WO1986006056A1 - Procede et appareil de production d'ozone - Google Patents

Procede et appareil de production d'ozone Download PDF

Info

Publication number
WO1986006056A1
WO1986006056A1 PCT/FR1986/000126 FR8600126W WO8606056A1 WO 1986006056 A1 WO1986006056 A1 WO 1986006056A1 FR 8600126 W FR8600126 W FR 8600126W WO 8606056 A1 WO8606056 A1 WO 8606056A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
oxygen
gas
sectors
orifice
Prior art date
Application number
PCT/FR1986/000126
Other languages
English (en)
Inventor
Maurice Grenier
Pierre Petit
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'e
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9318272&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1986006056(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'e filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'e
Priority to AT86902421T priority Critical patent/ATE43823T1/de
Priority to BR8606627A priority patent/BR8606627A/pt
Priority to DE8686902421T priority patent/DE3663794D1/de
Priority to EP86902421A priority patent/EP0218660B2/fr
Priority to KR1019860700890A priority patent/KR930006688B1/ko
Publication of WO1986006056A1 publication Critical patent/WO1986006056A1/fr
Priority to FI865064A priority patent/FI78441C/fi
Priority to NO864998A priority patent/NO167275C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0214Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/14Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/021Processes carried out in the presence of solid particles; Reactors therefor with stationary particles comprising a plurality of beds with flow of reactants in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/027Beds
    • B01J2208/028Beds rotating

Definitions

  • the present invention relates to a method for producing ozone, of the type in which oxygen circulating in an ozonization loop is partially ozonized in an ozonator, then the ozone is trapped by adsorption and desorbed by a gas. of substitution.
  • the object of the invention is to provide improvements to known processes of this type making it possible to reduce investment, in particular for the production of large quantities of ozone, for example of the order of 1800 kg / h of ozone.
  • the subject of the invention is a method of the aforementioned type, characterized in that: the oxygen-ozone mixture is sent in a first mass of adsorbent, in a so-called co-current direction, where the ozone is adsorbed ; a stream of substitution gas serving for the desorption of this second mass is sent simultaneously into a second mass of adsorbent, against the current; a third mass of adsorbent is simultaneously scanned by passing this third mass of adsorbent through a stream of sweeping gas taken from the loop, each mass of adsorbent being successively traversed by the. oxygen-ozone mixture, the substitute gas and the purge gas; and the stream of sweeping gas having passed through the third mass of adsorbent is added to the stream of substitution gas.
  • the invention also relates to an apparatus for implementing such a method.
  • this device is characterized in that it comprises:
  • the device is characterized in that it comprises:
  • FIG. 1 is a block diagram of an ozone production installation according to the invention
  • FIG. 2 is a diagram illustrating the operation of this installation
  • Figure 3 is a block diagram of another ozone production facility according to the invention
  • Figure 4 is a diagram illustrating the operation of the installation of Figure 3;
  • FIG. 6 and 7 show in more detail the diagram of Figure 1, according to two variants.
  • - Figure 8 shows in cross section from above an apparatus for implementing a method according to the invention, the section being taken along the line VTII-VIII of Figure 10;
  • FIG. 9 is a similar view of a variant
  • FIG. 10 and 11 show the apparatus of Figure 8 or Figure 9 in longitudinal section, respectively along the lines X-X and XI-XI of these figures;
  • - Figure 12 shows 1 ⁇ use of an apparatus as shown in Figures 8 to 11 in an installation according to Figure 6;
  • FIG. 13 is a longitudinal sectional view of another device intended for the implementation of a method according to the invention.
  • Figures 14 to 17 are views taken in section respectively along the lines XIV-XIV to XVTI-XVTI of Figure 13; and Figure 18 is a view similar to Figure 13 of a variant.
  • FIG. 1 represents the principle of an installation for producing ozone from oxygen with a single ozonization loop 1.
  • This installation essentially comprises a "Roots” compressor 2, an ozonizer 3 of any suitable type and three adsorption bottles 4, 5, 6 filled with silica gel.
  • a carrier or substitute gas which can be impure nitrogen (mixed with oxygen) or dry air and which will be denoted below by "nitrogen” by ccir ⁇ iodity, enters via a pipe 9 against the current in another bottle, for example the bottle 6, to carry out the desorption of the ozone, and a mixture of this gas and ozone leaves the bottle 6 by a line 10 constituting the production stream.
