USRE44980E1 - System and method for controlling states of a device - Google Patents

System and method for controlling states of a device Download PDF

Info

Publication number
USRE44980E1
USRE44980E1 US12/869,740 US86974010A USRE44980E US RE44980 E1 USRE44980 E1 US RE44980E1 US 86974010 A US86974010 A US 86974010A US RE44980 E USRE44980 E US RE44980E
Authority
US
United States
Prior art keywords
state
headphone device
earpieces
earpiece
headphone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/869,740
Inventor
Stewart Sargaison
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Interactive Entertainment Inc
Original Assignee
Sony Computer Entertainment Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Computer Entertainment Inc filed Critical Sony Computer Entertainment Inc
Priority to US12/869,740 priority Critical patent/USRE44980E1/en
Assigned to SONY COMPUTER ENTERTAINMENT INC. reassignment SONY COMPUTER ENTERTAINMENT INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SARGAISON, STEWART
Application granted granted Critical
Publication of USRE44980E1 publication Critical patent/USRE44980E1/en
Assigned to SONY INTERACTIVE ENTERTAINMENT INC. reassignment SONY INTERACTIVE ENTERTAINMENT INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SONY COMPUTER ENTERTAINMENT INC.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/60Substation equipment, e.g. for use by subscribers including speech amplifiers
    • H04M1/6033Substation equipment, e.g. for use by subscribers including speech amplifiers for providing handsfree use or a loudspeaker mode in telephone sets
    • H04M1/6041Portable telephones adapted for handsfree use
    • H04M1/6058Portable telephones adapted for handsfree use involving the use of a headset accessory device connected to the portable telephone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/10Details of earpieces, attachments therefor, earphones or monophonic headphones covered by H04R1/10 but not provided for in any of its subgroups
    • H04R2201/109Arrangements to adapt hands free headphones for use on both ears
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/03Connection circuits to selectively connect loudspeakers or headphones to amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication

Definitions

  • the present invention relates generally to portable devices having headphones, and more particularly to state changes in the portable devices.
  • these headphones typically include a right earpiece and a left earpiece coupled to a right and left channel of audio, respectively.
  • the right and left earpieces may share a single channel of audio.
  • state changes in a portable device such as a MP3 player or cell phone, must be manually initiated by a user.
  • the user if the user needs to place the device into a pause mode from a play mode, the user, typically, will need to physically access the device and make a selection (e.g., push a pause button) to pause the device.
  • This may be troublesome when, for example, the device is located in a place that is hard to reach (e.g., deep in a pocket), the user only has a single hand or no hands free (e.g., holding items in both hands), or the user cannot safely access the device (e.g., while driving a car).
  • the user may need to find a remote of the device and make a selection on the remote in order to change the state.
  • this embodiment requires the user to physically locate and operate on the remote device in order to enable state changes.
  • the present invention provides a system and method for automatically changing a state of a device coupled to a headphone device based on activation states of earpieces of the headphone device.
  • the system of the present invention comprises a means for detecting if at least one earpiece of the headphone device is activated or deactivated (i.e., an activation state).
  • the means for detecting in exemplary embodiments, may be an amplifier, a micro-switch, or a thermo sensor. In the case where the means for detecting is an amplifier, the amplifier located within the device detects impedance or impedance changes.
  • the impedance will change when a micro-switch located in the earpiece is opened (i.e., earpiece is not in or against the ear, and thus no audio signal is traveling to the earpiece) from a closed state (i.e., earpiece is in or against the ear, and thus an audio signal is traveling to the earpiece) or vice-versa.
  • a state change may occur in the device.
  • the state change is determined by a preset of a control module.
  • a sensor in each earpiece detects the activation state (or activation state change) and generates a corresponding signal. This signal is sent to the device where a control module will determine if a device state change is needed.
  • the sensor is a thermo sensor which detects a temperature change when an earpiece is inserted or placed against an ear and when the same earpiece is removed from the ear.
  • the method of the present invention comprises detecting an activation state or a change in activation state of at least one earpiece of the headphone device.
  • a change in activation state may, in exemplary embodiments, be detected by monitoring impedance changes to each earpiece, by monitoring an opening or closing of a micro-switch within the earpiece, or by monitoring a temperature change in the earpiece. If a change is detected, the device determines a state change, if one is needed, for the device based the change in activation state and on a preset. The preset may be manufacturer supplied or configured by a user. The device then implements the preset state change.
  • FIG. 1 is an exemplary embodiment of a system for controlling states of a device
  • FIG. 2 is an alternative embodiment of a system for controlling states of a device
  • FIG. 3 is a flowchart for controlling states in accordance with the embodiment of FIG. 1 ;
  • FIG. 4 is a flowchart for controlling states in accordance with the embodiment of FIG. 2 ;
  • FIG. 5 is a flowchart of an alternative method for controlling states according to embodiments of the present invention.
  • FIG. 6 is a table illustrating possible state changes from a current state, according to exemplary embodiments of the present invention.
  • FIG. 1 shows an exemplary embodiment of a device 100 configured for automated state changes.
  • the device 100 may be any handheld or portable device which utilizes a headphone. Alternatively, the device 100 may be a non-portable device utilizing headphones (e.g., a home stereo system).
  • the device 100 comprises a processor 102 , a memory 104 , at least one input/output device 106 , an audio processor 108 coupled to an audio port 110 , a video processor 112 , and a user interface 114 all coupled via a bus 116 .
  • Alternative embodiments of the device 100 may comprise more, less, or other components. For example, if the device 100 is a compact disc player, the video processor 112 may not be necessary.
  • the I/O device 106 allows the user to input audio data and, in some embodiments, video data into the device 100 from an external source.
  • the I/O device 106 may be a disc drive capable of reading data from a compact disc (CD) or digital video disc (DVD).
  • the I/O device 106 may be an interface for downloading of audio and video data from a digital source (e.g., downloading audio from the Internet). Numerous other I/O devices 106 are contemplated and known to those skilled in the art.
  • digital audio and video data loaded into the device 100 may be stored in the memory 104 .
  • a separate database (not shown) may be provided within the device 100 for storing the digital data.
  • the memory 104 further comprises a control module 118 .
  • the control module 118 controls states of the device 100 .
  • the states of the device 100 may include play, stop, pause, reverse, and forward.
  • the control module 118 sends instructions to the processor 102 to enable play of audio and/or video.
  • the control module 118 may be located elsewhere in the device 100 .
  • the audio processor 108 processes the digital audio data received from the I/O device 106 , the memory 114 104, or the optional database for output to the user. In exemplary embodiments, the audio processor 108 will convert the digital audio data into analog signals. In further embodiments, these analog signals are amplified by an amplifier 120 before being transmitted through the audio port 110 to a coupled headphone device 122 .
  • the video processor 112 processes the digital video data received from the I/O device 106 , the memory 114 104, or the optional database for output to the user.
  • video output is through the user interface 114 , which may comprise, for example, a touch-sensitive display screen.
  • the video processor 112 may be coupled to a monitor or similar display device.
  • a dedicated line 124 may, in some embodiments, be provided for transfer of the processed video data from the video processor 112 to the user interface 114 .
  • the device 100 determines whether one or both earpieces of the headphone device 122 are activated by monitoring each earpiece (i.e., a right earpiece and a left earpiece) relative to the user's ear. For example, if the headphone device 122 is an earbud type headphone, the device determines if one or both earbuds are in the ear (i.e., activated). Alternatively, if the headphone device 122 is an over-the-ear type, the device determines if one or both earpieces are positioned against the ear.
  • the device 100 may alter its state or behavior based upon user set preferences. For example, if the device 100 is a portable audio device (e.g., MP3 player), removing one earpiece may trigger a behavior that halves volume to the other earpiece still activated. This user preference may be set on an assumption that the user removes the earpiece to listen to another person speaking, thus reducing the volume in the remaining earpiece is useful. In a further embodiment, if the user removes both earpieces, then the device 100 may enter a “pause” state or behavior.
  • a portable audio device e.g., MP3 player
  • the device 100 may resume play, otherwise, the device 100 may enter a “shut down” state. Exemplary state changes will be discussed in more detail in connection with FIG. 6 .
  • each earpiece of the headphone device 122 comprises a micro-switch.
  • the micro-switch automatically closes upon insertion of the earpiece into or against the ear. When the micro-switch is closed, the earpiece will draw current, resulting in a low impedance. However, when the micro-switch is opened (i.e., the earpiece is removed from the ear), the earpiece will not draw current, thus resulting in a high impedance.
  • the current draw, impedance change, or impedance state are detected by the amplifier 120 .
  • the audio processor 108 forwards the data to the processor 102 , which in turn may request the control module 118 to determine a device state change based on the user set preferences.
  • other circuitry in the device 100 may detect the current draw or impedance change.
  • the current, impedance, and/or impedance change is constantly monitored. Alternatively, the changes may be monitored periodically. In some embodiments, the signals (i.e., activation state change signals) are only generated when an activation state change occurs, while in other embodiments, the signals (i.e., activation state signals) are generated at a preset time period. In a further embodiment, other circuitry or another device may monitor or detect the current, impedance, and/or impedance change.
  • FIG. 2 an alternative embodiment of a device 200 configured for automated state changes is shown.
  • the embodiment of FIG. 2 comprises similar elements as that of FIG. 1 including a processor 202 , a memory 204 , at least one input/output device 206 , an audio processor 208 coupled to an audio port 210 , a video processor 212 , and a user interface 214 all coupled in communication via a bus 216 .
  • the memory comprises a control module 218
  • the audio processor 208 comprises an amplifier 220 .
  • the audio processor 208 processes audio data and sends the processed analog audio signals to a headphone device 222 via the audio port 210 .
  • determination of whether one or both earpieces are activated is performed at the headphone device 222 .
  • Signals representing activation states or activation state changes in one or both of the earpieces (i.e., right earpiece 226 and left earpiece 228 ) of the headphone device 222 are then sent to a sensor port 224 , which essentially acts as a signal-in-port on the device 100 .
  • the signals are then routed to the processor 202 and/or the control module 218 .
  • the headphone device is wireless and signals are transmitted in a wireless manner (e.g., infrared or radio frequency).
  • a state or state change signal is generated indicating if a micro-switch of one or both earpieces is open (i.e., activated) or closed (i.e., deactivated).
  • a right sensor 230 of the right earpiece 226 and a left sensor 232 of the left earpiece 228 generate the activation state or activation state change signals.
  • embodiments of the right and left sensors 230 and 232 may comprise the micro-switch in each earpiece.
  • circuitry in the headphone device 222 will sense the activation state or activation state change. For example, the circuitry may sense a change in voltage draw or impedance associated with one of the earpieces. The circuitry will then generate the activation state change signal.
  • the signals i.e., activation state change signals
  • the signals are only generated when an activation state change occurs, while in other embodiments, the signals (i.e., activation state signals) are generated at a preset time period.
  • the headphone device may generate an activation state or activation state change signal when circuitry within the earpiece senses a temperature change.
