WO1979000189A1 - Process and device for measuring a distance by telemetry - Google Patents

Process and device for measuring a distance by telemetry Download PDF

Info

Publication number
WO1979000189A1
WO1979000189A1 PCT/CH1978/000026 CH7800026W WO7900189A1 WO 1979000189 A1 WO1979000189 A1 WO 1979000189A1 CH 7800026 W CH7800026 W CH 7800026W WO 7900189 A1 WO7900189 A1 WO 7900189A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
target
distance
image
impact point
Prior art date
Application number
PCT/CH1978/000026
Other languages
English (en)
French (fr)
Inventor
T Celio
Original Assignee
T Celio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Celio filed Critical T Celio
Publication of WO1979000189A1 publication Critical patent/WO1979000189A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Definitions

  • the invention relates to a method and a device for distance measurement using a light beam illuminating the target.
  • the measurement of distances using a light beam has boomed since the invention of LASER.
  • High radiance, small angular divergence and monochromaticity are the characteristics of the LASER that distinguish this light source, although, depending on the application, rays derived from classic light sources can also be used.
  • the usual way of measuring distance using a light beam consists of illuminating the target and collecting the light reflected by it from the same location, as well as subsequently determining the time difference between returning and returning radiation.
  • the disadvantage here is that the high propagation speed of the light leads in principle to very short runtime differences (learning corresponds to 30 psec), the measurement of which is subject to technological limits. High relative measurement accuracy can therefore only be achieved practically when measuring larger distances.
  • the object of the invention is to provide a method for distance measurement which still has high measurement accuracy even at smaller distances and which requires a modest technical outlay.
  • the invention is based on the known type of distance measurement by means of a beam of light illuminating the target and is characterized in that an optical image of the beam impact point is created at an angle, based on the direction of incidence, of between 0 and 90 that by photoelectronic scanning local position of the impact point image is determined and that the distance of the target is calculated from this position.
  • Fig. 3 the basic type of photoelectronic position determination
  • Fig. 6 shows an exemplary embodiment.
  • Beam S 1 is emitted by light source 1, which hits a target 2 at a distance D 1 at point T 1 .
  • the light reflected by T. is partially collected at an angle ⁇ by lens 3 and thus image T 2 of the impact point T 1 is created. If goal 2 is closer (T ') or a further (T 1 ") distance, correspondingly shifted images will result, which form a straight line, image 4 of all possible impact points.
  • Image 4 is scanned photoelectronically by means of a device 5 located at a known distance A 2 from the light source in computer 7, in a manner known per se, the respective position of T 2 within image 4 (ie distance d 2 ) is determined and then calculated in computer 8, in a manner still to be enlightened, D 1 .
  • the parameters b 1 and b 1 correspond to the segments LZ 2 and A 1 L.
  • System parameters b 1 b 2 can therefore be determined for the system by selecting a, ⁇ , f. If distance d 2 (from computer 7) is determined, then distance D 1 (from computer 8) can be calculated using formula 3.
  • point A 1 represents the lower limit of the measuring range in the object space (the image of A 1 is infinite) and point Z 2 represents the position of the target image closest to light source 0 (target is infinitely distant).
  • ⁇ and a determines the physical dimensions of the measurement arrangement. They can be freely selected within wide limits. It is only necessary to prevent the angle ß from taking the values 0 and 90. In the first case, image 4 (FIG. 1) is reduced to one point, in the second case practically no light reaches lens 3.
  • FIGS. 1 and 3 The photoelectronic determination of the position of the impact point image is explained on the basis of FIGS. 1 and 3, a camera tube (for example Vidicon) being assumed as the photodetector.
  • Fig. 4 consists of a straight line illuminated at certain points. This is imaged on the photocathode of camera 5.
