WO1985005455A1 - Optoelectric distance measuring apparatus with an optical measuring probe - Google Patents

Optoelectric distance measuring apparatus with an optical measuring probe Download PDF

Info

Publication number
WO1985005455A1
WO1985005455A1 PCT/EP1985/000235 EP8500235W WO8505455A1 WO 1985005455 A1 WO1985005455 A1 WO 1985005455A1 EP 8500235 W EP8500235 W EP 8500235W WO 8505455 A1 WO8505455 A1 WO 8505455A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
measuring probe
distance measuring
light
measuring device
Prior art date
Application number
PCT/EP1985/000235
Other languages
English (en)
French (fr)
Inventor
Rudolf Schwarte
Original Assignee
Rudolf Schwarte
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rudolf Schwarte filed Critical Rudolf Schwarte
Priority to AT85902529T priority Critical patent/ATE41832T1/de
Publication of WO1985005455A1 publication Critical patent/WO1985005455A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres

Definitions

  • the invention relates to an optoelectrical distance measuring device with an optical measuring probe, in which short light pulses emitted by a laser diode are guided via a transmitting light guide and emitted by a lens and reflected by a target object
  • Light signals are recorded and fed via a receiving light guide to a photodiode, which outputs the electrical pulse signals formed to a time comparator that controls the gate signals of a clock generator, the clock pulses of which are gated on a counter.
  • the transit time of the light pulses (target pulses) emitted by the laser diode, reflected by a target object and received by the photodiode, and on the other hand the transit time of the light pulses from the laser diode emitted, however via the light switches and the short path to the reference pulses arriving at the photodiode are determined and evaluated to determine the distance.
  • the reference pulse arriving first triggers a gate time signal in a time comparator, which is switched off by the target pulse arriving later and passing over the target object.
  • the clock pulses (150 MHz) continuously generated by a quartz oscillator are sampled on a counter.
  • the counted pulses are fed in groups to a processor, which determines the distance to be determined by sorting and averaging.
  • a separate lens is provided for the transmitting optics and receiving optics.
  • the transmitting and receiving optical system is arranged directly on the appliance housing which also Bau ⁇ parts to generate the pulses of light, for converting the received light signals into electrical
  • the inhomogeneous phase front of the light pulses emanating from the laser diode and transmitted to the transmission lens via a transmission light guide made of glass fiber also poses considerable difficulties.
  • the invention is based on the object of designing an opto-electric distance measuring device of the generic type in such a way that the most accurate possible distance measurement is also possible in the close range.
  • the measuring probe is provided with a double-sided mirror which extends along the optical axis of the lens to the ends of the approximately in the region of the focal point
  • the optical transmission and reception channel lie directly next to one another in the lens area, only separated by the plane of an extremely thin mirror, so that half of the lens is assigned to the transmission channel and the other half to the reception channel.
  • the transmitting and receiving light guides ending in the area of the focal point allow measurement up to the lens.
  • the optoelectrical distance measurement is therefore also used to indicate the fill level of tank containers, bulk containers and the like. Like. very suitable.
  • the edges of the transmitting and receiving lobes do not overlap, but the overlap occurs at the widest cross-section of the two lobes and is therefore representative of the phase delays.
  • the half-lens system has the further advantage that the change in amplitude depends only slightly on the distance; it is about a factor of 10 smaller than the known parallel optics.
  • the measuring probe is provided with a totally reflecting mirror in the form of two glass prisms, between which there is an air gap. Due to the extremely narrow air gap, the transmit and receive - i ⁇
  • the on ⁇ construction of the measuring probe is particularly simple and compact.
  • the compact design of the measuring probe allows it to be formed into a separate component which can be connected to a basic device by means of a flexible optical fiber cable which contains the components for generating the light pulses, for converting the received light signals into electrical pulse signals and for processing and evaluating the contains electrical pulse signals.
  • the probe can therefore be in a different location than that
  • Basic device Since there are no electrical components in the probe and its fiber optic cable, it must be installed in potentially explosive rooms, tank containers and the like. Like. borrowed easily. By means of suitable measures there is also the possibility of coupling one or more measuring probes to a basic device.
  • a protective tube can be arranged in front of it; such training can be appropriate if, for. B. in tank containers there is a risk of splashes or the like. If a measurement takes place only at long intervals, the protective tube can, if necessary, also be equipped with a cover which is only opened during the measurement phase. Such a cover can also be used for calibration measurements because of its precisely defined distance from the optics.
  • the measuring probe Since the measuring probe is connected to the basic device via a flexible fiber optic cable, it can also be used for gimbal mounting and adjusted according to a control program by means of a servomotor. This makes it possible, for example, to scan cones in silos or to scan contours.