  • the sensors 230 and 232 are thermal sensors. Because the ear is typically at a higher temperature than an environment that the headphone device 222 is used within, inserting the earpiece into, or positioning the earpiece against, the ear will cause a temperature change (i.e., increased temperature) in at least a portion of the earpiece that is detectable by the sensor 230 or 232 . Similarly, removal of the earpiece will cause a temperature drop that is detected by the sensor 230 or 232 .
  • Temperature changes cause the circuitry in the headphone device to generate and send the activation state or activation state change signal to the sensor port 224 in the device 200 .
  • the sensor 230 or 232 may be replaced by a skin-resistance sensor.
  • the skin-resistance sensor senses a change which causes the generation of the activation state change signal.
  • the signals i.e., activation state change signals
  • the signals are only generated when an activation state change occurs, while in other embodiments, the signals (i.e., activation state signals) are generated at a preset time period.
  • FIG. 2 shows the right and left sensors 230 and 232 contained within the right and left earpiece 226 and 228 , respectively
  • alternative embodiments may comprise the right and left sensors 230 and 232 located elsewhere in the headphone device 222 .
  • the right and left sensors 230 and 232 are coupled to the right and left earpieces 226 and 228 , respectively.
  • a single sensor may be coupled to both the right and left earpieces 226 and 228 for monitoring the activation of both earpieces.
  • FIG. 3 is a flowchart 300 of an exemplary method for controlling states of a device in accordance with the embodiment of FIG. 1 .
  • the amplifier 120 FIG. 1 detects impedance from a circuit supplying voltage and current to each earpiece of the headphone device 122 ( FIG. 1 ). If the micro-switch in the earpiece is open (i.e., the earpiece is not positioned in or against the ear), no current is drawn, thus the impedance is high. However, if the micro-switch in the earpiece is closed (i.e., the earpiece is positioned in or against the ear), current is being drawn, and the impedance will be low.
  • step 304 the processor 102 ( FIG. 1 ) determines if the impedance detected by the amplifier 120 is low for both earpieces. If the impedances are low, the processor 102 instructs the control module 118 ( FIG. 1 ) to place or keep the device 100 in the “play” device state or mode in step 306 .
  • step 304 the processor 102 determines that impedance is not low for both earpieces, the processor 102 checks if impedance is high for both earpieces in step 308 . If impedance is high for both earpieces, then the control module 118 will place the device 100 into a predetermined (i.e., preset or user preference) device state for when both earpieces are deactivated (i.e., removed from the ear) in step 310 .
  • a predetermined i.e., preset or user preference
  • step 312 the processor 102 determines if the impedance is high for the right earpiece. If the right earpiece is high in impedance, the control module 118 will go to a predetermined device state for when the right earpiece is deactivated in step 314 . Alternatively, if the impedance is not high for the right earpiece, the control module 118 will go to a predetermined state for when the left earpiece is deactivated in step 316 .
  • the method returns to monitoring the impedance data in step 302 . However, if the device 100 turns off, then the method ends.
  • the monitoring process may be continuous.
  • the device 100 may monitor at set periods. These set periods may be defined by the manufacturer or by the user.
  • FIG. 3 illustrates only one embodiment of the method for controlling states in the device 100 .
  • Alternative embodiments may comprise more, less, or similar steps which accomplish the same results.
  • step 312 may determine if impedance is high for a left earpiece instead of for a right earpiece.
  • the device 100 may require the processor 202 to determine which of the earpieces has either a high or a low impedance.
  • steps 304 , 308 , and 312 may be embodied within one step of the processor 102 . This single step comprises detecting impedance strength or change in impedance for each of the earpieces.
  • the sensor 224 port 224 receives state signals from the headphone device 222 ( FIG. 2 ) and forwards the signals to the processor 202 ( FIG. 2 ). These state signals indicate whether one or both of the earpieces of the headphone device 222 are activated.
  • the earpieces comprise a thermo sensor which senses temperature changes (i.e., when the earpiece is inserted, temperature is high, and when the earpiece is removed, the temperature is low), and triggers the generation of the state signals accordingly.
  • the earpieces may comprise skin-resistance sensors.
  • other circuitry associated with the earpieces may sense impedance changes for each earpiece.
  • step 404 the processor 202 determines if the state signal shows both earpieces activated. If both earpieces are activated (i.e., inserted in the ears), the processor 202 instructs the control module 218 ( FIG. 2 ) to place or keep the device 200 in the “play” state or mode in step 406 .
  • step 404 the processor 202 determines that both earpieces are not activated, the processor 202 checks if both earpieces are deactivated in step 408 . If both earpieces are deactivated (i.e., removed from the ears), then the control module 218 will place the device 200 into a predetermined (i.e., preset or user preference) device state for when both earpieces are deactivated in step 410 .
  • step 412 the processor 202 determines if the right earpiece is deactivated. If the right earpiece is deactivated, the control module 218 will go to a predetermined device state for when the right earpiece is deactivated in step 414 . Alternatively, if the right earpiece is activated, the control module 218 will go to a predetermined device state for when the left earpiece is deactivated in step 416 .
  • step 418 If the device 200 remains on in step 418 , then the method returns to receiving state signals in step 402 . However, if the device 200 turns off, then the method ends.
  • FIG. 4 illustrates only one embodiment of the method for controlling states in the device 200 .
  • Alternative embodiments may comprise more, less, or similar steps which accomplish the same results.
  • step 412 may determine if the left earpiece is activated instead of the right.
  • the device 200 may require the processor 202 to determine which of the earpieces are activated or deactivated.
  • steps 404 , 408 , and 412 may be embodied within one step of the processor 202 . This single step comprises determining which earpieces are activated or deactivated based on the received state signals.
  • the device 100 ( FIG. 1 ) or 200 ( FIG. 2 ) monitors the headphone device 122 ( FIG. 1 ) or 222 ( FIG. 2 ).
  • the amplifier 120 ( FIG. 1 ) or similar component of the device 100 monitors and detects current or impendence data for each earpiece of the headphone device 122 ( FIG. 1 ).
  • the device 200 receives signals from the headphone device 222 ( FIG. 2 ) at a sensor port 224 ( FIG. 2 ).
  • the signals are generated by sensors 230 and 232 ( FIG. 2 ) in the headphone device 222 , and may represent an activation/deactivation state of each earpiece 226 and 228 ( FIG. 2 ) or a change in the activation/deactivation state.
  • the device 100 or 200 determines if a change in the activation state has occurred in step 504 . This determination may occur in the processor 102 ( FIG. 1 ) or 202 ( FIG. 2 ) or other component of the device 100 or 200 . Thus, the device 100 or 200 determines if, for example, the impedance changed for one of the earpieces. If no change in activation state is present, then the device 100 or 200 determines if the monitoring process should continue in step 506 . If for example, the device 100 or 200 turns off, then the monitoring process should end. However, if the device 100 or 200 determines that the monitoring process should continue, then the method returns to step 502 . The monitoring process may occur continuously or periodically depending on presets of the device 100 or 200 .
  • the device 100 or 200 determines what activation state change occurred. For example, the device 200 may receive an activation state change signal that indicates that the right earpiece 226 is removed from the ear. Alternatively, the device 100 may determine that the impedance is now high to the right earpiece of the headphone device 122 , thus indicating that the right earpiece is no longer activated.
  • the device 100 or 200 will change the device state accordingly.
  • the device 100 or 200 will review presets in the control module 118 ( FIG. 1 ) or 218 ( FIG. 2 ) to determine what the device state should be, then implement the device state change if necessary. Subsequently, the device 100 or 200 determines if the monitoring process should continue in step 506 .
  • the device states are predetermined or preset in the device 100 ( FIG. 1 ) or 200 ( FIG. 2 ).
  • the user may set their own preset preferences, or alternatively, presets may be enabled by the manufacturer, which may be changed by the user.
  • other states may be utilized in addition to, or instead, of those shown.
  • alterative device states may comprise adjusting the bass, adjusting the tremble, changing audio balance in the earpieces (e.g., if the right earpiece is removed, all audio is shifted over to the left earpiece), and so forth.
  • the device 100 or 200 may enter a pause, adjust volumes, fast forward, or reverse state, for example.
  • the preset may be different for each earpiece. For example, the preset may send the device 100 or 200 into a “fast forward” state if the right earpiece is removed, and send the device 100 or 200 into a “reverse” state if the left earpiece is removed. In an alternative embodiment, the preset enables the same state change to occur when either of the earpieces is removed.
  • the removal of both earpieces may cause the device 100 or 200 to enter a “pause” state or a “power save” state.
  • the “power save” state may, in exemplary embodiments, place the device 100 or 200 into a “standby” mode where a display or monitor darkens and components of the device 100 or 200 power down.
  • the removal of both earpieces may turn off the device 100 or 200 .
  • the device 100 or 200 may enter the “power save” state after a preset amount of time spent in the “pause” state. For example, the user may remove one earpiece to answer a phone call, if after 2 minutes (time interval being another present) the earpiece is not activated, then the device 100 or 200 will enter the “power save” state. Similarly, if the device 100 is in a “pause” state cause by the removal of both earpieces and after a preset amount of time, at least one earpiece is not activated, the device 100 or 200 may enter the “power save” state.
  • the removal of the second earpiece will place the device 100 or 200 into the “power save” state.
  • the removal of the second earpiece may cause the device 100 or 200 to shut down.
  • both earpieces are activated from a current “pause” state, the device 100 or 200 will enter the “run” state.
  • the activation of one or both earpieces will cause the device 100 or 200 to enter the “run” state.
  • the activation of the removed earpiece will cause the device 100 or 200 to enter the “run” state.
  • FIG. 6 shows that in the “power save” state, the removal of both earpieces maintains the state
  • an alternative embodiment may place the device 100 or 200 into a “shut off” state.

