USRE45468E1 - Barrier-slurry-free copper CMP process - Google Patents

Barrier-slurry-free copper CMP process Download PDF

Info

Publication number
USRE45468E1
USRE45468E1 US11/494,754 US49475406A USRE45468E US RE45468 E1 USRE45468 E1 US RE45468E1 US 49475406 A US49475406 A US 49475406A US RE45468 E USRE45468 E US RE45468E
Authority
US
United States
Prior art keywords
polish step
slurry composition
slurry
comprised
conducted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US11/494,754
Inventor
Yi-Chen Chen
Ching-Ming Tsai
Ray-Ting Chang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority to US11/494,754 priority Critical patent/USRE45468E1/en
Application granted granted Critical
Publication of USRE45468E1 publication Critical patent/USRE45468E1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D13/00Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor
    • B24D13/14Wheels having flexibly-acting working parts, e.g. buffing wheels; Mountings therefor acting by the front face
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation

Definitions

  • the present invention relates generally to semiconductor fabrication and more specifically to polishing semiconductor metal layers.
  • a patterned dielectric layer usually silicon oxide (oxide), within which an opening is formed; 2) a barrier layer which lines the oxide layer opening and covers the top of the patterned oxide layer; and 3) a metal layer, usually copper, formed over the patterned dielectric layer, filling the barrier lined opening.
  • a variety of polishing steps with various slurries are employed.
  • U.S. Pat. No. 6,217,416 B1 to Kaufman describes a first and second CMP slurry wherein the second slurry includes an abrasive, an oxidizing agent and acetic acid wherein the weight ratio of oxidizing agent/acetic agent is at least 10 and wherein the two slurries are sequentially used in a method to polish a substrate containing copper and containing tantalum or tantalum oxide or both tantalum and tantalum oxide.
  • a structure having an upper patterned dielectric layer with an opening therein is provided.
  • a barrier layer is formed over the patterned upper dielectric layer and lining the opening.
  • a metal layer is formed over the barrier layer, filling the opening.
  • a first polish step employing a first slurry composition is conducted to remove a portion of the overlying metal layer.
  • a second polish step employing the first slurry composition is conducted to: polish the partially removed overlying metal layer; and to expose portions of the barrier layer overlying the patterned upper dielectric layer.
  • a third polish step employing a second slurry composition is conducted to remove the exposed barrier layer portions and exposing underlying portions of the patterned upper dielectric layer.
  • a fourth polish step employing the second slurry composition and BTA is conducted to buff the exposed upper dielectric layer portions.
  • FIGS. 1 to 5 schematically illustrate a preferred embodiment of the present invention.
  • the barrier layer is tantalum nitride (TaN)
  • the dielectric layer is silicon oxide (oxide)
  • the metal layer is copper (Cu)
  • options (1) and (2) require consumption of an expensive TaN slurry in order to remove the TaN barrier layer from over the top of the patterned oxide layer; and option (3) requires extra dry etch tools to remove the TaN barrier layer from over the top of the patterned oxide layer.
  • option (3) requires extra dry etch tools to remove the TaN barrier layer from over the top of the patterned oxide layer.
  • the use of either of these three methods makes it difficult to improve the throughput of the Cu CMP process.
  • FIG. 1 illustrates the initial structure of the present invention.
  • Structure 10 includes patterned dielectric layer 12 formed thereover to a thickness of preferably from about 10,000 to 12,000 ⁇ and more preferably about 11,100 ⁇ .
  • Structure 10 is preferably a silicon substrate and is understood to possibly include a semiconductor wafer or substrate, active and passive devices formed within the wafer, conductive layers and dielectric layers (e.g., interpoly oxide (IPO), intermetal dielectric (IMD), etc.) formed over the wafer surface.
  • semiconductor structure is meant to include devices formed within a semiconductor wafer and the layers overlying the wafer.
  • Patterned dielectric layer 12 is preferably comprised of silicon oxide, silicon nitride (SiN), FSG or silicon oxynitride (SiON) and is more preferably silicon oxide.
  • Patterned dielectric layer 12 includes an opening 14 formed therein which may be a dual damascene opening as shown in the figures.
  • a barrier layer 16 is preferably formed over patterned dielectric 12 , lining opening 14 .
  • Barrier layer 16 is preferably formed by electro-chemical plating (ECP) or physical vapor deposition (PVD) and more preferably by physical vapor deposition (PVD).
  • Barrier layer 16 has a thickness of preferably from about 250 to 350 ⁇ and more preferably about 300 ⁇ .
  • Barrier layer 16 is preferably comprised of TaN or Ta and is more preferably TaN.
  • a metal layer 18 is then formed over barrier layer 16 , at least filling barrier layer-lined-opening 14 .
  • Metal layer 18 is preferably formed by electro-chemical plating (ECP).
  • Metal layer 18 has a thickness of preferably from about 6000 to 8000 ⁇ and more preferably about 7000 ⁇ .
  • Metal layer 18 is preferably comprised of copper (Cu), aluminum (Al) or gold (Au) and is more preferably copper (Cu).
  • the wafer/structure of FIG. 1 may be placed upon a first platen in a polishing tool and polished with a First Slurry Composition to polish/remove the bulk of metal layer 18 leaving reduced metal layer 18 ′ having a thickness of preferably from about 2000 to 4000 ⁇ and more preferably about 3000 ⁇ above the barrier-layer-16-lined patterned dielectric layer 12 .
  • the First Slurry Composition is comprised of 600y-73 Slurry wherein:
  • This first, bulk metal layer 18 , polish is a high rate, bulk metal removal using an iScan Endpoint (Applied Material real time Cu In Situ Rate Monitor (ISRM) Endpoint System thickness monitor using eddy current to catch polishing end time) at:
  • ISRM Applied Material real time Cu In Situ Rate Monitor
  • the wafer/structure of FIG. 2 may be transferred to a second platen in the polishing tool and then polished with the First Slurry Composition described above to polish the metal layer 18 ′ surface 19 and to expose the portions 20 , 22 of barrier layer 16 overlying the patterned dielectric layer 12 .
  • This second, final metal layer 18 ′′ polish/barrier layer 16 exposure, polish is a low pressure polish using Full Scan Endpoint (Applied Material In Situ Rate Monitor (ISRM) Endpoint System using a laser beam to catch polishing end time) at preferably from about 1.0 to 1.4 psi and more preferably about 1.2 psi for preferably from about 41 to 49 seconds and more preferably about 45 seconds (by end-point).
  • ISRM Applied Material In Situ Rate Monitor
  • the wafer/structure of FIG. 3 is then polished with a Second Slurry Composition on the second platen to remove the portions 20 , 22 of barrier layer 16 overlying the patterned dielectric layer 12 to expose potions 24 , 26 of the underlying patterned dielectric layer 12 .
  • the Second Slurry Composition is comprised of SS6 Slurry wherein:
  • This third polish step is conducted at preferably from about 1.8 to 2.2 psi and more preferably about 2.0 psi for preferably from about 31 to 39 seconds and more preferably about 35 seconds (by time).
  • the wafer/structure of FIG. 4 may be transferred to a third platen within the polishing tool and polished with the Second Slurry Composition with BTA to buff the exposed portions 24 , 26 of the patterned dielectric layer 12 to form buffed exposed portions 24 ′, 26 ′ of the buffed patterned dielectric layer 12 ′.
  • Prom about 0.10 to 0.14% and more preferably about 0.12% benzotriazole (1-H benzotriazole or BTA) (corrosion behavior inhibitor) is added to the SS6 Second Slurry Composition described above as to be selective to polished metal layer 18 ′′′ so as to not appreciably remove polished metal layer 18 ′′′.
  • This fourth polish step is conducted at preferably from about 1.8 to 2.2 psi and more preferably about 2.0 psi for preferably from about 40 to 60 seconds and more preferably about 50 seconds (by time).
  • FIG. 5 may be cleaned and a silicon nitride (Si 3 N 4 or nitride) layer may be deposited.
  • Si 3 N 4 or nitride silicon nitride
  • the inventors have found that besides: (1) being less expensive and simpler that the processes known to the inventors since neither a specific barrier-layer-slurry nor an extra barrier-layer-etch-step are required; and (2) the throughput, i.e. the wafers per hour, is improved; the same performance is achieved when polishing copper metal layers 18 in accordance with their present invention including defects, resistance (Rs) value and stress migration (SM) test.
  • Rs resistance
  • SM stress migration