  • a light switch each can be arranged in the transmitting light guide and receiving light guide to form a short light path for reference signals. Furthermore, it can be expedient to arrange an optical damper in the receiving light guide in front of the light switch which can be adjusted according to a control program by means of a servomotor and which allows adaptation to different amplitudes of the light pulses or to different distance ranges.
  • FIG. 1 shows a basic device with a coupled measuring probe in a block diagram
  • Fig. 2 shows the measuring probe of Fig. 1 in a schematic representation
  • Fig. 3 shows a modified measuring probe.
  • the optoelectrical distance measuring device shown in FIG. 1 consists of a basic device 1 to which a measuring probe 2 is connected by means of a flexible fiber optic cable 3 and optical coupling elements 4.
  • the basic device 1 generates, by means of a transmitter 5 equipped with a laser diode, short light pulses which are first passed through a several meter long light guide 6 for the purpose of mode coupling, which leads in different directions, e.g. B. is arranged in the shape of a figure eight.
  • a length of the forward light guide 6 of 8 m has proven to be suitable. From the forward light guide 6, the light pulses pass through a light switch 7, the - b -
  • the transmission light guide 8 which consists of a section belonging to the basic device 1 and a section belonging to the flexible light guide cable 3.
  • the measuring probe 2 emits the light pulses against a target object 9 and records the reflected light signals.
  • the recorded light signals are transmitted via a receiving light guide 10, which likewise consists of two sections which can be coupled together, a further light switch 11 and a light guide 12 with one
  • Supplied equipped photodiode receiver 13 which converts light signals into electrical signals.
  • the two light switches 7 and 11 mentioned are connected by a reference light guide 14.
  • a portion of the light energy, approximately 1%, is branched off from the optical transmission channel into the reference light guide 14 by the transmission-side light switch 7 and conducted through the reception-side light switch 11 into the optical reception channel.
  • This derived and supplied via the short * path to the receiving channel forms a reference signal, which is received by the photodiode of the receiver 13 in time before the light signal reflected by the target object (Zie?; Signal), namely by the time the light pulse to Return and return via the transmitting light guide 8, the measuring probe 2 to the target object 9 and back via the measuring probe 2 and the receiving light guide 10 are required.
  • the transit time of the target pulse and thus the distance between the measuring probe 2 and the target object 9 can be determined from the target signal and the reference signal.
  • an optical damper 15 can be arranged in front of the light switch 11 in the receiving light guide 10, which permits adaptation to the amplitude dynamics. This can be adjustable, for example, by means of an actuator 16 according to a control program. Instead, an electronically controllable optical attenuator can also be used.
  • the received light signals namely the reference and target signals, are by means of the photodiode
  • Receiver 13 converted into electrical pulses or signals and ⁇ supplied to a time comparator 17.
  • the timing comparator 17 forms gate pulses (rectangular pulses) for a counter 19, on the inside of the gate time the clock pulses of a clock generator 21 (quartz oscillator) auf ⁇ keyed Nursing_ ⁇ __Hier
  • a Zeitdehnschalter 18 which for example a Zeitdehn composition of 500, 1000
  • This time stretch allows an exact counting of clock pulses, the frequency of which can be in the order of 50 MHz, for example.
  • the counted clock pulses corresponding to the gate time are fed to a control and evaluation unit 20 for evaluation.
  • the clock generator 21 also triggers the transmitter 5 and optionally scans the amplification of the receiver 13.
  • the time comparator 17 is controlled by a time window which selects the processing of the reference signal or the target signal, for example only successive reference signals or only target signals can be processed in order to form from these groups, which enable an evaluation by sorting and averaging or the like.
  • the measuring probe 2 shown in FIG. 2 is provided with a lens 22 and a double-sided mirror 23 which runs along the optical axis of the lens 22 up to approximately the focal point, in the area of which the ends of the transmission light guide 8 and the reception Light guide 10 are arranged side by side.
  • the components mentioned are in one Housing 24 fixed.
  • This configuration means that half of the lens 22 is assigned to the transmission channel 25 and the other half to the reception channel 26.
  • the illumination fields for different distances in front of the measuring probe are shown.
  • the illumination field 27 which is decisive for the measurement forms a line directly on the lens 22.
  • the hatched lighting field 28 applies in the close range and the lighting field 29 applies in the far range.
  • the measuring probe 2 is provided with a totally reflecting mirror in the form of two glass prisms 30, which also contain the optical lens system, between which there is an air gap 31.
  • the housing 24 of the measuring probe 2 can be extended by a protective tube 32 located in front of the lens 22.
  • 24 flanges 33 can be provided on the housing.
  • the protective tube 32 can be equipped with a cover 34 which, for. B. is adjustable by means of an actuator (not shown) according to a control program.
  • a flexible optical fiber cable 3 is connected to the transmitting and receiving optical fibers 8, 10 of the basic device 1 via optical coupling elements 4.
  • suitable coupling points or two switches for two or more measuring probe connections can also be provided by suitable light switches or optical switches.
  • Another Modification can be created by gimbal mounting of the measuring probe 2, which is adjustable by means of an actuator according to a control program.

