WO1984004753A1 - Polyetherimide-polysulfide blends - Google Patents

Polyetherimide-polysulfide blends Download PDF

Info

Publication number
WO1984004753A1
WO1984004753A1 PCT/US1983/000789 US8300789W WO8404753A1 WO 1984004753 A1 WO1984004753 A1 WO 1984004753A1 US 8300789 W US8300789 W US 8300789W WO 8404753 A1 WO8404753 A1 WO 8404753A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysulfide
polyetherimide
blends
composition
accordance
Prior art date
Application number
PCT/US1983/000789
Other languages
French (fr)
Inventor
Harold Frazee Giles Jr
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Priority to PCT/US1983/000789 priority Critical patent/WO1984004753A1/en
Priority to JP50216683A priority patent/JPS60501411A/en
Publication of WO1984004753A1 publication Critical patent/WO1984004753A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides

Definitions

  • This invention relates to a class of polyetherimideEPDM terpolymer blends.
  • these blends have a higher notched impact strength than that associated with the polyetherimide component of the blends.
  • the blends of the invention include a polyetherimide of the formula:
  • a represents a whole number in excess of 1, e.g., 10 to 10,000 or more, the group is selected from:
  • R' being hydrogen, lower alkyl or lower alkoxy, preferably a polyetherimide includes the latter -O-A group where R' is hydrogen such that the polyetherimide is of the formula:
  • Z is a member of the class consisting of (1)
  • X is a member selected from the class consisting of divalent radicals of the formulas.
  • q is 0 or 1
  • y is a whole number from 1 to 5
  • R is a divalent organic radical selected from the class consisting of (1) aromatic hydrocarbon radicals having from 6-20 carbon atoms and halogenated derivatives thereof, (2) alkylene radicals and cycloalkylene radicals having from 2-20 carbon atoms, C ( 2-8) alkylene terminated polydiorganosiloxane, and (3) divalent radicals included by the formula
  • Q is a member selected from the class consisting of where X is a whole number from 1 to 5 inclusive.
  • Particularly preferred polyetherimides for the purposes of the present invention include those where -O-A and Z respectively are:
  • R is selected from:
  • the polyetherimides where R is metaphenylene are most preferred.
  • the polyetherimide-polysulfide blends of the invention also include a polysulfide which is a polymer composed substantially of linear molecules of moderate molecular weight having repeating units of the structural formula:
  • R 1 is a divalent aliphatic or aromatic radical and n is a number from 1 to 5, generally about one.
  • R 1 is aromatic such as phenylene, biphenylene, naphthylene, oxydiphenyl or lower alkyl, lower alkoxy or halogen substituted derivatives thereof, the lower alkyl substituents having one to six carbon atoms such as methyl, propyl, isobutyl, n-hexyl and the like and n is one.
  • the aromatic polysulfide polymer will have an inherent viscosity within the range of about 0.05 to about 0.4, preferably about 0.1 to about 0.35, determined at 206° C. in 1-chloronaphthalene at a polymer concentration of 0.4 g/100 ml solution.
  • a particularly preferred polysulfide is a polyphenylene sulfide such as that sold under the tradename Ryton by Phillips Petroleum Company, Bartlesville, Oklahoma and having repeating units of the structural formula:
  • Such polyphenylene sulfides have high melting points, outstanding chemical resistance, thermal stability and non-flammability.
  • the polymer is characterized by high stiffness and good retention of mechnical properties at elevated temperature.
  • polyetherimides can be obtained by any of the methods well known to those skilled in the art including the reaction of any aromatic bis ( ether anhydrides ) of the formula
  • Aromatic bis (ether anyhdride)s of the above formula include, for example, 2,2-bis [4-(2,3- dicarboxyphenoxy)phenyl] -propane dianhydride; 4,4'-bis(2, 3-dicarboxyphenoxy)diphenyl ether dianhydride; 1,3-bis(2, 3-dicarboxyphenoxy) benzene dianhydride; 4,4'-bis(2,3- dicarboxyphenoxy)diphenyl sulfide dianhydride; 1,4-bis(2, 3-dicarboxyphenoxy)benzene dianhydride; 4,4'-bis(2,3- dicarboxyphenoxy) benzophenone dianhydride; 4, 4'-bis (2,3-dicarboxyphenoxy)diphenyl sulfone dianhydride; 2,2- bis [4-(3, 4-dxcarboxyphenoxy)phenyl] propane dianhydride; 4,4'-bis(3,4-dicarboxyphenoxy)dipheny
  • aromatic bis (ether anhydride)s also included by the above formula are shown by Koton, M.M.; Florinski, F.S.; Bessonov, M.I.; Rudakov, A.P. (Institute of Heteroorganic compounds. Academy of
  • Organic diamines of the above formula include, for example, m-phenylenediamine, p-phenylenediamine, 4,4'diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, benzidine, 4,4'-diaminodiphenyl sulfide, 4,4'- diaminodiphenyl sulfone, 4,4'-diaminodiphyenyl ether, 1,5-diaminonaphthalene, 3,3 '-dimenthylbenzidine, 3,3'dimethoxybenzidine, 2, 4-bis ( ⁇ -amino-t-butyl)toluene, bis (p-ti-amino-t-butylphenyl)ether, bis (p- ⁇ -methyl-o- aminopentyl)benzene, 1,3-diamino-4-isopropylbenzene, 1,2bis(3-aminoprop
  • the reactions can be advantageously carried out employing well-known solvents, e.g., odichlorobenzene, m-cresol/toluene, etc. in which to effect interaction between the dianhydrides and the diamines, at temperatures of from about 100 to about 250°C.