Abstract

A method of polishing a metal layer comprising the following steps. A structure having an upper patterned dielectric layer with an opening therein is provided. A barrier layer is formed over the patterned upper dielectric layer and lining the opening. A metal layer is formed over the barrier layer, filling the opening. A first polish step employing a first slurry composition is conducted to remove a portion of the overlying metal layer. A second polish step employing the first slurry composition is conducted to: polish the partially removed overlying metal layer; and to expose portions of the barrier layer overlying the patterned upper dielectric layer. A third polish step employing a second slurry composition is conducted to remove the exposed barrier layer portions and exposing underlying portions of the patterned upper dielectric layer. A fourth polish step employing the second slurry composition and BTA is conducted to buff the exposed upper dielectric layer portions.

Description

This application is related to co-pending application Ser. No. 10/714,985, filed Nov. 17, 2003, and entitled “Copper CMP Defect Reduction By Extra Slurry Polish”.
FIELD OF THE INVENTION
The present invention relates generally to semiconductor fabrication and more specifically to polishing semiconductor metal layers.
BACKGROUND OF THE INVENTION
During metal/copper chemical mechanical polishing processes, three films/materials are encountered. 1) A patterned dielectric layer, usually silicon oxide (oxide), within which an opening is formed; 2) a barrier layer which lines the oxide layer opening and covers the top of the patterned oxide layer; and 3) a metal layer, usually copper, formed over the patterned dielectric layer, filling the barrier lined opening. In order to planarize, or polish, the metal layer to form a planarized metal structure within the barrier lined opening in the dielectric layer, a variety of polishing steps with various slurries are employed.
U.S. Pat. No. 6,217,416 B1 to Kaufman describes a first and second CMP slurry wherein the second slurry includes an abrasive, an oxidizing agent and acetic acid wherein the weight ratio of oxidizing agent/acetic agent is at least 10 and wherein the two slurries are sequentially used in a method to polish a substrate containing copper and containing tantalum or tantalum oxide or both tantalum and tantalum oxide.
U.S. Pat. No. 6,338,744 B1 to Tateyama et al. describe a high purity polishing slurry comprising water and dispersed silica particles.
U.S. Pat. No. 6,261,158 B1 to Holland et al. describes a multi-step CMP system used to polish a wafer to form metal interconnects in a dielectric layer upon which barrier and metal layers have been formed.
U.S. Pat. No. 6,447,371 B2 to Brusic Kaufman et al. describes a chemical mechanical polishing slurry useful for copper/tantalum substrates.
U.S. Pat. No. 6,313,039 B1 to Small et al. describes a chemical mechanical polishing composition and process.
U.S. Pat. No. 6,530,968 B2 to Tsuchiya et al. describes a chemical mechanical polishing slurry.
SUMMARY OF THE INVENTION
Accordingly, it is an object of one or more embodiments of the present invention to provide an improved method of polishing metal layers.
Other objects will appear hereinafter.
It has now been discovered that the above and other objects of the present invention may be accomplished in the following manner. Specifically, a structure having an upper patterned dielectric layer with an opening therein is provided. A barrier layer is formed over the patterned upper dielectric layer and lining the opening. A metal layer is formed over the barrier layer, filling the opening. A first polish step employing a first slurry composition is conducted to remove a portion of the overlying metal layer. A second polish step employing the first slurry composition is conducted to: polish the partially removed overlying metal layer; and to expose portions of the barrier layer overlying the patterned upper dielectric layer. A third polish step employing a second slurry composition is conducted to remove the exposed barrier layer portions and exposing underlying portions of the patterned upper dielectric layer. A fourth polish step employing the second slurry composition and BTA is conducted to buff the exposed upper dielectric layer portions.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be more clearly understood from the following description taken in conjunction with the accompanying drawings in which like reference numerals designate similar or corresponding elements, regions and portions and in which:
FIGS. 1 to 5 schematically illustrate a preferred embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Processes Known to the Inventors—Not to be Considered Prior Art
The following metal/copper chemical mechanical polishing processes are known to the inventors and are not to be considered prior art for the purposes of this invention.
For example, when the barrier layer is tantalum nitride (TaN), the dielectric layer is silicon oxide (oxide) and the metal layer is copper (Cu), three polishing options are currently used:
    • (1) Cu slurry polish->TaN slurry polish (w/or w/o oxide rate);
    • (2) Cu slurry polish->TaN slurry polish->oxide slurry buff (w/BTA to selectively not remove Cu); and
    • (3) Cu slurry polish->(clean)->TaN dry etch.
However, options (1) and (2) require consumption of an expensive TaN slurry in order to remove the TaN barrier layer from over the top of the patterned oxide layer; and option (3) requires extra dry etch tools to remove the TaN barrier layer from over the top of the patterned oxide layer. The use of either of these three methods makes it difficult to improve the throughput of the Cu CMP process.
Present Invention—Initial Structure—FIG. 2
FIG. 1 illustrates the initial structure of the present invention. Structure 10 includes patterned dielectric layer 12 formed thereover to a thickness of preferably from about 10,000 to 12,000 Åand more preferably about 11,100 Å.
Structure 10 is preferably a silicon substrate and is understood to possibly include a semiconductor wafer or substrate, active and passive devices formed within the wafer, conductive layers and dielectric layers (e.g., interpoly oxide (IPO), intermetal dielectric (IMD), etc.) formed over the wafer surface. The term “semiconductor structure” is meant to include devices formed within a semiconductor wafer and the layers overlying the wafer.
Patterned dielectric layer 12 is preferably comprised of silicon oxide, silicon nitride (SiN), FSG or silicon oxynitride (SiON) and is more preferably silicon oxide.
Patterned dielectric layer 12 includes an opening 14 formed therein which may be a dual damascene opening as shown in the figures.
A barrier layer 16 is preferably formed over patterned dielectric 12, lining opening 14. Barrier layer 16 is preferably formed by electro-chemical plating (ECP) or physical vapor deposition (PVD) and more preferably by physical vapor deposition (PVD).
Barrier layer 16 has a thickness of preferably from about 250 to 350 Å and more preferably about 300 Å. Barrier layer 16 is preferably comprised of TaN or Ta and is more preferably TaN.