Description

Optoelektrisches Entfernungsmeßgerät mit einer optischen Meßsonde
Die Erfindung betrifft ein optoelektrisches Entfernungs¬ meßgerät mit einer optischen Meßsonde, bei dem von einer Laserdiode emittierte kurze Lichtimpulse über einen Sende-Lichtleiter geführt und von einer Linse ausge- strahlt und die von einem Zielobjekt reflektierten
Lichtsignale aufgenommen und über einen Empfangs-Licht¬ leiter einer Photodiode zugeführt werden, welche die gebildeten elektrischen Impulssignale einem Zeitkompara- tor aufgibt, der die Torsignale eines Taktgebers steuert, dessen Taktimpulse einem Zähler aufgetastet werden.
Bei einem bekannten optoelektrischen Entfernungsmeßgerät, wie es beispielsweise in der EP-Veröffentlichung 0076232 beschrieben ist, wird einerseits die Laufzeit der von der Laserdiode emittierten, von einem Zielobjekt reflek¬ tierten und der Photodiode empfangenen Lichtimpulse (Zielimpulse) und anderseits die Laufzeit der von der Laserdiode emittierten, jedoch über die Lichtweichen und den kurzen Weg zur Photodiode gelangenden Referenz¬ impulse bestimmt und zur Ermittlung der Entfernung aus¬ gewertet. Dabei löst der zuerst eintreffende Referenz¬ impuls nach einer optoelektrischen Umsetzung in einem Zeitkomparator ein Torzeitsignal aus, das durch den später eintreffenden, über das Zielobjekt laufenden Zielimpuls abgeschaltet wird. Während der gesteuerten Torzeit werden die von einem Quarzoszillator fortlau¬ fend erzeugten Taktimpulse (150 MHz) einem Zähler aufge- tastet. Die gezählten Pulse werden gruppenweise einem Prozessor zugeführt, welcher durch Sortierung und Mit¬ telwertbildung die zu bestimmende Entfernung ermittelt. Bei den bekannten Meßgeräten dieser Art ist für die Sendeoptik und Empfangsoptik jeweils eine eigene Linse vorgesehen. Diese nebeneinander am Gerät angeordneten Linsen haben den Nachteil, daß der von der Sendelinse gegen ein nichtkooperatives Zielobjekt gerichtete Lichtimpuls bei Entfernungen unter etwa 2 m nicht in die Empfangslinse reflektiert wird. Erst bei einem Ab- stand von mehr als 2 m beginnt eine im Querschnitt linsenförmige""Überlappung der optischen Sende- und Empfangskanäle, wobei jedoch die im Nahbereich vor¬ handene Teilüberlappung zu erheblichen Meßfehlern führt. Für kleinere Entfernunge "sind diese doppellinsigen Meß- gerate daher ungeeignet. Ein weiterer Nachteil besteht auch darin, daß die Sende- und Empfangsoptik unmittelbar am Gerätegehäuse angeordnet ist, welches auch die Bau¬ teile zur Erzeugung der Lichtimpulse, zur Umwandlung der empfangenen Lichtsignale in elektrische Impuls- Signale und zur Verarbeitung und Auswertung der elek¬ trischen Impulssignale enthält. Erhebliche Schwierig¬ keiten bereitet auch die von der Laserdiode ausgehende und über einen aus Glasfaser bestehenden Sende-Licht- leiter zur Sendelinse übertragene inhomogene Phasen- front der Lichtimpulse. Demgegenüber liegt der Erfindung die Aufgabe zugrunde, ein optoelektrisches Entfernungsmeßgerät der gattungs¬ gemäßen Art derart auszubilden, daß eine möglichst ge¬ naue Entfernungsmessung auch im Nahbereich möglich ist.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Meßsonde mit einem doppelseitigen Spiegel versehen ist, der längs der optischen Achse der Linse bis zu den etwa im Bereich des Brennpunktes liegenden Enden des
Sende-Lichtleiters und Empfangs-Lichtleiters verläuft.
Durch diese Ausbildung liegen der optische Sende- und Empfangskanal im Linsenbereich unmittelbar nebenein- ander, nur durch die Ebene eines äußerst dünnen Spie¬ gels getrennt, so daß eine Hälfte der Linse dem Sende¬ kanal und die andere Hälfte dem Empfangskanal zugeord¬ net ist. Die im Bereich des Brennpunktes endenden Sende- und Empfangs-Lichtleiter erlauben ein Ausmessen bis an die Linse heran. Die optoelektrische Entfernungsmessung ist daher auch zur Füllstandanzeige von Tankbehältern, Schüttgutbehältern u. dgl. bestens geeignet. Auch über¬ schneiden sich nicht die Ränder der Sende- und Empfangs¬ keulen, sondern die Überschneidung geschieht an der im Querschnitt breitesten Stelle beider Keulen und ist so¬ mit für die Phasenlaufzeiten repräsentativ. Das Halblin- sensystem hat den weiteren Vorteil, daß die Amplituden¬ änderung nur noch geringfügig vom Abstand abhängt; sie ist im Vergleich zur bekannten Paralleloptik um etwa den Faktor 10 kleiner.
Eine erhebliche Verbesserung läßt sich dadurch errei¬ chen, daß die Meßsonde mit einem totalreflektierenden Spiegel im Form von zwei Glasprismen versehen ist, zwischen denen ein Luftspalt vorhanden ist. Durch den äußerst schmalen Luftspalt liegen Sende- und Empfangs- - i ~