Abstract

A system and method for automatically changing a state of a device coupled to a headphone device is provided. The system comprises a means for detecting if at least one earpiece of the headphone device is activated or deactivated. Based on an activation state or a change in an activation state of the at least one earpiece, a state change may occur in the device. The state change is determined by a preset of a control module.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to portable devices having headphones, and more particularly to state changes in the portable devices.
2. Description of Related Art
Many portable consumer devices utilize a headphone in order to provide private and personalized audio to a user. In a stereo embodiment, these headphones typically include a right earpiece and a left earpiece coupled to a right and left channel of audio, respectively. Alternatively, the right and left earpieces may share a single channel of audio.
Conventionally, state changes in a portable device, such as a MP3 player or cell phone, must be manually initiated by a user. For example, if the user needs to place the device into a pause mode from a play mode, the user, typically, will need to physically access the device and make a selection (e.g., push a pause button) to pause the device. This may be troublesome when, for example, the device is located in a place that is hard to reach (e.g., deep in a pocket), the user only has a single hand or no hands free (e.g., holding items in both hands), or the user cannot safely access the device (e.g., while driving a car).
In alternative embodiments, the user may need to find a remote of the device and make a selection on the remote in order to change the state. Disadvantageously, this embodiment requires the user to physically locate and operate on the remote device in order to enable state changes.
Therefore, there is a need for a system and method for automatically changing states of a device without having to the physically access the device.
SUMMARY OF THE INVENTION
The present invention provides a system and method for automatically changing a state of a device coupled to a headphone device based on activation states of earpieces of the headphone device. The system of the present invention comprises a means for detecting if at least one earpiece of the headphone device is activated or deactivated (i.e., an activation state). The means for detecting, in exemplary embodiments, may be an amplifier, a micro-switch, or a thermo sensor. In the case where the means for detecting is an amplifier, the amplifier located within the device detects impedance or impedance changes. The impedance will change when a micro-switch located in the earpiece is opened (i.e., earpiece is not in or against the ear, and thus no audio signal is traveling to the earpiece) from a closed state (i.e., earpiece is in or against the ear, and thus an audio signal is traveling to the earpiece) or vice-versa. Based on a change in the activation state of the at least one earpiece, a state change may occur in the device. The state change is determined by a preset of a control module.
In an alternative embodiment, a sensor in each earpiece detects the activation state (or activation state change) and generates a corresponding signal. This signal is sent to the device where a control module will determine if a device state change is needed. In further embodiments, the sensor is a thermo sensor which detects a temperature change when an earpiece is inserted or placed against an ear and when the same earpiece is removed from the ear.
The method of the present invention comprises detecting an activation state or a change in activation state of at least one earpiece of the headphone device. A change in activation state may, in exemplary embodiments, be detected by monitoring impedance changes to each earpiece, by monitoring an opening or closing of a micro-switch within the earpiece, or by monitoring a temperature change in the earpiece. If a change is detected, the device determines a state change, if one is needed, for the device based the change in activation state and on a preset. The preset may be manufacturer supplied or configured by a user. The device then implements the preset state change.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1. is an exemplary embodiment of a system for controlling states of a device;
FIG. 2 is an alternative embodiment of a system for controlling states of a device;
FIG. 3 is a flowchart for controlling states in accordance with the embodiment of FIG. 1;
FIG. 4 is a flowchart for controlling states in accordance with the embodiment of FIG. 2;
FIG. 5 is a flowchart of an alternative method for controlling states according to embodiments of the present invention; and
FIG. 6 is a table illustrating possible state changes from a current state, according to exemplary embodiments of the present invention.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
FIG. 1. shows an exemplary embodiment of a device 100 configured for automated state changes. The device 100 may be any handheld or portable device which utilizes a headphone. Alternatively, the device 100 may be a non-portable device utilizing headphones (e.g., a home stereo system). The device 100 comprises a processor 102, a memory 104, at least one input/output device 106, an audio processor 108 coupled to an audio port 110, a video processor 112, and a user interface 114 all coupled via a bus 116. Alternative embodiments of the device 100 may comprise more, less, or other components. For example, if the device 100 is a compact disc player, the video processor 112 may not be necessary.
The I/O device 106 allows the user to input audio data and, in some embodiments, video data into the device 100 from an external source. For example, the I/O device 106 may be a disc drive capable of reading data from a compact disc (CD) or digital video disc (DVD). Alternatively, the I/O device 106 may be an interface for downloading of audio and video data from a digital source (e.g., downloading audio from the Internet). Numerous other I/O devices 106 are contemplated and known to those skilled in the art.
In some embodiments, digital audio and video data loaded into the device 100 may be stored in the memory 104. Alternatively, a separate database (not shown) may be provided within the device 100 for storing the digital data.
The memory 104 further comprises a control module 118. The control module 118 controls states of the device 100. For example, if the device 100 is a portable audio or video device, the states of the device 100 may include play, stop, pause, reverse, and forward. Thus, when a user activates one of the states through the user interface 114 (e.g., presses the “play” button), the control module 118, in exemplary embodiments, sends instructions to the processor 102 to enable play of audio and/or video. In alternative embodiments, the control module 118 may be located elsewhere in the device 100.
The audio processor 108 processes the digital audio data received from the I/O device 106, the memory 114 104, or the optional database for output to the user. In exemplary embodiments, the audio processor 108 will convert the digital audio data into analog signals. In further embodiments, these analog signals are amplified by an amplifier 120 before being transmitted through the audio port 110 to a coupled headphone device 122.
Similarly, the video processor 112 processes the digital video data received from the I/O device 106, the memory 114 104, or the optional database for output to the user. In the present embodiment, video output is through the user interface 114, which may comprise, for example, a touch-sensitive display screen. In alternative embodiments, the video processor 112 may be coupled to a monitor or similar display device. A dedicated line 124 may, in some embodiments, be provided for transfer of the processed video data from the video processor 112 to the user interface 114.
In the embodiment of FIG. 1, the device 100 determines whether one or both earpieces of the headphone device 122 are activated by monitoring each earpiece (i.e., a right earpiece and a left earpiece) relative to the user's ear. For example, if the headphone device 122 is an earbud type headphone, the device determines if one or both earbuds are in the ear (i.e., activated). Alternatively, if the headphone device 122 is an over-the-ear type, the device determines if one or both earpieces are positioned against the ear.
Based on results of the determination, the device 100 may alter its state or behavior based upon user set preferences. For example, if the device 100 is a portable audio device (e.g., MP3 player), removing one earpiece may trigger a behavior that halves volume to the other earpiece still activated. This user preference may be set on an assumption that the user removes the earpiece to listen to another person speaking, thus reducing the volume in the remaining earpiece is useful. In a further embodiment, if the user removes both earpieces, then the device 100 may enter a “pause” state or behavior. If within a certain amount of time, the user reactivates one or both of the earpieces, then the device 100 may resume play, otherwise, the device 100 may enter a “shut down” state. Exemplary state changes will be discussed in more detail in connection with FIG. 6.
In the embodiment of FIG. 1, the device 100 determines whether the earpiece is activated by monitoring impedance and/or changes in impedance of each earpiece. In exemplary embodiments, each earpiece of the headphone device 122 comprises a micro-switch. The micro-switch automatically closes upon insertion of the earpiece into or against the ear. When the micro-switch is closed, the earpiece will draw current, resulting in a low impedance. However, when the micro-switch is opened (i.e., the earpiece is removed from the ear), the earpiece will not draw current, thus resulting in a high impedance. The current draw, impedance change, or impedance state (i.e., high or low), in exemplary embodiments, are detected by the amplifier 120. Once detected, the audio processor 108 forwards the data to the processor 102, which in turn may request the control module 118 to determine a device state change based on the user set preferences. In alternative embodiments, other circuitry in the device 100 may detect the current draw or impedance change.
In exemplary embodiments, the current, impedance, and/or impedance change is constantly monitored. Alternatively, the changes may be monitored periodically. In some embodiments, the signals (i.e., activation state change signals) are only generated when an activation state change occurs, while in other embodiments, the signals (i.e., activation state signals) are generated at a preset time period. In a further embodiment, other circuitry or another device may monitor or detect the current, impedance, and/or impedance change.
Referring now to FIG. 2, an alternative embodiment of a device 200 configured for automated state changes is shown. The embodiment of FIG. 2 comprises similar elements as that of FIG. 1 including a processor 202, a memory 204, at least one input/output device 206, an audio processor 208 coupled to an audio port 210, a video processor 212, and a user interface 214 all coupled in communication via a bus 216. Similarly, the memory comprises a control module 218, and the audio processor 208 comprises an amplifier 220. The audio processor 208 processes audio data and sends the processed analog audio signals to a headphone device 222 via the audio port 210.
However, in the embodiment of FIG. 2, determination of whether one or both earpieces are activated is performed at the headphone device 222. Signals representing activation states or activation state changes in one or both of the earpieces (i.e., right earpiece 226 and left earpiece 228) of the headphone device 222 are then sent to a sensor port 224, which essentially acts as a signal-in-port on the device 100. The signals are then routed to the processor 202 and/or the control module 218. In one embodiment, the headphone device is wireless and signals are transmitted in a wireless manner (e.g., infrared or radio frequency).
According to one embodiment, a state or state change signal is generated indicating if a micro-switch of one or both earpieces is open (i.e., activated) or closed (i.e., deactivated). In exemplary embodiments, a right sensor 230 of the right earpiece 226 and a left sensor 232 of the left earpiece 228 generate the activation state or activation state change signals. Furthermore, embodiments of the right and left sensors 230 and 232 may comprise the micro-switch in each earpiece. Thus, when the earpiece is inserted in, or positioned next to, the user's ear, the micro-switch will close. However, when the earpiece is removed from the ear, the micro-switch will open. When the micro-switch opens or closes, circuitry in the headphone device 222 will sense the activation state or activation state change. For example, the circuitry may sense a change in voltage draw or impedance associated with one of the earpieces. The circuitry will then generate the activation state change signal. In some embodiments, the signals (i.e., activation state change signals) are only generated when an activation state change occurs, while in other embodiments, the signals (i.e., activation state signals) are generated at a preset time period.