A metal layer 18 is then formed over barrier layer 16, at least filling barrier layer-lined-opening 14. Metal layer 18 is preferably formed by electro-chemical plating (ECP).
Metal layer 18 has a thickness of preferably from about 6000 to 8000 Å and more preferably about 7000 Å. Metal layer 18 is preferably comprised of copper (Cu), aluminum (Al) or gold (Au) and is more preferably copper (Cu).
Polishing of Metal Layer 18—FIGS. 2-4
As discovered by the inventors of the present invention, neither a barrier-layer-specific slurry nor a barrier-layer-etch are necessary to remove the barrier layer 16 over the patterned dielectric layer 12. Only two different slurries are needed to polish/remove three different types of films (metal layer 18, barrier layer 16 and patterned dielectric layer 12).
First Step Polish—First Platen —First Slurry Composition—FIG. 2
As shown in FIG. 2, the wafer/structure of FIG. 1 may be placed upon a first platen in a polishing tool and polished with a First Slurry Composition to polish/remove the bulk of metal layer 18 leaving reduced metal layer 18′ having a thickness of preferably from about 2000 to 4000 Å and more preferably about 3000 Å above the barrier-layer-16-lined patterned dielectric layer 12.
The First Slurry Composition is comprised of 600y-73 Slurry wherein:
    • 600y-73 Slurry—Cabot copper (Cu) film polishing slurry (manufactured by Cabot Microelectronics, 8A-7, No. 26, Tai-Yuan St., Chu Pei, Hsin Chu Hsien, Taiwan, 203 R.O.C.) comprised of:
    • Al2O3: preferably from about 0.4 to 0.6 wt. % and more preferably about 0.5 wt. %;
    • H2O2: preferably from about 2.6 to 3.4 wt. % and more preferably from about 2.8 to 3.2 wt. %;
    • KOH to adjust pH value; and
    • benzotriazole (1-H benzotriazole or BTA) as a corrosion behavior inhibitor;
      and having
  • a) pH: preferably from about 2.8 to 4.3 and more preferably about 4.1; and
  • b) size of particles: preferably from about 115 to 155 run, weight basis and more preferably from about 120 to 150 nm, weight basis.
This first, bulk metal layer 18, polish is a high rate, bulk metal removal using an iScan Endpoint (Applied Material real time Cu In Situ Rate Monitor (ISRM) Endpoint System thickness monitor using eddy current to catch polishing end time) at:
    • (1) preferably from about 2.0 to 2.4 psi and more preferably about 2.2 psi for preferably from about 36 to 44 seconds and more preferably about 40 seconds (by end-point); and then
    • (2) preferably from about 1.0 to 1.4 psi and more preferably about 1.2 psi for preferably from about 18 to 22 seconds and more preferably about 20 seconds (by time).
      Second Step Polish—Second Platen—First Slurry Composition—FIG. 3
As shown in FIG. 3, the wafer/structure of FIG. 2 may be transferred to a second platen in the polishing tool and then polished with the First Slurry Composition described above to polish the metal layer 18surface 19 and to expose the portions 20, 22 of barrier layer 16 overlying the patterned dielectric layer 12.
This second, final metal layer 18″ polish/barrier layer 16 exposure, polish is a low pressure polish using Full Scan Endpoint (Applied Material In Situ Rate Monitor (ISRM) Endpoint System using a laser beam to catch polishing end time) at preferably from about 1.0 to 1.4 psi and more preferably about 1.2 psi for preferably from about 41 to 49 seconds and more preferably about 45 seconds (by end-point).
Third Step Polish—Second Platen—Second Slurry Composition—FIG. 4
As shown in FIG. 4, the wafer/structure of FIG. 3 is then polished with a Second Slurry Composition on the second platen to remove the portions 20, 22 of barrier layer 16 overlying the patterned dielectric layer 12 to expose potions 24, 26 of the underlying patterned dielectric layer 12.
The Second Slurry Composition is comprised of SS6 Slurry wherein:
    • SS6 Slurry—Cabot Semi-Sperse® polishing slurry (also manufactured by Cabot Microelectronics, 8A-7, No. 26, Tai-Yuan St., Chu Pei, Hsin Chu Hsien, Taiwan, 203 R.O.C.) diluted to 25% for solids for polishing comprised of:
    • SiO2: preferably from about 5.8 to 6.2 wt. % and more preferably about 6.0 wt. %; and
    • KOH to adjust pH value;
      and having
  • a) pH: preferably from about 9.8 to 11.4 and more preferably from about 10.0 to 11.2; and
  • b) size of particles: preferably from about 125 to 185 nm, weight basis and more preferably from about 130 to 180 nm, weight basis.
This third polish step is conducted at preferably from about 1.8 to 2.2 psi and more preferably about 2.0 psi for preferably from about 31 to 39 seconds and more preferably about 35 seconds (by time).
Fourth Step Polish—Third Platen—Second Slurry Composition+BTA—FIG. 5
As shown in FIG. 5, the wafer/structure of FIG. 4 may be transferred to a third platen within the polishing tool and polished with the Second Slurry Composition with BTA to buff the exposed portions 24, 26 of the patterned dielectric layer 12 to form buffed exposed portions 24′, 26′ of the buffed patterned dielectric layer 12′.
Prom about 0.10 to 0.14% and more preferably about 0.12% benzotriazole (1-H benzotriazole or BTA) (corrosion behavior inhibitor) is added to the SS6 Second Slurry Composition described above as to be selective to polished metal layer 18′″ so as to not appreciably remove polished metal layer 18′″.
This fourth polish step is conducted at preferably from about 1.8 to 2.2 psi and more preferably about 2.0 psi for preferably from about 40 to 60 seconds and more preferably about 50 seconds (by time).
Further processing may then proceed. For example, the structure of FIG. 5 may be cleaned and a silicon nitride (Si3N4 or nitride) layer may be deposited.
The inventors have found that besides: (1) being less expensive and simpler that the processes known to the inventors since neither a specific barrier-layer-slurry nor an extra barrier-layer-etch-step are required; and (2) the throughput, i.e. the wafers per hour, is improved; the same performance is achieved when polishing copper metal layers 18 in accordance with their present invention including defects, resistance (Rs) value and stress migration (SM) test. One of the most serious problems in Cu-based multilevel integration is the failures in stacked via resistance caused by stress-induced voids in via holes. So passing the SM test by the structure(s) formed in accordance with the method of the present invention is the index for Cu-based process.
A better slope of pattern density correlating with the Rs value is also achieved as compared to the current processes known to the inventors. Further, when polishing copper metal layers 18 in accordance with their present invention, the inventors have found that dishing, erosion and tiger teeth were appreciably reduced.
Advantages of the Present Invention
The advantages of one or more embodiments of the present invention include:
1. simpler method;
2. less expensive method;
3. improved dishing, erosion and tiger teeth;
4. increased wafers/hour is achieved;
5. SM test passed; and
6. Rs value acceptable.
While particular embodiments of the present invention have been illustrated and described, it is not intended to limit the invention, except as defined by the following claims.