  • the third bottle (bottle 5) is purged by co-current sweep by deriving part of the oxygen-ozone mixture, just before it enters the bottle 4; the ozone is trapped in the bottle 6, and it is a mixture of nitrogen and oxygen which leaves this bottle; this mixture is added, via a 100 g line , to the main stream of nitrogen in line 9.
  • the loss of gas in loop 1 due to the production of ozone and to this sweeping is compensated by an addition of oxygen in 11, between the outlet of the bottle 4 and the inlet of the ozonator 3. It is noted that the flow of sweeping gas simultaneously carries out the start of the phase d 1 adsorption of the bottle 5.
  • the oxygen-ozone mixture is introduced into the bottle 4 at a temperature of - 90 ° C, and l the oxygen leaving this bottle at approximately - 80 ° C. is put into a heat exchange relationship with the mixture leaving the ozonator in a heat exchanger 8.
  • the installation requires an additional cold, which can be provided by several different ways, as will be described later.
  • the installation includes means (not shown) for switching between the three bottles 4 to 6, and operates according to the cycle illustrated in FIG. 2: each bottle operates successively in co-current adsorption (bottle 4 in FIG. 1), in counter-current desorption (bottle 6 in FIG. 1) and in co-current scanning (bottle 5 in FIG. 1), and these three phases have the same duration, for example of 4 minutes.
  • the bottle 5 can be swept by means of the oxygen leaving the bottle 4; this oxygen circulates against the current and is added, at its outlet from the bottle 5, to the flow of nitrogen laden with ozone leaving the bottle 6 during the desorption phase.
  • the purging oxygen is also used to complete the desorption of the bottle 5.
  • the installation shown diagrammatically in FIG. 3 is of modular type, that is to say that it comprises several loops independent ozonization 1A to 1D. This has significant advantages from the point of view of reliability (arrangement of the loops in individual rooms facilitating loop-by-loop maintenance) and adaptation to variable ozone requirements.
  • the number of adsorbent bottles is reduced from three to two for each loop, as follows.
  • Each loop 1A to 1D previously comprises a rod, respectively, a "Roots” compressor 2A to 2D, an ozonator 3A to 3D and a heat exchanger 8A to 8D.
  • Each loop is associated with two bottles of silica gel 4A, 5A to 4D, 5 D.
  • the collectors 9 and 10 can respectively be selectively connected to the upper inlet and to the lower inlet of each bottle, while the collector 11 is permanently connected, by four branches 11A to 11D, to the four loops 1A to 1D upstream compressor.
  • each bypass of the collector 11 supplying the four loops provides the loop comprising a scanning with a corresponding additional flow of oxygen.
  • the upper inlet of each bottle can be connected by does not conduct such as 100 5 _ to the manifold 9 to recover the sweep rate in the carrier gas.
  • the installation includes switching means (not shown) which ensure cyclic operation of all the bottles, as illustrated in FIG. 4: for a cycle of 8 minutes, each bottle successively performs a co-current adsorption phase of 4 minutes, a counter-current desorption phase of 3 minutes and a co-current scanning phase of one minute, the nitrogen and sweep flow rates being adapted accordingly.
  • switching means (not shown) which ensure cyclic operation of all the bottles, as illustrated in FIG. 4: for a cycle of 8 minutes, each bottle successively performs a co-current adsorption phase of 4 minutes, a counter-current desorption phase of 3 minutes and a co-current scanning phase of one minute, the nitrogen and sweep flow rates being adapted accordingly.
  • the following table summarizes this operation. In the boxes of this table, "A” denotes an adsorption phase, "D” denotes a desorption phase and "B" denotes a scanning phase.
  • each loop permanently receives an additional
  • the recovery of the sweep flow makes it possible to reduce the flow of carrier gas to be supplied. If it is impure nitrogen, as will be seen later in the case where the installation is coupled to an air separation device, it is the nitrogen flow rate which defines the size of this device, and the gain, of the order of 5%, obtained on this speed reduces investment and energy. If the carrier gas is air, it must be dehydrated, which is expensive, and the aforementioned recovery also provides a gain.
  • FIGS. 5A and 5B together represent a complete ozone production installation comprising on the one hand (FIG. 5A) an air separation device suitable for this application, and on the other hand (FIG. 5B) four loops arranged in the so as in Figure 3.
  • the apparatus of FIG. 5A supplies the four loops of FIG. 5B with supplemental oxygen, via the collector 11, and the carrier nitrogen via the collector 9. It is also connected to the four loops by the production collector 10 carrying the nitrogen-ozone mixture. It provides all the gases and cold necessary for the production of ozone.