  • Deflection generator 6 and deflection coil 10 effect a linear scanning of FIG. 4, the linear increase in time of deflection current J 2 (known to be directly linked to the respective local position of the scanning spot) being reduced via resistor 9 as sawtooth voltage U 7 (proportional to d 2 ) ( Fig. 3).
  • sawtooth voltage U 7 Proportional to d 2
  • Fig. 3 Meets the scanning beam onto the illuminated point T 2 , then a pulse U 1 is generated via camera load resistor 11.
  • Computer 7 (essentially a coincidence level) uses sawtooth U 2 to determine the time t 2 , which, based on t 2m and d 2
  • t 2 and d 2 are system parameters and correspond to the lower distance limit of the measuring range.
  • D 1 is calculated from D 2 in computer 8 according to formula 5, where
  • D 2 A 2 + d 2 10) applies.
  • a 2 is system parameter and, as noted, computer 2 calculates d 2 .
  • the invention thus achieves a simple distance measurement which electronically permits the use of slow circuit technology and elementary computer technology and is limited in measurement accuracy only by the spatial resolution of the photoelectronic scanning device.
  • At least two systems are used simultaneously for measurement, the illuminating light bundles of which lie in the same plane 21.
  • This arrangement shown in Fig. 4 is particularly suitable for measuring perforated profiles.
  • the hole diameter can be determined, when using several systems lying in level 21, distances D 11 , D 12 , D 13 , D 14 etc. can be measured, from which, by interpolation, the hole profile can be calculated.
  • a system in accordance with the invention is rotated about an axis 15 which is perpendicular to the beam of light shining on it.
  • This arrangement shown in FIG. 5 is particularly suitable for measuring perforated profiles, which can be scanned sequentially and with any desired resolution.
  • the systems described in the two previous embodiments are moved in translation. These arrangements shown in FIGS. 4 and 5 are particularly suitable for the continuous measurement of boreholes when the translation 15 takes place parallel to the hole axis.
  • the drill hole is then scanned sequentially in the form of a spiral 18 in the rotating arrangement of FIG. 5 and along the surface lines 17 in the case of the simultaneous arrangement of FIG. 4.
  • the systems 180 described in the penultimate and second-last embodiment are rotated about an axis 16 which lies in the measurement plane 21 and passes through the measurement center 0.
  • This arrangement shown in FIG. 6 is particularly suitable for measuring cavities which are scanned sequentially by a number of meridians 20 or latitude circles 22.
  • a LASER beam is used as the emitting light beam. This arrangement offers the advantage of high luminance and is simple in terms of device technology.
  • a linear photodiode array is used for photoelectronic scanning of the impact point image.
  • This arrangement has the advantages high geometric accuracy and stability as well as smallest dimensions.
  • FIG. 7 An embodiment of the device according to the invention is given in FIG. 7. This is the measurement of distances between 3500 and 6000 mm, which typically occur as profile radii in tunnel construction. A simultaneous or sequential scanning of the profile according to subclaims 1 respectively. 2 is used.
  • the radiation emitted by LASER 1 is partially reflected at target 2, partially collected by objective 3 and imaged on photodetector 5, which is designed as a linear photodiode array.
  • a CLOCK signal is derived from a clock generator 12, which uses the shift register built into the photodiode array 5 to query the state of charge of the capacitor assigned to each photodiode in succession. The result of this scan is taken in synchronism with the CLOCK signal at the ⁇ flDEO output.
  • d 2 k 1 d 2 '11) where k 1 represents the distance (eg mm) between the individual photodiodes.
  • Value d 2 ' is taken over by computer 8, where first d 2 (according to formula 11) is calculated. Then the absolute position D 2 becomes due to the operation
  • D 2 D 2 min + d 2 12) determined where D 2 mm. (for the applicable values of the optical arrangement) is calculated from D 1 using Formula 6. Finally, the target distance D 1 is calculated using Formula 5. In the meantime, the polling process has continued on array 5. After the last photodiode in the array has been scanned, a RESET pulse is emitted, which sets counter 14 to zero. A new measuring cycle is then initiated automatically or on command.
  • Image 4 of the measuring section has a length of D 2 max