Claims (70)

We claim:
1. A method of polishing a metal layer, comprising the steps of:
providing a structure having an upper patterned dielectric layer; the patterned dielectric layer having an opening formed therein;
forming a barrier layer over the patterned upper dielectric layer, the barrier layer lining the opening;
forming a metal layer over the barrier layer, filling the opening;
conducting a first polish step employing a first slurry composition, the first polish step removing a portion of the overlying metal layer;
conducting a second polish step employing the first slurry composition, the second polish step polishing the partially removed overlying metal layer and exposing portions of the barrier layer overlying the patterned upper dielectric layer;
conducting a third polish step employing a second slurry composition, the third polish step removing the exposed barrier layer portions and exposing underlying portions of the patterned upper dielectric layer; and
conducting a fourth polish step employing the second slurry composition and BTA, the fourth polish step buffing the exposed upper dielectric layer portions.
2. The method of claim 1, wherein the first polish step is conducted on a first platen; the second and third polish steps are conducted on a second platen; and the fourth polish step is conducted on a third platen.
3. The method of claim 1, wherein the first slurry composition is 600y-73 slurry manufactured by Cabot Microelectronics comprised of:
Al2O3: from about 0.4 to 0.6 wt. %;
H2O2: from about 2.6 to 3.4 wt. %;
KOH to adjust pH value; and
BTA as a corrosion behavior inhibitor.
4. The method of claim 1, wherein the first slurry composition is 600y-73 slurry manufactured by Cabot Microelectronics comprised of:
Al2O3: about 0.5 wt. %;
H2O2: from about 2.8 to 3.2 wt. %;
KOH to adjust pH value; and
BTA as a corrosion behavior inhibitor.
5. The method of claim 1, wherein the first slurry composition is 600y-73 slurry manufactured by Cabot Microelectronics having:
a) a pH of from about 2.8 to 4.3; and
b) a particulate size of from about 115 to 155 nm, weight basis.
6. The method of claim 1, wherein the first slurry composition is 600y-73 slurry manufactured by Cabot Microelectronics having:
a) a pH of about 4.1; and
b) a particulate size of from about 120 to 150 nm, weight basis.
7. The method of claim 1, wherein the second slurry composition is SS6 slurry manufactured by Cabot Microelectronics comprised of:
SiO2: from about 5.8 to 6.2 wt. %; and
KOH to adjust pH value.
8. The method of claim 1, wherein the second slurry composition is SS6 slurry manufactured by Cabot Microelectronics comprised of:
SiO2: about 6.0 wt. %; and
KOH to adjust pH value.
9. The method of claim 1, wherein the second slurry composition is SS6 slurry manufactured by Cabot Microelectronics having:
a) a pH of from about 9.8 to 11.4; and
b) a particulate size of from about 125 to 185 nm, weight basis.
10. The method of claim 1, wherein the second slurry composition is SS6 slurry manufactured by Cabot Microelectronics having:
a) a pH of from about 10.0 to 11.2; and
b) a particulate size of from about 130 to 180 nm, weight basis.
11. The method of claim 1, wherein the fourth polish step employs the second slurry composition that is SS6 slurry manufactured by Cabot Microelectronics comprised of:
SiO2: from about 5.8 to 6.2 wt. %; and
KOH to adjust pH value;
and from about 0.10 to 0.14% BTA.
12. The method of claim 1, wherein the fourth polish step employs the second slurry composition that is SS6 slurry manufactured by Cabot Microelectronics comprised of:
SiO2: about 6.0 wt. %; and
KOH to adjust pH value;
and about 0.12% BTA.
13. The method of claim 1, wherein the fourth polish step employs the second slurry composition that is SS6 slurry manufactured by Cabot Microelectronics having:
a) a pH of from about 9.8 to 11.4; and
b) a particulate size of from about 125 to 185 nm, weight basis;
and from about 0.10 to 0.14% BTA.
14. The method of claim 1, wherein the fourth polish step employs the second slurry composition that is SS6 slurry manufactured by Cabot Microelectronics having:
a) a pH of from about 10.0 to 11.2; and
b) a particulate size of from about 130 to 180 nm, weight basis;
and about 0.12% BTA.
15. The method of claim 1, wherein:
the first polish step is conducted at from about 2.0 to 2.4 psi for from about 36 to 44 seconds; and then at from about 1.0 to 1.4 psi for from about 18 to 22 seconds;
the second polish step is conducted at from about 1.0 to 1.4 psi for from about 41 to 49 seconds;
the third polish step is conducted at from about 1.8 to 2.2 psi for from about 31 to 39 seconds; and
the fourth polish step is conducted at from about 1.8 to 2.2 psi for from about 40 to 60 seconds.
16. The method of claim 1, wherein:
the first polish step is conducted at about 2.2 psi for about 40 seconds; and then at about 1.2 psi for about 20 seconds;
the second polish step is conducted at about 1.2 psi for about 45 seconds;
the third polish step is conducted at about 2.0 psi for about 35 seconds; and
the fourth polish step is conducted at about 2.0 psi for about 50 seconds.
17. The method of claim 1, wherein the structure is a semiconductor substrate.
18. The method of claim 1, wherein the upper patterned dielectric layer is comprised of silicon oxide, silicon nitride, FSG or silicon oxynitride; the barrier layer is comprised of TaN or Ta; and the metal layer is comprised of copper aluminum or gold.
19. The method of claim 1, wherein the upper patterned dielectric layer is comprised of silicon oxide; the barrier layer is comprised of TaN; and the metal layer is comprised of copper.
20. The method of claim 1, wherein the patterned dielectric layer is from about 10,000 to 12,000 Å thick; and the barrier layer is from about 250 to 350 Åthick.
21. The method of claim 1, wherein the patterned dielectric layer is about 11,100 Å thick; and the barrier layer is about 300 Å thick.
22. The method of claim 1, wherein the partially removed overlying metal layer has a thickness of from about 6000 to 8000 Å.
23. The method of claim 1, wherein the partially removed overlying metal layer has a thickness of about 7000 Å.
24. A method of polishing a metal layer, comprising the steps of:
providing a structure having an upper patterned dielectric layer; the patterned dielectric layer having an opening formed therein;
forming a barrier layer over the patterned upper dielectric layer, the barrier layer lining the opening;
forming a metal layer over the barrier layer, filling the opening;