  • the polyetherimides can be prepared by melt polymerization of any of the above dianhydrides with any of the above diamine compounds while heating the mixture of the ingredients at elevated temperatures with concurrent intermixing. Generally, melt polymerization temperatures between about 200° to 400°C. and preferably 230° to 300°C. can be employed.
  • the conditions of the reaction and the proportions of ingredients can be varied widely depending on the desired molecular weight, intrinsic viscosity, and solvent resistance.
  • equimolar amounts of diamine and dianhydride are employed for high molecular weight polyetherimides, however, in certain instances, a slight molar excess (about 1 to 5 mol percent) of diamine can be employed resulting in the production of polyetherimides having terminal amine groups.
  • useful polyetherimides have an intrinsic viscosity [r] greater than 0.2 deciliters per gram, preferably 0.35 to 0.60, or 0.7 deciliters per gram or even higher when measured in m-creasol at 25°C.
  • aromatic polysulfides can be prepared by contacting a polyhalo- substituted cyclic compound containing unsaturation between adjacent ring atoms and an alkali metal sulfide in the presence of a polar organic compound.
  • the resulting polymer contains the cyclic structure of the polyhalo-substituted compound coupled in repeating units through a sulfur atom.
  • Aromatic polysulfides can also be manufactured as described in U.S. Pat. No. 2,513,188 by reacting mixtures of p-dichlorobenzene and 1,2,4- trichlorobenzene with sulfur and metal sulfide at fusion temperatures.
  • the polymers can also be manufactured by the method described in British Pat. No.
  • aliphatic polysulfide polymers can be made by reacting sodium polysulfide with a reactive halide such as ethylene dichloride. Further methods are set forth in the KirkOthmer Encyclopedia of Chemical Technology previously mentioned in the articles cited therein.
  • blends of a polyetherimide and a polysulfide are generally obtainable in all proportions of the two polymers relative to each other. Consequently, blends comprising from about 1 to about 99%, by weight, polyetherimide and from about 99 to about 1%, by weight polysulfide are included within the scope of the invention.
  • blends having certain predetermined properties which are improved over those of polysulfide component may be alone readily obtained.
  • blends of polyetherimides and polysulfides have a good appearance with a dark opaque surface, a relatively high flexural strength regardless of the blend composition and adequate physical properties, particularly at a relatively low amounts of polysulfide relative to the polyetherimide.
  • the polysulfide component of the blends facilitates the inclusion of fillers or reinforcements such as glass as well as other polymeric materials.
  • polyetherimidepolysulfide blends of the present invention may also include additive materials such as fillers, stabilizers, plasticizers, flexibilizers, surfactant agents, pigments, dyes, reinforcements, flame retardants and diluents in conventional amounts. It is also contemplated that the blends of the invention may include two or more polyetherimides with one or more polysulfides or two or more polysulfides in combination with one or more polyetherimides.
  • Methods for forming polyetherimide-polysulfide blends may vary considerably. Prior art blending techniques are generally satisfactory. A preferred method comprises blending the polymers and additives such as reinforcements in powder, granular or filamentous form, extruding the blend, and chopping the extrudate into pellets suitable for molding by means conventionally used to mold normally solid thermoplastic compositions.
  • polyetherimide-polysulfide blends of the present invention have application in a wide variety of physical shapes and forms, including the use as films, molding compounds, coatings, etc. When used as films or when made into molded products, these blends, including laminated products prepared therefrom, not only possess good physical properties at room temperature but they retain their strength and excellent response to workloading at elevated temperatures for long periods of time. Films formed from the blends of this invention may be used in application where films have been used previously. Thus, the blends of the recent invention can be used in automobile and aviation applications for decorative and protective purposes, and as high temperature electrical insulation for motor slot liners, transformers, dielectric capacitors, coil and cable wrappings (form wound coil insulation for motors), and for containers and container linings.
  • the blends can also be used in laminated structures where films or solutions of the blend are applied to various heatresistant or other type of materials such as asbestos, mica, glass fiber and the like, the sheets superimposed one upon the other, and thereafter subjecting the sheets to elevated temperatures and pressures to effect flow and cure of the resionous binder to yield cohesive laminated structures.
  • Films made from the subject polyetherimide polysulfide blends can also serve in printed circuit applications.