In an alternative embodiment, the headphone device may generate an activation state or activation state change signal when circuitry within the earpiece senses a temperature change. In this embodiment, the sensors 230 and 232 are thermal sensors. Because the ear is typically at a higher temperature than an environment that the headphone device 222 is used within, inserting the earpiece into, or positioning the earpiece against, the ear will cause a temperature change (i.e., increased temperature) in at least a portion of the earpiece that is detectable by the sensor 230 or 232. Similarly, removal of the earpiece will cause a temperature drop that is detected by the sensor 230 or 232. Temperature changes cause the circuitry in the headphone device to generate and send the activation state or activation state change signal to the sensor port 224 in the device 200. In a further embodiment, the sensor 230 or 232 may be replaced by a skin-resistance sensor. Thus, when the earpiece is placed in or against the ear, the skin-resistance sensor senses a change which causes the generation of the activation state change signal. In some embodiments, the signals (i.e., activation state change signals) are only generated when an activation state change occurs, while in other embodiments, the signals (i.e., activation state signals) are generated at a preset time period.
Although FIG. 2 shows the right and left sensors 230 and 232 contained within the right and left earpiece 226 and 228, respectively, alternative embodiments may comprise the right and left sensors 230 and 232 located elsewhere in the headphone device 222. In these embodiments, the right and left sensors 230 and 232 are coupled to the right and left earpieces 226 and 228, respectively. In a further embodiment, a single sensor may be coupled to both the right and left earpieces 226 and 228 for monitoring the activation of both earpieces.
FIG. 3 is a flowchart 300 of an exemplary method for controlling states of a device in accordance with the embodiment of FIG. 1. In step 302, the amplifier 120 (FIG. 1) detects impedance from a circuit supplying voltage and current to each earpiece of the headphone device 122 (FIG. 1). If the micro-switch in the earpiece is open (i.e., the earpiece is not positioned in or against the ear), no current is drawn, thus the impedance is high. However, if the micro-switch in the earpiece is closed (i.e., the earpiece is positioned in or against the ear), current is being drawn, and the impedance will be low. Thus, in step 304, the processor 102 (FIG. 1) determines if the impedance detected by the amplifier 120 is low for both earpieces. If the impedances are low, the processor 102 instructs the control module 118 (FIG. 1) to place or keep the device 100 in the “play” device state or mode in step 306.
However, if in step 304, the processor 102 determines that impedance is not low for both earpieces, the processor 102 checks if impedance is high for both earpieces in step 308. If impedance is high for both earpieces, then the control module 118 will place the device 100 into a predetermined (i.e., preset or user preference) device state for when both earpieces are deactivated (i.e., removed from the ear) in step 310.
If in step 308, impedances are not high for both earpieces, then in step 312, the processor 102 determines if the impedance is high for the right earpiece. If the right earpiece is high in impedance, the control module 118 will go to a predetermined device state for when the right earpiece is deactivated in step 314. Alternatively, if the impedance is not high for the right earpiece, the control module 118 will go to a predetermined state for when the left earpiece is deactivated in step 316.
If the device 100 remains on in step 318, then the method returns to monitoring the impedance data in step 302. However, if the device 100 turns off, then the method ends. In exemplary embodiments, the monitoring process may be continuous. Alternatively, the device 100 may monitor at set periods. These set periods may be defined by the manufacturer or by the user.
It should be noted that FIG. 3 illustrates only one embodiment of the method for controlling states in the device 100. Alternative embodiments may comprise more, less, or similar steps which accomplish the same results. For example, step 312 may determine if impedance is high for a left earpiece instead of for a right earpiece. Alternatively, the device 100 may require the processor 202 to determine which of the earpieces has either a high or a low impedance. In a further example, steps 304, 308, and 312 may be embodied within one step of the processor 102. This single step comprises detecting impedance strength or change in impedance for each of the earpieces.
Referring now to FIG. 4, a flowchart 400 of an exemplary method for controlling states according to the embodiment of FIG. 2 is shown. In step 402, the sensor 224 port 224 (FIG. 2) receives state signals from the headphone device 222 (FIG. 2) and forwards the signals to the processor 202 (FIG. 2). These state signals indicate whether one or both of the earpieces of the headphone device 222 are activated. In one embodiment, the earpieces comprise a thermo sensor which senses temperature changes (i.e., when the earpiece is inserted, temperature is high, and when the earpiece is removed, the temperature is low), and triggers the generation of the state signals accordingly. In alternative embodiments, the earpieces may comprise skin-resistance sensors. In yet further embodiments, other circuitry associated with the earpieces may sense impedance changes for each earpiece.
Thus, in step 404, the processor 202 determines if the state signal shows both earpieces activated. If both earpieces are activated (i.e., inserted in the ears), the processor 202 instructs the control module 218 (FIG. 2) to place or keep the device 200 in the “play” state or mode in step 406.
However, if in step 404, the processor 202 determines that both earpieces are not activated, the processor 202 checks if both earpieces are deactivated in step 408. If both earpieces are deactivated (i.e., removed from the ears), then the control module 218 will place the device 200 into a predetermined (i.e., preset or user preference) device state for when both earpieces are deactivated in step 410.
If in step 408, both earpieces are not deactivated, then in step 412, the processor 202 determines if the right earpiece is deactivated. If the right earpiece is deactivated, the control module 218 will go to a predetermined device state for when the right earpiece is deactivated in step 414. Alternatively, if the right earpiece is activated, the control module 218 will go to a predetermined device state for when the left earpiece is deactivated in step 416.
If the device 200 remains on in step 418, then the method returns to receiving state signals in step 402. However, if the device 200 turns off, then the method ends.
It should be noted that FIG. 4 illustrates only one embodiment of the method for controlling states in the device 200. Alternative embodiments may comprise more, less, or similar steps which accomplish the same results. For example, step 412 may determine if the left earpiece is activated instead of the right. Alternatively, the device 200 may require the processor 202 to determine which of the earpieces are activated or deactivated. In a further example, steps 404, 408, and 412 may be embodied within one step of the processor 202. This single step comprises determining which earpieces are activated or deactivated based on the received state signals.
Referring now to FIG. 5, an alternative method for controlling device states is shown. In step 502, the device 100 (FIG. 1) or 200 (FIG. 2) monitors the headphone device 122 (FIG. 1) or 222 (FIG. 2). In accordance to the embodiment of FIG. 1, the amplifier 120 (FIG. 1) or similar component of the device 100 monitors and detects current or impendence data for each earpiece of the headphone device 122 (FIG. 1). With respect to the embodiment of FIG. 2, the device 200 receives signals from the headphone device 222 (FIG. 2) at a sensor port 224 (FIG. 2). The signals are generated by sensors 230 and 232 (FIG. 2) in the headphone device 222, and may represent an activation/deactivation state of each earpiece 226 and 228 (FIG. 2) or a change in the activation/deactivation state.
Based on the data received while monitoring the headphone device 122 or 222, the device 100 or 200 determines if a change in the activation state has occurred in step 504. This determination may occur in the processor 102 (FIG. 1) or 202 (FIG. 2) or other component of the device 100 or 200. Thus, the device 100 or 200 determines if, for example, the impedance changed for one of the earpieces. If no change in activation state is present, then the device 100 or 200 determines if the monitoring process should continue in step 506. If for example, the device 100 or 200 turns off, then the monitoring process should end. However, if the device 100 or 200 determines that the monitoring process should continue, then the method returns to step 502. The monitoring process may occur continuously or periodically depending on presets of the device 100 or 200.
If an activation state change is detected in step 504, then the device 100 or 200 determines what activation state change occurred. For example, the device 200 may receive an activation state change signal that indicates that the right earpiece 226 is removed from the ear. Alternatively, the device 100 may determine that the impedance is now high to the right earpiece of the headphone device 122, thus indicating that the right earpiece is no longer activated.
Based on the activation state change determined in step 508, the device 100 or 200 will change the device state accordingly. Thus is step 510, the device 100 or 200 will review presets in the control module 118 (FIG. 1) or 218 (FIG. 2) to determine what the device state should be, then implement the device state change if necessary. Subsequently, the device 100 or 200 determines if the monitoring process should continue in step 506.
Referring now to FIG. 6, a table illustrating possible states and state changes from a current state according to exemplary embodiments of the present invention is shown. The device states are predetermined or preset in the device 100 (FIG. 1) or 200 (FIG. 2). The user may set their own preset preferences, or alternatively, presets may be enabled by the manufacturer, which may be changed by the user. In alternative embodiments, other states may be utilized in addition to, or instead, of those shown. For example, alterative device states may comprise adjusting the bass, adjusting the tremble, changing audio balance in the earpieces (e.g., if the right earpiece is removed, all audio is shifted over to the left earpiece), and so forth.
If the current state is “run” or “play” and one earpiece is removed, then depending on the preset, the device 100 or 200 may enter a pause, adjust volumes, fast forward, or reverse state, for example. In one embodiment, the preset may be different for each earpiece. For example, the preset may send the device 100 or 200 into a “fast forward” state if the right earpiece is removed, and send the device 100 or 200 into a “reverse” state if the left earpiece is removed. In an alternative embodiment, the preset enables the same state change to occur when either of the earpieces is removed.
From the current “run” state, the removal of both earpieces may cause the device 100 or 200 to enter a “pause” state or a “power save” state. The “power save” state may, in exemplary embodiments, place the device 100 or 200 into a “standby” mode where a display or monitor darkens and components of the device 100 or 200 power down. In a further embodiment, the removal of both earpieces may turn off the device 100 or 200.
If the current state is a “pause” state caused by the removal of one or both earpieces, the device 100 or 200 may enter the “power save” state after a preset amount of time spent in the “pause” state. For example, the user may remove one earpiece to answer a phone call, if after 2 minutes (time interval being another present) the earpiece is not activated, then the device 100 or 200 will enter the “power save” state. Similarly, if the device 100 is in a “pause” state cause by the removal of both earpieces and after a preset amount of time, at least one earpiece is not activated, the device 100 or 200 may enter the “power save” state.
In an alternative preset, if the device 100 or 200 is in a “pause state” caused by one earpiece being inactive, the removal of the second earpiece will place the device 100 or 200 into the “power save” state. In yet a further embodiment, the removal of the second earpiece may cause the device 100 or 200 to shut down.
If both earpieces are activated from a current “pause” state, the device 100 or 200 will enter the “run” state.
If the current device state of the device 100 or 200 is a “power save” state caused by having both earpieces removed, the activation of one or both earpieces will cause the device 100 or 200 to enter the “run” state. Similarly, if the device 100 or 200 is in a “power save” state caused by the removal of one earpiece, the activation of the removed earpiece will cause the device 100 or 200 to enter the “run” state.
Although FIG. 6 shows that in the “power save” state, the removal of both earpieces maintains the state, an alternative embodiment may place the device 100 or 200 into a “shut off” state.
The present invention has been described above with references to exemplary embodiments. It will be apparent to those skilled in the art that various modifications may be made and other embodiments can be used without departing from the broader scope of the present invention. Therefore, these and other variations upon the specific embodiments are intended to be covered by the present invention.