Description

Verfahren und Vorrichtung zur Entfernungsmessung
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Entfernungsmessung unter Verwendung eines, das Ziel anstrahlenden Lichtbündels.
Die Messung von Entfernungen mittels eines Lichtstrahles hat seit der Erfindung des LASER's grossen Aufschwung genommen. Hohe Strahldichte, kleine Winkeldivergenz und Monochromasie sind die Eigenschaften des LASER' s, welche diese Lichtquelle auszeichnen, obwohl, je nach Anwendungszweck, auch von klassischen Lichtquellen abgeleitete Strahlenbündel eingesetzt werden können. Die heute übliche Art der Entfernungsmessung mittels Lichtstrahl besteht in der Anstrahlung des Zieles und in der Sammlung des von ihm reflektierten Lichtes von demselben Standort aus, sowie in der darauf folgenden Bestimmung der Laufzeitdifferenz zwischen hin- und rückkehrender Strahlung.
Nachteilig dabei ist, dass die hohe Ausbreitungsgeschwindigkeit des Lichtes prinzipiell zu sehr kurzen Laufzeitunterschieden führt , (lern entspricht 30 psec) , deren Messung technologische Grenzen gesetzt sind. Hohe relative Messgenauigkeit lässt sich also nur bei der Messung grösserer Entfernungen praktisch erreichen.
Andere Anordnungen, welche den Lichtstrahl hochfrequent modulieren und die Phasenverschiebung zwischen hin- und rückkehrender Strahlung bestimmen, leiden prinzipiell unter der gleichen Beschränkung, da die Messung der Phasendifferenz mit entsprechend hoher Genauigkeit erfolgen muss.
Aufgabe der Erfindung ist, ein Verfahren zur Entfernungsmessung zu schaffen, welches auch bei kleineren Distanzen noch hohe Messgenauigkeit aufweist und einen bescheidenen technischen Aufwand verlangt.
Die Erfindung geht von der bekannten Art zur Entfernungsmessung mittels eines, das Ziel anstrahlenden Lichtbündels aus und ist dadurch gekennzeichnet, dass ein optisches Bild der Strahlaufprallstelle unter einem, bezogen auf die Einfallsrichtung, zwischen 0 und 90 liegenden Winkel erstellt wird, dass durch photoelektronische Abtastung die örtliche Lage des Aufprallstellenbildes bestimmt wird und dass aus dieser Lage die Entfernung des Zieles berechnet wird.
Im folgenden wird an Hand der beiliegenden Zeichnungen die Erfindung näher erörtert. Es zeigen:
Fig . 1 die grundlegende Anordnung
Fig . 2 die geometrischen Verhältnisse
Fig . 3 die prinzipielle Art der photoelektronischen LagebeStimmung
Fig . 4 und 5 zwei bevorzugte Ausführungsformen
Fig . 6 ein Ausführungsbeispiel.
In Fig. 1 ist die grundlegende Anordnung angegeben. Von Lichtquelle 1 wird Strahl S1 ausgesendet, welcher ein in Abstand D1 entferntes Ziel 2 in Punkt T1 trifft. Das von T., reflektierte Licht wird unter einem Winkel β von Objektiv 3 teilweise gesammelt und damit Bild T2 der Aufprallstelle T1 erstellt. Liegt Ziel 2 in näherer (T ') oder weiterer (T1") Entfernung, dann werden dementsprechend verschobene Bilder entstehen, welche eine Gerade, das Bild 4 aller möglichen Aufprallstellen, bilden. Mittels einer zur Lichtquelle in einem bekannten Abstand A2 liegenden Vorrichtung 5 wird Bild 4 photoelektronisch abgetastet. Daraus wird in Rechner 7 in an sich bekannter Weise die jeweilige Lage von T2 innerhalb von Bild 4 (also Abstand d2) ermittelt und anschliessend in Rechner 8, in einer noch zu erleuchtenden Weise, D1 errechnet.
Die Berechnungsgrundlagen zum erfindungsgemässen Verfahren sind in Fig. 2 angegeben. Aus geometrisch-optischen Gründen verlangt bekanntlich die scharfe Abbildung T1 zu T2, dass Objektachse OT1, Objektivnormale OL und Bildachse OT2 sich in Punkt 0 schneiden. Punkte T1, T2, L, 0liegen dann in einer Ebene, welche die Systemebene darstellt. Wenn Objektiv 3 in Abstand a von Punkt 0 sowie Winkel α gegenüber Objektachse OT1 sich befindet und ferner f und B1LB2 Objektivbrennweite resp. Objektivachse sind, dann aus der Aehnlichkeit der Dreiecke T1A1L und LZ2T2 folgt:
d.h. d1d2 = b1b2 2)
Figure imgf000005_0001
Aber D1 = d1 + b1 und D2 = d2 + b2 woraus:
Figure imgf000005_0002
oder
Figure imgf000005_0003
Die Parameter b1 und b1 entsprechen den Segmenten LZ2 und A1L .
Aus Dreieck A1HO folgt:
b1 = f/sin α 7)
Figure imgf000006_0001
Systemparameter b1b2 lassen sich also.bei Wahl von a,α,f für das System festlegen. Wird Abstand d2 (von Rechner 7) ermittelt, dann lässt sich Abstand D1 (von Rechner 8) mittels Formel 3 berechnen.
Es sei bemerkt, dass Punkt A1 die untere Messbereichgrenze im Objektraum (das Bild von A1 liegt im Unendlichen) und Punkt Z2 die an Lichtquelle 0 näheste Lage des Zielbildes (Ziel ist unendlich entfernt) darstellen. Die Wahl von α und a bestimmt die physischen Dimensionen der Messanordnung. Sie sind in weiten Grenzen frei wählbar. Lediglich muss man verhindern, dass dabei Winkel ß die Werte 0. und 90 annimmt. Im ersten Falle reduziert sich nämlich das Bild 4 (Fig. 1) auf einen Punkt, im zweiten Falle gelangt praktisch kein Licht auf Objektiv 3.
Die photoelektronische Bestimmung der Lage des Aufprallstellenbildes sei an Hand, von Fig. 1 und 3 erläutert, wobei als Photodetektor eine Kameraröhre (z.B. Vidicon) angenommen wird. Bild 4 besteht, wie bemerkt, aus einer punktweise beleuchteten Geraden. Diese wird auf die Photokathode von Kamera 5 abgebildet. Ablenkgenerator 6 und Ablenkspuhle 10 bewirken eine linienförmige Abtastung von Bild 4, wobei der zeitlich lineare Anstieg von Ablenkstrom J2 (bekanntlich mit der jeweiligen örtlichen Lage des Abtastfleckes direkt verknüpft) über Widerstand 9 als Sägezahnspannung U7 (proportional zu d2) abgenommen wird (Fig. 3). Trifft der Abtaststrahl auf den beleuchteten Punkt T2, dann wird über Kameralastwiderstand 11 ein Impuls U1 erzeugt. Rechner 7 (im wesentlichen eine Koinzidenzstufe) stellt an Hand von Sägezahn U2 die Zeit t2 fest, welche bezogen auf t2m und d2 , die Ermittlung von d2 gestattet.
Figure imgf000007_0001
t2 und d2 sind Systemparameter und entsprechen der unteren Entfernungsgrenze des Messbereiches.
Die Berechnung von D1 aus D2 erfolgt in Rechner 8 entsprechend Formel 5, wobei
D2 = A2 + d2 10) gilt. A2 ist Systemparameter und d2 wird, wie bemerkt, von Rechner 7 errechnet.
Durch die Erfindung wird also eine einfache Entfernungsmessung erreicht, welche elektronisch den Einsatz langsamer Schaltungstechnik sowie elementarer Rechentechnik erlaubt und in der Messgenauigkeit nur durch die räumliche Auflösung der photoelektronischen Abtastvorrichtung begrenzt ist.
Gemäss einer Ausgestaltung der Erfindung werden zur Messung mindestens zwei Systeme simultan eingesetzt, deren anstrahlende Lichtbündel in der gleichen Ebene 21 liegen. Diese in Fig. 4 dargestellte Anordnung ist speziell zur Messung von Lochprofilen geeignet. Beim Einsatz von zwei diametral liegenden Systemen D11-D13 lässt sich der Lochdurchmesser bestimmen, beim Einsatz mehrerer in Ebene 21 liegenden Systeme lassen sich Entfernungen D11,D12,D13,D14 u.s.w. messen, woraus, durch Interpolation, das Lochprofil errechnet werden kann. Gemäss einer weiteren Ausgestaltung der Erfindung wir ein erfindungsgemässes System um eine Achse 15 rotiert, welche senkrecht zum anstrahlenden Lichtbündel steht. Diese in Fig. 5 dargestellte Anordnung ist besonders zur Messung von Lochprofilen geeignet, welche sequentiell und mit beliebig hoher Auflösung abgetastet werden können.
Gemäss einer weiteren Ausgestaltung der Erfindung werdendie in den zwei vorhergehenden Ausgestaltungen beschriebenen Systeme translatorisch bewegt. Diese in Fig. 4 und 5 dargestellten Anordnungen eignen sich speziell für die durchlaufende Messung von Bohrlöchern, wenn die Translation 15 parallel zur Lochachse geschieht. Das Bohrloch wird dann bei der rotierenden Anordnung von Fig. 5 sequentiell in Form einer Spirale 18 und im Falle der simultanen Anordnung von Fig. 4 entlang den Mantellinien 17 abgestastet.
