeting 2004, pp. 8-14.
1047Zhang Jun et al., "Full range polarization-sensitive Fourier domain optical coherence tomography", Optics Express, Nov. 29, 2004, vol. 12, No. 24, pp. 6033-6039.
1048Zhang, J., J. S. Nelson, et al. (2005). "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator." Optics Letters 30(2): 147-149.
1049Zhang, Jun et al., "Determination of Birefringence and Absolute Optic Axis Orientation Using Polarization-Sensitive Optical Coherence Tomography with PM Fibers," Optics Express, vol. 11, No. 24, Dec. 1, 2003, pp. 3262-3270.
1050Zhang, Jun. et al., "Determination of Birefringence and Absolute Optic Axis Orientation Using Polarization-Sensitive Optical Coherence Tomography with PM Fibers," Optics Express, vol. 11, No. 24, Dec. 1, 2003, pp. 3262-3270.
1051Zhang, Y., M. Sato, et al. (2001). "Numerical investigations of optimal synthesis of several low coherence sources for resolution improvement." Optics Communications 192(3-6): 183-192.
1052Zhang, Y., M. Sato, et al. (2001). "Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes." Optics Letters 26(4): 205-207.
1053Zhao, Y. et al. "Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography", IEEE Journal of Selected Topics in Quantum Electronics 7.6 (2001): 931-935.
1054Zhao, Y. H., Z. P. Chen, et al. (2000). "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow." Optics Letters 25(18): 1358-1360.
1055Zhao, Y. H., Z. P. Chen, et al. (2000). "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity." Optics Letters 25(2): 114-116.
1056Zhao, Y., Z. Chen, et al. (2002). "Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation." Optics Letters 27(2): 98-100.
1057Zhou, D., P. R. Prucnal, et al. (1998). "A widely tunable narrow linewidth semiconductor fiber ring laser." IEEE Photonics Technology Letters 10(6): 781-783.
1058Zhou, Xiao-Qun et al., "Extended-Range FMCW Reflectometry Using an optical Loop with a Frequency Shifter", IEEE Photonics Technology Letters, vol. 8, pp. 248-250, Feb. 1996.
1059Zhou, Xiao-Qun et al., "Extended-Range FMCW Reflectometry Using an optical Loop with a Frequency Shifter," IEEE Photonics Technology Letters, vol. 8, pp. 248-250, Feb. 1996.
1060Zimnyakov et al., "A study of statistical properties of partially developed speckle fields as applied to the diagnosis of structural changes in human skin", Optics and Spectroscopy, 1994, 76(5): 747-753.
1061Zimnyakov et al., "Spatial speckle correlometry in applications to tissue structure monitoring", Applied Optics 1997, 36(22): 5594-5607.
1062Zimnyakov et al., "Speckle patterns polarization analysis as an approach to turbid tissue structure monitoring", SPIE 1999, 2981:172-180.
1063Zimnyakov, Dmitry A. et al (2002) "Speckle-Contrast Monitoring of Tissue Thermal Modification" Applied Optics vol. 41, No. 28, pp. 5989-5996.
1064Zorabedian, Paul et al., "Tuning Fidelity of Acoustooptically Controlled External Cavity Semiconductor-Lasers", Journal of Lightwave Technology, vol. 13, pp. 62-66, Jan. 1995.
1065Zorabedian, Paul et al., "Tuning Fidelity of Acoustooptically Controlled External Cavity Semiconductor-Lasers," Journal of Lightwave Technology, vol. 13, pp. 62-66, Jan. 1995.
1066Zuluaga, A. F. and R. Richards-Kortum (1999). "Spatially resolved spectral interferometry for determination of subsurface structure." Optics Letters 24(8): 519-521.
1067Zvyagin, A. V., J. B. FitzGerald, et al. (2000). "Real-time detection technique for Doppler optical coherence tomography." Optics Letters 25(22): 1645-1647.
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US20110137140 *14 Jul 20109 Jun 2011The General Hospital CorporationApparatus, Systems and Methods for Measuring Flow and Pressure within a Vessel
Clasificaciones
Clasificación de EE.UU.385/35, 385/14, 385/126, 385/100, 385/31, 385/34, 385/127, 385/128, 385/15, 385/33, 385/124, 385/123, 385/125, 385/32
Clasificación internacionalG02B6/036, G02B6/32, G02B6/032, G02B6/42, G02B6/26, G02B6/12, G02B6/028, G02B6/02, G02B6/44
Clasificación cooperativaH04J14/0267, A61B5/6852, A61B5/0066, G02B6/2552, G02B6/262, A61B5/0084, G02B6/2856
Clasificación europeaG02B6/28B12, A61B5/00P1C, A61B5/68D1H, G02B6/255K, A61B5/00P12B, G02B6/26B
Eventos legales
FechaCódigoEventoDescripción
17 Feb 2009ASAssignment
Owner name: THE GENERAL HOSPITAL CORPORATION, MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHISHKOV, MILEN;BOUMA, BRETT EUGENE;TEARNEY, GUILLERMO J.;REEL/FRAME:022265/0479
Effective date: 20040929
23 Jun 2015CCCertificate of correction