  • solutions of the blends herein described can be coated on electrical conductors such as copper, aluminum, etc. and thereafter the coated conductor can be heated at elevated tempratures to remove the solvent and provide a continuous resinous composition thereon.
  • an additional overcoat may be applied to such insulated conductors including the use of polymeric coatings, such as polyamides, polyesters, silicones, polyvinylformal resins, epoxy resins, polyimides, polytetrafluoroethylene, etc.
  • polymeric coatings such as polyamides, polyesters, silicones, polyvinylformal resins, epoxy resins, polyimides, polytetrafluoroethylene, etc.
  • the use of the blends of the present invention as overcoats on other types of insulation is not precluded.
  • Other applications which are contemplated for these blends include their use as binders for asbestos fibers, carbon fibers, and other fibrous materials in making brake linings.
  • molding compositions and molded articles may be formed from the polymeric blends of the invention by incorporating such fillers as asbestos, glass fibers, talc, quartz, powder, finely divided carbon, silica and the like into the blends prior to molding.
  • Shaped articles may be formed under heat, or under heat and pressure, in accordance with practices well-known in the art.
  • a polyetherimide-polysulfide blend according to the invention was prepared, molded into test specimens and then tested for various physical properties.
  • the polyetherimide was prepared from the reaction product of essentially equimolar amounts of 2,2-bis [4(3,4-dicarboxy phenoxy) phenyl] propane dianhydride and m-phenylene diamine produced at elevated temperature of about 250° to about 300°C. and under nitrogen atmosphere. The polymer was extruded at about 300°C . to form a strand and mechanically chopped into pellets.
  • a test specimen injection molded from the pellets was tested for physical properties and the results are set forth in the following Table.
  • Example III The procedure of Example I was repeated with the exception that about 70 parts of the polyetherimide were blended with about 30 parts of polysulfide to produce the blend according to the invention.
  • the results of the notched and unnotched Izod impact test, as well as the heat deflection temperature, flexural strength, flexural modulus and tensile properties for the blend are detailed in the Table.
  • Example I The procedure of Example I was repeated with the exception that about 50 parts of the polyetherimide were blended with about 50 parts of polysulfide to produce the blend according to the invention.
  • the results of the notched and unnotched Izod impact test, as well as the heat distortion temperature, flexural strength, flexural modulus and tensile properties for the blend are detailed in the Table.
  • Example II The procedure of Example I was repeated with the exception that about 30 parts of the polyetherimide were blended with about 70 parts of polysulfide to produce the blend according to the invention.
  • the results of the notched and unnotched Izod impact test, as well as the heat deflection temperature, flexural strength, flexural modulus and tensile properties for the blend are detailed in the Table.
  • Example II The procedure of Example I was repeated with the exception that about 10 parts of the polyetherimide were blended with about 90 parts of polysulfide to produce the blend according to the invention. In addition, the molding temperature was about 288°C.
  • the results of the notched and unnotched Izod impact test, as well as the heat deflection temperature, flexural strength, flexural modulus and tensile properties for the blend are detailed in the Table.
  • the heat deflection temperature for the blend is significantly lower than that for the polysulfide component alone.
  • the blend of about 90% polysulfide has a heat deflection temperature much lower at about 89°C than the published value for the polysulfide material. This difference may be attributed to the 40% glass contained in the pure Ryton R-4 polysulfide which stiffens the crystalline resin matrix significantly.
  • the blends of the invention particularly those having a minor proportion of polysulfide, e.g., about 10% polysulfide, have comparable physical properties to that of the polyetherimide component with the exception of the heat deflection temperature.
  • the polysulfide component of the blends could be used as a compatibilizing agent when forming blends of three or more components.
  • polysulfide e.g., from about 10 to 40% polysulfide, may have excellent properties in terms of heat deflection temperature, tensile and flexural properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Blends of (a) a polyetherimide and (b) a polysulfide. The blends have good flexural strength regardless of the relative proportions of the components of the blend and have generally higher mechanical properties than those associated with the polysulfide component of the blend. In an example 90 parts of a polyetherimide prepared from essentially equimolar amounts of 2,2-bis- AD4(3,4-dicarboxyphenoxy)phenyl BD propane dianhydride and M-phenylene diamine were mixed with 10 parts of polyphenylene sulfide powder, extruded into pellets and injection molded at about 329oC into test specimens.