  • This device comprises an air compressor 20, a device 21 for purifying the compressed air, a turbine 22 - booster 23 assembly, a heat exchange line 24 and a distillation column 25.
  • booster 23 then cooled from temperature ambient in the exchange line 24.
  • a significant portion, for example of the order of half, or even more, of the air flow is diverted before reaching the cold end of this exchange line and is turbinated in 22, which ensures the cold resistance of the installation as well as the mechanical drive of the booster 23.
  • the turbine flow, expanded to 1.4 bar, is introduced into an intermediate zone of the column 25.
  • the rest of the air is cooled to around - 175 ° C, liquefied in a tank condenser-vaporizer 26 of the column then expanded to 1.4 ata and injected with the smetry of the latter.
  • column 25 produces oxygen in the tank at a purity of between 95% and 99.5% and at the top a residual gas R consisting of nitrogen and 10 to 15% of oxygen. It is this gas which will constitute the carrier gas of the ozone and will be called “nitrogen” in the following for more convenience. This gas contributed equal to the sub-cooling of the air in a heat exchanger 26a_ associated with the column.
  • the nitrogen drawn off at the head of the column is heated in the exchange line 24 against the flow of air to about -90 ° C. and then passes into the manifold 9.
  • the nitrogen-ozone production mixture penetrates substantially. at the same level in the exchange line 24 and heats up against the air flow to room temperature, below about 1.1 ata. Part of the nitrogen, diverted in a pipe 27 before entering the exchange line, crosses it from end to end and is used for the regeneration of the adsorbent bottles of the purification device 21.
  • the nitrogen collector 9 is in fact split into a first collector 9, and a second collector 9-.
  • a bypass 9 ⁇ heats the nitrogen to approximately - 80 ° C in the exchanger 8A against the current of the mixture 0 2 - 0 , then leads into the collector 9 2 , from which the nitrogen can be distributed in the three bottles in desorption (here 5A to 5C) by leads 9 ⁇ to 9 2 , then to come out again by leads 10A to 10C of the collector 10.
  • the oxygen collector 11 has two branches: a branch
  • the oxygen-ozone mixture leaving the ozonator 3A is cooled to - 90 ° C by crossing the end-to-end exchanger 8A against the current of nitrogen, crossing the bottle (here 4A) in adsorption, comes out towards - 80 ° C, penetrates at this temperature in the exchanger 8A, heats up there against the current of the oxygen-ozone mixture and returns to ambient temperature at the compressor 2A.
  • oxygen-ozone mixture is derived from the loop before entering the 4D bottle in adsorption and cross-co-flows with the 5D bottle, then joins via line 100- a recovery manifold 106.
  • the latter opens into the manifold 9 2 via a constant flow valve 30 " set to the same flow rate as the valve 28.
  • the sweep flow is compensated by an equal flow injected into the loop by the bypass corresponding 11, (here H ln ) r and any possible difference in flow rate is compensated for by the intervention of the corresponding valve 29 (here 29D) which brings the pressure of the loop at the inlet of the compressor to the reference value "Roots""(here 2D).
  • FIG. 5B also shows all of the connecting pipes and of the solenoid valves which allow the circulation of the gases and the permutation of the roles of the bottles, as explained above.
  • an oxygen bypass 31 for each loop, an oxygen bypass 31; thanks to this, a flow of cold oxygen can avoid the exchanger 8A, ... in order to effect a temperature adjustment, this flow being controlled by the temperature of the nitrogen leaving the exchanger.
  • desorption use either hotter nitrogen or nitrogen at lower pressure (relative to the pressure of the adsorption phase).
  • the first solution is to be ruled out because of the short duration of the various phases, which does not allow to play on the temperatures; there therefore remains only the second solution, which can be achieved by increasing the operating pressure of the ozonizers, the desorption pressure being fixed by the pressure of use of the nitrogen-ozone mixture (here approximately 1.1 bar).
  • Another possible advantage of desorption at a lower pressure than that of adsorption is a higher ozone concentration in the production gas R + 0 3 substantially increased in the inverse ratio of the absolute pressures.
  • the collector 9 since there is only one ozonization loop, the collector 9 is not split; the nitrogen is simply reheated to approximately - 80 ° C in 1 * exchanger 8 then sent to the bottle (here 6) in desorption, and the nitrogen-ozone mixture is recovered by the collector 10.