kanal optimal dicht aneinander. Außerdem ist der Auf¬ bau der Meßsonde besonders einfach und kompakt. Der kompakte Aufbau der Meßsonde erlaubt deren Ausbildung zu einem separaten Bauteil, das durch ein biegsames Lichtleiterkabel an ein Grundgerät anschließbar ist, welches die Bauteile zur Erzeugung der Lichtimpulse, zur Umwandlung der empfangenen Lichtsignale in elek¬ trische Impulssignale und zur Verarbeitung und Aus¬ wertung der elektrischen Impulssignale enthält. Die Meßsonde kann daher an einer anderen Stelle als das
Grundgerät aufgestellt werden. Da in der Meßsonde und deren Lichtleiterkabel keine elektrischen Bauteile ent¬ halten sind, ist eine Aufstellung in explosionsgefähr- deten Räumen, Tankbehältern u. dgl. ohne weiteres mög- lieh. Durch geeignete Maßnahmen besteht auch die Mög¬ lichkeit, an ein Grundgerät ein oder mehrer Meßsonden anzukuppeln.
Zum Schütze der Linse kann vor dieser ein Schutzrohr angeordnet sein; eine solche Ausbildung kann zweck¬ mäßig sein, wenn z. B. in Tankbehältern die Gefahr von Spritzern o. dgl. besteht. Findet eine Messung nur in großen Zeitabständen statt, kann das Schutzrohr bedarfs- weise auch mit einem Deckel ausgerüstet sein, der nur wahrend der Meßphase geöffnet wird. Ein solcher Deckel läßt sich wegen seines exakt definierten Abstandes zur Optik auch zu Eichmessungen verwenden.
Da die Meßsonde über ein biegsames Lichtleiterkabel an das Grundgerät angeschlossen ist, läßt sie sich auch für eine kardanische Lagerung benutzen und mittels eines Stellmotors nach einem Steuerprogramm verstellen. Hierdurch ist beispielsweise das Abtasten von Schüttke¬ geln in Silos oder das Abtasten von Konturen möglich.
Zur Bildung einer homogenen Phasenfront der Lichtimpulse ist dem Sende-Lichtleiter im Grundgerät zweckmäßig zur Modenkopplung ein Vorlauf-Lichtleiter zugeordnet. Für Vergleichszwecke und zur Eichung kann im Sende-Licht¬ leiter und Empfangs-Lichtleiter je eine Lichtweiche zur Bildung eines kurzen Lichtweges für Referenzsignale angeordnet sein. Weiterhin kann es zweckmäßig sein, in dem Empfangs-Lichtleiter vor der Lichtweiche einen opti¬ schen Dämpfer anzuordnen, der mittels eines Stellmotors nach einem Steuerprogramm verstellbar ist und eine An- passung an unterschiedliche Amplituden der Lichtimpulse bzw. an verschiedene Entfernungsbereiche erlaubt.
Der Gegenstand der Erfindung ist in der Zeichnung bei¬ spielsweise dargestellt; es zeigt:
Fig. 1 ein Grundgerät mit einer angekuppelten Me߬ sonde in einem Blockschaltbild,
Fig. 2 die Meßsonde der Fig. 1 in einer schemati- sehen Darstellung und
Fig. 3 eine abgewandelte Meßsonde.
Das in Fig. 1 gezeigte optoelektrische Entfernungsmeß- gerät besteht aus einem Grundgerät 1, an das eine Me߬ sonde 2 mittels eines biegsamen Lichtleiterkabels 3 und optischer Kupplungsorgane 4 angeschlossen ist. Das Grund¬ gerät 1 erzeugt durch einen mit einer Laserdiode ausge¬ rüsteten Sender 5 kurze Lichtimpulse, die zunächst zum Zwecke der Modenkopplung durch einen mehrere Meter lan¬ gen Vorlauf-Lichtleiter 6 geführt werden, der in ver¬ schiedenen Richtungen, z. B. in der Form einer Acht ge¬ krümmt angeordnet ist. Für eine ausreichende Modenkopp¬ lung hat sich eine Länge des Vorlauf-Lichtleiters 6 von 8 m als geeignet erwiesen. Vom Vorlauf-Lichtleiter 6 gelangen die Lichtimpulse über eine Lichtweiche 7, deren - b -
Bedeutung weiter unten erläutert wird, in den Sende- Lichtleiter 8, der aus einem dem Grundgerät 1 zugehö¬ rigen Abschnitt und einem dem biegsamen Lichtleiter¬ kabel 3 zugehörigen Abschnitt besteht. Die Meßsonde 2 strahlt die Lichtimpulse gegen ein Zielobjekt 9 und nimmt die reflektierten Lichtsignale auf. Die aufge¬ nommenen Lichtsignale werden über einen Empfangs- Lichtleiter 10, der ebenfalls aus zwei aneinander- kuppelbaren Abschnitten besteht, einer weiteren Licht- weiche 11 und einem Lichtleiter 12 einem mit einer