Description

POLYETHERIMIDE-POLYSULFIDE BLENDS
This invention relates to a class of polyetherimideEPDM terpolymer blends. Among other things, these blends have a higher notched impact strength than that associated with the polyetherimide component of the blends.
The blends of the invention include a polyetherimide of the formula:
Figure imgf000003_0001
where a represents a whole number in excess of 1, e.g., 10 to 10,000 or more, the group
Figure imgf000003_0004
is selected from:
Figure imgf000003_0002
R' being hydrogen, lower alkyl or lower alkoxy, preferably a polyetherimide includes the latter -O-A group where R' is hydrogen such that the polyetherimide is of the formula:
Figure imgf000003_0003
and the divalent bonds of the -O-Z-O- radical are in the
3,3'; 3,4'; 4,3' or the 4,4' position;
Z is a member of the class consisting of (1)
Figure imgf000004_0001
and (2) divalent organic radicals of the general formula:
Figure imgf000004_0002
where X is a member selected from the class consisting of divalent radicals of the formulas.
Figure imgf000004_0003
where q is 0 or 1, y is a whole number from 1 to 5, and R is a divalent organic radical selected from the class consisting of (1) aromatic hydrocarbon radicals having from 6-20 carbon atoms and halogenated derivatives thereof, (2) alkylene radicals and cycloalkylene radicals having from 2-20 carbon atoms, C( 2-8)alkylene terminated polydiorganosiloxane, and (3) divalent radicals included by the formula
Figure imgf000004_0004
where Q is a member selected from the class consisting of
Figure imgf000005_0003
where X is a whole number from 1 to 5 inclusive.
Particularly preferred polyetherimides for the purposes of the present invention include those where -O-A and Z respectively are:
Figure imgf000005_0001
and R is selected from:
Figure imgf000005_0002
The polyetherimides where R is metaphenylene are most preferred. The polyetherimide-polysulfide blends of the invention also include a polysulfide which is a polymer composed substantially of linear molecules of moderate molecular weight having repeating units of the structural formula:
Figure imgf000006_0001
where R 1 is a divalent aliphatic or aromatic radical and n is a number from 1 to 5, generally about one. Preferably, R 1 is aromatic such as phenylene, biphenylene, naphthylene, oxydiphenyl or lower alkyl, lower alkoxy or halogen substituted derivatives thereof, the lower alkyl substituents having one to six carbon atoms such as methyl, propyl, isobutyl, n-hexyl and the like and n is one. Generally, the aromatic polysulfide polymer will have an inherent viscosity within the range of about 0.05 to about 0.4, preferably about 0.1 to about 0.35, determined at 206° C. in 1-chloronaphthalene at a polymer concentration of 0.4 g/100 ml solution.
A particularly preferred polysulfide is a polyphenylene sulfide such as that sold under the tradename Ryton by Phillips Petroleum Company, Bartlesville, Oklahoma and having repeating units of the structural formula:
Figure imgf000006_0002
Such polyphenylene sulfides have high melting points, outstanding chemical resistance, thermal stability and non-flammability. The polymer is characterized by high stiffness and good retention of mechnical properties at elevated temperature.
The polyetherimides can be obtained by any of the methods well known to those skilled in the art including the reaction of any aromatic bis ( ether anhydrides ) of the formula
Figure imgf000007_0001
where Z is as defined hereinbefore with an organic diamine of the formula
H2N-R-NH2 where R is as defined hereinbefore.
Aromatic bis (ether anyhdride)s of the above formula include, for example, 2,2-bis [4-(2,3- dicarboxyphenoxy)phenyl] -propane dianhydride; 4,4'-bis(2, 3-dicarboxyphenoxy)diphenyl ether dianhydride; 1,3-bis(2, 3-dicarboxyphenoxy) benzene dianhydride; 4,4'-bis(2,3- dicarboxyphenoxy)diphenyl sulfide dianhydride; 1,4-bis(2, 3-dicarboxyphenoxy)benzene dianhydride; 4,4'-bis(2,3- dicarboxyphenoxy) benzophenone dianhydride; 4, 4'-bis (2,3-dicarboxyphenoxy)diphenyl sulfone dianhydride; 2,2- bis [4-(3, 4-dxcarboxyphenoxy)phenyl] propane dianhydride; 4,4'-bis(3,4-dicarboxyphenoxy)diphenyl ether dianhydride; 4,4'-bis(3,4-dicarboxyphenoxy)diphenyl sulfide dianhydride; 1 , 3-bis (3, 4-dicarboxyphenoxy)benezene dianhydride; 1,4-bis (3, 4-dicarboxyphenoxy)benzene dianhydride; 4,4'-bis(3, 4- dicarboxyphenoxy)benzophenone dianhydride; 4-(2,3- dicarboxyphenoxy)-4-(3,4- dicarboxyphenoxy)diphenyl 2,2-propane dianhydride; etc. and mixtures of such dianhydrides.
In addition, aromatic bis (ether anhydride)s also included by the above formula are shown by Koton, M.M.; Florinski, F.S.; Bessonov, M.I.; Rudakov, A.P. (Institute of Heteroorganic compounds. Academy of
Sciences, U.S.S.R.), U.S.S.R. 257,010, Nov. 11, 1969, Appl. May 3, 1967. In addition, dianhydrides are shown by M.M. Koton, F.S. Florinski, Zh Org. Khin, 4(5), 774 (1968).
Organic diamines of the above formula include, for example, m-phenylenediamine, p-phenylenediamine, 4,4'diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, benzidine, 4,4'-diaminodiphenyl sulfide, 4,4'- diaminodiphenyl sulfone, 4,4'-diaminodiphyenyl ether, 1,5-diaminonaphthalene, 3,3 '-dimenthylbenzidine, 3,3'dimethoxybenzidine, 2, 4-bis (β-amino-t-butyl)toluene, bis (p-ti-amino-t-butylphenyl)ether, bis (p-β-methyl-o- aminopentyl)benzene, 1,3-diamino-4-isopropylbenzene, 1,2bis(3-aminopropoxy) ethane, m-xylylenediamine, pxylylenediamine, 2,4-diaminotoluene, 2,6-diamino- toluene, bis (4-aminocyclohexyl)methane, 3- methylheptamethylenediamine, 4,4- dimethylheptamethylenediamine, 2, 11-dodecanediamine, 2,2dimethylopropylenediamine, octamethylenediamine, 3- methoxyhexamethylenediamine, 2,5- dimethylhexamethylenediamine, 2,5- dimethylheptamethylenediamine, 3- methylheptametnylenediamine, 5- methylnonamethylendediamine, 1 ,4-cyclohexanediamine, 1, 12- octadecanediamine, bis (3-aminopropyl) sulfide, Nmethyl-bis ( 3-aminopropyl)amine, hexamethylenediame, heptamethylenediamine, nonamethylenediamine, decamethylenediamine, bis(3-aminopropyl) tetramethyldisiloxane, bis(4-aminobutyl) tetramethyldisiloxane, and the like.
In general, the reactions can be advantageously carried out employing well-known solvents, e.g., odichlorobenzene, m-cresol/toluene, etc. in which to effect interaction between the dianhydrides and the diamines, at temperatures of from about 100 to about 250°C. Alternatively, the polyetherimides can be prepared by melt polymerization of any of the above dianhydrides with any of the above diamine compounds while heating the mixture of the ingredients at elevated temperatures with concurrent intermixing. Generally, melt polymerization temperatures between about 200° to 400°C. and preferably 230° to 300°C. can be employed. The conditions of the reaction and the proportions of ingredients can be varied widely depending on the desired molecular weight, intrinsic viscosity, and solvent resistance. In general, equimolar amounts of diamine and dianhydride are employed for high molecular weight polyetherimides, however, in certain instances, a slight molar excess (about 1 to 5 mol percent) of diamine can be employed resulting in the production of polyetherimides having terminal amine groups. Generally, useful polyetherimides have an intrinsic viscosity [r] greater than 0.2 deciliters per gram, preferably 0.35 to 0.60, or 0.7 deciliters per gram or even higher when measured in m-creasol at 25°C.
Included among the many methods of making the polysulfides are those disclosed in U.S. Pat. Nos. 3,354,129 and 2,513,188, in British Pat No. 962,941 and in the Kirk-Othmer Encyclopedia of Chemical
Technology, Vol. 16, pp. 253-272, John Wiley & Sons (1968). These disclosures are incorporated herein in their entirety by reference for the purpose of teaching, by way of illustration, general and specific methods for preparing polysulfides suitable for the blends of this invention.
As is described in U.S. 3,354,129, aromatic polysulfides can be prepared by contacting a polyhalo- substituted cyclic compound containing unsaturation between adjacent ring atoms and an alkali metal sulfide in the presence of a polar organic compound. The resulting polymer contains the cyclic structure of the polyhalo-substituted compound coupled in repeating units through a sulfur atom. Aromatic polysulfides can also be manufactured as described in U.S. Pat. No. 2,513,188 by reacting mixtures of p-dichlorobenzene and 1,2,4- trichlorobenzene with sulfur and metal sulfide at fusion temperatures. The polymers can also be manufactured by the method described in British Pat. No. 962,941 wherein metal salts of halothiophenols are heated at a polymerizing temperature. According to U.S. Pat. 3,843,614, aliphatic polysulfide polymers can be made by reacting sodium polysulfide with a reactive halide such as ethylene dichloride. Further methods are set forth in the KirkOthmer Encyclopedia of Chemical Technology previously mentioned in the articles cited therein.
In accordance with the present invention, blends of a polyetherimide and a polysulfide are generally obtainable in all proportions of the two polymers relative to each other. Consequently, blends comprising from about 1 to about 99%, by weight, polyetherimide and from about 99 to about 1%, by weight polysulfide are included within the scope of the invention. By controlling the proportions of the polyetherimide and polysulfide relative to each other, blends having certain predetermined properties which are improved over those of polysulfide component may be alone readily obtained. In general, blends of polyetherimides and polysulfides have a good appearance with a dark opaque surface, a relatively high flexural strength regardless of the blend composition and adequate physical properties, particularly at a relatively low amounts of polysulfide relative to the polyetherimide. In addition, the polysulfide component of the blends facilitates the inclusion of fillers or reinforcements such as glass as well as other polymeric materials.
It is contemplated that the polyetherimidepolysulfide blends of the present invention may also include additive materials such as fillers, stabilizers, plasticizers, flexibilizers, surfactant agents, pigments, dyes, reinforcements, flame retardants and diluents in conventional amounts. It is also contemplated that the blends of the invention may include two or more polyetherimides with one or more polysulfides or two or more polysulfides in combination with one or more polyetherimides.
Methods for forming polyetherimide-polysulfide blends may vary considerably. Prior art blending techniques are generally satisfactory. A preferred method comprises blending the polymers and additives such as reinforcements in powder, granular or filamentous form, extruding the blend, and chopping the extrudate into pellets suitable for molding by means conventionally used to mold normally solid thermoplastic compositions.
The polyetherimide-polysulfide blends of the present invention have application in a wide variety of physical shapes and forms, including the use as films, molding compounds, coatings, etc. When used as films or when made into molded products, these blends, including laminated products prepared therefrom, not only possess good physical properties at room temperature but they retain their strength and excellent response to workloading at elevated temperatures for long periods of time. Films formed from the blends of this invention may be used in application where films have been used previously. Thus, the blends of the recent invention can be used in automobile and aviation applications for decorative and protective purposes, and as high temperature electrical insulation for motor slot liners, transformers, dielectric capacitors, coil and cable wrappings (form wound coil insulation for motors), and for containers and container linings. The blends can also be used in laminated structures where films or solutions of the blend are applied to various heatresistant or other type of materials such as asbestos, mica, glass fiber and the like, the sheets superimposed one upon the other, and thereafter subjecting the sheets to elevated temperatures and pressures to effect flow and cure of the resionous binder to yield cohesive laminated structures. Films made from the subject polyetherimide polysulfide blends can also serve in printed circuit applications.
Alternatively, solutions of the blends herein described can be coated on electrical conductors such as copper, aluminum, etc. and thereafter the coated conductor can be heated at elevated tempratures to remove the solvent and provide a continuous resinous composition thereon. If desired, an additional overcoat may be applied to such insulated conductors including the use of polymeric coatings, such as polyamides, polyesters, silicones, polyvinylformal resins, epoxy resins, polyimides, polytetrafluoroethylene, etc. The use of the blends of the present invention as overcoats on other types of insulation is not precluded. Other applications which are contemplated for these blends include their use as binders for asbestos fibers, carbon fibers, and other fibrous materials in making brake linings. In addition, molding compositions and molded articles may be formed from the polymeric blends of the invention by incorporating such fillers as asbestos, glass fibers, talc, quartz, powder, finely divided carbon, silica and the like into the blends prior to molding. Shaped articles may be formed under heat, or under heat and pressure, in accordance with practices well-known in the art.
The following examples illustrate specific polyetherimide-polysulfide blends in accordance with the present invention. It should be understood that the examples are given for the purpose of illustration and do not limit the invention. In the examples, all parts and percentages are by weight unless otherwise specified.
EXAMPLE I
A polyetherimide-polysulfide blend according to the invention was prepared, molded into test specimens and then tested for various physical properties. The polyetherimide was prepared from the reaction product of essentially equimolar amounts of 2,2-bis [4(3,4-dicarboxy phenoxy) phenyl] propane dianhydride and m-phenylene diamine produced at elevated temperature of about 250° to about 300°C. and under nitrogen atmosphere. The polymer was extruded at about 300°C . to form a strand and mechanically chopped into pellets. A test specimen injection molded from the pellets was tested for physical properties and the results are set forth in the following Table.
About 90 parts of the above polyetherimide were mixed with about 10 parts of polyphenylene sulfide resin powder sold commercially under the trade name Ryton P-4 by Phillips Chemical Company. The polymer mixture was then extruded in a 28 mm. twin screw Werner & Pfleiderer extruder having a temperature profile varying from about 310 to 327°C. The resulting extrudate was comminuted into pellets and the pellets injection molded at about 329°C. into test specimens. Impact strengths of these specimens were measured according to the notched and unnotched Izod test and the results are set forth in the Table. The heat deflection temperature, flexural strength, flexural modulus, and tensile properties of the blend were also measured and are given in the Table.
Example II
The procedure of Example I was repeated with the exception that about 70 parts of the polyetherimide were blended with about 30 parts of polysulfide to produce the blend according to the invention. The results of the notched and unnotched Izod impact test, as well as the heat deflection temperature, flexural strength, flexural modulus and tensile properties for the blend are detailed in the Table. Example III
The procedure of Example I was repeated with the exception that about 50 parts of the polyetherimide were blended with about 50 parts of polysulfide to produce the blend according to the invention. The results of the notched and unnotched Izod impact test, as well as the heat distortion temperature, flexural strength, flexural modulus and tensile properties for the blend are detailed in the Table.
Example IV
The procedure of Example I was repeated with the exception that about 30 parts of the polyetherimide were blended with about 70 parts of polysulfide to produce the blend according to the invention. The results of the notched and unnotched Izod impact test, as well as the heat deflection temperature, flexural strength, flexural modulus and tensile properties for the blend are detailed in the Table.
Example V
The procedure of Example I was repeated with the exception that about 10 parts of the polyetherimide were blended with about 90 parts of polysulfide to produce the blend according to the invention. In addition, the molding temperature was about 288°C. The results of the notched and unnotched Izod impact test, as well as the heat deflection temperature, flexural strength, flexural modulus and tensile properties for the blend are detailed in the Table.
Figure imgf000015_0001
From the above results, it is apparent in terms of the blending range profile that the notched Izod impact strength values decrease fairly rapidly as more polysulfide is included up to about at 50:50 blend ratio of the two components. Beyond the 50:50 blend ratio, in terms of increasing polysulfide content, the values for the notched Izod decrease very gradually. These data along with the unnotched data indicate a phase inversion at about a 50:50 blend composition. The change in heat deflection temperature values with the change in composition for the blends also indicates that a phase inversion ocurrs around 50:50 blend level. While the published heat deflection value for the polysulfide used is in excess of 260°C, interestingly at a blend composition containing a major proportion of polysulfide, the heat deflection temperature for the blend is significantly lower than that for the polysulfide component alone. For example, the blend of about 90% polysulfide has a heat deflection temperature much lower at about 89°C than the published value for the polysulfide material. This difference may be attributed to the 40% glass contained in the pure Ryton R-4 polysulfide which stiffens the crystalline resin matrix significantly. From an examination of the flexural properties of the blends over the range of compositions, it is apparent that the flexural modulus remains relatively constant regardless of the blend compositions and the flexural strength of the blends, although lower than that of the polyetherimide component, gradually decreases with increasing content of polysulfide up to the 50:50 blend ratio where the flexural strength deceases rapidly, again probably due to a phase inversion at a 50:50 blend ratio. Tensile strength and elongation for the blends are generally better with a major proportion of polyetherimide component. From the above, it may be concluded that the blends of the invention, particularly those having a minor proportion of polysulfide, e.g., about 10% polysulfide, have comparable physical properties to that of the polyetherimide component with the exception of the heat deflection temperature. Thus, the polysulfide component of the blends could be used as a compatibilizing agent when forming blends of three or more components. In addition, in view of the physical properties of polysulfides, blends containing a minor proportion, polysulfide, e.g., from about 10 to 40% polysulfide, may have excellent properties in terms of heat deflection temperature, tensile and flexural properties.
Substitution and other polyetherimides and/or other polysulfides for the polyetherimide and/or polysulfides of the blends of the above examples may result, in the formulation of polyetherimide-polysulfide polymer blends having similar characteristics.
While the present invention has been described with reference to particular embodiments thereof, it will be understood that numerous modifications may be made by those skilled in the art without actually departing from the spirit and scope of the invention as defined in the appended claims.