  • the circulating oxygen-ozone mixture in the loop crosses the bottle in adsorption (here 4) and enters the exchanger 8 at the temperature level (approximately - 80 ° C) where the desorption nitrogen comes out, then is warmed up to room temperature and returned to compressor 2. It is the sweep flow derived from the loop which crosses the third bottle (here 5) via a manifold 32 and a bypass 32 ..
  • the collector 11 has a single branch.
  • the make-up oxygen leaves the exchange line 24 of FIG. 5A at the same temperature level as the nitrogen, that is to say approximately - 90 ° C., as indicated in broken lines at 11a in FIG. 5A, and is heated up to ambient temperature in the exchanger 8, against the current of the oxygen-ozone mixture, before being injected into the loop 1, by means of the valve 29 controlled by the pressure of this loop.
  • the variant of FIG. 7 differs from the previous one in that the cooling of the oxygen-ozone mixture of loop 1 is entirely ensured against the current by the supplemental oxygen, which is brought by the manifold 11 in gaseous form. but at its dew point, ie approximately - 175 ° C., as indicated in phantom in 11b in FIG. 5A, or even in the liquid state, and injected into the loop at the cold end of the exchanger 8.
  • the nitrogen is extracted from the exchange line 24 directly at the desorption temperature, ie approximately - 80 ° C.
  • the cold gas was topped up not directly in the oxygen-ozone mixture before its introduction into the adsorber 4, but in the fluid leaving the latter, therefore in a fluid with very low ozone concentration.
  • the process as described makes it possible to obtain, at a constant flow rate of substitution gas, a practically constant ozone content from the start to the end of the desorption phase, with however a slight regular drop in this content depending on the dimensioning of the adsorbers and the duration of the phases.
  • the solution with i ozonization loops leads, due to the time lag of the desorption phases of the bottles of the different loops, to a reduction in the ratio ri of the drop in ozone content. compared to a single loop installation.
  • the process makes it possible to ensure this consistency of production by modulating the flow rate of substitution gas during the desorption phase so as to compensate for the slight drop in content by a substantially proportional increase in the flow rate.
  • the new equilibrium regime will be obtained with a substitution gas with unchanged content, but with modified flow as long as the demand does not vary again. If, on the contrary, the ozone generator is acted on by varying the ozone content at an unchanged oxygen flow rate, the new steady state regime will be obtained with a substitution gas with modified ozone content, but at unchanged flow rate; the flow rate will only have been temporarily changed, while the ozone ballast corresponding to the new operating regime is reconstituted in the adsorbers.
  • the device shown in Figures 8, 10 and 11 comprises an outer casing 40, consisting of a cylindrical shell 41 of vertical axis X - X and two domed upper 42 and lower 43 bottoms, in which is mounted coaxially a rotary assembly 44.
  • the latter comprises a horizontal lower support 45 in the form of a circular plate, an annular upper cover 46 and two cylindrical grids, outer 47 and inner 48, between which is disposed an annular bed 49 of adsorbent material.
  • the grid 47 connects the outer peripheries of the support 45 and of the cover 46, while the grid 47 passes through the central opening of this cover and is guided in rotation at its upper end by a sealed bearing 50 secured to the bottom 42 of the envelope. .
  • the two grids are perforated over their entire height except in their upper part, from a level situated a little below the cover 46.
  • the support 45 is mounted on a circular bearing 51 with rollers carried by the lower bottom 43 of the casing by means of a metal frame 52 comprising a floor 53.
  • the crew 44 can be rotated about the axis XX by a pinion 54 connected to a motor 55 inside the casing and attacking a ring gear 56 fixed under the support 45.
  • a radial partition 57 divides the interior space of the grid 48 into two half-spaces 58, 59. This partition is fixed to the upper bottom 42 and rubs on the one hand, along its lower edge, on the support 45 by means of a sealing scraper 60, on the other hand, along each longitudinal edge , on the grid 48 by means of two sealing scrapers 61, 62 ( Figures 8 and 11).
  • the space between the rotary assembly 44 and the casing 40 is divided into two as follows.
  • two seals are provided, each extending in a horizontal plane over a little more than a semicircle, from the partition 63 to the partition 64.
  • the upper seal 65 is fixed to the upper bottom. 42 of the envelope and rubs on the outer periphery of the cover 46, while the lower seal 66 is fixed on the upper face of the floor 53 and rubs on the outer periphery of the support 45.
  • the top of the bottom upper 42 has two orifices 67,68 opening into the interior of the grid 48, on either side of the partition 57, while the lower bottom 43 has two orifices 69,70 opening under the support 45, from and on the other side of a radial partition 71 which is part of the framework 52.