Claims (40)

What is claimed is:
1. A system for automated state changes in an audio-output enabled device coupled to a headphone device, the headphone device including a right ear piece earpiece and a left ear piece earpiece, the system comprising:
a processor in the audio-output enabled device, the processor configured to process digital audio data for output to the right earpiece and the left earpiece of the headphone device;
sensors for detecting if the right earpiece and the left earpiece of the headphone device are each in an activated or deactivated state; and
a control module configured for determining stored in memory and executable by a processor to determine a device state change based on the activated or deactivated state of each earpiece and a current playback state of the audio-enabled device, the device state change including a playback state of the digital audio data.
2. The system of claim 1 wherein the sensors comprise an amplifier configured to monitor impedance of each earpiece.
3. The system of claim 1 wherein the sensors are thermo sensors located within each earpiece of the headphone device.
4. The system of claim 1 wherein the sensors are circuitry located within each earpiece of the headphone device.
5. The system of claim 1 wherein the sensors generate a state change signal.
6. The system of claim 1 wherein the sensors are coupled to a sensor port configured to receive signals.
7. The system of claim 1 wherein the control module comprises presets for the state changes.
8. The system of claim 1 further comprising a touch sensitive user interface configured to allow a user to enter presets into the control module.
9. A method for automatically changing a state of an audio-output enabled device coupled to a headphone device, the headphone device including a right ear piece earpiece and a left earpiece, the method comprising:
processing digital audio data for output to the right earpiece and the left earpiece of the headphone device;
receiving activation state data for both the right earpiece and the left earpiece of the headphone device; and
based on the received activation state data for each earpiece and a current state of the audio-output enabled device, implementing a device state change based on a preset if an activation state change occurred, the device state change including a playback state of the digital audio data.
10. The method of claim 9 wherein determining if activation state change occurred comprises determining if an impedance change occurred in each earpiece.
11. The method of claim 9 further comprising customizing the preset via a touch sensitive user interface.
12. The method of claim 9 wherein the activation state data comprises impedance data.
13. The method of claim 9 wherein the activation state data comprises activation state signals received from the headphone device.
14. The method of claim 9 wherein the activation state data comprises activation state change signals received from the headphone device.
15. A non-transitory computer readable storage medium having embodied thereon a program, the program being executable by a processor to perform a method for automatically changing a state of an audio-output enabled device coupled to a headphone device, the headphone device including a right earpiece and a left earpiece, the method comprising:
processing digital audio data for output to the right earpiece and the left earpiece of the headphone device;
receiving activation state data for both the right earpiece and the left earpiece of the headphone device; and
based on the received activation state data for each earpiece and a current state of the audio-output enabled device, implementing a device state change based on a preset if an activation state change occurred, the device state change including a playback state of the digital audio data.
16. A method for automatically changing a state of an audio-output enabled device coupled to a headphone device, the headphone device including a right earpiece and a left earpiece, the method comprising:
receiving activation state data from both the right earpiece and the left earpiece of the headphone device;
determining an activation state for each earpiece of the headphone device; and
implementing a device state change based on a preset according to the activation state of each earpiece and a current state of the audio-output enabled device, the device state change including a playback state of digital audio data stored on the audio-output enabled device.
17. A headphone device for use with a system for automated state changes in an audio-output enabled device, comprising:
a right earpiece;
a left earpiece; and
a first sensor coupled to the right earpiece and a second sensor coupled to the left earpiece, each of the sensors configured to:
determine an activation state of the right earpiece and the left earpiece;
generate activation state data for changing the device state of the audio-output enabled device based on a current state of the device, the device state change including a playback state of digital audio data stored on the audio-output enabled device.
18. The headphone device of claim 17 wherein at least one sensor is a thermo sensor.
19. The headphone device of claim 17 further comprising a micro-switch in the right and left earpieces, the micro-switch closing upon activation of the right and left earpieces.
20. The system of claim 1, wherein the playback state is selected from a group consisting of play, stop, rewind, fast forward, and pause.
21. The method of claim 9, wherein the playback state is selected from a group consisting of play, stop, rewind, fast forward, and pause.
22. The non-transitory computer-readable storage medium of claim 15, wherein the playback state is selected from a group consisting of play, stop, rewind, fast forward, and pause.
23. The method of claim 16, wherein the playback state is selected from a group consisting of play, stop, rewind, fast forward, and pause.
24. The headphone device of claim 17, wherein the playback state is selected from a group consisting of play, stop, rewind, fast forward, and pause.
25. A method for controlling the state of a headphone device, the method comprising:
detecting impedance data for all states of at least one sensor for two earpieces in the headphone device;
determining that the detected impedance data is low for both earpieces; and
executing instructions stored in memory relating to a run state for the headphone device until the headphone device is deactivated or an impedance state that is not low for both earpieces is detected.
26. A method for controlling the state of a headphone device, the method comprising:
detecting impedance data for all states of at least one sensor for two earpieces in the headphone device;
determining that the detected impedance data is high for both earpieces; and
executing instructions stored in memory relating to a predetermined state for the headphone device when both earpieces are inactive and until the headphone device is deactivated or an impedance state that is not high for both earpieces is detected.
27. A method for controlling the state of a headphone device, the method comprising:
detecting impedance data for all states of at least one sensor for two earpieces in the headphone device;
determining that the detected impedance data is high for one of the two earpieces; and
executing instructions stored in memory relating to a predetermined state for the headphone device when the one of the two earpieces is inactive and until the headphone device is deactivated or an impedance state that is not high for the one of the two earpieces is detected.
28. A method for controlling the state of a headphone device, the method comprising:
detecting impedance data for all states of at least one sensor for two earpieces in the headphone device;
determining that the detected impedance data is low for one of the two earpieces; and
executing instructions stored in memory relating to a predetermined state for the headphone device when the one of the two earpieces is inactive and until the headphone device is deactivated or an impedance state that is not low for the one of the two earpieces is detected.
29. A method for controlling the state of a headphone device, the method comprising:
receiving signals for all states of at least one sensor corresponding to the earpieces of the headphone device;
determining that the signals indicate both earpieces of the headphone device to be activated; and
entering into a run state in response to the determination that both earpieces of the headphone device are activated and remaining in the run state until the headphone device is deactivated or the signals indicate that both earpieces of the headphone device are not activated.
30. A method for controlling the state of a headphone device, the method comprising:
receiving signals for all states of at least one sensor corresponding to the earpieces of the headphone device;
determining that the signals indicate both earpieces of the headphone device to be inactive;
entering into a predetermined state in response to the determination that both earpieces of the headphone device are deactivated and remaining in the predetermined state until the headphone device is deactivated or the signals indicate that both earpieces of the headphone device are not deactivated.
31. A method for controlling the state of a headphone device, the method comprising:
receiving signals for all states of at least one sensor corresponding to the earpieces of the headphone device;
determining that the signals indicate one of the two earpieces of the headphone device to be inactive;
entering into a predetermined state in response to the determination that one of the two earpieces of the headphone device is deactivated and remaining in the predetermined state until the headphone device is deactivated or the signals indicate that the one of the two earpieces of the headphone device are not deactivated.
32. A method for controlling the state of a headphone device, the method comprising:
receiving signals for all states of at least one sensor corresponding to the earpieces of the headphone device;
determining that the signals indicate one of the two earpieces of the headphone device to be active;
entering into a predetermined state in response to the determination that one of the two earpieces of the headphone device is activated and remaining in the predetermined state until the headphone device is deactivated or the signals indicate that the one of the two earpieces of the headphone device is not activated.
33. A system comprising:
a processor; and
a memory, the memory storing a program and the program executable by a processor to perform a method for controlling the state of a headphone device, the method comprising:
detecting impedance data for all states of at least one sensor for two earpieces in the headphone device;
determining that the detected impedance data is low for both earpieces; and
entering a run state for the headphone device until the headphone device is deactivated or an impedance state that is not low for both earpieces is detected.
34. A system comprising:
a processor; and
a memory, the memory storing a program and the program executable by a processor to perform a method for controlling the state of a headphone device, the method comprising:
detecting impedance data for all states of at least one sensor for two earpieces in the headphone device;
determining that the detected impedance data is high for both earpieces; and
entering a predetermined state for the headphone device when both earpieces are inactive and until the headphone device is deactivated or an impedance state that is not high for both earpieces is detected.
35. A system comprising:
a processor; and
a memory, the memory storing a program and the program executable by a processor to perform a method for controlling the state of a headphone device, the method comprising:
detecting impedance data for all states of at least one sensor for two earpieces in the headphone device;
determining that the detected impedance data is high for one of the two earpieces; and
entering a predetermined state for the headphone device when the one of the two earpieces is inactive and until the headphone device is deactivated or an impedance state that is not high for the one of the two earpieces is detected.
36. A system comprising:
a processor; and
a memory, the memory storing a program and the program executable by a processor to perform a method for controlling the state of a headphone device, the method comprising:
detecting impedance data for all states of at least one sensor for two earpieces in the headphone device;
determining that the detected impedance data is low for one of the two earpieces; and
entering a predetermined state for the headphone device when the one of the two earpieces is inactive and until the headphone device is deactivated or an impedance state that is not low for the one of the two earpieces is detected.
37. A system comprising:
a processor; and
a memory, the memory storing a program and the program executable by a processor to perform a method for controlling the state of a headphone device, the method comprising:
receiving signals for all states of at least one sensor corresponding to the earpieces of the headphone device;
determining that the signals indicate both earpieces of the headphone device to be activated; and
entering a run state in response to the determination that both earpieces of the headphone device are activated and remaining in the run state until the headphone device is deactivated or the signals indicate that both earpieces of the headphone device are not activated.
38. A system comprising:
a processor; and
a memory, the memory storing a program and the program executable by a processor to perform a method for controlling the state of a headphone device, the method comprising:
receiving signals for all states of at least one sensor corresponding to the earpieces of the headphone device;
determining that the signals indicate both earpieces of the headphone device to be inactive;
entering a predetermined state in response to the determination that both earpieces of the headphone device are deactivated and remaining in the predetermined state until the headphone device is deactivated or the signals indicate that both earpieces of the headphone device are not deactivated.
39. A system comprising:
a processor; and
a memory, the memory storing a program and the program executable by a processor to perform a method for controlling the state of a headphone device, the method comprising:
receiving signals for all states of at least one sensor corresponding to the earpieces of the headphone device;
determining that the signals indicate one of the two earpieces of the headphone device to be inactive;
entering into a predetermined state in response to the determination that one of the two earpieces of the headphone device is deactivated and remaining in the predetermined state until the headphone device is deactivated or the signals indicate that the one of the two earpieces of the headphone device are not deactivated.
40. A system comprising:
a processor; and
a memory, the memory storing a program and the program executable by a processor to perform a method for controlling the state of a headphone device, the method comprising:
receiving signals for all states of at least one sensor corresponding to the earpieces of the headphone device;
determining that the signals indicate one of the two earpieces of the headphone device to be active;
entering into a predetermined state in response to the determination that one of the two earpieces of the headphone device is activated and remaining in the predetermined state until the headphone device is deactivated or the signals indicate that the one of the two earpieces of the headphone device is not activated.
US12/869,740 2004-08-06 2010-08-26 System and method for controlling states of a device Active 2025-06-11 USRE44980E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/869,740 USRE44980E1 (en) 2004-08-06 2010-08-26 System and method for controlling states of a device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/913,066 US7418103B2 (en) 2004-08-06 2004-08-06 System and method for controlling states of a device
US12/869,740 USRE44980E1 (en) 2004-08-06 2010-08-26 System and method for controlling states of a device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/913,066 Reissue US7418103B2 (en) 2004-08-06 2004-08-06 System and method for controlling states of a device

Publications (1)

Publication Number Publication Date
USRE44980E1 true USRE44980E1 (en) 2014-07-01

Family

ID=35757432

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/913,066 Ceased US7418103B2 (en) 2004-08-06 2004-08-06 System and method for controlling states of a device
US12/869,740 Active 2025-06-11 USRE44980E1 (en) 2004-08-06 2010-08-26 System and method for controlling states of a device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/913,066 Ceased US7418103B2 (en) 2004-08-06 2004-08-06 System and method for controlling states of a device

Country Status (1)

