USRE45898E1 - Method and apparatus for directional drilling - Google Patents

Method and apparatus for directional drilling Download PDF

Info

Publication number
USRE45898E1
USRE45898E1 US13/854,058 US201313854058A USRE45898E US RE45898 E1 USRE45898 E1 US RE45898E1 US 201313854058 A US201313854058 A US 201313854058A US RE45898 E USRE45898 E US RE45898E
Authority
US
United States
Prior art keywords
drill string
torque
torque magnitude
magnitude
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US13/854,058
Inventor
Eric E. Maidla
Marc Haci
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Priority to US13/854,058 priority Critical patent/USRE45898E1/en
Priority to US14/279,669 priority patent/USRE46090E1/en
Application granted granted Critical
Publication of USRE45898E1 publication Critical patent/USRE45898E1/en
Priority to US15/225,163 priority patent/USRE47105E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/068Deflecting the direction of boreholes drilled by a down-hole drilling motor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • E21B44/02Automatic control of the tool feed
    • E21B44/04Automatic control of the tool feed in response to the torque of the drive ; Measuring drilling torque

Definitions

  • the present invention relates generally to the field of oil and gas well drilling. More particularly, the present invention relates to a method and system for directional drilling in which the drill string is rotated back and forth between selected surface measured torque magnitudes without changing the tool face angle, thereby to reduce friction between the drill string and the well bore.
  • Oil and gas bearing formations are typically located thousands of feet below the surface of the earth. Accordingly, thousands of feet of rock must be drilled through in order to reach the producing formations. Additionally, many wells are drilled directionally, wherein the target formations may be spaced laterally thousands of feet from the well's surface location. Thus, in directional drilling, not only must the depth but also the lateral distance of rock must be penetrated.
  • the cost of drilling a well is primarily time dependent. Accordingly, the faster the desired penetration location, both in terms of depth and lateral location, is achieved, the lower the cost in completing
  • Directional drilling is typically performed using a bent sub mud motor drilling tool that is connected to the surface by a drill string.
  • the drill string is not rotated; rather, the drilling fluid circulated through the drill string cause the bit of the mud motor drilling tool to rotate.
  • the direction of drilling is determined by the azimuth or face angle of the drilling bit.
  • Face angle information is measured downhole by a steering tool. Face angle information is typically conveyed from the steering tool to the surface using relatively low bandwidth mud pulse signaling. The driller attempts to maintain the proper face angle by applying torque or drill string angle corrections to the drill string.
  • the reactive torque that would be transmitted from the bit to the surface through drill string, if the hole were straight, is absorbed by the friction between the drill string and the borehole.
  • the driller applies drill string angle corrections at the surface in an attempt to correct the bit face angle, a substantial amount of the angular change is absorbed by friction without changing the face angle in stick/slip fashion.
  • the face angle may overshoot its target, thereby requiring the driller to apply a reverse angular correction.
  • the present invention provides a method and system for directional drilling that reduces the friction between the drill string and the well bore.
  • a downhole drilling motor is connected to the surface by a drill string.
  • the drilling motor is oriented at a selected tool face angle.
  • the drill string is rotated at the surface location in a first direction until a first torque magnitude is reached, without changing the tool face angle.
  • the drill string is then rotated in the opposite direction until a second torque magnitude is reached, again without changing the tool face angle.
  • the drill string is rocked back and forth between the first and second torque magnitudes.
  • FIG. 1 is a pictorial view of a directional drilling system.
  • FIG. 2 is a block diagram of a directional driller control system according to the present invention.
  • a drilling rig is designated generally by the numeral 11 .
  • Rig 11 in FIG. 1 is depicted as a land rig.
  • the method and system of the present invention will find equal application to non-land rigs, such as jack-up rigs, semisubmersibles, drill ships, and the like.
  • Rig 11 includes a derrick 13 that is supported on the ground above a rig floor 15 .
  • Rig 11 includes lifting gear, which includes a crown block 17 mounted to derrick 13 and a traveling block 19 .
  • Crown block 17 and traveling block 19 are interconnected by a cable 21 that is driven by draw works 23 to control the upward and downward movement of traveling block 19 .
  • Traveling block 19 carries a hook 25 from which is suspended a top drive 27 .
  • Top drive 27 supports a drill siring, designated generally by the numeral 31 , in a well bore 33 .
  • Top drive 27 can be operated to rotate drill string 31 in either direction.
  • drill string 31 is coupled to top drive 27 through an instrumented sub 29 .
  • instrumented top sub 29 includes sensors that provide drill string torque information according to the present invention.
  • Drill string 31 includes a plurality of interconnected sections of drill pipe 35 a bottom hole assembly (BHA) 37 , which includes stabilizers, drill collars, and a suite of measurement while drilling (MWD) instruments including a steering tool 51 .
  • BHA bottom hole assembly
  • MWD measurement while drilling
  • steering tool 51 provides bit face angle information according to the present invention.
  • a bent sub mud motor drilling tool 41 is connected to the bottom of BHA 37 .
  • the face angle of the bit of drilling tool 41 used to control azimuth and pitch during sliding directional drilling.
  • Drilling fluid is delivered to drill string 31 by mud pumps 43 through a mud hose 45 .
  • drill string 31 is rotated within bore hole 33 by top drive 27 .
  • top drive 27 is slidingly mounted on parallel vertically extending rails (not shown) to resist rotation as torque is applied to drill string 31 .
  • drill string 31 is held in place by top drive 27 while the bit is rotated by mud motor 41 , which is supplied with drilling fluid by mud pumps 43 .
  • top drive 27 to change the face angle of the bit of drilling tool 41 .
  • top drive rig a top drive rig is illustrated, those skilled in the art will recognize that the present invention may also be used in connection with systems in which a rotary table and kelly are used to apply torque to the drill string.
  • the cuttings produced as the bit drills into the earth are carried out of bore hole 33 by drilling mud supplied by mud pumps 43 .
  • the system of the present invention includes a steering tool 51 , which produces a signal indicative of drill bit face angle.
  • steering tool 51 uses mud pulse telemetry to send signals to a surface receiver (not shown), which outputs a digital face angle signal.
  • the face angle signal is produced at a rate of once every several seconds, rather than at the preferred five times per second sampling rate.
  • the sampling rate for the face angle signal may be about once every twenty seconds.
  • the system of the present invention also includes a drill string torque sensor 53 , which provides a measure of the torque applied to the drill string at the surface.
  • the drill string torque sensor may implemented as a strain gage in instrumented top sub 29 (illustrated in FIG. 1 ).
  • the torque sensor 53 may also be implemented as a current measurement device for an electric rotary table or top drive motor, or as pressure sensor for an hydraulically operated top drive.
  • the drill string torque sensor 53 provides a signal that may be sampled at the preferred sampling rate of five times per second.
  • Processor 55 is programmed according to the present invention to process data received from sensors 51 - 53 .
  • Processor 55 receives user input from user input devices, such as a keyboard 57 . Other user input devices such as touch screens, keypads, and the like may also be used.
  • Processor 55 provides visual output to a display 59 .
  • Processor 55 also provides output to a drill string rotation controller 61 that operates the top drive ( 27 in FIG. 1 ) or rotary table to rotate the drill string according to the present invention.
  • drilling, tool 41 is oriented at tool face angle selected to achieve a desired trajectory.
  • processor 55 operates drill string rotation controller 61 to rotate drill string 35 in a first direction while monitoring drill string torque with torque sensor 53 and tool face angle with steering tool 51 . As long as the tool face angle remains constant, rotation controller 61 continues to rotate drill string 35 in the first direction.
  • processor 55 notes the torque magnitude measured by torque sensor 53 and actuates drill string rotation controller 61 to reverse the direction of rotation of drill string 31 .
  • Torque is a vector having a magnitude and a direction.
  • processor 55 When torque sensor 53 senses that the magnitude of the drill string torque has reached the magnitude measured in the first direction, processor 55 actuates rotation controller 61 reverse the direction of rotation of drill string 31 . As drilling progresses, processor 55 continues to monitor drill torque with torque sensor 53 and actuates rotation controller 61 to rotate drill string 31 back and forth between the first torque magnitude and the second torque magnitude. The back and forth rotation reduces or eliminates stick/slip friction between the drill string and the well bore, thereby making it easier for the driller to control weight on bit and tool face angle.
  • the torque magnitude may be preselected by the system operator.
  • the processor 55 sends a signal to the controller 61 to reverse direction of rotation. The rotation in the reverse direction continues until the preselected torque value is reached again.
  • the preselected torque value is determined by calculating an expected rotational friction between the drill string ( 35 in FIG. 1 ) and the wellbore wall, such that the entire drill string above a selected point is rotated.
  • the selected point is preferably a position along the drill string at which reactive torque from the motor 41 is stopped by friction between the drill string and the wellbore wall.
  • the selected point may be calculated using “torque and drag” simulation computer programs well known in the art. Such programs calculate axial force and frictional/lateral force at each position along the drill string for any selected wellbore trajectory.
  • WELLPLAN Landmark Graphics Corp., Houston, Tex.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Drilling And Boring (AREA)