conducting a first polish step on a first platen employing a first slurry composition, the first polish step removing a portion of the overlying metal layer;
conducting a second polish step on a second platen employing the first slurry composition, the second polish step polishing the partially removed overlying metal layer and exposing portions of the barrier layer overlying the patterned upper dielectric layer;
conducting a third polish step on the second platen employing a second slurry composition, the third polish step removing the exposed barrier layer portions and exposing underlying portions of the patterned upper dielectric layer; and
conducting a fourth polish step on a third platen employing the second slurry composition and BTA, the fourth polish step buffing the exposed upper dielectric layer portions.
25. The method of claim 24, wherein the first slurry composition is 600y-73 slurry manufactured by Cabot Microelectronics comprised of:
Al2O3: from about 0.4 to 0.6 wt. %;
H2O2: from about 2.6 to 3.4 wt. %;
KOH to adjust pH value; and
BTA as a corrosion behavior inhibitor.
26. The method of claim 24, wherein the first slurry composition is 600y-73 slurry manufactured by Cabot Microelectronics comprised of:
Al2O3: about 0.5 wt. %;
H2O2: from about 2.8 to 3.2 wt. %;
KOH to adjust pH value; and
BTA as a corrosion behavior inhibitor.
27. The method of claim 24, wherein the first slurry composition is 600y-73 slurry manufactured by Cabot Microelectronics having:
a) a pH of from about 2.8 to 4.3; and
b) a particulate size of from about 115 to 155 nm, weight basis.
28. The method of claim 24, wherein the first slurry composition is 600y-73 slurry manufactured by Cabot Microelectronics having:
a) a pH of about 4.1; and
b) a particulate size of from about 120 to 150 nm, weight basis.
29. The method of claim 24, wherein the second slurry composition is SS6 slurry manufactured by Cabot Microelectronics comprised of:
SiO2: from about 5.8 to 6.2 wt. %; and
KOH to adjust pH value.
30. The method of claim 24, wherein the second slurry composition is SS6 slurry manufactured by Cabot Microelectronics comprised of:
SiO2: about 6.0 wt. %; and
KOH to adjust pH value.
31. The method of claim 24, wherein the second slurry composition is SS6 slurry manufactured by Cabot Microelectronics having:
a) a pH of from about 9.8 to 11.4; and
b) a particulate size of from about 125 to 185 nm, weight basis.
32. The method of claim 24, wherein the second slurry composition is SS6 slurry manufactured by Cabot Microelectronics having:
a) a pH of from about 10.0 to 11.2; and
b) a particulate size of from about 130 to 180 nm, weight basis.
33. The method of claim 24, wherein the fourth polish step employs the second slurry composition that is SS6 slurry manufactured by Cabot Microelectronics comprised of:
SiO2: from about 5.8 to 6.2 wt. %; and
KOH to adjust pH value;
and from about 0.10 to 0.14% BTA.
34. The method of claim 24, wherein the fourth polish step employs the second slurry composition that is SS6 slurry manufactured by Cabot Microelectronics comprised of:
SiO2: about 6.0 wt. %; and
KOH to adjust pH value;
and about 0.12% BTA.
35. The method of claim 24, wherein the fourth polish step employs the second slurry composition that is SS6 slurry manufactured by Cabot Microelectronics having:
a) a pH of from about 9.8 to 11.4; and
b) a particulate size of from about 125 to 185 nm, weight basis;
and from about 0.10 to 0.14% BTA.
36. The method of claim 24, wherein the fourth polish step employs the second slurry composition that is SS6 slurry manufactured by Cabot Microelectronics having:
a) a pH of from about 10.0 to 11.2; and
b) a particulate size of from about 130 to 180 nm, weight basis;
and about 0.12% BTA.
37. The method of claim 24, wherein:
the first polish step is conducted at from about 2.0 to 2.4 psi for from about 36 to 44 seconds; and then at from about 1.0 to 1.4 psi for from about 18 to 22 seconds;
the second polish step is conducted at from about 1.0 to 1.4 psi for from about 41 to 49 seconds;
the third polish step is conducted at from about 1.8 to 2.2 psi for from about 31 to 39 seconds; and
the fourth polish step is conducted at from about 1.8 to 2.2 psi for from about 40 to 60 seconds.
38. The method of claim 24, wherein:
the first polish step is conducted at about 2.2 psi for about 40 seconds; and then at about 1.2 psi for about 20 seconds;
the second polish step is conducted at about 1.2 psi for about 45 seconds;
the third polish step is conducted at about 2.0 psi for about 35 seconds; and
the fourth polish step is conducted at about 2.0 psi for about 50 seconds.
39. The method of claim 24, wherein the structure is a semiconductor substrate.
40. The method of claim 24, wherein the upper patterned dielectric layer is comprised of silicon oxide, silicon nitride, FSG or silicon oxynitride; the barrier layer is comprised of TaN or Ta; and the metal layer is comprised of copper, aluminum or gold.
41. The method of claim 24, wherein the upper patterned dielectric layer is comprised of silicon oxide; the barrier layer is comprised of TaN; and the metal layer 18 is comprised of copper.
42. The method of claim 24, wherein the patterned dielectric layer is from about 10,000 to 12,000 Å thick; and the barrier layer is from about 250 to 350 Å thick.
43. The method of claim 24, wherein the patterned dielectric layer is about 11,100 Å thick; and the barrier layer is about 300 Å thick.
44. The method of claim 24, wherein the partially removed overlying metal layer has a thickness of from about 6000 to 8000 Å.
45. The method of claim 24, wherein the partially removed overlying metal layer has a thickness of about 7000 Å.
46. A method of polishing a metal layer, comprising the steps of:
providing a structure having an upper patterned dielectric layer; the patterned dielectric layer having an opening formed therein;
forming a barrier layer over the patterned upper dielectric layer, the barrier layer lining the opening;
forming a metal layer over the barrier layer, filling the opening;
conducting a first polish step employing a first slurry composition, the first polish step removing a portion of the overlying metal layer; wherein the first slurry composition is 600y-73 slurry manufactured by Cabot Microelectronics comprised of:
Al2O3: from about 0.4 to 0.6 wt. %;
H2O2: from about 2.6 to 3.4 wt. %;
KOH to adjust pH value; and
BTA as a corrosion behavior inhibitor
conducting a second polish step employing the first slurry composition, the second polish step polishing the partially removed overlying metal layer and exposing portions of the barrier layer overlying the patterned upper dielectric layer;