Country Link
US (2) US7418103B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160165035A1 (en) * 2014-12-03 2016-06-09 Fih (Hong Kong) Limited Electronic device and method for controlling electronic device using headset
US10033847B2 (en) 2013-09-30 2018-07-24 Sony Interactive Entertainment Inc. Dropped call warning and prevention methods
US10045111B1 (en) 2017-09-29 2018-08-07 Bose Corporation On/off head detection using capacitive sensing
US10257602B2 (en) 2017-08-07 2019-04-09 Bose Corporation Earbud insertion sensing method with infrared technology
US10334347B2 (en) 2017-08-08 2019-06-25 Bose Corporation Earbud insertion sensing method with capacitive technology
US10462551B1 (en) 2018-12-06 2019-10-29 Bose Corporation Wearable audio device with head on/off state detection
US10812888B2 (en) 2018-07-26 2020-10-20 Bose Corporation Wearable audio device with capacitive touch interface
US11275471B2 (en) 2020-07-02 2022-03-15 Bose Corporation Audio device with flexible circuit for capacitive interface

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7299142B2 (en) * 2003-08-22 2007-11-20 Gateway Inc. System and method for prevention of accidental activation of portable audio device
US20060045304A1 (en) * 2004-09-02 2006-03-02 Maxtor Corporation Smart earphone systems devices and methods
WO2007049255A2 (en) * 2005-10-28 2007-05-03 Koninklijke Philips Electronics N.V. System and method and for controlling a device using position and touch
US7792666B2 (en) * 2006-05-03 2010-09-07 Sony Computer Entertainment Inc. Translation block invalidation prehints in emulation of a target system on a host system
US7813909B2 (en) * 2006-05-03 2010-10-12 Sony Computer Entertainment Inc. Register mapping in emulation of a target system on a host system
US7770050B2 (en) * 2006-05-03 2010-08-03 Sony Computer Entertainment Inc. Method and apparatus for resolving clock management issues in emulation involving both interpreted and translated code
CN101461218A (en) * 2006-06-02 2009-06-17 索尼爱立信移动通讯股份有限公司 Sound output selection in relation to an accessory
US7930007B2 (en) * 2006-06-02 2011-04-19 Sony Ericsson Mobile Communications Ab Audio output device selection for a portable electronic device
US20100040245A1 (en) * 2006-06-09 2010-02-18 Koninklijke Philips Electronics N.V. Multi-function headset and function selection of same
US20070297634A1 (en) * 2006-06-27 2007-12-27 Sony Ericsson Mobile Communications Ab Earphone system with usage detection
US7983427B2 (en) * 2007-02-12 2011-07-19 Bose Corporation Method and apparatus for conserving battery power
US7805171B2 (en) * 2007-03-06 2010-09-28 Motorola Mobility, Inc. Earmounted electronic device and method
KR100872845B1 (en) * 2007-07-20 2008-12-09 한국전자통신연구원 Headset capable of user specific audio service and method for user specific audio service using the same
US8060356B2 (en) 2007-12-19 2011-11-15 Sony Computer Entertainment Inc. Processor emulation using fragment level translation
CN101488081A (en) * 2008-01-14 2009-07-22 鸿富锦精密工业(深圳)有限公司 Audio device and its playing apparatus and method
US8238590B2 (en) * 2008-03-07 2012-08-07 Bose Corporation Automated audio source control based on audio output device placement detection
US9094764B2 (en) * 2008-04-02 2015-07-28 Plantronics, Inc. Voice activity detection with capacitive touch sense
US20090296951A1 (en) * 2008-05-30 2009-12-03 Sony Ericsson Mobile Communications Ab Tap volume control for buttonless headset
US8225465B2 (en) 2008-06-27 2012-07-24 Snik Llc Headset cord holder
US8621724B2 (en) 2008-06-27 2014-01-07 Snik Llc Headset cord holder
US10652661B2 (en) 2008-06-27 2020-05-12 Snik, LLC Headset cord holder
WO2010014561A2 (en) * 2008-07-28 2010-02-04 Plantronics, Inc. Headset wearing mode based operation
US20100020998A1 (en) * 2008-07-28 2010-01-28 Plantronics, Inc. Headset wearing mode based operation
US20100020982A1 (en) * 2008-07-28 2010-01-28 Plantronics, Inc. Donned/doffed multimedia file playback control
EP2178280A1 (en) * 2008-10-17 2010-04-21 Sony Ericsson Mobile Communications AB Arrangement and method for determining operational mode of a communication device
US8098838B2 (en) * 2008-11-24 2012-01-17 Apple Inc. Detecting the repositioning of an earphone using a microphone and associated action
US8630425B2 (en) * 2008-12-12 2014-01-14 Cisco Technology, Inc. Apparatus, system, and method for audio communications
US8600085B2 (en) * 2009-01-20 2013-12-03 Apple Inc. Audio player with monophonic mode control
US8243946B2 (en) * 2009-03-30 2012-08-14 Bose Corporation Personal acoustic device position determination
US8238570B2 (en) * 2009-03-30 2012-08-07 Bose Corporation Personal acoustic device position determination
US8699719B2 (en) * 2009-03-30 2014-04-15 Bose Corporation Personal acoustic device position determination
US8238567B2 (en) * 2009-03-30 2012-08-07 Bose Corporation Personal acoustic device position determination
US8159402B2 (en) * 2009-05-19 2012-04-17 Motorola Mobility, Inc. Hands free cellular communication device having a deployable antenna
CN102202250A (en) * 2010-03-25 2011-09-28 国基电子(上海)有限公司 Earphone, electronic device and power saving method
GB2483493B (en) * 2010-09-10 2018-07-18 Qualcomm Technologies Int Ltd Headset ear detection
WO2013045976A1 (en) * 2011-09-28 2013-04-04 Sony Ericsson Mobile Communications Ab Controlling power for a headset
WO2013050804A1 (en) * 2011-10-05 2013-04-11 Nokia Corporation A headset apparatus registering movement in the housing
US8995679B2 (en) 2011-12-13 2015-03-31 Bose Corporation Power supply voltage-based headset function control
US9769556B2 (en) 2012-02-22 2017-09-19 Snik Llc Magnetic earphones holder including receiving external ambient audio and transmitting to the earphones
US9167329B2 (en) * 2012-02-22 2015-10-20 Snik Llc Magnetic earphones holder
US10524038B2 (en) 2012-02-22 2019-12-31 Snik Llc Magnetic earphones holder
US20130345842A1 (en) * 2012-06-25 2013-12-26 Lenovo (Singapore) Pte. Ltd. Earphone removal detection
JP5880340B2 (en) * 2012-08-02 2016-03-09 ソニー株式会社 Headphone device, wearing state detection device, wearing state detection method
US9049513B2 (en) 2012-09-18 2015-06-02 Bose Corporation Headset power source managing
US9326058B2 (en) * 2012-09-26 2016-04-26 Sony Corporation Control method of mobile terminal apparatus
CN103257873B (en) * 2013-04-18 2016-07-06 小米科技有限责任公司 The control method of a kind of intelligent terminal and system
US9402124B2 (en) * 2013-04-18 2016-07-26 Xiaomi Inc. Method for controlling terminal device and the smart terminal device thereof
US9781521B2 (en) 2013-04-24 2017-10-03 Oticon A/S Hearing assistance device with a low-power mode
TWI533716B (en) * 2013-06-25 2016-05-11 美律實業股份有限公司 Handheld electronic apparatus and corresponding noise-canceling headphones
KR102073793B1 (en) * 2013-08-29 2020-02-05 삼성전자 주식회사 Audio Accessory`s cover and Audio Accessory thereof, and Electronic Device supporting the same
US20160210111A1 (en) * 2013-09-29 2016-07-21 Nokia Technologies Oy Apparatus for enabling Control Input Modes and Associated Methods
US10051371B2 (en) 2014-03-31 2018-08-14 Bose Corporation Headphone on-head detection using differential signal measurement
JP2015211227A (en) * 2014-04-23 2015-11-24 京セラ株式会社 Reproduction device and reproduction method
US9872116B2 (en) * 2014-11-24 2018-01-16 Knowles Electronics, Llc Apparatus and method for detecting earphone removal and insertion
US9949878B2 (en) * 2015-03-11 2018-04-24 Honeywell International Inc. System and method to automatically switch on and switch off device for accurate recording of personal sound exposure measurements
US9401158B1 (en) 2015-09-14 2016-07-26 Knowles Electronics, Llc Microphone signal fusion
US9998815B2 (en) * 2015-10-08 2018-06-12 Mediatek Inc. Portable device and method for entering power-saving mode
CN105451112A (en) * 2015-12-24 2016-03-30 王旋 Intelligent power-saving earphone
US9779716B2 (en) 2015-12-30 2017-10-03 Knowles Electronics, Llc Occlusion reduction and active noise reduction based on seal quality
US9830930B2 (en) 2015-12-30 2017-11-28 Knowles Electronics, Llc Voice-enhanced awareness mode
US9967682B2 (en) 2016-01-05 2018-05-08 Bose Corporation Binaural hearing assistance operation
US9812149B2 (en) 2016-01-28 2017-11-07 Knowles Electronics, Llc Methods and systems for providing consistency in noise reduction during speech and non-speech periods
US9743171B1 (en) * 2016-02-19 2017-08-22 Logitech Europe S.A. Method and apparatus for delivering audio content to a user
US10631074B2 (en) 2016-04-19 2020-04-21 Snik Llc Magnetic earphones holder
US10455306B2 (en) 2016-04-19 2019-10-22 Snik Llc Magnetic earphones holder
US11272281B2 (en) 2016-04-19 2022-03-08 Snik Llc Magnetic earphones holder
US10225640B2 (en) 2016-04-19 2019-03-05 Snik Llc Device and system for and method of transmitting audio to a user
US10951968B2 (en) 2016-04-19 2021-03-16 Snik Llc Magnetic earphones holder
KR20170119922A (en) * 2016-04-20 2017-10-30 엘지전자 주식회사 Portable sound equipment
US9860626B2 (en) 2016-05-18 2018-01-02 Bose Corporation On/off head detection of personal acoustic device
US10349259B2 (en) * 2016-09-23 2019-07-09 Apple Inc. Broadcasting a device state in a wireless communication network
US9838812B1 (en) 2016-11-03 2017-12-05 Bose Corporation On/off head detection of personal acoustic device using an earpiece microphone
DE102016224834A1 (en) * 2016-12-13 2018-06-14 Robert Bosch Gmbh Method and circuit arrangement for operating a headphone
EP3553650B1 (en) 2016-12-29 2024-03-27 Huawei Technologies Co., Ltd. Multimedia data playback method and terminal device
WO2019017906A1 (en) 2017-07-18 2019-01-24 Hewlett-Packard Development Company, L.P. Test sample devices and methods
CN108419164B (en) * 2018-04-17 2020-02-18 歌尔股份有限公司 Type-C earphone
CN109379653B (en) * 2018-09-30 2020-12-04 Oppo广东移动通信有限公司 Audio transmission method and device, electronic equipment and storage medium
CN111698607B (en) * 2020-07-03 2022-05-06 歌尔科技有限公司 TWS earphone audio output control method, apparatus, device and medium

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862379A (en) * 1972-07-11 1975-01-21 Akg Akustische Kino Geraete Headphone construction for interpreter translator arrangements
US4955729A (en) 1987-03-31 1990-09-11 Marx Guenter Hearing aid which cuts on/off during removal and attachment to the user
US5144678A (en) 1991-02-04 1992-09-01 Golden West Communications Inc. Automatically switched headset
US5473676A (en) 1990-09-27 1995-12-05 Radish Communications Systems, Inc. Telephone handset interface for automatic switching between voice and data communications
US6035047A (en) 1996-05-08 2000-03-07 Lewis; Mark Henry System to block unwanted sound waves and alert while sleeping
US6069960A (en) 1996-09-05 2000-05-30 Sony Corporation Connector device for information-handling apparatus and connector device for stereophonic audio/video apparatus
US20010046304A1 (en) * 2000-04-24 2001-11-29 Rast Rodger H. System and method for selective control of acoustic isolation in headsets
EP1199867A1 (en) 2000-10-20 2002-04-24 Sony International (Europe) GmbH Mobile terminal and headset
US20040042629A1 (en) 2002-08-30 2004-03-04 Mellone Charles M. Automatic earpiece sensing
US6704428B1 (en) 1999-03-05 2004-03-09 Michael Wurtz Automatic turn-on and turn-off control for battery-powered headsets
US20050201568A1 (en) 2004-03-11 2005-09-15 Texas Instruments Incorporated Headset Detector in a Device Generating Audio Signals
US6985592B1 (en) 1997-01-08 2006-01-10 Matsushita Electric Industrial Co., Ltd. Multipurpose earphone set
US7010332B1 (en) 2000-02-21 2006-03-07 Telefonaktiebolaget Lm Ericsson(Publ) Wireless headset with automatic power control
US7103188B1 (en) * 1993-06-23 2006-09-05 Owen Jones Variable gain active noise cancelling system with improved residual noise sensing
US20060215847A1 (en) 2003-04-18 2006-09-28 Gerrit Hollemans Personal audio system with earpiece remote controller

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862379A (en) * 1972-07-11 1975-01-21 Akg Akustische Kino Geraete Headphone construction for interpreter translator arrangements
US4955729A (en) 1987-03-31 1990-09-11 Marx Guenter Hearing aid which cuts on/off during removal and attachment to the user
US5473676A (en) 1990-09-27 1995-12-05 Radish Communications Systems, Inc. Telephone handset interface for automatic switching between voice and data communications
US5144678A (en) 1991-02-04 1992-09-01 Golden West Communications Inc. Automatically switched headset
US7103188B1 (en) * 1993-06-23 2006-09-05 Owen Jones Variable gain active noise cancelling system with improved residual noise sensing
US6035047A (en) 1996-05-08 2000-03-07 Lewis; Mark Henry System to block unwanted sound waves and alert while sleeping
US6069960A (en) 1996-09-05 2000-05-30 Sony Corporation Connector device for information-handling apparatus and connector device for stereophonic audio/video apparatus
US6985592B1 (en) 1997-01-08 2006-01-10 Matsushita Electric Industrial Co., Ltd. Multipurpose earphone set
US6704428B1 (en) 1999-03-05 2004-03-09 Michael Wurtz Automatic turn-on and turn-off control for battery-powered headsets
US20040258253A1 (en) * 1999-03-05 2004-12-23 Michael Wurtz Automatic turn-on and turn-off control for battery-powered headsets
US7010332B1 (en) 2000-02-21 2006-03-07 Telefonaktiebolaget Lm Ericsson(Publ) Wireless headset with automatic power control
US20010046304A1 (en) * 2000-04-24 2001-11-29 Rast Rodger H. System and method for selective control of acoustic isolation in headsets
EP1199867A1 (en) 2000-10-20 2002-04-24 Sony International (Europe) GmbH Mobile terminal and headset
US20040042629A1 (en) 2002-08-30 2004-03-04 Mellone Charles M. Automatic earpiece sensing
US20060215847A1 (en) 2003-04-18 2006-09-28 Gerrit Hollemans Personal audio system with earpiece remote controller
US20050201568A1 (en) 2004-03-11 2005-09-15 Texas Instruments Incorporated Headset Detector in a Device Generating Audio Signals

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10033847B2 (en) 2013-09-30 2018-07-24 Sony Interactive Entertainment Inc. Dropped call warning and prevention methods
US20160165035A1 (en) * 2014-12-03 2016-06-09 Fih (Hong Kong) Limited Electronic device and method for controlling electronic device using headset
US10129382B2 (en) * 2014-12-03 2018-11-13 Fih (Hong Kong) Limited Electronic device and method for controlling electronic device using headset
US10257602B2 (en) 2017-08-07 2019-04-09 Bose Corporation Earbud insertion sensing method with infrared technology
US10334347B2 (en) 2017-08-08 2019-06-25 Bose Corporation Earbud insertion sensing method with capacitive technology
US10045111B1 (en) 2017-09-29 2018-08-07 Bose Corporation On/off head detection using capacitive sensing
US10812888B2 (en) 2018-07-26 2020-10-20 Bose Corporation Wearable audio device with capacitive touch interface
US10462551B1 (en) 2018-12-06 2019-10-29 Bose Corporation Wearable audio device with head on/off state detection
US10757500B2 (en) 2018-12-06 2020-08-25 Bose Corporation Wearable audio device with head on/off state detection
US11275471B2 (en) 2020-07-02 2022-03-15 Bose Corporation Audio device with flexible circuit for capacitive interface

Also Published As

Publication number Publication date
US20060029234A1 (en) 2006-02-09
US7418103B2 (en) 2008-08-26

Similar Documents

Publication Publication Date Title
USRE44980E1 (en) System and method for controlling states of a device
US11733768B2 (en) Power control based on packet type
US20060045304A1 (en) Smart earphone systems devices and methods
US7770036B2 (en) Power management in a portable media delivery system
US8615089B2 (en) Dynamic power management in a portable media delivery system
US20070201705A1 (en) Media delivery system with improved interaction
KR100637597B1 (en) An earphone apparatus for automatic function control of audio equipment by cacitive-sensing method
KR100714023B1 (en) Speaker system of mobile device
KR20100088833A (en) Earphone device and method using it
EP2346164B1 (en) Amplification apparatus
JP2008289033A (en) Apparatus for detecting use of earphone, portable acoustic equipment, portable acoustic equipment control program, recording medium, and portable acoustic equipment control method
CN109688502B (en) Control method, device and equipment
JP2007097087A (en) Volume control device
KR100342700B1 (en) A volume setting up apparatus & the method for audio system
KR101134773B1 (en) Apparatus and method for Outputing Audio
CN111416909B (en) Volume self-adaptive adjusting method, system, storage medium and mobile terminal
JP2000261264A (en) Sound volume adjustment device
CN111491232A (en) Earphone, earphone control method and electronic equipment
KR100672512B1 (en) Control method for output of audio device
JP2009129504A (en) Audio system
KR20150089859A (en) Earphone device
KR100300588B1 (en) Language cassettes and how to check your voice
CN111443889A (en) Volume adjusting method and system, storage medium and terminal equipment
JP3088372U (en) Television receiver and audio output device
KR20080110429A (en) System for power control in portable terminal

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY COMPUTER ENTERTAINMENT INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SARGAISON, STEWART;REEL/FRAME:027154/0050

Effective date: 20040803

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: SONY INTERACTIVE ENTERTAINMENT INC., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:SONY COMPUTER ENTERTAINMENT INC.;REEL/FRAME:039239/0356

Effective date: 20160401

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12