Photodiode ausgerüsteten Empfänger 13 zugeführt, der Lichtsignale in elektrische Signale umwandelt. Die beiden erwähnten Lichtweichen 7 und 11 sind durch einen Referenz-Lichtleiter 14 verbunden. Durch die sendeseitige Lichtweiche 7 wird ein Teil der Licht¬ energie, etwa 1 %, aus dem optischen Sendekanal in den Referenz-Lichtleiter 14 abgezweigt und durch die empfangsseitige Lichtweiche 11 in den optischen Emp¬ fangskanal geleitet. Dieses abgeleitete und über den kurzen* Weg dem Empfangskanal zugeführte Lichtsignal bildet ein Referenzsignal, das von der Photodiode des Empfängers 13 zeitlich vor dem vom Zielobjekt reflektierten Lichtsignal (Zie?;signal) empfangen wird, und zwar um die Zeit, die-der Lichtimpuls zum Hin- und Rücklauf über den Sendelichtleiter 8, die Me߬ sonde 2 zum Zielobjekt 9 und zurück über die Meßsonde 2 sowie den Empfangs-Lichtleiter 10 benötigt. Aus Ziel¬ signal und Referenzsignal läßt sich die Laufzeit des Zielumpulses und damit die Entfernung zwischen der Meß- sonde 2 und dem Zielobjekt 9 bestimmen.
In dem Enpfangs-Lichtleiter 10 kann bedarfsweise vor der Lichtweiche 11 ein optischer Dämpfer 15 angeordnet sein, der eine Anpassung an die Amplitudendynamik er- laubt. Diesr kann beispielsweise mittels eines Stell¬ motors 16 nach einem Steuerprogramm verstellbar sein. Stattdessen kann auch ein elektronisch steuerbares optisches Dämpfungsglied verwendet werden.
Die empfangenen Lichtsignale, nämlich die Referenz- und Zielsignale, werden mittels der Photodiode des
Empfängers 13 in elektrische Impulse bzw. Signale um¬ gewandelt und einem Zeitkomparator 17 zugeführt. Der Zeitkomparator 17 bildet Torimpulse (Rechteckimpulse) für einen Zähler 19, auf den innerhalb der Torzeit die Taktimpulse eines Taktgebers 21 (Quarzoszillator) auf¬ getastet werden_ϊ__Hierfür werden die Torimpulse über "einen Zeitdehnschalter 18 geführt, dem beispielsweise ein Zeitdehnfaktor von 500, 1000 o. dgl. zugeordnet sein kann. Diese Zeitdehnung erlaubt eine exakte Aus- Zählung von Taktimpulsen, deren Frequenz z . B. in der Größenordnung von 50 MHz liegen kann.
Die gezählten, der Torzeit entsprechenden Taktimpulse werden zur Auswertung einer Steuer- und Auswertungs- einheit 20 zugeführt. Der Taktgeber 21 triggert außer¬ dem den Sender 5 und tastet wahlweise die Verstärkung des Empfängers 13. Weiterhin wird der Zeitkomparator 17 durch ein Zeitfenster angesteuert, welches die Ver¬ arbeitung des Referenzsignals oder des Zielsignals aus- wählt, wobei beispielsweise aufeinanderfolgend nur Refe¬ renzsignale oder nur Zielsignale verarbeitet -werden kön¬ nen, um aus diesen Gruppen zu bilden, welche eine Aus¬ wertung durch Sortierung und Mittelwertbildung o. dgl. ermöglichen.
Die in Fig. 2 gezeigte Meßsonde 2 ist mit einer Linse 22 und einem doppelseitigen Spiegel 23 versehen, der längs der optischen Achse der Linse 22 bis etwa zum Brennpunkt verläuft, in dessen Bereich die Enden des Sende-Licht- leiters 8 und des Empfangs-Lichtleiters 10 nebeneinander angeordnet sind. Die genannten Bauteile sind in einem Gehäuse 24 fixiert. Durch diese Ausbildung ist eine Hälfte der Linse 22 dem Sendekanal 25 und die andere Hälfte dem Empfangskanal 26 zugeordnet. In der rechten Hälfte der Fig. 2 sind die Beleuchtungsfelder für ver- schiedene Abstände vor der Meßsonde gezeigt. Das für die Messung maßgebende Beleuchtungsfeld 27 bildet unmittel¬ bar an der Linse 22 einen Strich. Das schraffierte Be¬ leuchtungsfeld 28 gilt im Nahbereich und das Beleuch¬ tungsfeld 29 im Fernbereich. Diese nur der Demonstra- tion dienenden Beleuchtungsfelder zeigen, daß sich die Sende- und Empfangskanäle 25,26 an der im Querschnitt breitesten Stelle überschneiden. Im Fernbereich werden die Aperturen der Enden der Sende- und Empfangs-Licht¬ leiter 8,10 in der Gestalt einer Acht abgebildet.
Bei der Ausführung nach Fig. 3 ist die Meßsonde 2 mit einem totalreflektierenden Spiegel in Form von zwei Glasprismen 30, welche außerdem das optische Linsen¬ system beinhalten, versehen, zwischen denen sich ein Luftspalt 31 befindet. Weiterhin ist in Fig. 3 ange¬ deutet, daß das Gehäuse 24 der Meßsonde 2 durch ein vor der Linse 22 befindliches Schutzrohr 32 verlängert sein kann. Für eine ortsfeste Anbringung an einem Tank, Silo o. dgl. können am Gehäuse 24 Flansche 33 vorgese- hen sein. Auch kann das Schutzrohr 32 mit einem Deckel 34 ausgerüstet sein, der z. B. mittels eines Stellmo¬ tors (nicht dargestellt) nach einem Steuerprogramm verstellbar ist.
In Fig. 1 ist angedeutet, daß ein biegsames Lichtleiter¬ kabel 3 über optische Kupplungsorgane 4 an den Sende- und Empfangs-Lichtleiter 8,10 des Grundgeräts 1 ange¬ schlossen ist. Bedarfsweise können durch geeignete Lichtweichen oder optische Schalter am Grundgerät 1 auch mehrere Kupplungsstellen für zwei odermehrere Meßsondenanschlüsse vorgesehen sein. Eine weitere Abwandlung läßt sich durch eine kardanische Lagerung der Meßsonde 2 schaffen, wobei diese mittels eines Stellmotors nach einem Steuerprogramm verstellbar ist.