conducting a third polish step employing a second slurry composition, the third polish step removing the exposed barrier layer portions and exposing underlying portions of the patterned upper dielectric layer; wherein the second slurry composition is SS6 slurry manufactured by Cabot Microelectronics comprised of:
SiO2: from about 5.8 to 6.2 wt. %; and
KOH to adjust pH value; and
conducting a fourth polish step employing the second slurry composition and from about 0.10 to 0.14% BTA, the fourth polish step buffing the exposed upper dielectric layer portions.
47. The method of claim 46, wherein the first polish step is conducted on a first platen; the second and third polish steps are conducted on a second platen; and the fourth polish step is conducted on a third platen.
48. The method of claim 46, wherein the first slurry composition is comprised of:
Al2O3: about 0.5 wt. %;
H2O2: from about 2.8 to 3.2 wt. %;
KOH to adjust pH value; and
BTA as a corrosion behavior inhibitor.
49. The method of claim 46, wherein the first slurry composition has:
a) a pH of from about 2.8 to 4.3; and
b) a particulate size of from about 115 to 155 nm, weight basis.
50. The method of claim 46, wherein the first slurry composition has:
a) a pH of about 4.1; and
b) a particulate size of from about 120 to 150 nm, weight basis.
51. The method of claim 46, wherein the second slurry composition is comprised of:
SiO2: about 6.0 wt. %; and
KOH to adjust pH value.
52. The method of claim 46, wherein the second slurry composition has:
a) a pH of from about 9.8 to 11.4; and
b) a particulate size of from about 125 to 185 nm, weight basis.
53. The method of claim 46, wherein the second slurry composition has:
a) a pH of from about 10.0 to 11.2; and
b) a particulate size of from about 130 to 180 nm, weight basis.
54. The method of claim 46, wherein the fourth polish step employs the second slurry composition comprised of:
SiO2: about 6.0 wt. %; and
KOH to adjust pH value;
and about 0.12% BTA.
55. The method of claim 46, wherein the fourth polish step employs the second slurry composition that is SS6 slurry manufactured by Cabot Microelectronics having:
a) a pH of from about 9.8 to 11.4; and
b) a particulate size of from about 125 to 185 nm, weight basis;
and from about 0.10 to 0.14% BTA.
56. The method of claim 46, wherein the fourth polish step employs the second slurry composition that is SS6 slurry manufactured by Cabot Microelectronics having:
a) a pH of from about 10.0 to 11.2; and
b) a particulate size of from about 130 to 180 nm, weight basis;
and about 0.12% BTA.
57. The method of claim 46, wherein:
the first polish step is conducted at from about 2.0 to 2.4 psi for from about 36 to 44 seconds; and then at from about 1.0 to 1.4 psi for from about 18 to 22 seconds;
the second polish step is conducted at from about 1.0 to 1.4 psi for from about 41 to 49 seconds;
the third polish step is conducted at from about 1.8 to 2.2 psi for from about 31 to 39 seconds; and
the fourth polish step is conducted at from about 1.8 to 2.2 psi for from about 40 to 60 seconds.
58. The method of claim 46, wherein:
the first polish step is conducted at about 2.2 psi for about 40 seconds; and then at about 1.2 psi for about 20 seconds;
the second polish step is conducted at about 1.2 psi for about 45 seconds;
the third polish step is conducted at about 2.0 psi for about 35 seconds; and
the fourth polish step is conducted at about 2.0 psi for about 50 seconds.
59. The method of claim 46, wherein the structure is a semiconductor substrate.
60. The method of claim 46, wherein the upper patterned dielectric layer is comprised of silicon oxide, silicon nitride, FSG or silicon oxynitride; the barrier layer is comprised of TaN or Ta; and the metal layer is comprised of copper aluminum or gold.
61. The method of claim 46, wherein the upper patterned dielectric layer is comprised of silicon oxide; the barrier layer is comprised of TaN; and the metal layer 18 is comprised of copper.
62. The method of claim 46, wherein the patterned dielectric layer is from about 10,000 to 12,000 Å thick; and the barrier layer is from about 250 to 350 Å thick.
63. The method of claim 46, wherein the patterned dielectric layer is about 11,100 Å thick; and the barrier layer is about 300 Å thick.
64. The method of claim 46, wherein the partially removed overlying metal layer has a thickness of from about 6000 to 8000 Å.
65. The method of claim 46, wherein the partially removed overlying metal layer has a thickness of about 7000 Å.
66. A method of polishing a metal layer, comprising:
providing a structure having a patterned dielectric layer, the patterned dielectric layer having an opening formed therein;
forming a barrier layer over the patterned dielectric layer, the barrier layer lining the opening;
forming a metal layer over the barrier layer, the metal layer filling the opening;
conducting a first polish step on a first platen employing a first slurry composition, the first polish step removing a portion of the overlying metal layer and leaving a remaining portion of the metal layer;
conducting a second polish step on a second platen employing the first slurry composition, the second polish step removing the remaining portion of the metal layer and exposing portions of the barrier layer;
conducting a third polish step on the second platen employing a second slurry composition, the third polish step removing the exposed barrier layer portions; and
conducting a fourth polish step employing the second slurry composition, the fourth polish step buffing a portion of the patterned dielectric layer portions.
67. The method of claim 66, wherein the fourth polish step further comprises a corrosion inhibitor.
68. The method of claim 67, wherein the corrosion inhibitor comprises 1-H benzotriazole.
69. The method of claim 67, wherein the corrosion inhibitor comprises BTA.
70. The method of claim 66, wherein the fourth polish step is conducted on a third platen.
US11/494,754 2003-07-25 2006-07-27 Barrier-slurry-free copper CMP process Expired - Fee Related USRE45468E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/494,754 USRE45468E1 (en) 2003-07-25 2006-07-27 Barrier-slurry-free copper CMP process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/627,795 US6830504B1 (en) 2003-07-25 2003-07-25 Barrier-slurry-free copper CMP process
US11/494,754 USRE45468E1 (en) 2003-07-25 2006-07-27 Barrier-slurry-free copper CMP process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/627,795 Reissue US6830504B1 (en) 2003-07-25 2003-07-25 Barrier-slurry-free copper CMP process