Claims

WE CLAIM:
1. A composition comprising a blend of (a) a polysulfide and (b) polyetherimide.
2. A composition in accordance with claim 1 wherein the polysulfide has repeating units of the structural formula: {R1 - Sn}
where R-| is a divalent aliphatic or aromatic radical and n is a number from 1 to 5.
3. A composition in accordance with claim 2 wherein R 1 of the polysulfide is aromatic and selected from phenylene, biphenylene, naphthylene, oxydiphenyl or lower alkyl, lower alkoxy or halogen substituted derivatives thereof, and n is one.
4. A composition in accordance with claim 1 wherein the polysulfide is polyphenylene sulfide.
5. A composition in accordance with claims 1, 2, 3, or 4 wherein the polyetherimide has the formula:
Figure imgf000018_0001
where a represents a whole number in excess of 1, the group
Figure imgf000018_0002
is selected from: 17
Figure imgf000019_0001
R' being hydrogen, lower alkyl or lower alkoxy, Z is a member of the class consisting of (1)
Figure imgf000019_0002
and (2) divalent organic radicals of the general formula:
Figure imgf000019_0003
where X is a member selected from the class consisting of divalent radicals of the formulas,
Figure imgf000019_0004
where q is 0 or 1, y is a whole number from 1 to 5, and R is a divalent organic radical selected from the class consisting of (1) aromatic hydrocarbon radicals having from 6-10 carbon atoms and halogenated derivatives thereof, (2) alkylene radicals and cycloalkylene radicals having from 2-20 carbon atoms, C(2-8) alkylene terminated polydiorganosiloxane, and (3) divalent radicals included by the formula
Figure imgf000020_0001
where Q is a member selected from the class consisting of
Figure imgf000020_0005
where x is a whole number from 1 to 5 inclusive.
6. A composition in accordance with claim 5 wherein the polyetherimide is of the formula:
Figure imgf000020_0002
and the divalent bonds of the -O-Z-O- radical are in the 3,3'; 3,4'; 4,3' or the 4,4' position.
7. A composition in accordance with claim 6 wherein Z is;
Figure imgf000020_0003
and R is selected from;
Figure imgf000020_0004
8. A composition in accordance with claim 7 wherein the polyetherimide is of the formula:
Figure imgf000021_0001
PCT/US1983/000789 1983-05-23 1983-05-23 Polyetherimide-polysulfide blends WO1984004753A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/US1983/000789 WO1984004753A1 (en) 1983-05-23 1983-05-23 Polyetherimide-polysulfide blends
JP50216683A JPS60501411A (en) 1983-05-23 1983-05-23 Polyetherimide-sulfide blend