  • the adsorbent bed 49 is moreover divided into multiple sectors 72 (thirty-two in the example shown) by radial plates
  • the space between the crew 44 and the envelope 40 is divided in leaktight fashion into a half-space 74 which communicates only with the orifice 69 and, through part of the sectors 72 of the adsorbent bed, with the orifice 67, and in a half-space 75 which ccxri ⁇ unique only with the orifice 70 and, through another part of the sectors 72, with the orifice 68.
  • This device is used in the following manner to implement a process similar to that illustrated in phantom in Figure 1, the device replacing the three bottles illustrated in this figure.
  • the orifice 67 is connected to the loop 1, downstream of the heat exchanger 8, so that it is permanently supplied with the oxygen-ozone mixture cooled by this exchanger.
  • the orifice 68 is connected to the pipe of production gas 10.
  • the orifice 69 is connected to the loop 1, upstream of the return to the exchanger 8.
  • the orifice 70 is connected to the pipe 9 for supplying nitrogen.
  • the crew 44 is rotated at constant speed clockwise in FIG. 8.
  • the oxygen at the orifice 69 and the nitrogen at the orifice 70 are at substantially the same pressure P, for example slightly higher than atmospheric pressure; taking into account a pressure drop p, for example of the order of 30 mb, when crossing the bed 49, there will be a pressure P + p at the orifice 65 and P - p at the orifice 68, which imposes the directions of circulation of the gases.
  • the partitions 57, 63 and 64 divide the sectors 72 into three categories: - from the partition 63 to the diametrically opposite location 76, by turning counterclockwise, half of these sectors, referenced 72-, are crossed radially from the inside to the outside by the oxygen-ozone mixture, which gradually depletes in ozone due to adsorption to allow pure oxygen to escape into the outer half-space 74;
  • a sector 72 or a small number of sectors 72 (two in number, referenced 72., and 72. in FIG. 8), located) between the partition 64 and the location 76.
  • This or these sectors are supplied by the outside by the oxygen of space 74, which gradually enriches itself with ozone and scans the nitrogen still present, so that they deliver an oxygen-ozone-nitrogen mixture in the central half-space 58 which is with port 68.
  • this sector undergoes a phase of adsorption of ozone from the cooled oxygen-ozone mixture leaving the heat exchanger 8 (FIG. 1) and introduced into the central half-space 59 through port 67;
  • the same sector 72 is desorbed against the current (that is to say radially from the outside towards the inside) by nitrogen introduced into the outside semi-space 75 through port 70;
  • this sector 72 undergoes a countercurrent sweep with oxygen, this oxygen also completing the desorption phase of this sector.
  • N sectors 72 at each instant there are N / 2 sectors in adsorption, n sectors in scanning-desorption (number of sectors between the partition 64 and the location 76) and
  • each adsorption, desorption and scanning-desorption phase can be adjusted by the choice of the angular offset between the partition 64 and the plane of the partitions 57 and 63, and the absolute duration of each phase by choosing the rotation speed of the crew 44.
  • bearings 50 and 51 as well as the pinion 54 and its drive motor 55 are entirely contained in the half-space 75, and therefore under a nitrogen atmosphere, which is advantageous for their proper functioning and for safety. .
  • FIG. 9 differs from that of FIG. 8 only in that the partition 64 is angularly offset clockwise relative to the location 76. Consequently, the sector or sectors 72_ 72. comprised between the location 76 and the partition 64 are in the co-current scanning phase (radially from the inside to the outside) by the oxygen-ozone mixture coming from the central half-space 59, and the oxygen-nitrogen mixture emerging therefrom arrives in the outer half-space 75 and mixes with the nitrogen which feeds the latter to participate with this nitrogen in the desorption against the current of the N / 2 sectors between the partition 63 and the location 76.
  • FIG. 9 by replacing the three bottles 4 to 6 of FIG. 1, makes it possible to implement the process illustrated in solid lines in this FIG. 1, without any ccîr ⁇ iutation valve being necessary. .
  • FIG. 12 which reproduces by way of example the diagram of FIG. 6, with the same reference numbers, but uses l the rotary absorbent bed apparatus as explained above.
  • the apparatus represented in FIGS. 13 to 15 is based on the general principle that those of FIGS.
  • an annular bed adsorbent 49 delimited by two external 47 and internal 48 grids is divided into N sectors 72 by radial plates 73 extending between these two grids, and each of these sectors is placed successively in communication with a supply of oxygen-ozone mixture , with a supply of nitrogen and with a supply of a purging gas which is, in the example shown, oxygen.