Gemäss einer weiteren Ausgestaltung der Erfindung werden die in der vorletzten und zweitletzten Ausgestaltung beschriebenen Systeme 180 um eine Achse 16 rotiert, welche in der Messebene 21 liegt und durch das Messzentrum 0 geht. Diese in Fig. 6 dargestellte Anordnung eignet sich speziell zur Messung von Hohlräumen, welche sequentiell durch eine Anzahl von Meridianen 20 bzw. von Breitenkreisen 22 abgetastet werden.
Gemäss einer speziellen Ausgestaltung der erfindungsgemässen Vorrichtung wird als ausstrahlendes Lichtbündel ein LASER-Strahl verwendet. Diese Anordnung bietet den Vorteil der hohen Leuchtdichte und ist gerätetechnisch einfach.
Gemäss einer weiteren speziellen Ausgestaltung der erfindungsgemässen Vorrichtung wird zur photoelektronischen Abtastung des Aufprallstellenbildes ein lineares Photodiodenarray verwendet. Diese Anordnung weist die Vorteile hoher geometrischer Genauigkeit und Stabilität sowie kleinster Dimensionen auf.
Ein Ausführungsbeispiel der erfindungsgemässen Vorrichtung ist in Fig. 7 angegeben. Dabei handelt es sich um die Messung von Entfernungen zwischen 3500 und 6000 mm, welche typisch als Profilradien im Tunnelbau vorkommen. Eine simultane oder sequentielle Abtastung des Profils nach Unteransprüchen 1 resp. 2 kommt zur Anwendung. Die von LASER 1 emittierte Strahlung wird an Ziel 2 teilweise reflektiert, durch Objektiv 3 teilweise gesammelt und auf Photodetektor 5 abgebildet, .welcher als lineares Photodiodenarray ausgebildet ist. Von einem Taktgenerator 12 wird ein CLOCK-Signal abgeleitet, welches mittels des in Photodiodenarray 5 eingebauten Schieberegisters den Ladezustand des jeder Photodiode zugeordneten Kondensators nacheinander abfragt. Das Resultat dieser Abtastung wird synchron zum CLOCK-Signal am ΛflDEO-Ausgang abgenommen. Ist z.B. Diode No. 10 beleuchtet, dann wird beim 10-ten CLOCK-Impuls ein Signalimpuls am VIDEO-Ausgang erscheinen. Dieser Impuls wird in Komparator 13 detektiert und zum STOP von Zähler 14 verwendet, wo die Anzahl der bis dann abgegebenen CLOCK-Impulse aufgezählt worden ist. Der Stand d2' von Zähler 14 ist also ein Mass für die örtliche Lage d2 des Aufprallstellenbildes innerhalb des Arrays. Es gilt also d2 = k1 d2' 11) wo k1 der Abstand (z.B. mm) zwischen den einzelnen Photodioden darstellt. Wert d2' wird von Rechner 8 übernommen, wo zunächst d2 (nach Formel 11) berechnet wird. Anschliessend wird die absolute Lage D2 durch die Operation
D2 = D2 min + d2 12) ermittelt,' wo D2 mm. (für die jeweils geltenden Werte der optischen Anordnung) aus D1 mittels Formel 6 berechnet wird. Schliesslich wird die Zielentfernung D1 mittels Formel 5 berechnet. In der Zwischenzeit ist der Abfragevorgang an Array 5 weitergegangen. Nachdem die letzte Photodiode im Array abgefragt wurde, wird ein RESET-Impuls abgegeben, welcher Zähler 14 auf Null stellt. Automatisch, oder auf Befehl, wird dann ein neuer Messzyklus eingeleitet.
Die numerischen Werte des aufgeführten Beispieles lauten: f = 180 mm;' α = 80°; aa = 1000 mm; D1 max= 6000 mm
D1 min = 3500 mm; woraus sich ableiten lässt b1 = 182,8 mm (Formel 7); b2 = 984,9 mm (Formel 8);
D 2 mm. = 1015,8 mm (Formel 6); D2 max = 1039,1 mm (Formel 6).
Das Bild 4 der Messstrecke weist eine Länge von D2 max
D 2 mm. - 23,3 mm auf und wird mit einem Photodiodenarray, bestehend aus 1728 Dioden im Abstand von 13 μm abgetastet. Danach gilt also k1 = 0,013. Die mit der Vorrichtung erzielte Messgenauigkeit beträgt im Mittel (6000 - 3500)/1728 = 1,5 mm.
Zur photoelektrischen Detektion können eingesetzt werden: Objektiv: Rodagon 180 mm/1: 5,6 (Rodenstock Werke, München, Deutschland). Photodetektor: Fairchild CCD 121H (Fairchild Inc. Mountain View, Calif. USA). LASER: Siemens LGR 7622 (Siemens AG, München, Deutschland).
In der vorliegenden Beschreibung wurde durchwegs von Lichtquelle, Lichtbündel u.s.w. gesprochen. Es ist selbstverständlich, dass jede andere Strahlungsart (z.B. Infrarot, Ultraviolett) sinngemäss eingesetzt werden kann. Ihre Wahl wird hauptsächlich durch die Anpassung an die spektralen Remissionseigenschaften des Zieles bestürmt werden