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1983/000789 WO1984004753A1 (en) 1983-05-23 1983-05-23 Polyetherimide-polysulfide blends

Publications (1)

Publication Number Publication Date
WO1984004753A1 true WO1984004753A1 (en) 1984-12-06

Family

ID=22175170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1983/000789 WO1984004753A1 (en) 1983-05-23 1983-05-23 Polyetherimide-polysulfide blends

Country Status (2)

Country Link
JP (1) JPS60501411A (en)
WO (1) WO1984004753A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0170065A1 (en) * 1984-06-29 1986-02-05 Amoco Corporation Molded electrical device, molded circuit board substrate and molded chip carrier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639422B2 (en) * 2000-03-21 2011-02-23 東レ株式会社 Biaxially oriented film, metallized film and film capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658938A (en) * 1970-12-30 1972-04-25 Union Carbide Corp Polyamide-imide/polysulfone composites
US4017555A (en) * 1976-06-21 1977-04-12 Alvarez Robert T Polyalloy of polyphenylene sulfide and polyimide
US4258155A (en) * 1979-12-03 1981-03-24 General Electric Company Blends of polyetherimides and polyamideimides
US4293670A (en) * 1979-12-26 1981-10-06 Union Carbide Corporation Blends of poly(aryl ether) resins and polyetherimide resins
US4340697A (en) * 1978-08-04 1982-07-20 Toray Industries, Inc. Heat resistant molding resin composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917643A (en) * 1973-06-22 1975-11-04 Gen Electric Method for making polyetherimides and products produced thereby
US3852242A (en) * 1973-12-03 1974-12-03 Gen Electric Method for making polyetherimide
JPS5355361A (en) * 1976-10-29 1978-05-19 Oiles Industry Co Ltd Lubricationnrequired parts of polyphenylene sulfide resin and its production method
JPS5521462A (en) * 1978-08-04 1980-02-15 Toray Ind Inc Polyamide-imide resin composition
JPS5521461A (en) * 1978-08-04 1980-02-15 Toray Ind Inc Resin composition
JPS57195766A (en) * 1981-05-29 1982-12-01 Toray Ind Inc Production of wear-resistant resin composition
JPS5834828A (en) * 1981-08-25 1983-03-01 ゼネラル・エレクトリック・カンパニイ Blend of polyether imide and polyamide imide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658938A (en) * 1970-12-30 1972-04-25 Union Carbide Corp Polyamide-imide/polysulfone composites
US4017555A (en) * 1976-06-21 1977-04-12 Alvarez Robert T Polyalloy of polyphenylene sulfide and polyimide
US4340697A (en) * 1978-08-04 1982-07-20 Toray Industries, Inc. Heat resistant molding resin composition
US4258155A (en) * 1979-12-03 1981-03-24 General Electric Company Blends of polyetherimides and polyamideimides
US4293670A (en) * 1979-12-26 1981-10-06 Union Carbide Corporation Blends of poly(aryl ether) resins and polyetherimide resins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0170065A1 (en) * 1984-06-29 1986-02-05 Amoco Corporation Molded electrical device, molded circuit board substrate and molded chip carrier

Also Published As

Publication number Publication date
JPS60501411A (en) 1985-08-29

Similar Documents

Publication Publication Date Title
US4455410A (en) Polyetherimide-polysulfide blends
US4433104A (en) Polyetherimide-fluorinated polyolefin blends
US4387193A (en) Blends of polyetherimides and organopolysiloxane-polycarbonate block copolymers
US4468506A (en) Polyetherimide blends
US4258155A (en) Blends of polyetherimides and polyamideimides
US4431779A (en) Polyetherimide-polyphenylene ether blends
US4657987A (en) Polyetherimide-polyamide blends
US4965337A (en) Very high heat thermoplastic polyetherimides containing aromatic structure
US4395518A (en) Polyetherimide-acrylate copolymer blends
EP0156029A2 (en) Amide ether imide block copolymers
WO1983003417A1 (en) Polyetherimide-polysulfone blends
WO1984003899A1 (en) Blends of polyetherimides and rubber modified vinyl aromatic polymers
EP0134252B1 (en) Polyetherimide-polysulfide blends
US4390665A (en) Polyetherimide-EPDM terpolymer blends
CA1192692A (en) Polyetherimide-polypropylene blends
EP0091116B1 (en) Polyetherimide blends
WO1984004753A1 (en) Polyetherimide-polysulfide blends
WO1984003893A1 (en) Polyetherimide-epdm terpolymer blends
AU1556183A (en) Polyetherimide-epdm terpolymer blend
EP0158732A1 (en) Polyetherimide-polyethersulfoneimide copolymers
AU1556383A (en) Polyetherimide-polypropylene blends
EP0122309A1 (en) Polyetherimide-EPDM terpolymer blends
EP0122304B1 (en) Polyetherimide-polypropylene blends
CA1232390A (en) Polyetherimide-polysulfone blends
EP0154714A2 (en) Novel polyetherimide copolymers

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): JP