Abstract

A method of and system for directional drilling reduces the friction between the drill string and the well bore. A downhole drilling motor is connected to the surface by a drill string. The drilling motor is oriented at a selected tool face angle. The drill string is rotated at said surface location in a first direction until a first torque magnitude without changing the tool face angle. The drill string is then rotated in the opposite direction until a second torque magnitude is reached, again without changing the tool face angle. The drill string is rocked back and forth between the first and second torque magnitudes.

Description

FIELD OF THE INVENTION
The present invention relates generally to the field of oil and gas well drilling. More particularly, the present invention relates to a method and system for directional drilling in which the drill string is rotated back and forth between selected surface measured torque magnitudes without changing the tool face angle, thereby to reduce friction between the drill string and the well bore.
BACKGROUND OF THE INVENTION
It is very expensive to drill bore holes in the earth such as those made in connection with oil and gas wells. Oil and gas bearing formations are typically located thousands of feet below the surface of the earth. Accordingly, thousands of feet of rock must be drilled through in order to reach the producing formations. Additionally, many wells are drilled directionally, wherein the target formations may be spaced laterally thousands of feet from the well's surface location. Thus, in directional drilling, not only must the depth but also the lateral distance of rock must be penetrated.
The cost of drilling a well is primarily time dependent. Accordingly, the faster the desired penetration location, both in terms of depth and lateral location, is achieved, the lower the cost in completing
While many operations are required to drill and complete a well, perhaps the most important is the actual drilling of the bore hole. In order to achieve the optimum time of completion of a well, it is necessary to drill at the optimum rate of penetration and to drill in the minimum practical distance to the target location. Rate of penetration depends on many factors, but a primary factor is weight on bit.
Directional drilling is typically performed using a bent sub mud motor drilling tool that is connected to the surface by a drill string. During sliding drilling, the drill string is not rotated; rather, the drilling fluid circulated through the drill string cause the bit of the mud motor drilling tool to rotate. The direction of drilling is determined by the azimuth or face angle of the drilling bit. Face angle information is measured downhole by a steering tool. Face angle information is typically conveyed from the steering tool to the surface using relatively low bandwidth mud pulse signaling. The driller attempts to maintain the proper face angle by applying torque or drill string angle corrections to the drill string.
Several problems in directional drilling are caused by the fact that a substantial length of the drill string is in frictional contact with and supported by the borehole. Since the drill string is not rotating, it is difficult to overcome the friction. The difficulty in overcoming the friction makes it difficult for the driller to apply sufficient weight to the bit to achieve an optimal rate of penetration. The drill string exhibits stick/slip friction such that when a sufficient amount of weight is applied to overcome the friction, the drill the weight on bit tends to overshoot the optimum magnitude.
Additionally, the reactive torque that would be transmitted from the bit to the surface through drill string, if the hole were straight, is absorbed by the friction between the drill string and the borehole. Thus, during drilling, there is substantially no reactive torque at the surface. Moreover, when the driller applies drill string angle corrections at the surface in an attempt to correct the bit face angle, a substantial amount of the angular change is absorbed by friction without changing the face angle in stick/slip fashion. When enough angular correction is applied to overcome the friction, the face angle may overshoot its target, thereby requiring the driller to apply a reverse angular correction.
It is known that the frictional engagement between the drill string and the borehole can be reduced by rocking the drill string back and forth between a first angle and a second angle. By rocking the string, the stick/slip friction is reduced, thereby making it easier for the driller to control the weight on bit and make appropriate face angle corrections.
SUMMARY OF THE INVENTION
The present invention provides a method and system for directional drilling that reduces the friction between the drill string and the well bore. According to the present invention, a downhole drilling motor is connected to the surface by a drill string. The drilling motor is oriented at a selected tool face angle. The drill string is rotated at the surface location in a first direction until a first torque magnitude is reached, without changing the tool face angle. The drill string is then rotated in the opposite direction until a second torque magnitude is reached, again without changing the tool face angle. The drill string is rocked back and forth between the first and second torque magnitudes.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a pictorial view of a directional drilling system.
FIG. 2 is a block diagram of a directional driller control system according to the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to the drawings and first to FIG. 1, a drilling rig is designated generally by the numeral 11. Rig 11 in FIG. 1 is depicted as a land rig. However, as will be apparent to those skilled in the art, the method and system of the present invention will find equal application to non-land rigs, such as jack-up rigs, semisubmersibles, drill ships, and the like.
Rig 11 includes a derrick 13 that is supported on the ground above a rig floor 15. Rig 11 includes lifting gear, which includes a crown block 17 mounted to derrick 13 and a traveling block 19. Crown block 17 and traveling block 19 are interconnected by a cable 21 that is driven by draw works 23 to control the upward and downward movement of traveling block 19. Traveling block 19 carries a hook 25 from which is suspended a top drive 27. Top drive 27 supports a drill siring, designated generally by the numeral 31, in a well bore 33. Top drive 27 can be operated to rotate drill string 31 in either direction.
According to an embodiment of the present invention, drill string 31 is coupled to top drive 27 through an instrumented sub 29. As will be discussed in detail hereinafter, instrumented top sub 29 includes sensors that provide drill string torque information according to the present invention.
Drill string 31 includes a plurality of interconnected sections of drill pipe 35 a bottom hole assembly (BHA) 37, which includes stabilizers, drill collars, and a suite of measurement while drilling (MWD) instruments including a steering tool 51. As will be explained in detail hereinafter, steering tool 51 provides bit face angle information according to the present invention.
A bent sub mud motor drilling tool 41 is connected to the bottom of BHA 37. As is well known to those skilled in the art, the face angle of the bit of drilling tool 41 used to control azimuth and pitch during sliding directional drilling. Drilling fluid is delivered to drill string 31 by mud pumps 43 through a mud hose 45. During rotary drilling, drill string 31 is rotated within bore hole 33 by top drive 27. As is well known to those skilled in the art, top drive 27 is slidingly mounted on parallel vertically extending rails (not shown) to resist rotation as torque is applied to drill string 31. During sliding drilling, drill string 31 is held in place by top drive 27 while the bit is rotated by mud motor 41, which is supplied with drilling fluid by mud pumps 43. The driller can operate top drive 27 to change the face angle of the bit of drilling tool 41. Although a top drive rig is illustrated, those skilled in the art will recognize that the present invention may also be used in connection with systems in which a rotary table and kelly are used to apply torque to the drill string The cuttings produced as the bit drills into the earth are carried out of bore hole 33 by drilling mud supplied by mud pumps 43.
Referring now to FIG. 2, there is shown a block diagram of a preferred system of the present invention. The system of the present invention includes a steering tool 51, which produces a signal indicative of drill bit face angle. Typically, steering tool 51 uses mud pulse telemetry to send signals to a surface receiver (not shown), which outputs a digital face angle signal. However, because of the limited bandwidth of mud pulse telemetry, the face angle signal is produced at a rate of once every several seconds, rather than at the preferred five times per second sampling rate. For example, the sampling rate for the face angle signal may be about once every twenty seconds.
The system of the present invention also includes a drill string torque sensor 53, which provides a measure of the torque applied to the drill string at the surface. The drill string torque sensor may implemented as a strain gage in instrumented top sub 29 (illustrated in FIG. 1). The torque sensor 53 may also be implemented as a current measurement device for an electric rotary table or top drive motor, or as pressure sensor for an hydraulically operated top drive. The drill string torque sensor 53 provides a signal that may be sampled at the preferred sampling rate of five times per second.
In FIG. 2, the outputs of sensors 51 and 53 are received at a processor 55. Processor 55 is programmed according to the present invention to process data received from sensors 51-53. Processor 55 receives user input from user input devices, such as a keyboard 57. Other user input devices such as touch screens, keypads, and the like may also be used. Processor 55 provides visual output to a display 59. Processor 55 also provides output to a drill string rotation controller 61 that operates the top drive (27 in FIG. 1) or rotary table to rotate the drill string according to the present invention.
According to the present invention, drilling, tool 41 is oriented at tool face angle selected to achieve a desired trajectory. As drilling tool 41 is advanced into the hole, processor 55 operates drill string rotation controller 61 to rotate drill string 35 in a first direction while monitoring drill string torque with torque sensor 53 and tool face angle with steering tool 51. As long as the tool face angle remains constant, rotation controller 61 continues to rotate drill string 35 in the first direction. When the steering tool 51 senses a change in tool face angle, processor 55 notes the torque magnitude measured by torque sensor 53 and actuates drill string rotation controller 61 to reverse the direction of rotation of drill string 31. Torque is a vector having a magnitude and a direction. When torque sensor 53 senses that the magnitude of the drill string torque has reached the magnitude measured in the first direction, processor 55 actuates rotation controller 61 reverse the direction of rotation of drill string 31. As drilling progresses, processor 55 continues to monitor drill torque with torque sensor 53 and actuates rotation controller 61 to rotate drill string 31 back and forth between the first torque magnitude and the second torque magnitude. The back and forth rotation reduces or eliminates stick/slip friction between the drill string and the well bore, thereby making it easier for the driller to control weight on bit and tool face angle.
Alternatively, the torque magnitude may be preselected by the system operator. When the torque detected by the torque sensor 53 reaches the preselected value, the processor 55 sends a signal to the controller 61 to reverse direction of rotation. The rotation in the reverse direction continues until the preselected torque value is reached again. In some embodiments, the preselected torque value is determined by calculating an expected rotational friction between the drill string (35 in FIG. 1) and the wellbore wall, such that the entire drill string above a selected point is rotated. The selected point is preferably a position along the drill string at which reactive torque from the motor 41 is stopped by friction between the drill string and the wellbore wall. The selected point may be calculated using “torque and drag” simulation computer programs well known in the art. Such programs calculate axial force and frictional/lateral force at each position along the drill string for any selected wellbore trajectory. One such program is sold under the trade name WELLPLAN by Landmark Graphics Corp., Houston, Tex.
While the invention has been disclosed with respect to a limited number of embodiments, those of ordinary skill in the art, having the benefit of this disclosure, will readily appreciate that other embodiments may be devised which do not depart from the scope of the invention. Accordingly, the scope of the invention is intended to be limited only by the attached claims.

Claims (37)

What is claimed is:
1. A method of drilling a well, which comprises:
(a) orienting a downhole drilling motor at a selected face angle, said drilling motor being connected by a drill string to a surface drilling location;
(b) rotating said drill string at said surface location in a first direction until a first measured torque magnitude is reached at said surface location; and then,
(c) rotating said drill string in the direction opposite said first direction until a second measured torque magnitude is reached at said surface location.
2. The method as claimed in claim 1, including repeating steps (b) and (c) while drilling with said drilling motor.
3. The method as claimed in claim 1, wherein said second torque magnitude is substantially equal to said first torque magnitude.
4. The method as claimed in claim 1, wherein said second torque magnitude is less than said first torque magnitude.
5. The method as claimed in claim 1, wherein:
said drill string is rotated in said first direction to said first torque magnitude without changing said face angle; and,
said drill string is rotated in said direction opposite said first direction to said second torque magnitude without changing said face angle.
6. The method as claimed in claim 5, wherein said second torque magnitude is substantially equal to said first torque magnitude.
7. The method as claimed in claim 5, wherein said second torque magnitude is less than said first torque magnitude.
8. The method as defined in claim 1 wherein said first torque magnitude is selected so that the drill string is rotated to a selected position therealong.
9. The method as defined in claim 8 wherein the selected position along the drill string is a position at which reactive torque from said drilling motor substantially is stopped by friction between the drill string and a wall of a wellbore.
10. A method of drilling a well, which comprises:
(a) determining the face angle of a downhole drilling motor, said downhole drilling motor being connected to a surface location by a drill string;
(b) rotating said drill string at said surface location in a first direction until a first measured torque magnitude is reached at said surface location without changing said face angle; and then
(c) rotating said drill string in the direction opposite said first direction until a second measure torque magnitude is reached at said surface location without changing said face angle.
11. The method as claimed in claim 10, including repeating steps (a) and (b) while drilling with said drilling motor.
12. The method as claimed in claim 10, wherein said second torque magnitude is substantially equal to said first torque magnitude.
13. The method as claimed in claim 10, wherein said second torque magnitude is less than said first torque magnitude.
14. A directional drilling system, which comprises:
a torque sensor for determining torque applied to a drill string by rotating means;
a controller for operating said rotating means to rotate said drill string in a first direction until a first torque magnitude is determined and then in a direction opposite said first direction until a second torque magnitude is determined.
15. The system as claimed in claim 14, wherein said second torque magnitude is substantially equal to said first torque magnitude.
16. The system as claimed in claim 14, wherein said controller operates said rotating means to rotate said drill string until said first and second torque magnitudes are reached without changing bit face angle.
17. The system as claimed in claim 14 further comprising means for calculating a value of said first torque magnitude such that said drill string is rotated to a position along said drill string at which reactive torque from a drilling motor is stopped by friction between the drill string and a wall of a wellbore.
18. The system as claimed in claim 14, wherein said second torque magnitude is less than said first torque magnitude.
19. The system as claimed in claim 14, wherein said rotating means comprises a top drive.
20. The system as claimed in claim 14, wherein said rotating means comprises a rotary table.
21. A method of drilling a well, comprising:
(a) orienting a downhole drilling motor to a selected face angle, said downhole drilling motor being connected to a surface location by a drill string;
(b) automatically rotating said drill string at said surface location in a first direction until a first measured torque magnitude is reached at said surface location without changing said face angle; and then
(c) automatically rotating said drill string in the direction opposite said first direction until a second measured torque magnitude is reached at said surface location without changing said face angle.
22. The method as claimed in claim 21, including repeating (b) and (c) while drilling the well with said drilling motor.
23. The method as claimed in claim 21, wherein said second torque magnitude is substantially equal to said first torque magnitude.
24. The method as claimed in claim 21, wherein said second torque magnitude is less than said first torque magnitude.
25. A directional drilling system, comprising:
a torque sensor for determining torque applied to a drill string by a rotating means proximate a surface location; and
a controller in signal communication with the torque sensor, the controller operating said rotating means to automatically rotate said drill string in a first direction until a first torque magnitude is determined by the torque sensor, the controller then operating the rotating means to automatically rotate said drill string in a direction opposite said first direction until a second torque magnitude is determined by the torque sensor.
26. The system as claimed in claim 25, wherein said first and said second torque magnitudes are substantially equal.
27. The system as claimed in claim 25, wherein said controller operates said rotating means to automatically rotate said drill string until said second torque magnitude is reached without changing a bit face angle.
28. The system as claimed in claim 25 further comprising means for calculating a value of said first torque magnitude such that said drill string is automatically rotated to a position along said drill string at which reactive torque from a drilling motor is substantially stopped by friction between the drill string and a wall of a wellbore.
29. The system as claimed in claim 25, wherein said second torque magnitude is less than said first torque magnitude.
30. The system as claimed in claim 25, wherein said rotating means comprises a top drive.
31. The system as claimed in claim 25, wherein said surface drive system comprises a rotary table.
32. A method of drilling a well, comprising:
(a) selecting a first torque value;
(b) orienting a downhole drilling motor at a selected face angle; the drilling motor being connected by a drill string to a surface drilling location;
(c) automatically rotating a drill string at a surface location in a first direction;
(d) measuring a first torque magnitude at said surface location;
(e) automatically changing rotation of said drill string to the direction opposite said first direction when said first torque magnitude is equal to said first selected torque value;
(f) measuring a second torque magnitude at said surface location and continuing rotation of said drill string in said direction opposite to said first direction until a second selected torque value is reached; and then
(g) automatically changing rotation of said drill string to the first direction when said second torque magnitude is equal to said second selected torque value.
33. The method as claimed in claim 32, further comprising repeating (c) through (g) while drilling the well with a drilling motor.
34. The method as claimed in claim 32, wherein said first and said second selected torque values are substantially equal.
35. The method as claimed in claim 32, wherein said second selected torque value is less than said first selected torque value.
36. The method as claimed in claim 32 wherein said first selected torque value is selected so that the drill string is rotated to a selected axial position therealong.
37. The method as claimed in claim 36 wherein the selected position along the drill string is a position at which reactive torque from a drilling motor is substantially stopped by friction between the drill string and a wall of a wellbore.
US13/854,058 2002-12-19 2013-03-30 Method and apparatus for directional drilling Expired - Lifetime USRE45898E1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/854,058 USRE45898E1 (en) 2002-12-19 2013-03-30 Method and apparatus for directional drilling
US14/279,669 USRE46090E1 (en) 2002-12-19 2014-05-16 Method and apparatus for directional drilling
US15/225,163 USRE47105E1 (en) 2002-12-19 2016-08-01 Method and apparatus for directional drilling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/325,639 US6802378B2 (en) 2002-12-19 2002-12-19 Method of and apparatus for directional drilling
US13/854,058 USRE45898E1 (en) 2002-12-19 2013-03-30 Method and apparatus for directional drilling

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/325,639 Reissue US6802378B2 (en) 2002-12-19 2002-12-19 Method of and apparatus for directional drilling

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/325,639 Continuation US6802378B2 (en) 2002-12-19 2002-12-19 Method of and apparatus for directional drilling
US14/279,669 Continuation USRE46090E1 (en) 2002-12-19 2014-05-16 Method and apparatus for directional drilling

Publications (1)

Publication Number Publication Date
USRE45898E1 true USRE45898E1 (en) 2016-02-23

Family

ID=32593835

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/325,639 Ceased US6802378B2 (en) 2002-12-19 2002-12-19 Method of and apparatus for directional drilling
US13/854,058 Expired - Lifetime USRE45898E1 (en) 2002-12-19 2013-03-30 Method and apparatus for directional drilling
US14/279,669 Expired - Lifetime USRE46090E1 (en) 2002-12-19 2014-05-16 Method and apparatus for directional drilling
US15/225,163 Expired - Lifetime USRE47105E1 (en) 2002-12-19 2016-08-01 Method and apparatus for directional drilling

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/325,639 Ceased US6802378B2 (en) 2002-12-19 2002-12-19 Method of and apparatus for directional drilling

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/279,669 Expired - Lifetime USRE46090E1 (en) 2002-12-19 2014-05-16 Method and apparatus for directional drilling
US15/225,163 Expired - Lifetime USRE47105E1 (en) 2002-12-19 2016-08-01 Method and apparatus for directional drilling

Country Status (5)

Country Link
US (4) US6802378B2 (en)
AU (1) AU2003303579B2 (en)
CA (1) CA2509347C (en)
MX (1) MXPA05006330A (en)
WO (1) WO2004061258A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE47105E1 (en) * 2002-12-19 2018-10-30 Schlumberger Technology Corporation Method and apparatus for directional drilling
US10731453B2 (en) 2018-01-16 2020-08-04 Nabors Drilling Technologies Usa, Inc. System and method of automating a slide drilling operation
US11624666B2 (en) 2018-06-01 2023-04-11 Schlumberger Technology Corporation Estimating downhole RPM oscillations

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8544564B2 (en) 2005-04-05 2013-10-01 Halliburton Energy Services, Inc. Wireless communications in a drilling operations environment
US20060020390A1 (en) * 2004-07-22 2006-01-26 Miller Robert G Method and system for determining change in geologic formations being drilled
US7152696B2 (en) * 2004-10-20 2006-12-26 Comprehensive Power, Inc. Method and control system for directional drilling
US20090151926A1 (en) * 2005-05-21 2009-06-18 Hall David R Inductive Power Coupler
US7277026B2 (en) * 2005-05-21 2007-10-02 Hall David R Downhole component with multiple transmission elements
US7504963B2 (en) 2005-05-21 2009-03-17 Hall David R System and method for providing electrical power downhole
US7535377B2 (en) 2005-05-21 2009-05-19 Hall David R Wired tool string component
US8264369B2 (en) * 2005-05-21 2012-09-11 Schlumberger Technology Corporation Intelligent electrical power distribution system
JP4962488B2 (en) * 2006-03-01 2012-06-27 富士通株式会社 Torque measuring device
US7404454B2 (en) * 2006-05-05 2008-07-29 Varco I/P, Inc. Bit face orientation control in drilling operations
US7461705B2 (en) * 2006-05-05 2008-12-09 Varco I/P, Inc. Directional drilling control
US7810584B2 (en) * 2006-09-20 2010-10-12 Smith International, Inc. Method of directional drilling with steerable drilling motor
US8672055B2 (en) 2006-12-07 2014-03-18 Canrig Drilling Technology Ltd. Automated directional drilling apparatus and methods
CA2671822C (en) * 2006-12-07 2013-08-27 Nabors Global Holdings, Ltd. Automated mse-based drilling apparatus and methods
US11725494B2 (en) 2006-12-07 2023-08-15 Nabors Drilling Technologies Usa, Inc. Method and apparatus for automatically modifying a drilling path in response to a reversal of a predicted trend
US7823655B2 (en) 2007-09-21 2010-11-02 Canrig Drilling Technology Ltd. Directional drilling control
US20090107728A1 (en) * 2007-10-31 2009-04-30 Emerson Clifford Gaddis Drilling fluid recovery
US8210268B2 (en) * 2007-12-12 2012-07-03 Weatherford/Lamb, Inc. Top drive system
WO2009086094A1 (en) * 2007-12-21 2009-07-09 Nabors Global Holdings, Ltd. Integrated quill position and toolface orientation display
US20100098568A1 (en) 2008-10-16 2010-04-22 Adrian Marica Mud pump systems for wellbore operations
US8757592B2 (en) 2008-10-16 2014-06-24 National Oilwell Varco, L.P. Poppet valve for pump systems with non-rigid connector to facilitate effective sealing
US8827242B2 (en) 2008-10-16 2014-09-09 National Oilwell Varco, L.P. Valve cartridge for pump systems
US9328729B2 (en) 2008-10-16 2016-05-03 National Oilwell Varco, L.P. Pumping systems with dedicated surge dampeners
US8528663B2 (en) * 2008-12-19 2013-09-10 Canrig Drilling Technology Ltd. Apparatus and methods for guiding toolface orientation
US8510081B2 (en) * 2009-02-20 2013-08-13 Canrig Drilling Technology Ltd. Drilling scorecard
GB2469866B (en) 2009-05-01 2013-08-28 Dynamic Dinosaurs Bv Method and apparatus for applying vibrations during borehold operations
US8317448B2 (en) * 2009-06-01 2012-11-27 National Oilwell Varco, L.P. Pipe stand transfer systems and methods
BR112012006391B1 (en) * 2009-09-21 2019-05-28 National Oilwell Varco, L.P. METHODS FOR DRILLING A SURFACE HOLE IN A TERRESTRIAL FORMATION AND TO MAINTAIN NON-STATIONARY STATE CONDITIONS IN A SURFACE HOLE, AND COMPUTER READABLE MEDIA
WO2011085059A2 (en) * 2010-01-06 2011-07-14 Amkin Technologies Rotating drilling tool
US8534354B2 (en) * 2010-03-05 2013-09-17 Schlumberger Technology Corporation Completion string deployment in a subterranean well
US8961093B2 (en) 2010-07-23 2015-02-24 National Oilwell Varco, L.P. Drilling rig pipe transfer systems and methods
US9593567B2 (en) 2011-12-01 2017-03-14 National Oilwell Varco, L.P. Automated drilling system
CN102677724B (en) * 2012-05-21 2014-06-04 中国石油天然气集团公司 Mechanical steel sleeve installation device and mechanical steel sleeve installation method
US9249655B1 (en) * 2012-05-31 2016-02-02 Larry G. Keast Control system for a top drive
US9145768B2 (en) * 2012-07-03 2015-09-29 Schlumberger Technology Corporation Method for reducing stick-slip during wellbore drilling
US9290995B2 (en) 2012-12-07 2016-03-22 Canrig Drilling Technology Ltd. Drill string oscillation methods
US9309760B2 (en) 2012-12-18 2016-04-12 Schlumberger Technology Corporation Automated directional drilling system and method using steerable motors
US10927658B2 (en) 2013-03-20 2021-02-23 Schlumberger Technology Corporation Drilling system control for reducing stick-slip by calculating and reducing energy of upgoing rotational waves in a drillstring
US9650880B2 (en) * 2013-04-12 2017-05-16 Tesco Corporation Waveform anti-stick slip system and method
US9822633B2 (en) 2013-10-22 2017-11-21 Schlumberger Technology Corporation Rotational downlinking to rotary steerable system
US10487642B2 (en) 2013-10-28 2019-11-26 Schlumberger Technology Corporation Frequency analysis of drilling signals
US10883356B2 (en) 2014-04-17 2021-01-05 Schlumberger Technology Corporation Automated sliding drilling
US9404307B2 (en) 2014-06-02 2016-08-02 Schlumberger Technology Corporation Method and system for directional drilling
WO2016060881A1 (en) * 2014-10-15 2016-04-21 Schlumberger Canada Limited Method and apparatus for directional drilling using wired drill pipe
US9689250B2 (en) 2014-11-17 2017-06-27 Tesco Corporation System and method for mitigating stick-slip
US10094209B2 (en) 2014-11-26 2018-10-09 Nabors Drilling Technologies Usa, Inc. Drill pipe oscillation regime for slide drilling
US9945222B2 (en) 2014-12-09 2018-04-17 Schlumberger Technology Corporation Closed loop control of drilling curvature
US9784035B2 (en) 2015-02-17 2017-10-10 Nabors Drilling Technologies Usa, Inc. Drill pipe oscillation regime and torque controller for slide drilling
WO2017082882A1 (en) * 2015-11-10 2017-05-18 Halliburton Energy Services, Inc. Downhole component control assembly
US20180347281A1 (en) * 2015-12-04 2018-12-06 Schlumberger Technology Corporation Automated directional drilling system and method using steerable drilling motors
US10378282B2 (en) 2017-03-10 2019-08-13 Nabors Drilling Technologies Usa, Inc. Dynamic friction drill string oscillation systems and methods
US10782197B2 (en) 2017-12-19 2020-09-22 Schlumberger Technology Corporation Method for measuring surface torque oscillation performance index
US10760417B2 (en) 2018-01-30 2020-09-01 Schlumberger Technology Corporation System and method for surface management of drill-string rotation for whirl reduction
US11808133B2 (en) 2019-05-28 2023-11-07 Schlumberger Technology Corporation Slide drilling
US11916507B2 (en) 2020-03-03 2024-02-27 Schlumberger Technology Corporation Motor angular position control
US11808134B2 (en) 2020-03-30 2023-11-07 Schlumberger Technology Corporation Using high rate telemetry to improve drilling operations
US11933156B2 (en) 2020-04-28 2024-03-19 Schlumberger Technology Corporation Controller augmenting existing control system

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB591922A (en) 1942-06-02 1947-09-02 Pierre Jean Marie Theodore All Well sinking apparatus
GB596715A (en) 1944-06-17 1948-01-09 Pierre Jean Marie Theodore All Method and means for tubing wells
US4450393A (en) 1980-10-30 1984-05-22 Fujitsu Fanuc Limited Spindle orientation control apparatus
US4492276A (en) 1982-11-17 1985-01-08 Shell Oil Company Down-hole drilling motor and method for directional drilling of boreholes
US4535972A (en) 1983-11-09 1985-08-20 Standard Oil Co. (Indiana) System to control the vertical movement of a drillstring
US4854397A (en) 1988-09-15 1989-08-08 Amoco Corporation System for directional drilling and related method of use
US4876886A (en) 1988-04-04 1989-10-31 Anadrill, Inc. Method for detecting drilling events from measurement while drilling sensors
US4958125A (en) 1988-12-03 1990-09-18 Anadrill, Inc. Method and apparatus for determining characteristics of the movement of a rotating drill string including rotation speed and lateral shocks
US5205163A (en) 1990-07-10 1993-04-27 Schlumberger Technology Corporation Method and apparatus for determining the torque applied to a drillstring at the surface
US5237539A (en) 1991-12-11 1993-08-17 Selman Thomas H System and method for processing and displaying well logging data during drilling
US5259468A (en) 1990-10-04 1993-11-09 Amoco Corporation Method of dynamically monitoring the orientation of a curved drilling assembly and apparatus
US5390748A (en) 1993-11-10 1995-02-21 Goldman; William A. Method and apparatus for drilling optimum subterranean well boreholes
US5433279A (en) 1993-07-20 1995-07-18 Tessari; Robert M. Portable top drive assembly
US5465799A (en) * 1994-04-25 1995-11-14 Ho; Hwa-Shan System and method for precision downhole tool-face setting and survey measurement correction
US5467832A (en) 1992-01-21 1995-11-21 Schlumberger Technology Corporation Method for directionally drilling a borehole
US5474142A (en) 1993-04-19 1995-12-12 Bowden; Bobbie J. Automatic drilling system
EP0774563A2 (en) 1995-11-17 1997-05-21 Baker Hughes Incorporated Method and apparatus for navigational drilling
US5842149A (en) 1996-10-22 1998-11-24 Baker Hughes Incorporated Closed loop drilling system
US6050348A (en) * 1997-06-17 2000-04-18 Canrig Drilling Technology Ltd. Drilling method and apparatus
US20020104685A1 (en) * 2000-11-21 2002-08-08 Pinckard Mitchell D. Method of and system for controlling directional drilling
US6802378B2 (en) 2002-12-19 2004-10-12 Noble Engineering And Development, Ltd. Method of and apparatus for directional drilling
US6918453B2 (en) * 2002-12-19 2005-07-19 Noble Engineering And Development Ltd. Method of and apparatus for directional drilling

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096979B2 (en) * 2003-05-10 2006-08-29 Noble Drilling Services Inc. Continuous on-bottom directional drilling method and system
US9145768B2 (en) * 2012-07-03 2015-09-29 Schlumberger Technology Corporation Method for reducing stick-slip during wellbore drilling

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB591922A (en) 1942-06-02 1947-09-02 Pierre Jean Marie Theodore All Well sinking apparatus
GB596715A (en) 1944-06-17 1948-01-09 Pierre Jean Marie Theodore All Method and means for tubing wells
US4450393A (en) 1980-10-30 1984-05-22 Fujitsu Fanuc Limited Spindle orientation control apparatus
US4492276B1 (en) 1982-11-17 1991-07-30 Shell Oil Co
US4492276A (en) 1982-11-17 1985-01-08 Shell Oil Company Down-hole drilling motor and method for directional drilling of boreholes
US4535972A (en) 1983-11-09 1985-08-20 Standard Oil Co. (Indiana) System to control the vertical movement of a drillstring
US4876886A (en) 1988-04-04 1989-10-31 Anadrill, Inc. Method for detecting drilling events from measurement while drilling sensors
US4854397A (en) 1988-09-15 1989-08-08 Amoco Corporation System for directional drilling and related method of use
US4958125A (en) 1988-12-03 1990-09-18 Anadrill, Inc. Method and apparatus for determining characteristics of the movement of a rotating drill string including rotation speed and lateral shocks
US5205163A (en) 1990-07-10 1993-04-27 Schlumberger Technology Corporation Method and apparatus for determining the torque applied to a drillstring at the surface
US5259468A (en) 1990-10-04 1993-11-09 Amoco Corporation Method of dynamically monitoring the orientation of a curved drilling assembly and apparatus
US5237539A (en) 1991-12-11 1993-08-17 Selman Thomas H System and method for processing and displaying well logging data during drilling
US5467832A (en) 1992-01-21 1995-11-21 Schlumberger Technology Corporation Method for directionally drilling a borehole
US5474142A (en) 1993-04-19 1995-12-12 Bowden; Bobbie J. Automatic drilling system
US5433279A (en) 1993-07-20 1995-07-18 Tessari; Robert M. Portable top drive assembly
US5390748A (en) 1993-11-10 1995-02-21 Goldman; William A. Method and apparatus for drilling optimum subterranean well boreholes
US5465799A (en) * 1994-04-25 1995-11-14 Ho; Hwa-Shan System and method for precision downhole tool-face setting and survey measurement correction
EP0774563A2 (en) 1995-11-17 1997-05-21 Baker Hughes Incorporated Method and apparatus for navigational drilling
US5738178A (en) 1995-11-17 1998-04-14 Baker Hughes Incorporated Method and apparatus for navigational drilling with a downhole motor employing independent drill string and bottomhole assembly rotary orientation and rotation
US5842149A (en) 1996-10-22 1998-11-24 Baker Hughes Incorporated Closed loop drilling system
US6050348A (en) * 1997-06-17 2000-04-18 Canrig Drilling Technology Ltd. Drilling method and apparatus
US20020104685A1 (en) * 2000-11-21 2002-08-08 Pinckard Mitchell D. Method of and system for controlling directional drilling
US6802378B2 (en) 2002-12-19 2004-10-12 Noble Engineering And Development, Ltd. Method of and apparatus for directional drilling
US6918453B2 (en) * 2002-12-19 2005-07-19 Noble Engineering And Development Ltd. Method of and apparatus for directional drilling

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
Bonner, Steve et al., "Measurements at the Bit: A New Generation of MWD Tools," Oilfield Review, Apr./Jul. 1993, 11 pages, Apr. 1993.
Brett, J.F. et al., "Field Experiences with Computer-Controlled Drilling," SPE, Society of Petroleum Engineers, SPE 20107, 1990 Permian Basin Oil and Gas Recovery Conference held in Midland, Texas, Mar. 8-9, 1990, 16 pages, Mar. 8, 1990.
Brouse, Michael, Economic/Operational Advantages of Top Drive Installations, World Oil, 5 pages, Oct. 1996.
Canrig Drilling Technology, Ltd., sales brochure for Directional Steering Control System (DSCS).
Case 6:09-cv-00414-LED Document 102 Filed Mar. 18, 2011, Defendants' Joint Motion to Amend Invalidity Contentions, 177 pages, Mar. 18, 2011.
Case 6:09-cv-00414-LED Document 114 Filed Mar. 30, 2011, Plaintiff Canrig Drilling Technology Ltd.'s Response to Defendants' Joint Motion to Amend Invalidity Contentions, 70 pages, Mar. 30, 2011.
Case 6:09-cv-00414-LED Document 124 Filed Apr. 11, 2011, Defendants' Reply to Canrig's Response to Defendants' Motion to Amend Invalidity Contentions, 32 pages, Apr. 11, 2011.
Case 6:09-cv-00414-LED Document 124-2 Filed Apr. 11, 2011, Tesco Drilling Technology, Portable Top Drive Drilling System, "The Future of Drilling," 3 pages, Apr. 11, 2011.
Case 6:09-cv-00414-LED Document 130 Filed Apr. 12, 2011, Defendants' Reply to Canrig's Response to Defendants' Motion to Amend Invalidity Contentions, 27 pages, Apr. 12, 2011.
Case 6:09-cv-00414-LED Document 167 Filed May 13, 2011, Canrig Drilling Technology Ltd. v. Omron Oilfield and Marine, Inc., and Helmerich & Payne, Inc., Defendant Omron Oilfield and Marine Inc.'s Motion for Partial Summary Judgment of No Willful Infringement, 19 pages, May 13, 2011.
Case 6:09-cv-00414-LED Document 184 Filed May 25, 2011, Canrig Drilling Technology Ltd. v. Omron Oilfield and Marine, Inc., and Helmerich & Payne, Inc., Defendant's Motion to Clarify the Court's Order (DKT#: 154) Regarding Amendment of Invalidity Contentions, or in the Alternative, Reconsider the Order with Regard to the TESCO Top Drive, 17 pages, May 25, 2011.
Case 6:09-cv-00414-LED Document 184 Filed May 25, 2011, Defendant's Motion to Clarify the Court's Order (DKT#: 154) Regarding Amendment of Invalidity Contentions, or in the Alternative, Reconsider the Order with Regard to the TESCO Top Drive, 146 pages, May 25, 2011.
Halsey G.W. et al., "Torque Feedback Used to Cure Slip-Stick Motion," 63rd Annual Technical Conference and Exhibition of the Society of Petroleum Engineers held in Houston, TX, Oct. 2-5, 1968, SPE, Society of Petroleum Engineers, 6 pages, Oct. 2, 1968.
Jackson, Bryan et al., "Portable Top Drive Cuts Horizontal Drilling Costs," World Oil, 5 pages, Nov. 1993.
Jean Michel Genevois, Jean Boulet, and Christophe Simon, Gyrostab Project : The Missing Link Azimuth and inclination mastered with new principles for standard rotary BHAs, Society of Petroleum Engineers, SPE/IADC 79915, Feb. 19, 2003.
Laurent, Michael et al., "Hydraulic Rig Supports Casing Drilling," World Oil, 4 pages, Sep. 1999.
Murch, Colin B., "Application of Top Drive Drilling to Horizontal Wells," 1996 SPE Horizontal Well Technology Conference, Alberta, Canada, Society of Petroleum Engineers, 4 pages, Nov. 18, 1996.
Pinka, Ján et al., "TDS-Top Drive System, New Drilling Technology," Acta Montanistica Slovaca, vol. 1(4), 7 pages, 1996.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE47105E1 (en) * 2002-12-19 2018-10-30 Schlumberger Technology Corporation Method and apparatus for directional drilling
US10731453B2 (en) 2018-01-16 2020-08-04 Nabors Drilling Technologies Usa, Inc. System and method of automating a slide drilling operation
US11236601B2 (en) 2018-01-16 2022-02-01 Nabors Drilling Technologies Usa, Inc. System and method of automating a slide drilling operation
US11624666B2 (en) 2018-06-01 2023-04-11 Schlumberger Technology Corporation Estimating downhole RPM oscillations

Also Published As

Publication number Publication date
AU2003303579A1 (en) 2004-07-29
USRE46090E1 (en) 2016-08-02
CA2509347C (en) 2008-04-08
CA2509347A1 (en) 2004-07-22
USRE47105E1 (en) 2018-10-30
US20040118608A1 (en) 2004-06-24
WO2004061258A2 (en) 2004-07-22
US6802378B2 (en) 2004-10-12
AU2003303579B2 (en) 2008-12-18
MXPA05006330A (en) 2005-08-26
WO2004061258A3 (en) 2004-10-07

Similar Documents

Publication Publication Date Title
USRE47105E1 (en) Method and apparatus for directional drilling
US6918453B2 (en) Method of and apparatus for directional drilling
US7810584B2 (en) Method of directional drilling with steerable drilling motor
US7096979B2 (en) Continuous on-bottom directional drilling method and system
AU2015270910B2 (en) Method and system for directional drilling
US6293356B1 (en) Method of and system for optimizing rate of penetration in drilling operations
US6155357A (en) Method of and system for optimizing rate of penetration in drilling operations
CA2651154C (en) Method and apparatus for oscillating a drill string
AU2013363641B2 (en) Automated directional drilling system and method using steerable motors
US20110024187A1 (en) Directional drilling control apparatus and methods
US10612367B2 (en) Top drive tool face measurement in relation to down hole drilling components
CN103608545A (en) System, method, and computer program for predicting borehole geometry
CA2440996A1 (en) Downhole closed loop control of drilling trajectory
US20200095829A1 (en) Direct wrap measurement during connection for optimal slide drilling

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 12

CC Certificate of correction