Publications (1)

Publication Number Publication Date
USRE45468E1 true USRE45468E1 (en) 2015-04-14

Family

ID=33490923

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/627,795 Ceased US6830504B1 (en) 2003-07-25 2003-07-25 Barrier-slurry-free copper CMP process
US10/975,863 Abandoned US20050112895A1 (en) 2003-07-25 2004-10-28 Method of chemical-mechanical polishing
US11/494,754 Expired - Fee Related USRE45468E1 (en) 2003-07-25 2006-07-27 Barrier-slurry-free copper CMP process

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/627,795 Ceased US6830504B1 (en) 2003-07-25 2003-07-25 Barrier-slurry-free copper CMP process
US10/975,863 Abandoned US20050112895A1 (en) 2003-07-25 2004-10-28 Method of chemical-mechanical polishing

Country Status (4)

Country Link
US (3) US6830504B1 (en)
CN (1) CN1295762C (en)
SG (1) SG111180A1 (en)
TW (1) TWI254372B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354332B2 (en) * 2003-08-04 2008-04-08 Applied Materials, Inc. Technique for process-qualifying a semiconductor manufacturing tool using metrology data
US7232362B2 (en) * 2004-10-12 2007-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Chemical mechanical polishing process for manufacturing semiconductor devices
JP2006135072A (en) * 2004-11-05 2006-05-25 Fujimi Inc Polishing method
KR100660916B1 (en) * 2006-02-09 2006-12-26 삼성전자주식회사 Method of fabricating a semiconductor device including planarizing a conductive layer using parameters of pattern density and depth of trenches
KR100796513B1 (en) * 2006-08-22 2008-01-21 동부일렉트로닉스 주식회사 Method for manufacturing semiconductor device
JP5015696B2 (en) * 2006-09-04 2012-08-29 ルネサスエレクトロニクス株式会社 Semiconductor device manufacturing method and manufacturing apparatus
US7763517B2 (en) * 2007-02-12 2010-07-27 Macronix International Co., Ltd. Method of forming non-volatile memory cell
CN102528638A (en) * 2010-12-29 2012-07-04 中芯国际集成电路制造(上海)有限公司 Chemical-mechanical grinding method and equipment for copper
US9010417B2 (en) 2012-02-09 2015-04-21 Baker Hughes Incorporated Downhole screen with exterior bypass tubes and fluid interconnections at tubular joints therefore
JP5941763B2 (en) * 2012-06-15 2016-06-29 株式会社荏原製作所 Polishing method
CN105081891A (en) * 2014-05-07 2015-11-25 盛美半导体设备(上海)有限公司 Method of preventing abrasive particles from embedding into wafer surface in chemical mechanical grinding process
CN110491790B (en) * 2018-05-09 2021-11-09 台湾积体电路制造股份有限公司 Method for manufacturing semiconductor device

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676587A (en) * 1995-12-06 1997-10-14 International Business Machines Corporation Selective polish process for titanium, titanium nitride, tantalum and tantalum nitride
US5913712A (en) * 1995-08-09 1999-06-22 Cypress Semiconductor Corp. Scratch reduction in semiconductor circuit fabrication using chemical-mechanical polishing
US6126517A (en) 1995-10-27 2000-10-03 Applied Materials, Inc. System for chemical mechanical polishing having multiple polishing stations
US6217416B1 (en) * 1998-06-26 2001-04-17 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrates
US6261158B1 (en) * 1998-12-16 2001-07-17 Speedfam-Ipec Multi-step chemical mechanical polishing
US6274478B1 (en) 1999-07-13 2001-08-14 Motorola, Inc. Method for forming a copper interconnect using a multi-platen chemical mechanical polishing (CMP) process
US6313039B1 (en) 1996-07-25 2001-11-06 Ekc Technology, Inc. Chemical mechanical polishing composition and process
US6319833B1 (en) * 1998-12-07 2001-11-20 Advanced Micro Devices, Inc. Chemically preventing copper dendrite formation and growth by spraying
US6338744B1 (en) 1999-01-11 2002-01-15 Tokuyama Corporation Polishing slurry and polishing method
US6376009B1 (en) * 1999-11-01 2002-04-23 Hans Bergvall Display unit and method of preparing same
US20020055192A1 (en) * 2000-07-27 2002-05-09 Redeker Fred C. Chemical mechanical polishing of a metal layer with polishing rate monitoring
US6530968B2 (en) 2000-11-24 2003-03-11 Nec Electronics Corporation Chemical mechanical polishing slurry
US6555477B1 (en) * 2002-05-22 2003-04-29 Taiwan Semiconductor Manufacturing Co., Ltd. Method for preventing Cu CMP corrosion
US6573173B2 (en) 1999-07-13 2003-06-03 Motorola, Inc. Method for forming a copper interconnect using a multi-platen chemical mechanical polishing (CMP) process
US6579798B2 (en) 2001-09-24 2003-06-17 Texas Instruments Incorporated Processes for chemical-mechanical polishing of a semiconductor wafer
US6595832B2 (en) * 1999-06-03 2003-07-22 Micron Technology, Inc. Chemical mechanical polishing methods
US6709316B1 (en) * 2000-10-27 2004-03-23 Applied Materials, Inc. Method and apparatus for two-step barrier layer polishing
US6736701B1 (en) * 2001-11-20 2004-05-18 Taiwan Semiconductor Manufacturing Company Eliminate broken line damage of copper after CMP
US6740591B1 (en) * 2000-11-16 2004-05-25 Intel Corporation Slurry and method for chemical mechanical polishing of copper
US6749487B2 (en) * 2001-08-27 2004-06-15 Hoya Corporation Method of polishing glass substrate for information recording media, and glass substrate for information recording media