Claims

Patentansprüche
1. Optoelektrisches Entfernungsmeßgerät mit einer optischen Meßsonde, bei dem von einer Laserdiode emittierte kurze Lichtimpulse über einen Sende- Lichtleiter geführt und von einer Linse ausge- strahlt und die von einem Zielobjekt reflektier¬ ten Lichtsignale aufgenommen und über einen Empfangs-Lichtleiter einer Photodiode zugeführt werden, welche die gebildeten elektrischen Impuls¬ signale einem Zeitkomparator aufgibt, der die Tor- signale eines Taktgebers steuert, dessen Taktim¬ pulse einem Zähler aufgetastet werden, dadurch gekennzeichnet, daß die Meßsonde (2) mit einem doppelseitigen Spiegel (23) versehen ist, der längs der optischen Achse der Linse (22) bis zu den etwa im Bereich des Brennpunktes liegenden Enden des Sende-Lichtleiters (8) und Empfangs- Lichtleiters (10) verläuft.
2. Optoelektrisches Entfernungsmeßgerät nach An- spruch 1, dadurch gekennzeichent, daß die Me߬ sonde (2) mit einem totalreflektierenden Spie¬ gel in Form von zwei Glasprismen (30) versehen ist, zwischen denen ein Luftspalt (31) vorhanden ist.
3. Optoelektrisches Entfernungsmeßgerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Meßsonde (2) als separates Bauteil ausgebildet und durch ein biegsames Lichleiterkabel (3) an ein Grundge- rät (1) anschließbar ist, welches die Bauteile zur Erzeugung der Lichtimpulse, zur Umwandlung der empfangenen Lichtsignale in elektrische Impuls¬ signale und zur Verarbeitung und Auswertung der elektrischen Impulssignale enthält.
4. Optoelektrisches Entfernungsmeßgerät nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß an ein Grundgerät (1) ein oder mehrere Me߬ sonden (2) ankuppelbar sind.
5. Optoelektrisches Entfernungsmeßgerät nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Meßsonde (2) vor der Linse (22) mit einem Schutzrohr (32) versehen ist.
6. Optoelektrisches Entfernungsmeßgerät nach Anspruch 5, dadurch gekennzeichnet, daß das Schutzrohr (32) mit einem Deckel (34) ausgerüstet ist.
7. Optoelektrisches Entfernungsmeßgerät nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Meßsonde (2) kardanisch gelagert und mittels eines Stellmotors nach einem Steuerprogramm verstellbar ist.
8. Optoelektrisches Entfernungsmeßgerät nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß dem Sende-Lichtleiter (8) im Grundgerät (1) zur Moden¬ kupplung ein Vorlauf-Lichtleiter (6) zugeordnet ist.
9. Optoelektrisches Entfernungsmeßgerät nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß im Sende-Lichtleiter (8) und Empfangs-Lichtleiter (10) je eine Lichtweiche (7,11) zur Bildung eines kurzen Lichtweges für Referenzsignale angeordnet ist.
10. Optoelektrisches Entfernungsmeßgerät nach Anspruch 9, dadurch gekennzeichnet, daß in dem Empfangs-Licht¬ leiter (10) vor der Lichtweiche (11) ein optischer Dämpfer (15) angeordnet ist, der mittels eines Stell¬ motors (16) nach einem Steuerprogramm verstellbar ist.
PCT/EP1985/000235 1984-05-24 1985-05-18 Optoelectric distance measuring apparatus with an optical measuring probe WO1985005455A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85902529T ATE41832T1 (de) 1984-05-24 1985-05-18 Optoelektrisches entfernungsmessgeraet mit einer optischen messonde.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3419320A DE3419320C2 (de) 1984-05-24 1984-05-24 Optoelektrisches Entfernungsmeßgerät mit einer optischen Meßsonde
DEP3419320.0 1984-05-24

Publications (1)

Publication Number Publication Date
WO1985005455A1 true WO1985005455A1 (en) 1985-12-05

Family

ID=6236713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1985/000235 WO1985005455A1 (en) 1984-05-24 1985-05-18 Optoelectric distance measuring apparatus with an optical measuring probe

Country Status (4)

Country Link
US (1) US4737624A (de)
EP (1) EP0181388B1 (de)
DE (1) DE3419320C2 (de)
WO (1) WO1985005455A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3633063A1 (de) * 1986-09-29 1988-04-07 Siemens Ag Anordnung zur radaraehnlichen messung der laenge von lichtstrecken mittels lichtimpulsen
GB2198841B (en) * 1986-12-10 1990-12-12 Plessey Co Plc Improvements relating to optical sensors
FR2615279B1 (fr) * 1987-05-11 1990-11-02 Commissariat Energie Atomique Capteur de deplacement a fibres optiques decalees
US4801799A (en) * 1987-11-27 1989-01-31 Honeywell Inc. Fiber optic system for detecting vibrations of a reflecting surface
US4906837A (en) * 1988-09-26 1990-03-06 The Boeing Company Multi-channel waveguide optical sensor
US5237171A (en) * 1991-09-19 1993-08-17 Pro Optical Technologies Inc. Object movement detector system
DE4218170C1 (de) * 1992-06-02 1993-05-27 Siemens Ag, 8000 Muenchen, De
JP3487944B2 (ja) * 1995-02-24 2004-01-19 オリンパス株式会社 内視鏡装置
DE19513823A1 (de) * 1995-04-12 1996-10-17 Kompa Guenter Prof Dr Ing Optisches Impulsradar
US6281488B1 (en) * 1998-12-09 2001-08-28 Sandia Corporation Fiber optic coupled optical sensor
EP1176430B1 (de) * 2000-07-27 2008-09-10 Leuze electronic GmbH + Co. KG Optoelektronische Vorrichtung
US6651656B2 (en) * 2001-05-29 2003-11-25 Deka Products Limited Partnership Method and apparatus for non-invasive breathing assist
GB0128588D0 (en) * 2001-11-29 2002-01-23 Qinetiq Ltd Coherent laser radar apparatus
GB0202314D0 (en) * 2002-02-01 2002-03-20 Mitel Knowledge Corp Indicator light for a telephone set
US6906302B2 (en) * 2002-07-30 2005-06-14 Freescale Semiconductor, Inc. Photodetector circuit device and method thereof
US6777662B2 (en) * 2002-07-30 2004-08-17 Freescale Semiconductor, Inc. System, circuit and method providing a dynamic range pixel cell with blooming protection
CA2753398A1 (en) * 2005-11-10 2007-07-26 Optical Air Data Systems, Llc Single aperture multiple optical waveguide transceiver
DE102006036166A1 (de) * 2006-03-20 2007-10-04 Micro-Epsilon Optronic Gmbh Vorrichtung und Verfahren zur Messung der Entfernung eines Objekts
DE102008020201B4 (de) * 2008-04-23 2013-11-28 Wenglor sensoric elektronische Geräte GmbH Messvorrichtung
RU2475702C1 (ru) * 2011-10-04 2013-02-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Лазерный дальномер (варианты)
RU2471203C1 (ru) * 2011-10-04 2012-12-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Лазерный измеритель расстояний
RU2473046C1 (ru) * 2011-10-04 2013-01-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Лазерный измеритель дальности (варианты)
DE102013209044A1 (de) * 2013-05-15 2014-11-20 Ifm Electronic Gmbh Steuergerät für ein Lichtlaufzeitkamerasystem
EP3847471A4 (de) * 2018-09-05 2022-05-18 Blackmore Sensors & Analytics, LLC Verfahren und system zur tandemprüfung eines kohärenten lidar

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325638A (en) * 1979-04-27 1982-04-20 Tokyo Kogaku Kikai Kabushiki Kaisha Electro-optical distance measuring apparatus
EP0076232A2 (de) * 1981-09-29 1983-04-06 KERN & CO. AG Werke für Präzisionsmechanik Optik und Elektronik Verfahren zur elektrooptischen Distanzmessung, sowie Distanzmessgerät zur Durchführung des Verfahrens
EP0092369A2 (de) * 1982-04-20 1983-10-26 Sumitomo Electric Industries Limited Verfahren und Vorrichtung zum Aufspüren einer Lichtfrequenzänderung
EP0093437A2 (de) * 1982-05-03 1983-11-09 HIPP, Johann F. Regelungselektronische Einrichtung für elektrooptische Entfernungsmesser mit Lichtpulslaufzeit-Messverfahren
WO1985001117A1 (en) * 1983-09-08 1985-03-14 Rosemount Inc. Light modulation sensor
EP0135423A1 (de) * 1983-07-30 1985-03-27 Kabushiki Kaisha TOPCON Einrichtung zur Entfernungsmessung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029391A (en) * 1974-08-22 1977-06-14 Sterndent Corporation Light probe and interface therefor
CH639196A5 (de) * 1977-11-23 1983-10-31 Asea Ab Messgeraet zum messen von physikalischen groessen mittels optischer mittel.
US4329017A (en) * 1979-08-14 1982-05-11 Kaptron, Inc. Fiber optics communications modules
US4549504A (en) * 1984-07-19 1985-10-29 Evans Products Company Electronic controller for regulating temperature within an internal combustion engine system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325638A (en) * 1979-04-27 1982-04-20 Tokyo Kogaku Kikai Kabushiki Kaisha Electro-optical distance measuring apparatus
EP0076232A2 (de) * 1981-09-29 1983-04-06 KERN & CO. AG Werke für Präzisionsmechanik Optik und Elektronik Verfahren zur elektrooptischen Distanzmessung, sowie Distanzmessgerät zur Durchführung des Verfahrens
EP0092369A2 (de) * 1982-04-20 1983-10-26 Sumitomo Electric Industries Limited Verfahren und Vorrichtung zum Aufspüren einer Lichtfrequenzänderung
EP0093437A2 (de) * 1982-05-03 1983-11-09 HIPP, Johann F. Regelungselektronische Einrichtung für elektrooptische Entfernungsmesser mit Lichtpulslaufzeit-Messverfahren
EP0135423A1 (de) * 1983-07-30 1985-03-27 Kabushiki Kaisha TOPCON Einrichtung zur Entfernungsmessung
WO1985001117A1 (en) * 1983-09-08 1985-03-14 Rosemount Inc. Light modulation sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Optics Letters, Volume 9, No. 2, February 1984, New York (US) H. NISHIHARA et al.: "Use of Laser Diode and Optical Fiber for a Compact Laser-Doppler Velocimeter", pages 62-64 *

Also Published As

Publication number Publication date
EP0181388A1 (de) 1986-05-21
US4737624A (en) 1988-04-12
DE3419320C2 (de) 1986-09-11
EP0181388B1 (de) 1989-03-29
DE3419320A1 (de) 1985-11-28

Similar Documents

Publication Publication Date Title
WO1985005455A1 (en) Optoelectric distance measuring apparatus with an optical measuring probe
DE2533217C3 (de) Verfahren und Einrichtung zur Ortung eines Risses auf mindestens einer Faser eines optischen Kabels
EP0066888B1 (de) Entfernungsmessverfahren und Vorrichtung zu seiner Durchführung
EP0156181B1 (de) Optisches System zum gleichzeitigen Empfang von Wärme- und Laserstrahlung
EP0738899A1 (de) Vorrichtung zur Distanzmessung
EP0857980A1 (de) Entfernungsmesser
EP0283538B1 (de) Detektorvorrichtung
DE202005018197U1 (de) Laser-Entfernungsmessungsvorrichtung
DE202006012038U1 (de) Optisches Entfernungsmessgerät
DE3216313C2 (de) Regelungselektronische Einrichtung für elektrooptische Entfernungsmesser mit Lichtpulslaufzeit-Meßverfahren
EP1118874A2 (de) Optische Abtastvorrichtung
DE19860464A1 (de) Laserentfernungsmeßgerät für große Meßbereiche
EP0259699B1 (de) Optischer Entfernungsmesser
DE3532197A1 (de) Lichtvorhang
DE2717412C3 (de) Durchgangsprüfgerät für Lichtleitfasern
EP0039424B1 (de) Justieranordnung für Lichtgitter
DE2809812A1 (de) Passiver optischer entfernungsbereichsimulator
DE2835491C3 (de) Anordnung zum Messen von Eigenschaften von Lichtleitfasern
DE2813591B2 (de) Opto-elektronisches EntfernungsmeSgerat mit in eine Empfangs-Linsenoptiköffnung eingesetztem Sende-Linsenoptik-Tubus
DE102008020201B4 (de) Messvorrichtung
EP3208636B1 (de) Optoelektronischer sensor und verfahren zum erfassen von objekten
DE2006882A1 (de) Verfahren und Vorrichtung zum Messen der Sichtweite
DE3922572C1 (de)
DE2355616C3 (de) Vorrichtung zum Übertragen graphisch vorgegebener Daten von einem Tableau auf einen Rechner
DE1574061B1 (de) Detektorvorrichtung zur feststellung von fahrzeugen

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): JP US

AL Designated countries for regional patents

Designated state(s): AT BE CH FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1985902529

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1985902529

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1985902529

Country of ref document: EP