Claims

Patentanspruch IVerfahren zur Entfernungsmessung mittels eines, das Ziel anstrahlenden Lichtbündels, dadurch gekennzeichnet, dass- ein optisches Bild der Strahlaufprallstelle auf das Ziel unter einem, bezogen auf die Anstrahlrichtung, zwischen 0 und 90 liegenden Winkel erstellt wird, dass- durch photoelektronische Abtastung die örtliche Lage des Aufprallstellenbildes bestimmt wird und dass- aus dieser Lage die Entfernung des Zieles berechnet wird.Unteransprüche
1. Verfahren zur Messung von Lochprofilen nach Patentanspruch I, dadurch gekennzeichnet, dass mindestens zwei erfindungsgemässe Systeme simultan eingesetzt werden, wobei die die Ziele anstrahlenden Lichtbündel sich in der gleichen Ebene befinden.
2. Verfahren zur Messung von .Lochprofilen nach Patentanspruch II, dadurch gekennzeichnet, dass ein erfindungsgemässes System um eine Achse rotiert wird, welche senkrecht zum anstrahlenden Lichtbündel steht.
3. Verfahren zur Messung von Bohrlochprofilen nach Unteranspruch 1 oder 2, dadurch gekennzeichnet, dass das Zentrum des erfindungsgemässen Systems parallel zur Lochachse fortbewegt wird.
4. Verfahren zur Messung von Hohlräumen nach Unteransprüchen 1 und 2, dadurch gekennzeichnet, dass die durch die Messsysteme, resp. durch die Messsystemrotation definierte Ebene stufenweise bis zu 180 rotiert wird und zwar um eine in dieser Ebene liegende und durch das Systemzentrum gehende Achse. Patentanspruch II
Vorrichtung zur Durchführung des Verfahrens nach Patentanspruch I, gekennzeichnet durch
- eine Lichtquelle (1), aus welcher ein Lichtbündel S1 abgeleitet wird, welches das Ziel (2) anstrahlt,
- ein Objektiv (3), welches ein Bild (4) aller möglichen Strahlabtaststellen innerhalb des vorgesehenen Entfernungsmessbereiches erstellt,
- einen linearen Photodetektor (5), welcher das Bild (4) der Aufprallstellen abtastet,
-.einen ersten Rechner (7), welcher aus den Abtastwerten die relative Lage des jeweiligen Aufprallstellenbildes ermittelt,
- einen zweiten Rechner (8), welcher aus der relativen Lage des Aufprallstellenbildes die jeweilige Entfernung des Zieles (2) errechnet.
Unteransprüche
5. Vorrichtung nach Patentanspruch II, dadurch gekennzeichnet, dass das Ziel anstrahlende Lichtbündel ein LASER-Strahl ist.
6. Vorrichtung nach Patentanspruch II, dadurch gekennzeichnet, dass die photoelektronische Abtastung des Aufprallstellenbildes mittels eines linearen Photodiodenarray erfolgt.
PCT/CH1978/000026 1977-10-06 1978-10-04 Process and device for measuring a distance by telemetry WO1979000189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH12261/77 1977-10-06
CH1226177A CH628138A5 (de) 1977-10-06 1977-10-06 Verfahren und vorrichtung zur messung der entfernung eines zielobjekts durch beaufschlagung mit einem strahlenbuendel sowie anwendung des verfahrens.

Publications (1)

Publication Number Publication Date
WO1979000189A1 true WO1979000189A1 (en) 1979-04-19

Family

ID=4381369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1978/000026 WO1979000189A1 (en) 1977-10-06 1978-10-04 Process and device for measuring a distance by telemetry

Country Status (2)

Country Link
CH (1) CH628138A5 (de)
WO (1) WO1979000189A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373805A (en) * 1979-05-03 1983-02-15 The Singer Company Laser altimeter and probe height sensor
US4373804A (en) * 1979-04-30 1983-02-15 Diffracto Ltd. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US4477184A (en) * 1979-01-19 1984-10-16 Nissan Motor Company, Limited Obstacle detection system for use in vehicles
GB2143396A (en) * 1983-05-21 1985-02-06 Mac Co Ltd Beam riding location system
US4939439A (en) * 1985-09-26 1990-07-03 Unisearch Limited Robot vision and optical location systems
US5086411A (en) * 1988-07-25 1992-02-04 Unisearch Limited Optical location systems
US5280179A (en) * 1979-04-30 1994-01-18 Sensor Adaptive Machines Incorporated Method and apparatus utilizing an orientation code for automatically guiding a robot
US5940302A (en) * 1981-02-27 1999-08-17 Great Lakes Intellectual Property Controlled machining of combustion chambers, gears and other surfaces
DE10015153B4 (de) * 2000-03-27 2006-07-13 Metronom Ag Lichtschnittsystem für ultraviolettes Licht

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1389111A (fr) * 1963-02-22 1965-02-12 Marconi Co Ltd Dispositifs de mesures des distances notamment pour les véhicules à coussins d'air
LU49115A1 (de) * 1965-07-19 1967-01-19
US3610754A (en) * 1967-11-24 1971-10-05 Centre Nat Rech Metall Method for determining distances
NL7202622A (de) * 1971-03-19 1972-09-21 Siemens Ag
FR2242663A1 (de) * 1973-08-31 1975-03-28 Alcyon
GB1450577A (en) * 1973-08-13 1976-09-22 British Gas Corp Apparatus for measuring the size of subterranean cavities

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1389111A (fr) * 1963-02-22 1965-02-12 Marconi Co Ltd Dispositifs de mesures des distances notamment pour les véhicules à coussins d'air
LU49115A1 (de) * 1965-07-19 1967-01-19
US3610754A (en) * 1967-11-24 1971-10-05 Centre Nat Rech Metall Method for determining distances
NL7202622A (de) * 1971-03-19 1972-09-21 Siemens Ag
GB1450577A (en) * 1973-08-13 1976-09-22 British Gas Corp Apparatus for measuring the size of subterranean cavities
FR2242663A1 (de) * 1973-08-31 1975-03-28 Alcyon

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477184A (en) * 1979-01-19 1984-10-16 Nissan Motor Company, Limited Obstacle detection system for use in vehicles
US5734172A (en) * 1979-04-30 1998-03-31 Sensor Adaptive Machines Inc. Method and apparatus for electro optically determining the dimension, location and attitude of objects
US5877491A (en) * 1979-04-30 1999-03-02 Sensor Adaptive Machines, Inc. Method and apparatus for imaging an object illuminated with light
US5773840A (en) * 1979-04-30 1998-06-30 Sensor Adaptive Machines Inc. Method & apparatus for electro optically determining the dimension, location & attitude of objects
US5767525A (en) * 1979-04-30 1998-06-16 Sensor Adaptive Machines Inc. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US6211506B1 (en) * 1979-04-30 2001-04-03 Diffracto, Ltd. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US5280179A (en) * 1979-04-30 1994-01-18 Sensor Adaptive Machines Incorporated Method and apparatus utilizing an orientation code for automatically guiding a robot
US5362970A (en) * 1979-04-30 1994-11-08 Sensor Adaptive Machines, Inc. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US5510625A (en) * 1979-04-30 1996-04-23 Sensor Adaptive Machines Inc. Method and apparatus for electro optically determining the dimension, location and attitude of objects
US5670787A (en) * 1979-04-30 1997-09-23 Sensor Adaptive Machines, Inc. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US5677541A (en) * 1979-04-30 1997-10-14 Sensor Adaptive Machines, Inc. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US5684292A (en) * 1979-04-30 1997-11-04 Sensor Adaptive Machines, Inc. Method and apparatus for electro optically determining the dimension location and attitude of objects
US5691545A (en) * 1979-04-30 1997-11-25 Sensor Adaptive Machines Inc. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US5693953A (en) * 1979-04-30 1997-12-02 Sensor Adaptive Machines, Inc. Method and apparatus for electro optically determining the dimension, location and attitude of objects
US6127689A (en) * 1979-04-30 2000-10-03 Diffracto Ltd. Method and apparatus for positioning a member relative to an object surface
US5981965A (en) * 1979-04-30 1999-11-09 Lmi-Diffracto Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US5883390A (en) * 1979-04-30 1999-03-16 Sensor Adaptive Machines, Inc. Method and apparatus for positioning a member in a desired attitude relative to the surface of an object
US5786602A (en) * 1979-04-30 1998-07-28 Sensor Adaptive Machines, Inc. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US5811827A (en) * 1979-04-30 1998-09-22 Sensor Adaptive Machines, Inc. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US5811825A (en) * 1979-04-30 1998-09-22 Sensor Adaptive Machines, Inc. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US5854491A (en) * 1979-04-30 1998-12-29 Sensor Adaptive Machines, Inc. Method and apparatus for electro optically determining the dimension, location and attitude of objects
US5866915A (en) * 1979-04-30 1999-02-02 Sensor Adaptive Machines, Inc. Method and apparatus for electro optically determining the dimension, location and attitude of objects
US5866916A (en) * 1979-04-30 1999-02-02 Sensor Adaptive Machines, Inc. Method and apparatus for electro optically determining the dimension, location and attitude of objects
US4373804A (en) * 1979-04-30 1983-02-15 Diffracto Ltd. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US5880459A (en) * 1979-04-30 1999-03-09 Sensor Adaptive Machines, Inc. Method and apparatus for control of a detector array based imaging
US4373805A (en) * 1979-05-03 1983-02-15 The Singer Company Laser altimeter and probe height sensor
US5940302A (en) * 1981-02-27 1999-08-17 Great Lakes Intellectual Property Controlled machining of combustion chambers, gears and other surfaces
GB2143396A (en) * 1983-05-21 1985-02-06 Mac Co Ltd Beam riding location system
US4939439A (en) * 1985-09-26 1990-07-03 Unisearch Limited Robot vision and optical location systems
US5086411A (en) * 1988-07-25 1992-02-04 Unisearch Limited Optical location systems
DE10015153B4 (de) * 2000-03-27 2006-07-13 Metronom Ag Lichtschnittsystem für ultraviolettes Licht

Also Published As

Publication number Publication date
CH628138A5 (de) 1982-02-15

Similar Documents

Publication Publication Date Title
EP1423731B1 (de) Verfahren und vorrichtung zur aufnahme eines dreidimensionalen abstandsbildes
DE60124647T2 (de) Vorrichtung und Verfahren zur Abstandsmessung
DE3122712A1 (de) "verfahren und vorrichtung zum beruehrungslosen messen von oberflaechenprofilen"
DE3305739A1 (de) Vorrichtung und verfahren zum aufbereiten von lagemesssignalen
DE2637361A1 (de) Vorrichtung zum messen der bewegung eines ersten teiles relativ zu einem zweiten teil
DE3344431C2 (de) Automatische Scharfeinstellvorrichtung für eine photographische Kamera
DE2536263A1 (de) Anordnung zum orten von teilen, zum ausrichten von masken und zum feststellen der richtigen ausrichtung einer maske
DE3930632A1 (de) Verfahren zur direkten phasenmessung von strahlung, insbesondere lichtstrahlung, und vorrichtung zur durchfuehrung dieses verfahrens
DE3640159C2 (de)
DE2307722A1 (de) Verfahren und geraet zur flaechenmessung ohne beruehrung
EP1236023B1 (de) Winkelmesssystem
DE3613209A1 (de) Optische oberflaechenprofil-messeinrichtung
DE10217726A1 (de) Optische Positionsmesseinrichtung
WO1979000189A1 (en) Process and device for measuring a distance by telemetry
DE1905392A1 (de) Vorrichtung zum Erzeugen von elektrischen Signalen mittels eines Skalengitters,das relativ zu einem Indexgitter bewegbar ist
DE3542514A1 (de) Wegmesseinrichtung
DE19963809C2 (de) Optischer Encoder mit dreifacher Photodiode
EP0324757B1 (de) Verfahren zur erweiterung der auflösung einer zeilen- oder matrixkamera
DE3824820C2 (de)
CH616508A5 (de)
DE3312203C2 (de)
DE2526110C3 (de) Vorrichtung zum Messen kleiner Auslenkungen eines Lichtbündels
DE3517671A1 (de) Vorrichtung zum bildpunktweisen erfassen der oberflaechengestalt eines entfernten objektes
DE1813743A1 (de) Anordnung zur Abtastung eines Feldes in zwei Richtungen
DE102015217022A1 (de) Ortsfiltermessverfahren und Vorrichtung zur Ortsfiltermessung

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): JP US

AL Designated countries for regional patents

Designated state(s): DE FR GB

WA Withdrawal of international application