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692546B2 (en) * 2001-08-14 2004-02-17 Advanced Technology Materials, Inc. Chemical mechanical polishing compositions for metal and associated materials and method of using same

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913712A (en) * 1995-08-09 1999-06-22 Cypress Semiconductor Corp. Scratch reduction in semiconductor circuit fabrication using chemical-mechanical polishing
US6126517A (en) 1995-10-27 2000-10-03 Applied Materials, Inc. System for chemical mechanical polishing having multiple polishing stations
US5676587A (en) * 1995-12-06 1997-10-14 International Business Machines Corporation Selective polish process for titanium, titanium nitride, tantalum and tantalum nitride
US6313039B1 (en) 1996-07-25 2001-11-06 Ekc Technology, Inc. Chemical mechanical polishing composition and process
US6447371B2 (en) * 1998-06-26 2002-09-10 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrates
US6217416B1 (en) * 1998-06-26 2001-04-17 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrates
US6319833B1 (en) * 1998-12-07 2001-11-20 Advanced Micro Devices, Inc. Chemically preventing copper dendrite formation and growth by spraying
US6261158B1 (en) * 1998-12-16 2001-07-17 Speedfam-Ipec Multi-step chemical mechanical polishing
US6338744B1 (en) 1999-01-11 2002-01-15 Tokuyama Corporation Polishing slurry and polishing method
US6595832B2 (en) * 1999-06-03 2003-07-22 Micron Technology, Inc. Chemical mechanical polishing methods
US6573173B2 (en) 1999-07-13 2003-06-03 Motorola, Inc. Method for forming a copper interconnect using a multi-platen chemical mechanical polishing (CMP) process
US6444569B2 (en) 1999-07-13 2002-09-03 Motorola, Inc. Method for forming a copper interconnect using a multi-platen chemical mechanical polishing (CMP) process
US6274478B1 (en) 1999-07-13 2001-08-14 Motorola, Inc. Method for forming a copper interconnect using a multi-platen chemical mechanical polishing (CMP) process
US6376009B1 (en) * 1999-11-01 2002-04-23 Hans Bergvall Display unit and method of preparing same
US20020055192A1 (en) * 2000-07-27 2002-05-09 Redeker Fred C. Chemical mechanical polishing of a metal layer with polishing rate monitoring
US6709316B1 (en) * 2000-10-27 2004-03-23 Applied Materials, Inc. Method and apparatus for two-step barrier layer polishing
US6740591B1 (en) * 2000-11-16 2004-05-25 Intel Corporation Slurry and method for chemical mechanical polishing of copper
US6530968B2 (en) 2000-11-24 2003-03-11 Nec Electronics Corporation Chemical mechanical polishing slurry
US6749487B2 (en) * 2001-08-27 2004-06-15 Hoya Corporation Method of polishing glass substrate for information recording media, and glass substrate for information recording media
US6579798B2 (en) 2001-09-24 2003-06-17 Texas Instruments Incorporated Processes for chemical-mechanical polishing of a semiconductor wafer
US6736701B1 (en) * 2001-11-20 2004-05-18 Taiwan Semiconductor Manufacturing Company Eliminate broken line damage of copper after CMP
US6555477B1 (en) * 2002-05-22 2003-04-29 Taiwan Semiconductor Manufacturing Co., Ltd. Method for preventing Cu CMP corrosion

Also Published As

Publication number Publication date
SG111180A1 (en) 2005-05-30
CN1295762C (en) 2007-01-17
TW200511418A (en) 2005-03-16
CN1577769A (en) 2005-02-09
US20050112895A1 (en) 2005-05-26
US6830504B1 (en) 2004-12-14
TWI254372B (en) 2006-05-01

Similar Documents

Publication Publication Date Title
USRE45468E1 (en) Barrier-slurry-free copper CMP process
US6350694B1 (en) Reducing CMP scratch, dishing and erosion by post CMP etch back method for low-k materials
US6706625B1 (en) Copper recess formation using chemical process for fabricating barrier cap for lines and vias
US5954975A (en) Slurries for chemical mechanical polishing tungsten films
US5854140A (en) Method of making an aluminum contact
US6627539B1 (en) Method of forming dual-damascene interconnect structures employing low-k dielectric materials
US20060057945A1 (en) Chemical mechanical polishing process
US7033409B2 (en) Compositions for chemical mechanical planarization of tantalum and tantalum nitride
JP2001230230A (en) Planarized copper cleaning for reducing defects
JP2001156029A (en) POST Cu CMP POLISHING FOR REDUCED DEFECTS
US20070105247A1 (en) Method And Apparatus For Detecting The Endpoint Of A Chemical-Mechanical Polishing Operation
US6555477B1 (en) Method for preventing Cu CMP corrosion
US6736701B1 (en) Eliminate broken line damage of copper after CMP
US6316364B1 (en) Polishing method and polishing solution
US6443807B1 (en) Polishing process for use in method of fabricating semiconductor device
US6403466B1 (en) Post-CMP-Cu deposition and CMP to eliminate surface voids
US6919276B2 (en) Method to reduce dishing and erosion in a CMP process
JP2002064070A (en) Chemomechanical polishing method and slurry composition therefor
KR20010040066A (en) Method and composite arrangement inhibiting corrosion of a metal layer following chemical mechanical polishing
US6413869B1 (en) Dielectric protected chemical-mechanical polishing in integrated circuit interconnects
US6461230B1 (en) Chemical-mechanical polishing method
US6737348B2 (en) Method for forming buried interconnect
US6841470B2 (en) Removal of residue from a substrate
US6699785B2 (en) Conductor abrasiveless chemical-mechanical polishing in integrated circuit interconnects
US20040043611A1 (en) Method of reducing a defect level after chemically mechanically polishing a copper-containing substrate by rinsing the substrate with an oxidizing solution

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees