Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUSRE46570 E1
Tipo de publicaciónConcesión
Número de solicitudUS 14/952,019
Fecha de publicación17 Oct 2017
Fecha de presentación25 Nov 2015
Fecha de prioridad3 Sep 2009
También publicado comoUS8357159, US8574230, US8591511, US20110054472, US20130131672, US20130138104
Número de publicación14952019, 952019, US RE46570 E1, US RE46570E1, US-E1-RE46570, USRE46570 E1, USRE46570E1
InventoresPaul R. Romero
Cesionario originalCovidien Lp
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Open vessel sealing instrument with pivot assembly
US RE46570 E1
Resumen
An open electrosurgical forceps includes a pair of first and second shaft members each having a jaw member disposed at its distal end. The jaw members are movable about a pivot assembly from an open position in spaced relation relative to one another to a closed position wherein the jaw members cooperate to grasp tissue. Each of the jaw members includes an electrically conductive sealing surface for communicating electrosurgical energy through grasped tissue. One or both of the jaw members includes a knife channel defined along its length. The pivot assembly includes a knife slot and is configured to prevent reciprocation of a cutting mechanism when the jaw members are disposed in the open position and to permit reciprocation of the cutting mechanism when the jaw members are disposed in the closed position. An actuator selectively advances the cutting mechanism from a first position to at least one subsequent position.
Imágenes(11)
Previous page
Next page
Reclamaciones(19)
What is claimed is:
1. An open electrosurgical forceps, comprising:
a pair of first and second shaft members each having a jaw member disposed at a distal end thereof, the jaw members movable about a pivot assembly from an open position in spaced relation relative to one another to a closed position wherein the jaw members cooperate to grasp tissue therebetween, the pivot assembly including:
a pair of insulative shoulders having a first end defining a cap and a second end operably coupled to opposing sides of an insulative hub having a knife slot defined therein, wherein one of the jaw members is configured to rotate about one of the insulative shoulders,
the pivot assembly configured to prevent reciprocation of a cutting mechanism when the jaw members are disposed in the open position and to permit reciprocation of the cutting mechanism therethrough when the jaw members are disposed in the closed position.
2. An open electrosurgical forceps according to claim 1, further comprising a knife channel defined along a length of at least one of the jaw members.
3. An open electrosurgical forceps according to claim 1, further comprising an actuator operatively connected to one of the shaft members configured to selectively advance the cutting mechanism from a first position wherein the cutting mechanism is disposed proximal to tissue grasped between the jaw members to at least one subsequent position wherein the cutting mechanism is disposed through the pivot assembly and into tissue grasped between the jaw members.
4. An open electrosurgical forceps according to claim 2, wherein the knife slot of the insulative hub of the is configured to align with the knife channel when the jaw members are disposed in the closed position to permit advancement of the cutting mechanism and to misalign with the knife channel when the jaw members are disposed in the open position and prevent advancement of the cutting mechanism.
5. An open electrosurgical forceps according to claim 1, wherein each of the opposing sides of the insulative hub includes a first recess defined therein configured to receive a first end of a pivot pin and a second recess substantially surrounding the first recess and configured to receive at least a portion of one of the insulative shoulders therein, the insulative shoulders configured to receive a second end of the pivot pin to operably couple the insulative shoulders to the insulative hub.
6. An open electrosurgical forceps according to claim 1, wherein the cutting mechanism includes a generally hour-glass-shaped flexible blade having a notch disposed generally midway therealong which facilitates distal translation of the cutting mechanism.
7. An open electrosurgical forceps, comprising:
a first shaft member having a first jaw member disposed at a distal end thereof and a second shaft member having a second jaw member disposed at a distal end thereof;
a pivot assembly including a blade slot defined longitudinally therethrough and at least one cap configured to secure the pivot assembly to at least one of the first or second shaft members such that the jaw members are movable relative to each other about the pivot assembly between an open position and a closed position, the pivot assembly including:
a hub; and
a pair of shoulders having a first portion defining the at least one cap and a second portion operably coupled to opposing sides of the hub;
a knife channel extending at least partially through the first and second jaw members; and
a cutting mechanism including a knife blade configured to be advanced distally through the blade slot and the knife channel when the jaw members are disposed in the closed position to cut tissue disposed between the jaw members, the blade slot configured to prevent advancement of the knife blade when the jaw members are disposed in the open position.
8. The open electrosurgical forceps according to claim 7, wherein at least one of the first or second shaft members is configured to rotate about the pair of shoulders.
9. The open electrosurgical forceps according to claim 7, further comprising an actuator operatively coupled to one of the shaft members and configured to selectively advance the knife blade distally through the blade slot and the knife channel to cut tissue disposed between the jaw members.
10. The open electrosurgical forceps according to claim 7, wherein the blade slot is configured to align with the knife channel when the jaw members are disposed in the closed position to permit translation of the knife blade through the blade slot and the knife channel to cut tissue disposed between the jaw members.
11. The open electrosurgical forceps according to claim 7, wherein at least one of the pair of shoulders is insulative.
12. An open electrosurgical forceps, comprising:
a pair of first and second shaft members each having a jaw member disposed at a distal end thereof, the jaw members movable about a pivot assembly between an open position wherein the jaw members are disposed in spaced relation relative to one another and a closed position wherein the jaw members cooperate to grasp tissue therebetween, the pivot assembly including:
a hub having a knife slot defined therethrough configured to receive a cutting mechanism therethrough; and
a pair of shoulders having a first end coupled to opposing sides of the hub and a second end defining a cap, the pivot assembly configured to prevent reciprocation of the cutting mechanism through the knife slot when the jaw members are disposed in the open position and to permit reciprocation of the cutting mechanism through the knife slot when the jaw members are disposed in the closed position.
13. The open electrosurgical forceps according to claim 12, further comprising a knife channel defined along at least one of the jaw members.
14. The open electrosurgical forceps according to claim 12, further comprising an actuator operatively coupled to one of the first or second shaft members and configured to selectively move the cutting mechanism between a first position wherein the cutting mechanism is disposed proximal to the pivot assembly and at least one subsequent position wherein the cutting mechanism is disposed through the knife slot.
15. The open electrosurgical forceps according to claim 13, wherein the knife slot is configured to align with the knife channel when the jaw members are disposed in the closed position and to misalign with the knife channel when the jaw members are disposed in the open position.
16. The open electrosurgical forceps according to claim 12, wherein each of the opposing sides of the hub includes a first recess defined therein and a second recess at least partially surrounding the first recess, the second recess configured to receive at least a portion of one of the pair of shoulders therein.
17. The open electrosurgical forceps according to claim 12, wherein the cutting mechanism includes a generally hourglass-shaped flexible blade.
18. The open electrosurgical forceps according to claim 12, wherein at least one of the pair of shoulders is insulative.
19. The open electrosurgical forceps according to claim 12, wherein the hub is insulative.
Descripción
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of and claims the benefit to U.S. patent application Ser. No. 12/553,509, filed Sep. 3, 2009, entitled “OPEN VESSEL SEALING INSTRUMENT WITH PIVOT ASSEMBLY,” the content of which is hereby incorporated by reference.

BACKGROUND

1. Technical Field

The present disclosure relates to forceps used for open surgical procedures. More particularly, the present disclosure relates to an open forceps that applies a combination of mechanical clamping pressure and electrosurgical energy to seal tissue and a knife that is selectively advanceable to sever tissue along the tissue seal.

2. Background of Related Art

A forceps is a plier-like instrument that relies on mechanical action between its jaws to grasp, clamp and constrict vessels or tissue. So-called “open forceps” are commonly used in open surgical procedures whereas “endoscopic forceps” or “laparoscopic forceps” are, as the name implies, used for less invasive endoscopic surgical procedures. Electrosurgical forceps (open or endoscopic) utilize both mechanical clamping action and electrical energy to effect hemostasis by heating tissue and blood vessels to coagulate and/or cauterize tissue.

Certain surgical procedures require more than simply cauterizing tissue and rely on the unique combination of clamping pressure, precise electrosurgical energy control and gap distance (i.e., distance between opposing jaw members when closed about tissue) to “seal” tissue, vessels and certain vascular bundles.

Vessel sealing or tissue sealing is a recently-developed technology that utilizes a unique combination of radiofrequency energy, pressure and gap control to effectively seal or fuse tissue between two opposing jaw members or sealing plates. Vessel or tissue sealing is more than “cauterization” which involves the use of heat to destroy tissue (also called “diathermy” or “electrodiathermy”). Vessel sealing is also more than “coagulation” which is the process of desiccating tissue wherein the tissue cells are ruptured and dried. “Vessel sealing” is defined as the process of liquefying the collagen, elastin and ground substances in the tissue so that the tissue reforms into a fused mass with significantly-reduced demarcation between the opposing tissue structures.

In order to effectively “seal” tissue or vessels, two predominant mechanical parameters should be accurately controlled: 1) the pressure or closure force applied to the vessel or tissue; and 2) the gap distance between the conductive tissue contacting surfaces (electrodes). As can be appreciated, both of these parameters are affected by the thickness of the tissue being sealed. Accurate application of pressure is important for several reasons: to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue; to overcome the forces of expansion during tissue heating; and to contribute to the end tissue thickness which is an indication of a good seal. It has been determined that a good seal for certain tissues is optimum between about 0.001 inches and about 0.006 inches.

With respect to smaller vessels or tissue, the pressure applied becomes less relevant and the gap distance between the electrically conductive surfaces becomes more significant for effective sealing. In other words, the chances of the two electrically conductive surfaces touching during activation increases as the tissue thickness and the vessels become smaller.

Commonly owned, U.S. Pat. No. 6,511,480, PCT Patent Application Nos. PCT/US01/11420 and PCT/US01/11218, U.S. patent application Ser. Nos. 10/116,824, 10/284,562 and 10/299,650 all describe various open surgical forceps that seal tissue and vessels.

Typically, and particularly with respect to open electrosurgical procedures, once a vessel is sealed, the surgeon has to remove the sealing instrument from the operative site, substitute a new instrument and accurately sever the vessel along the newly formed tissue seal. As can be appreciated, this additional step may be both time consuming (particularly when sealing a significant number of vessels) and may contribute to imprecise separation of the tissue along the sealing line due to the misalignment or misplacement of the severing instrument along the center of the tissue sealing line.

Many endoscopic vessel sealing instruments have been designed that incorporate a knife or blade member that effectively severs the tissue after forming a tissue seal. For example, commonly-owned U.S. application Ser. Nos. 10/116,944 and 10/179,863 describe one such endoscopic instrument that effectively seals and cuts tissue along the tissue seal. Other instruments include blade members or shearing members that simply cut tissue in a mechanical and/or electromechanical manner and are relatively ineffective for vessel sealing purposes.

There exists a need to develop an open electrosurgical forceps that is simple, reliable and inexpensive to manufacture and that effectively seals tissue and vessels and that allows a surgeon to utilize the same instrument to effectively sever the tissue along the newly formed tissue seal.

SUMMARY

According to an embodiment of the present disclosure, an open electrosurgical forceps includes a pair of first and second shaft members each having a jaw member disposed at its distal end. The jaw members are movable about a pivot assembly from an open position in spaced relation relative to one another to a closed position wherein the jaw members cooperate to grasp tissue. Each of the jaw members includes an electrically conductive sealing surface for communicating electrosurgical energy through grasped tissue. One or both of the jaw members includes a knife channel defined along its length. The pivot assembly includes a knife slot and is configured to prevent reciprocation of a cutting mechanism when the jaw members are disposed in the open position and to permit reciprocation of the cutting mechanism when the jaw members are disposed in the closed position. An actuator selectively advances the cutting mechanism from a first position to at least one subsequent position.

According to another embodiment of the present disclosure, an open electrosurgical forceps includes a pair of first and second shaft members each having a jaw member disposed at its distal end. The jaw members are movable about a pivot assembly from an open position in spaced relation relative to one another to a closed position wherein the jaw members cooperate to grasp tissue. The pivot assembly includes a pair of insulative shoulders having a first end defining a cap and a second end operably coupled to opposing sides of an insulative hub. One of the jaw members is configured to rotate about one of the insulative shoulders. Each of the jaw members includes an electrically conductive sealing surface for communicating electrosurgical energy through tissue grasped therebetween to effect a tissue seal. The insulative hub includes a knife slot defined therein. The pivot assembly is configured to prevent reciprocation of a cutting mechanism when the jaw members are disposed in the open position and to permit reciprocation of the cutting mechanism therethrough when the jaw members are disposed in the closed position.

According to another embodiment of the present disclosure, a pivot assembly for use with an open electrosurgical forceps for sealing tissue includes a pair of insulative shoulders having a first end defining a cap and a second end operably coupled to opposing sides of an insulative hub. The insulative hub includes a knife slot defined therein. The insulative hub is configured to prevent reciprocation of a cutting mechanism through the knife slot in a first configuration and to permit reciprocation of the cutting mechanism through the knife slot in a second configuration. The knife slot is configured to align with a knife channel when the forceps is disposed in a first configuration to permit advancement of the cutting mechanism from a retracted position proximal to the pivot assembly to an advanced position through the pivot assembly and into tissue grasped by the forceps. The knife slot is configured to misalign with the knife channel when the forceps is disposed in a second configuration to prevent advancement of the cutting mechanism from the retracted position to the advanced position.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the subject instrument are described herein with reference to the drawings wherein:

FIG. 1 is a left, front perspective view of an open forceps with a cutting mechanism according to an embodiment of the present disclosure;

FIG. 2 is an internal, perspective view of the forceps of FIG. 1 showing a rack and pinion actuating mechanism for advancing the cutting mechanism and a series of internally disposed electrical connections for energizing the forceps;

FIG. 3 is an internal, side view of the forceps of FIG. 1 showing the rack and pinion actuating mechanism and the internally disposed electrical connections;

FIG. 4 is a perspective view of the forceps of FIG. 1 with parts separated;

FIG. 5A is an enlarged, left, perspective view of a pivoting hub of FIG. 4;

FIG. 5B is a left, perspective view of the pivoting hub of FIG. 5A with parts separated;

FIG. 5C is an enlarged, top view of the pivoting hub of FIG. 5A;

FIG. 5D is a front, cross sectional view of the pivoting hub of FIG. 5A;

FIG. 6 is an enlarged, perspective view of a cutting mechanism of FIG. 4;

FIG. 7 is an enlarged, side, cross sectional view showing the forceps of FIG. 1 in a closed position and defining a gap distance “G” between opposing jaw members;

FIG. 8 is an enlarged, side, cross sectional view showing the forceps of FIG. 1 in open configuration for grasping tissue; and

FIG. 9 is an enlarged, side, cross sectional view showing the forceps of FIG. 1 in a closed position and showing the activation and advancement of the cutting mechanism.

DETAILED DESCRIPTION

Referring now to FIG. 1, a forceps 10 for use with open surgical procedures includes elongated shaft portions 12a and 12b each having a proximal end 14a, 14b and a distal end 16a and 16b, respectively. In the drawings and in the descriptions that follow, the term “proximal”, as is traditional, will refer to the end of the forceps 10 that is closer to the user, while the term “distal” will refer to the end that is further from the user.

The forceps 10 includes an end effector assembly 100 that attaches to the distal ends 16a and 16b of shafts 12a and 12b, respectively. As explained in more detail below, the end effector assembly 100 includes pair of opposing jaw members 110 and 120 that are pivotably connected about a pivot assembly 65 (See FIGS. 5A-5D) and that are movable relative to one another to grasp tissue.

Each shaft 12a and 12b includes a handle 15 and 17, respectively, disposed at the proximal end 14a and 14b thereof that each define a finger hole 15a and 17a, respectively, therethrough for receiving a finger of the user. Finger holes 15a and 17a facilitate movement of the shafts 12a and 12b relative to one another that, in turn, pivot the jaw members 110 and 120 from an open position wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another to a clamping or closed position wherein the jaw members 110 and 120 cooperate to grasp tissue therebetween. As shown in FIG. 1, a ratchet 30 mechanism is disposed at the proximal ends 14a, 14b of shafts 12a, 12b, respectively, for selectively locking the jaw members 110 and 120 relative to one another in at least one position during pivoting.

As best seen in FIG. 4, shaft 12b is constructed from two components, namely, 12b1 and 12b2, which matingly engage one another about the distal end 16a of shaft 12a to form shaft 12b. In some embodiments, the two component halves 12b1 and 12b2 may be ultrasonically-welded together at a plurality of different weld points or the component halves 12b1 and 12b2 may be mechanically engaged in any other known fashion, snap-fit, glued, screwed, etc. After component halves 12b1 and 12b2 are welded together to form shaft 12b, shaft 12a is secured about pivot assembly 65 and positioned within a cut-out or relief 21 defined within shaft portion 12b2 such that shaft 12a is movable relative to shaft 12b. More particularly, when the user moves the shaft 12a relative to shaft 12b to close or open the jaw members 110 and 120, the distal portion of shaft 12a moves within cutout 21 formed within portion 12b2.

Jaw member 110 includes an electrically conductive sealing surface 112 that conducts electrosurgical energy of a first potential to tissue. Likewise, jaw member 120 includes an electrically conductive sealing surface 122 that conducts electrosurgical energy of a second potential to tissue.

As best illustrated in FIG. 1, one of the shafts, e.g., 12b, includes a proximal shaft connector 77 that is designed to connect the forceps 10 to a source of electrosurgical energy, such as an electrosurgical generator (not shown). The proximal shaft connector 77 electromechanically engages an electrosurgical cable 70 so that a user may selectively apply electrosurgical energy as needed. Alternatively, the cable 70 may be feed directly into shaft 12b (or 12a).

The distal end of the cable 70 may connect to a handswitch 50 to permit the user to selectively apply electrosurgical energy as needed to seal tissue grasped between jaw members 110 and 120. More particularly, the interior of cable 70 houses leads 71a, 71b and 71c that upon activation of the handswitch 50 conduct different electrical potentials from the electrosurgical generator to each of the jaw members 110 and 120 (See FIGS. 2 and 3). The electrosurgical cable 70 is fed into the bottom of shaft 12b and is held securely therein by one or more mechanical interfaces (not shown). Lead 71c extends directly from cable 70 and connects to jaw member 120 at connection 117 terminal connector 150 to conduct the second electrical potential thereto. Leads 71a and 71b extend from cable 70 and connect to a circuit board 52.

The electrical leads 71a and 71b are electrically connected to the circuit board 52 such that when the switch 50 is depressed, a trigger lead 72 73 carries the first electrical potential from the circuit board 52 to jaw member 110. The second electrical potential is carried by lead 71c directly from the generator (not shown) to jaw member 120 through a terminal connector 150. As best shown in FIG. 1, a switch cap 53 is positioned in electro-mechanical communication with the circuit board 52 along one side of shaft 12b to facilitate activation of switch 50. The position of the switch cap 53 enables the user to easily and selectively energize the jaw members 110 and 120 with a single hand.

The two opposing jaw members 110 and 120 of the end effector assembly 100 are pivotable about pivot assembly 65 from the open position to the closed position for grasping tissue therebetween. Pivot assembly 65 connects through aperture 125 disposed through shaft 12a and aperture 111 disposed through shaft 12b. In this manner, pivot assembly 65 operates to pivotably secure the shafts 12a and 12b during assembly such that the jaw members 110 and 120 are freely pivotable between the open and closed positions.

As shown in FIGS. 5A-5D, pivot assembly 65 generally includes a hub 60 having a blade slot 61 defined longitudinally therethrough and a pair of shoulders 67a, 67b each having a first end operably coupled to an opposing side of the hub 60. Hub 60 includes a pair of inner protrusions 63a, 63b, that define corresponding inner recesses 72a, 72b, and a pair of outer protrusions 62a, 62b that at least partially surround inner protrusions 63a, 63b, respectively, to define a pair of respective outer recesses 74a, 74b therebetween. Shoulders 67a, 67b include caps 65a, 65b, respectively, defined at a second end thereof. A pair of pivot pins 64a, 64b are configured to be received at one end within recesses 69a, 69b defined in shoulders 67a, 67b, respectively, and at an opposing end within corresponding inner recesses 72a, 72b to matingly engage shoulders 67a, 67b with hub 60. As shown in FIG. 5B, outer recesses 74a, 74b are generally circular in shape and expand a suitable distance between outer protrusions 62a, 62b and inner protrusions 63a, 63b such that upon receiving pivot pins 64a, 64b within inner recesses 72a, 72b, the latitudinal thickness of shoulders 67a, 67b is accommodated within outer recesses 74a, 74b, respectively. In embodiments, pivot pins 64a, 64b are made from steel and hub 60 and caps 65a, 65b are made from an insulative substrate, such as plastic or some other non-conductive material. Alternatively, hub 60 and/or shoulders 67a, 67b may be made from a solid or multi-strand electrically conductive material, e.g., copper/aluminum, which is surrounded by an insulative, non-conductive coating (not shown), e.g., plastic.

Shoulders 67a, 67b and hub 60 may be ultrasonically welded together at one or more weld points. Alternatively, shoulders 67a, 67b and hub 60 may be mechanically engaged in any other suitable fashion, snap-fit, glued, screwed, etc.

As best seen in FIGS. 7-9, the jaw members 110 and 120 include a knife channel 115 disposed therebetween that is configured to allow reciprocation of a cutting mechanism 80 (see FIG. 6) therewithin. One example of a knife channel is disclosed in commonly-owned U.S. Pat. No. 7,267,677. The complete knife channel 115 is formed when two opposing channel halves 115a and 115b associated with respective jaw members 110 and 120 come together upon grasping of the tissue. The complete knife channel 115 aligns with blade slot 61 to permit reciprocation of cutting mechanism 80 therethrough. The knife channel 115 may be tapered or some other configuration, which facilitates or enhances cutting of the tissue during reciprocation of the cutting mechanism 80 in the distal direction (see FIG. 9). Moreover, the knife channel 115 may be formed with one or more safety features that prevent the cutting mechanism 80 from advancing through the tissue until the jaw members 110 and 120 are closed about the tissue. Examples of lockout mechanisms and safety features are described in commonly-owned U.S. Patent Publication No. 2005/0154387 and U.S. Pat. Nos. 7,156,846 and 7,150,097.

The arrangement of shaft 12b is slightly different from shaft 12a. More particularly, shaft 12b is generally hollow to house the handswitch 50 (and the electrical components associated therewith), an actuating mechanism 40 and the cutting mechanism 80. As best seen in FIGS. 2, 3 and 4, the actuating mechanism 40 includes a rack and pinion system having first and second gear tracks 42 and 86, respectively, and a pinion 45 to advance the cutting mechanism 80. More particularly, the actuating mechanism 40 includes a trigger or finger tab 43 that is operatively associated with a first gear rack 42 such that movement of the trigger or finger tab 43 moves the first rack 42 in a corresponding direction. The actuating mechanism 40 mechanically cooperates with a second gear rack 86, which is operatively associated with a drive rod 89, and which advances the entire cutting mechanism 80, as will be explained in more detail below. Drive rod 89 includes a distal end 81 that is configured to mechanically support the cutting blade 85.

Interdisposed between the first and second gear racks 42 and 86, respectively, is a pinion gear 45 that mechanically meshes with both gear racks 42 and 86 and converts proximal motion of the trigger 43 into distal translation of the drive rod 89 and vice versa. Distal translation of the drive rod 89 advances the blade 85 of the cutting mechanism 80 through tissue 400 grasped between jaw members 110 and 120, i.e., the cutting mechanism 80, e.g., knife, blade, wire, etc., is advanced through blade slot 61 and, subsequently, through channel 115 upon distal translation of the drive rod 89.

The distal end 81 of the cutting mechanism 80 is dimensioned to reciprocate within a channel 126b defined in the proximal end of jaw member 120 when jaw member 110 and 120 are disposed in a closed position (see FIGS. 7 and 9). The proximal portion of jaw member 120 also includes a guide slot 124 defined therethrough that allows a terminal connector 150 or so called “POGO” pin to ride therein upon movement of the jaw members 110 and 120 from the open to closed positions (See FIGS. 7 and 8). The terminal connector 150 is seated within a recess 113. In addition, the proximal end includes an aperture 125 defined therethrough that houses the pivot assembly 65. Jaw member 110 also includes a channel 126a that aligns with channel 126b when the jaw members 110 and 120 are disposed in the closed position about tissue.

As best shown in FIGS. 7 and 8, which show the jaw members 110 and 120 in open and closed orientations, respectively, the operation of the pivoting hub 65 in the capacity as a lockout mechanism is easily described. Pivot assembly 65 is operably coupled with jaw member 120 such that pivoting of jaw member 120 causes identical pivoting movement of pivot assembly 65, i.e., pivot assembly 120 pivots with jaw member 120. In this manner, when jaw members 110 and 120 are moved from the closed position to the open position, hub 60 rotates in translation with jaw member 120 such that blade slot 61 moves out of alignment with knife channel 115 to prevent the cutting mechanism 80 from advancing through hub 60 via blade slot 61. When the jaw members 110 and 120 are moved to the closed position as illustrated in FIG. 9, the hub 60 rotates with jaw member 120 to align blade slot 61 with channels 126a and 126b of jaw members 110 and 120, respectively, to allow distal advancement of cutting mechanism 80 through hub 60 and, subsequently, through knife channel 115. As shown in FIG. 9, the distal end 81 advances through channel 126a and 126b forcing the knife blade 85 through knife channel 115 (115a and 115b) to cut tissue. As described above, when the actuating flange 43 is released, drive rod 89 returns or is biased back to the proximal-most position (not shown) which, in turn, allows the jaw members 110 and 120 to be moved to the open position to release the tissue 400.

Referring now to FIG. 6, blade 85 is flexible so it easily advances through the curved knife channel 115. For example, upon distal advancement of the cutting mechanism 80, the cutting blade 85 will simply flex and ride around the knife channel 115 through the tissue 400 held between jaw members 110 and 120. In one particular embodiment, the blade 85 is flexible and is generally hourglass in configuration and includes a mutually aggregating notch 87a disposed about midway along the blade 85. The mutually aggregating notch 87a reduces the side profile of the blade to facilitate the cutting process. More particularly, the hourglass design of the blade allows the blade 85 to move more easily along the curved knife channel 115 during distal translation thereof.

In some embodiments, one of the jaw members, e.g., 120, includes at least one stop member 175 (see FIG. 8) disposed on the inner facing surface of the electrically conductive sealing surface 122 (and/or 112). The stop member(s) is designed to facilitate gripping and manipulation of tissue and to define a gap “G” between opposing jaw members 110 and 120 during sealing (See FIG. 7). In some embodiments, the separation distance during sealing or the gap distance “G” is within the range of about 0.001 inches (.about.0.03 millimeters) to about 0.006 inches (.about.0.016 millimeters). In some embodiments, a stop member 175 is positioned on either side of the knife channel 115 generally midway along the length of the bottom jaw member 120.

A detailed discussion of these and other envisioned stop members 175 as well as various manufacturing and assembling processes for attaching, disposing, depositing and/or affixing the stop members to the electrically conductive sealing surfaces 112, 122 are described in commonly-assigned, co-pending PCT Application Serial No. PCT/US01/11222.

In operation, the surgeon simply utilizes the two opposing handle members 15 and 17 to grasp tissue between jaw members 110 and 120. The surgeon then activates the handswitch 50 to provide electrosurgical energy to each jaw member 110 and 120 to communicate energy through the tissue held therebetween to effect a tissue seal. Once sealed, the surgeon activates the actuating mechanism 40 to advance the cutting blade 85 through the tissue to sever the tissue 400.

While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US58108114 Abr 199722 Sep 1998Ethicon Endo-Surgery, Inc.Electrosurgical hemostatic device
US710137125 Jun 20025 Sep 2006Dycus Sean TVessel sealer and divider
US713197017 Nov 20047 Nov 2006Sherwood Services AgOpen vessel sealing instrument with cutting mechanism
US715009713 Jun 200319 Dic 2006Sherwood Services AgMethod of manufacturing jaw assembly for vessel sealer and divider
US725266722 Jun 20047 Ago 2007Sherwood Services AgOpen vessel sealing instrument with cutting mechanism and distal lockout
US725569731 Ago 200614 Ago 2007Sherwood Services AgVessel sealer and divider
US726767730 Oct 200211 Sep 2007Sherwood Services AgVessel sealing instrument
US732925623 Dic 200512 Feb 2008Sherwood Services AgVessel sealing instrument
US749120114 May 200417 Feb 2009Covidien AgTissue sealer with non-conductive variable stop members and method of sealing tissue
US75009753 Oct 200510 Mar 2009Covidien AgSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US751389816 Ene 20087 Abr 2009Covidien AgVessel sealing instrument
US7766910 *9 Nov 20063 Ago 2010Tyco Healthcare Group LpVessel sealer and divider for large tissue structures
US788753619 Ago 200915 Feb 2011Covidien AgVessel sealing instrument
US80168279 Oct 200813 Sep 2011Tyco Healthcare Group LpApparatus, system, and method for performing an electrosurgical procedure
US811287128 Sep 200914 Feb 2012Tyco Healthcare Group LpMethod for manufacturing electrosurgical seal plates
US811412213 Ene 200914 Feb 2012Tyco Healthcare Group LpApparatus, system, and method for performing an electrosurgical procedure
US813325418 Sep 200913 Mar 2012Tyco Healthcare Group LpIn vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US81424733 Oct 200827 Mar 2012Tyco Healthcare Group LpMethod of transferring rotational motion in an articulating surgical instrument
US81629659 Sep 200924 Abr 2012Tyco Healthcare Group LpLow profile cutting assembly with a return spring
US816297315 Ago 200824 Abr 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US819747910 Dic 200812 Jun 2012Tyco Healthcare Group LpVessel sealer and divider
US822665026 Mar 200924 Jul 2012Tyco Healthcare Group LpApparatus, system, and method for performing an endoscopic electrosurgical procedure
US82519947 Abr 200928 Ago 2012Tyco Healthcare Group LpVessel sealer and divider with blade deployment alarm
US825738715 Ago 20084 Sep 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US826678328 Sep 200918 Sep 2012Tyco Healthcare Group LpMethod and system for manufacturing electrosurgical seal plates
US827744624 Abr 20092 Oct 2012Tyco Healthcare Group LpElectrosurgical tissue sealer and cutter
US828263414 Ene 20099 Oct 2012Tyco Healthcare Group LpApparatus, system, and method for performing an electrosurgical procedure
US828753626 Ago 200916 Oct 2012Tyco Healthcare Group LpCutting assembly for surgical instruments
US82928866 Oct 200923 Oct 2012Tyco Healthcare Group LpApparatus, system, and method for performing an electrosurgical procedure
US830358215 Sep 20086 Nov 2012Tyco Healthcare Group LpElectrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US831778728 Ago 200827 Nov 2012Covidien LpTissue fusion jaw angle improvement
US832331029 Sep 20094 Dic 2012Covidien LpVessel sealing jaw with offset sealing surface
US832880330 Ene 200911 Dic 2012Covidien LpPolyp removal device and method of use
US834315015 Jul 20091 Ene 2013Covidien LpMechanical cycling of seal pressure coupled with energy for tissue fusion
US83431519 Oct 20091 Ene 2013Covidien LpVessel sealer and divider with captured cutting element
US83571593 Sep 200922 Ene 2013Covidien LpOpen vessel sealing instrument with pivot assembly
US838864728 Oct 20095 Mar 2013Covidien LpApparatus for tissue sealing
US843087627 Ago 200930 Abr 2013Tyco Healthcare Group LpVessel sealer and divider with knife lockout
US84399119 Sep 200914 May 2013Coviden LpCompact jaw including through bore pivot pin
US859151122 Ene 201326 Nov 2013Covidien LpOpen vessel sealing instrument with pivot assembly
US2002010751723 Ene 20028 Ago 2002Witt David A.Electrosurgical instrument for coagulation and cutting
US2002011162423 Ene 200215 Ago 2002Witt David A.Coagulating electrosurgical instrument with tissue dam
US2003001833125 Jun 200223 Ene 2003Dycus Sean T.Vessel sealer and divider
US2003022934420 Feb 200311 Dic 2003Dycus Sean T.Vessel sealer and divider and method of manufacturing same
US2005010778422 Jun 200419 May 2005Moses Michael C.Open vessel sealing instrument with cutting mechanism and distal lockout
US200501543878 Oct 200414 Jul 2005Moses Michael C.Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US200600744173 Oct 20056 Abr 2006Cunningham James SSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US2009014985410 Feb 200911 Jun 2009Sherwood Services AgSpring Loaded Reciprocating Tissue Cutting Mechanism in a Forceps-Style Electrosurgical Instrument
US2010001685721 Jul 200821 Ene 2010Mckenna NicoleVariable Resistor Jaw
US2010002300923 Jul 200928 Ene 2010Tyco Healthcare Group LpOpen vessel sealing instrument with hourglass cutting mechanism and overratchet safety
US2010004214315 Ago 200818 Feb 2010Cunningham James SMethod of Transferring Pressure in an Articulating Surgical Instrument
US2010004918721 Ago 200825 Feb 2010Carlton John DElectrosurgical Instrument Including a Sensor
US2010005708128 Ago 20084 Mar 2010Tyco Healthcare Group LpTissue Fusion Jaw Angle Improvement
US2010005708228 Ago 20084 Mar 2010Tyco Healthcare Group LpTissue Fusion Jaw Angle Improvement
US2010005708428 Ago 20084 Mar 2010TYCO Healthcare Group L.PTissue Fusion Jaw Angle Improvement
US201000635005 Sep 200811 Mar 2010Tyco Healthcare Group LpApparatus, System and Method for Performing an Electrosurgical Procedure
US2010006990318 Sep 200818 Mar 2010Tyco Healthcare Group LpVessel Sealing Instrument With Cutting Mechanism
US2010006995316 Sep 200818 Mar 2010Tyco Healthcare Group LpMethod of Transferring Force Using Flexible Fluid-Filled Tubing in an Articulating Surgical Instrument
US2010007642725 Sep 200825 Mar 2010Tyco Healthcare Group LpSeal and Separate Algorithm
US2010007643024 Sep 200825 Mar 2010Tyco Healthcare Group LpElectrosurgical Instrument Having a Thumb Lever and Related System and Method of Use
US2010007643125 Sep 200825 Mar 2010Tyco Healthcare Group LpApparatus, System and Method for Performing an Electrosurgical Procedure
US2010007643225 Sep 200825 Mar 2010Tyco Healthcare Group LpApparatus, System and Method for Performing an Electrosurgical Procedure
US201000878167 Oct 20088 Abr 2010Roy Jeffrey MApparatus, system, and method for performing an electrosurgical procedure
US201000942879 Oct 200815 Abr 2010Tyco Heathcare Group LpApparatus, System, and Method for Performing an Endoscopic Electrosurgical Procedure
US2010010012220 Oct 200822 Abr 2010Tyco Healthcare Group LpMethod of Sealing Tissue Using Radiofrequency Energy
US2010017954514 Ene 200915 Jul 2010Tyco Healthcare Group LpVessel Sealer and Divider
US2010017954614 Ene 200915 Jul 2010Tyco Healthcare Group LpApparatus, System, and Method for Performing an Electrosurgical Procedure
US2010024976924 Mar 200930 Sep 2010Tyco Healthcare Group LpApparatus for Tissue Sealing
US201002805111 May 20094 Nov 2010Thomas RachlinElectrosurgical instrument with time limit circuit
US201100349185 Ago 200910 Feb 2011Tyco Healthcare Group LpBlunt Tissue Dissection Surgical Instrument Jaw Designs
US2011004662319 Ago 200924 Feb 2011Tyco Healthcare Group LpElectrical Cutting and Vessel Sealing Jaw Members
US201100544681 Sep 20093 Mar 2011Tyco Healthcare Group LpApparatus for Performing an Electrosurgical Procedure
US2011005447127 Ago 20093 Mar 2011Tyco Healthcare Group LpApparatus for Performing an Electrosurgical Procedure
US201100603349 Sep 200910 Mar 2011Tyco Healthcare Group LpApparatus and Method of Controlling Cutting Blade Travel Through the Use of Etched Features
US2011006033510 Sep 200910 Mar 2011Tyco Healthcare Group LpApparatus for Tissue Fusion and Method of Use
US2011007152323 Sep 200924 Mar 2011Tyco Healthcare Group LpVessel Sealer with Self-Aligning Jaws
US2011007764829 Sep 200931 Mar 2011Tyco Healthcare Group LpSwitch Assembly for Electrosurgical Instrument
US201100824946 Oct 20097 Abr 2011Tyco Healthcare Group LpJaw, Blade and Gap Manufacturing for Surgical Instruments With Small Jaws
US2013010303020 Oct 201125 Abr 2013Tyco Healthcare Group LpDissection Scissors on Surgical Device
US2013010303120 Oct 201125 Abr 2013Tyco Healthcare Group LpDissection Scissors on Surgical Device
US2013010303520 Oct 201125 Abr 2013Tyco Healthcare Group LpMulti-Circuit Seal Plates
US2013010304111 Dic 201225 Abr 2013Covidien LpPolyp Removal Device and Method of Use
US2013011669029 Oct 20129 May 2013Covidien LpEndoscopic Vessel Sealer and Divider for Large Tissue Structures
US201301237808 Ene 201316 May 2013Covidien LpJaw closure detection system
US2013012383710 Nov 201116 May 2013Tyco Healthcare Group LpSurgical Forceps
US2013013167222 Ene 201323 May 2013Covidien LpOpen vessel sealing instrument with pivot assembly
US2013013810129 Nov 201130 May 2013Tyco Healthcare Group LpOpen Vessel Sealing Instrument and Method of Manufacturing the Same
US2013013810230 Nov 201130 May 2013Tyco Healthcare Group LpElectrosurgical Instrument with a Knife Blade Lockout Mechanism
US2013013810422 Ene 201330 May 2013Covidien LpOpen vessel sealing instrument with pivot assembly
US2013013812929 Nov 201130 May 2013Tyco Healthcare Group LpCoupling Mechanisms for Surgical Instruments
US201301442846 Dic 20116 Jun 2013Tyco Healthcare Group LpVessel Sealing Using Microwave Energy
US2013015084213 Dic 201113 Jun 2013Tyco Healthcare Group LpSurgical Forceps
USD24954922 Oct 197619 Sep 1978Aspen Laboratories, Inc.Electrosurgical handle
USD26302022 Ene 198016 Feb 1982 Retractable knife
USD29589325 Sep 198524 May 1988Acme United CorporationDisposable surgical clamp
USD29589426 Sep 198524 May 1988Acme United CorporationDisposable surgical scissors
USD2983536 May 19861 Nov 1988Vitalmetrics, Inc.Handle for surgical instrument
USD29941317 Jul 198517 Ene 1989The Stanley WorksFolding pocket saw handle
USD3434535 May 199318 Ene 1994Laparomed CorporationHandle for laparoscopic surgical instrument
USD34893011 Oct 199119 Jul 1994Ethicon, Inc.Endoscopic stapler
USD34934128 Oct 19922 Ago 1994Microsurge, Inc.Endoscopic grasper
USD35456425 Jun 199317 Ene 1995Richard-Allan Medical Industries, Inc.Surgical clip applier
USD3588872 Dic 199330 May 1995Cobot Medical CorporationCombined cutting and coagulating forceps
USD3844137 Oct 199430 Sep 1997United States Surgical CorporationEndoscopic suturing instrument
USD40202810 Oct 19971 Dic 1998Invasatec, Inc.Hand controller for medical system
USD40801812 Mar 199613 Abr 1999 Switch guard
USD4160898 Abr 19962 Nov 1999Richard-Allan Medical Industries, Inc.Endoscopic linear stapling and dividing surgical instrument
USD42469423 Oct 19989 May 2000Sherwood Services AgForceps
USD42520123 Oct 199816 May 2000Sherwood Services AgDisposable electrode assembly
USD44988623 Oct 199830 Oct 2001Sherwood Services AgForceps with disposable electrode
USD45392316 Nov 200026 Feb 2002Carling Technologies, Inc.Electrical rocker switch guard
USD45495127 Feb 200126 Mar 2002Visionary Biomedical, Inc.Steerable catheter
USD4579586 Abr 200128 May 2002Sherwood Services AgVessel sealer and divider
USD4579596 Abr 200128 May 2002Sherwood Services AgVessel sealer
USD46528120 Mar 20005 Nov 2002Karl Storz Gmbh & Co. KgEndoscopic medical instrument
USD4662094 Dic 200126 Nov 2002Visionary Biomedical, Inc.Steerable catheter
USD4938884 Feb 20033 Ago 2004Sherwood Services AgElectrosurgical pencil with pistol grip
USD49699715 May 20035 Oct 2004Sherwood Services AgVessel sealer and divider
USD49918115 May 200330 Nov 2004Sherwood Services AgHandle for a vessel sealer and divider
USD50299421 May 200315 Mar 2005Blake, Iii Joseph WRepeating multi-clip applier
USD50929717 Oct 20036 Sep 2005Tyco Healthcare Group, LpSurgical instrument
USD5253616 Oct 200418 Jul 2006Sherwood Services AgHemostat style elongated dissecting and dividing instrument
USD5313116 Oct 200431 Oct 2006Sherwood Services AgPistol grip style elongated dissecting and dividing instrument
USD53327412 Oct 20045 Dic 2006Allegiance CorporationHandle for surgical suction-irrigation device
USD53394230 Jun 200419 Dic 2006Sherwood Services AgOpen vessel sealer with mechanical cutter
USD5350276 Oct 20049 Ene 2007Sherwood Services AgLow profile vessel sealing and cutting mechanism
USD53893230 Jun 200520 Mar 2007Medical Action Industries Inc.Surgical needle holder
USD5414186 Oct 200424 Abr 2007Sherwood Services AgLung sealing device
USD54161116 Jun 20061 May 2007Robert Bosch GmbhCordless screwdriver
USD5419389 Abr 20041 May 2007Sherwood Services AgOpen vessel sealer with mechanical cutter
USD5454326 Feb 200426 Jun 2007Olympus CorporationDistal portion of hemostatic forceps for endoscope
USD5471548 Sep 200624 Jul 2007Winsource Industries LimitedRotary driving tool
USD56466213 Oct 200418 Mar 2008Sherwood Services AgHourglass-shaped knife for electrosurgical forceps
USD5679438 Oct 200429 Abr 2008Sherwood Services AgOver-ratchet safety for a vessel sealing instrument
USD57539515 Feb 200719 Ago 2008Tyco Healthcare Group LpHemostat style elongated dissecting and dividing instrument
USD57540112 Jun 200719 Ago 2008Tyco Healthcare Group LpVessel sealer
USD58203824 Ago 20072 Dic 2008Medtronic, Inc.Transurethral needle ablation device
USD61790013 May 200915 Jun 2010Tyco Healthcare Group LpEnd effector tip with undercut bottom jaw
USD61790113 May 200915 Jun 2010Tyco Healthcare Group LpEnd effector chamfered tip
USD61790213 May 200915 Jun 2010Tyco Healthcare Group LpEnd effector tip with undercut top jaw
USD61790313 May 200915 Jun 2010Tyco Healthcare Group LpEnd effector pointed tip
USD61879813 May 200929 Jun 2010Tyco Healthcare Group LpVessel sealing jaw seal plate
USD62150328 Abr 200910 Ago 2010Tyco Healthcare Group IpPistol grip laparoscopic sealing and dissection device
USD6274629 Sep 200916 Nov 2010Tyco Healthcare Group LpKnife channel of a jaw device
USD62828930 Nov 200930 Nov 2010Tyco Healthcare Group LpSurgical instrument handle
USD62829030 Nov 200930 Nov 2010Tyco Healthcare Group LpSurgical instrument handle
USD6303245 Ago 20094 Ene 2011Tyco Healthcare Group LpDissecting surgical jaw
USD64924915 Feb 200722 Nov 2011Tyco Healthcare Group LpEnd effectors of an elongated dissecting and dividing instrument
USD64964313 May 200929 Nov 2011Tyco Healthcare Group LpEnd effector with a rounded tip
USD66139424 Feb 20115 Jun 2012Tyco Healthcare Group LpDevice jaw
USH174529 Sep 19954 Ago 1998Paraschac; Joseph F.Electrosurgical clamping device with insulation limited bipolar electrode
USH190414 May 19973 Oct 2000Ethicon Endo-Surgery, Inc.Electrosurgical hemostatic method and device
USH203714 May 19972 Jul 2002David C. YatesElectrosurgical hemostatic device including an anvil
CN201299462Y28 Oct 20082 Sep 2009宋洪海Multi-layer metal composite pot
DE2415263A129 Mar 19742 Oct 1975Aesculap Werke AgSurgical H.F. coagulation probe has electrode tongs - with exposed ends of insulated conductors forming tong-jaws
DE2514501A13 Abr 197521 Oct 1976Karl StorzBipolar coagulation instrument for endoscopes - has two high frequency electrodes looped over central insulating piece
DE2627679A121 Jun 197613 Ene 1977Marcel LamideyBlutstillende hochfrequenz-sezierpinzette
DE3423356C225 Jun 198426 Jun 1986Berchtold Medizin-Elektronik Gmbh & Co, 7200 Tuttlingen, DeTítulo no disponible
DE3612646A115 Abr 198630 Abr 1987Ellman InternationalElectrosurgical handle piece for blades, needles and forceps
DE4303882C210 Feb 19939 Feb 1995Kernforschungsz KarlsruheKombinationsinstrument zum Trennen und Koagulieren für die minimal invasive Chirurgie
DE4403252A13 Feb 199410 Ago 1995Michael HauserInstrument shaft for min. invasive surgery
DE8712328U111 Sep 198718 Feb 1988Jakoubek, Franz, 7201 Emmingen-Liptingen, DeTítulo no disponible
DE10031773B429 Jun 200029 Nov 2007Erbe Elektromedizin GmbhChirurgisches Greifinstrument, insbesondere Pinzette oder Zange
DE10045375C214 Sep 200024 Oct 2002Aesculap Ag & Co KgMedizinisches Instrument
DE19506363A124 Feb 199529 Ago 1996Frost Lore Geb HauptNon-invasive thermometry in organs under hyperthermia and coagulation conditions
DE19515914C12 May 199525 Jul 1996Aesculap AgTong or scissor-shaped surgical instrument
DE19608716C16 Mar 199617 Abr 1997Aesculap AgBipolar surgical holding instrument
DE19738457B43 Sep 19972 Ene 2009Celon Ag Medical InstrumentsVerfahren und Vorrichtung für die In-vivo-Tiefenkoagulation biologischer Gewebevolumina bei gleichzeitiger Schonung der Gewebeoberfläche mit hochfrequentem Wechselstrom
DE19751106A118 Nov 199728 May 1998Eastman Kodak CoLaser printer with array of laser diodes
DE19751108A118 Nov 199720 May 1999Beger Frank Michael Dipl DesigElectrosurgical operation tool, especially for diathermy
DE19946527C128 Sep 199912 Jul 2001Storz Karl Gmbh & Co KgBipolar, e.g. laparoscopic surgery instrument, cuts electrically, cauterizes and grips using simple design with high frequency current-concentrating projections
DE20121161U131 Ene 20014 Abr 2002Winter & Ibe OlympusEndoskopisches Instrument
DE29616210U118 Sep 199614 Nov 1996Winter & Ibe OlympusHandhabe für chirurgische Instrumente
DE102004026179B428 May 200422 Ene 2009Erbe Elektromedizin GmbhElektrochirurgisches Instrument
DE102008018406B310 Abr 200823 Jul 2009Bowa-Electronic Gmbh & Co. KgElektrochirurgisches Gerät
DE202007009165U129 Jun 200730 Ago 2007Kls Martin Gmbh + Co. KgSurgical instrument e.g. tube shaft, for use in e.g. high frequency coagulation instrument, has separator inserted through opening such that largest extension of opening transverse to moving direction corresponds to dimension of separator
DE202007009317U126 Jun 200730 Ago 2007Aesculap Ag & Co. KgSurgical instrument e.g. shear, for minimal invasive surgery, has tool unit connected with force transmission unit over flexible drive unit in sections for transmitting actuating force from force transmission unit to tool unit
DE202007009318U126 Jun 200730 Ago 2007Aesculap Ag & Co. KgChirurgisches Instrument
DE202007016233U120 Nov 200731 Ene 2008Aesculap Ag & Co. KgChirurgische Pinzette
EP0875209B13 Abr 199824 May 2006Ethicon Endo-Surgery, Inc.Electrosurgical hemostatic and stapling device
EP1159926A219 May 20015 Dic 2001Aesculap AgScissor- or forceps-like surgical instrument
EP1330991A122 Ene 200330 Jul 2003Ethicon Endo-Surgery, Inc.Electrosurgical instrument with light monitor on effector
EP1486177A211 Jun 200415 Dic 2004Sherwood Services AGMethod of manufacturing jaw assembly
EP1532932A119 Nov 200425 May 2005Sherwood Services AGOpen vessel sealing instrument with cutting mechanism
EP1609430A122 Jun 200528 Dic 2005Sherwood Services AGOpen vessel sealing instrument with cutting mechanism and distal lockout
EP1645240A27 Oct 200512 Abr 2006Sherwood Services AGOpen vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
EP1707143A130 Mar 20064 Oct 2006Sherwood Services AGElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
ID202007009318U1 Título no disponible
JP1124498A Título no disponible
JP2000102545A Título no disponible
JP2000342599A Título no disponible
JP2000350732A Título no disponible
JP2001003400A Título no disponible
JP2001008944A Título no disponible
JP2001029356A Título no disponible
JP2001128990A Título no disponible
JP2001190564A Título no disponible
JP2002136525A Título no disponible
JP2002528166A Título no disponible
JP2003116871A Título no disponible
JP2003245285A Título no disponible
JP2004517668A Título no disponible
JP2004528869A Título no disponible
JP2005152663A Título no disponible
JP2006015078A Título no disponible
JP2006095316A Título no disponible
JP2006501939A Título no disponible
JP2011125195A Título no disponible
JPH09538A Título no disponible
JPH10195A Título no disponible
JPH055106A Título no disponible
JPH0540112A Título no disponible
JPH0630945A Título no disponible
JPH0856955A Título no disponible
JPH0910223A Título no disponible
JPH1024051A Título no disponible
JPH1124498A Título no disponible
JPH1147150A Título no disponible
JPH1170124A Título no disponible
JPH06285078A Título no disponible
JPH06343644A Título no disponible
JPH06502328A Título no disponible
JPH07265328A Título no disponible
JPH08252263A Título no disponible
JPH08289895A Título no disponible
JPH08317934A Título no disponible
JPH08317936A Título no disponible
JPH09122138A Título no disponible
JPH10155798A Título no disponible
JPH11169381A Título no disponible
JPH11192238A Título no disponible
JPH11244298A Título no disponible
JPS61501068A Título no disponible
SU401367A1 Título no disponible
WO2000036986A16 Nov 199929 Jun 2000Karl Storz Gmbh & Co. KgBipolar medical instrument
WO2000059392A131 Mar 200012 Oct 2000Erbe ElektromedizinSurgical instrument
WO2001015614A118 Ago 20008 Mar 2001Karl Storz Gmbh & Co. KgBipolar medical instrument
WO2001054604A19 Nov 20002 Ago 2001Aesculap Ag & Co. KgBipolar gripping device
WO2002045589A27 Dic 200113 Jun 2002Gfd Gesellschaft Für Diamantprodukte MbhInstrument, which is provided for surgical applications and which comprises contact areas made of doped diamond, and method for cleaning the instrument
WO2005110264A227 Abr 200524 Nov 2005Erbe Elektromedizin GmbhElectrosurgical instrument
WO2006021269A112 Jul 20052 Mar 2006Erbe Elektromedizin GmbhSurgical instrument
WO2008040483A126 Sep 200710 Abr 2008Erbe Elektromedizin GmbhTubular shaft instrument
Otras citas
Referencia
1"Electrosurgery: A Historical Overview" Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000.
2"Reducing Needlestick Injuries in the Operating Room" Sales/Product Literature 2001.
3Barbara Levy, "Use of a New Vessel Ligation Device During Vaginal Hysterectomy" FIGO 2000, Washington, D.C.
4Benaron et al., "Optical Time-Of-Flight and Absorbance Imaging of Biologic Media", Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466.
5Bergdahl et al. "Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator" J.Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
6Burdette et al. "In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies", IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427.
7Carbonell et al., "Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries" Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte,NC; Date: Aug. 2003.
8Carus et al., "Initial Experience With The LigaSure Vessel Sealing System in Abdominal Surgery" Innovations That Work,.quadrature.Jun. 2002.
9Chung et al., "Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure" Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003.
10Craig Johnson, "Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy" Innovations That Work, Mar. 2000.
11Crawford et al. "Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery" Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
12Crouch et al. "A Velocity-Dependent Model for Needle Insertion in Soft Tissue" MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005.
13Dulemba et al. "Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy" Sales/Product Literature; Jan. 2004.
14E. David Crawford "Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery" Sales/Product Literature 2000.
15E. David Crawford "Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex" Sales/Product Literature 2000.
16Heniford et al. "Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer" Oct. 1999.
17Heniford et al. "Initial Results with an Electrothermal Bipolar Vessel Sealer" Surgical Endoscopy (2000) 15:799-801.
18Herman et al., "Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report"; Innovations That Work, Feb. 2002.
19Jarrett et al., "Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy" Sales/Product Literature 2000.
20Johnson et al. "Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy" Sales/Product Literature; Jan. 2004.
21Johnson et al. "Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy" American College of Surgeons (ACS) Clinicla Congress Poster (2000).
22Joseph Ortenberg "LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy" Innovations That Work, Nov. 2002.
23Kennedy et al. "High-burst-strength, feedback-controlled bipolar vessel sealing" Surgical Endoscopy (1998) 12: 876-878.
24Koyle et al., "Laparoscopic Palomo Varicocele Ligation in Children and Adolescents" Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
25Levy et al. "Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy" Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
26Levy et al. "Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy" Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999.
27Levy et al., "Update on Hysterectomy-New Technologies and Techniques" OBG Management, Feb. 2003.
28Levy et al., "Update on Hysterectomy—New Technologies and Techniques" OBG Management, Feb. 2003.
29LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002.
30McLellan et al. "Vessel Sealing for Hemostasis During Gynecologic Surgery" Sales/Product Literature 1999.
31McLellan et al. "Vessel Sealing for Hemostasis During Pelvic Surgery" Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C.
32Michael Choti, "Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument"; Innovations That Work, Jun. 2003.
33Muller et al., "Extended Left Hemicoletomy Using the LigaSure Vessel Sealing System" Innovations That Work,. quadrature.Sep. 1999.
34Olsson et al. "Radical Cystectomy in Females" Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
35Palazzo et al. "Randomized clinical trial of Ligasure versus open haemorrhoidectomy" British Journal of Surgery 2002, 89, 154-157.
36Paul G. Horgan, "A Novel Technique for Parenchymal Division During Hepatectomy" The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
37Peterson et al. "Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing" Surgical Technology International (2001).
38Rothenberg et al. "Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children" Int'l Pediatric Endosurgery Group (IPEG) 2000.
39Sampayan et al, "Multilayer Ultra-High Gradient Insulator Technology" Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
40Sengupta et al., "Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery" ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
41Seyfan et al. "Sutureless Closed Hemorrhoidectomy: A New Technique" Annals of Surgery vol. 234 No. 1, Jul. 2001 pp. 21-24.
42Sigel et al. "The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation" Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
43Strasberg et al. "A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery" Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001.
44Strasberg et al., "Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery" Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
45Tinkcler L.F., "Combined Diathermy and Suction Forceps", Feb. 6, 1967, British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447.
46U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler.
47U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier.
48U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz.
49U.S. Appl. No. 09/591,328, filed Jun. 20, 2000, Thomas P. Ryan.
50U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich.
51U.S. Appl. No. 13/344,729, filed Jan. 6, 2012, James D. Allen, IV.
52U.S. Appl. No. 13/355,829, filed Jan. 23, 2012, John R. Twomey.
53U.S. Appl. No. 13/357,979, filed Jan. 25, 2012, David M. Garrison.
54U.S. Appl. No. 13/358,136, filed Jan. 25, 2012, James D. Allen, IV.
55U.S. Appl. No. 13/360,925, filed Jan. 30, 2012, James H. Orszulak.
56U.S. Appl. No. 13/400,290, filed Feb. 20, 2012, Eric R. Larson.
57U.S. Appl. No. 13/404,435, filed Feb. 24, 2012, Kim V. Brandt.
58U.S. Appl. No. 13/404,476, filed Feb. 24, 2012, Kim V. Brandt.
59U.S. Appl. No. 13/412,879, filed Mar. 6, 2012, David M. Garrison.
60U.S. Appl. No. 13/412,897, filed Mar. 6, 2012, Joanna Ackley.
61U.S. Appl. No. 13/421,373, filed Mar. 15, 2012, John R. Twomey.
62U.S. Appl. No. 13/430,325, filed Mar. 26, 2012, William H. Nau, Jr.
63U.S. Appl. No. 13/433,924, filed Mar. 29, 2012, Keir Hart.
64U.S. Appl. No. 13/448,577, filed Apr. 17, 2012, David M. Garrison.
65U.S. Appl. No. 13/460,455, filed Apr. 30, 2012, Luke Waaler.
66U.S. Appl. No. 13/461,335, filed May 1, 2012, James D. Allen, IV.
67U.S. Appl. No. 13/461,378, filed May 1, 2012, James D. Allen, IV.
68U.S. Appl. No. 13/461,397, filed May 1, 2012, James R. Unger.
69U.S. Appl. No. 13/461,410, filed May 1, 2012, James R. Twomey.
70U.S. Appl. No. 13/466,274, filed May 8, 2012, Stephen M. Kendrick.
71U.S. Appl. No. 13/467,767, filed May 9, 2012, Duane E. Kerr.
72U.S. Appl. No. 13/470,775, filed May 14, 2012, James D. Allen, IV.
73U.S. Appl. No. 13/482,589, filed May 29, 2012, Eric R. Larson.
74U.S. Appl. No. 13/483,733, filed May 30, 2012, Dennis W. Butcher.
75U.S. Appl. No. 13/537,517, filed Jun. 29, 2012, David N. Heard.
76U.S. Appl. No. 13/537,577, filed Jun. 29, 2012, Tony Moua.
77U.S. Appl. No. 13/708,335, filed Dec. 7, 2012, Dumbauld.
78U.S. Appl. No. 13/731,674, filed Dec. 31, 2012, Siebrecht.
79U.S. Appl. No. 13/741,550, filed Jan. 15, 2013, Deborski.
80U.S. Appl. No. 13/799,173, filed Mar. 13, 2013, Larson.
81U.S. Appl. No. 13/803,636, filed Mar. 14, 2013, Kerr.
82U.S. Appl. No. 13/803,762, filed Mar. 14, 2013, Kerr.
83U.S. Appl. No. 13/803,884, filed Mar. 14, 2013, Kerr.
84U.S. Appl. No. 13/804,010, filed Mar. 14, 2013, Kerr.
85U.S. Appl. No. 13/833;823, filed Mar. 15, 2013, Garrison.
86U.S. Appl. No. 13/834,703, filed Mar. 15, 2013, Garrison.
87U.S. Appl. No. 13/835,004, filed Mar. 15, 2013, Twomey.
88U.S. Appl. No. 13/838,945, filed Mar. 15, 2013, Stoddard.
89U.S. Appl. No. 13/853,259, filed Mar. 29, 2013, Garrison.
90U.S. Appl. No. 13/853,273, filed Mar. 29, 2013, Kerr.
91U.S. Appl. No. 13/853,339, filed Mar. 29, 2013, Reschke.
92W. Scott Helton, "LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery"; Sales/Product Literature 1999.
Clasificaciones
Clasificación internacionalA61B18/00, A61B18/14, A61B18/18
Clasificación cooperativaA61B2018/00601, A61B2018/1455, A61B18/1445, A61B2018/1412, A61B2018/0063, A61B18/1442, A61B2018/00404
Eventos legales
FechaCódigoEventoDescripción
8 Ago 2017ASAssignment
Owner name: TYCO HEALTHCARE GROUP LP, CONNECTICUT
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROMERO, PAUL R.;REEL/FRAME:043233/0877
Effective date: 20090903
Owner name: COVIDIEN LP, MASSACHUSETTS
Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:043483/0957
Effective date: 20120928