  • the essential difference lies in the fact that, now, the bed 49 is fixed while the apparatus comprises a rotating core, constituting the rotary assembly 44, which ensures the desired distribution of the three gases between the sectors 72.
  • the 'envelope 40 has in its lower part a double bottom 77 converging downwards which ends, at its lower end, by an open cylinder 78.
  • a tube constituting the orifice 69 starts radially from this cylinder and crosses the ferrule with a tight seal 41, and two annular seals 79 are fixed in the cylinder 78, above and below this tubing.
  • the orifice 70 opens into the space between the lower bottom 43 and the double bottom 77.
  • the two grids 47 and 48 are connected at their top by the upper bottom 42 and at their base by the support 45, which is here roughly frustoconical and parallel to the double bottom 77.
  • the inner grid 48 extends downwards until to the cylinder 78, and an annular seal 80 is fixed in the grid 47 at the connection between the latter and the support 45.
  • the plates 73 extend outwards to the bottom 42, at the ferrule 41 and the double bottom 77, so that it is all the space delimited by the grid 47, the bottom 42, the ferrule 41 and the double bottom 77 which is divided into N sectors, as seen in the figures 14 and 15.
  • the envelope 40 has at its top an opening 81 of the same diameter as the grid 48 and on which is fixed a cylindrical dome 82 of the same diameter, closed at its top and open at its base.
  • Two pipes constituting respectively the orifices 67 and 68, open radially in the lower part and in the upper part, respectively, of the dome 82.
  • Two annular seals 83 are fixed in the lug respectively between the two pipes 67 and 68 and below tubing 67.
  • the rotating core 44 is guided by an upper bearing 84 provided at the top of the dome 82 and by a lower bearing 85 provided at the bottom point 83. It is rotated by a motor 55 fixed to the bottom 43, inside the casing 40, by means of an endless screw 86 which attacks a toothed wheel 87 secured to the core.
  • the core 44 comprises a cylindrical plug open at its two ends.
  • the upper plug 88 cooperates by its end portions with the two seals 83 and has between them a semi-circular slot 89 whose upper edge is connected to the periphery of a horizontal plate 90 in the shape of a half-moon ( figure 16).
  • a diametral vertical partition 57 extends downward, the width of which is equal to the interior diameter of the plug 88.
  • the partition 57 carries two scrapers 61, 62 which rub on this grid (FIG. 14), so as to delimit two interior half-spaces 58 and 59.
  • the partition 57 carries a shutter 91 in the form of an inverted cup 91 whose peripheral wall cooperates with the seal 80.
  • the lower plug 92 cooperates by its end parts with the two seals 79 and has between them a slot 93 whose lower edge is connected to the periphery of a horizontal plate 94 located directly above the plate 90.
  • a partition 95 forming a dihedral of the same angle, extends vertically between these spokes and the underside of the shutter 91. Between the upper seal 79 and the seal 80, this partition 95 rubs by its two edges, provided with scrapers seal, on the lower extension of the grille 48.
  • Each plug 88, 92 delimits an annular space, respectively 96, 97, with the cylindrical wall 82, 78 which surrounds it.
  • the orifices 67 to 70 are connected as in FIGS. 8 to 12, and the core 44 is rotated clockwise in FIGS. 14 and 15.
  • the oxygen-ozone mixture arrives via the tube 67 and enters the space 59 through slot 89 and possibly the space 96. From there, this mixture crosses N / 2 sectors 72- ( Figure 14), and oxygen comes out in the corresponding compartments 98 located outside the grid 47.
  • This oxygen collects under the shutter 91, inside the lower extension of the grid 48, and, thanks to the shape of the partition 95, is redistributed over (N / 2) + n sectors 72 ⁇ 72 3 , 72 4
  • the nitrogen introduced through the tube 70 crosses the plug 92 from bottom to top, enters the (N / 2) - n compartments 98 remaining and, from there, crosses the corresponding sectors 72 2 towards the axis XX, for evacuate through tubing 68 in the form of a nitrogen-ozone mixture (with a little oxygen), after passing from bottom to top the top plug 88.
  • each sector 72 successively undergoes a phase of adsorption of ozone from the oxygen-ozone mixture, a phase of desorption against the current by nitrogen and a phase counter-current sweeping with oxygen, this oxygen at the same time completing the desorption and being found in the production gas consisting essentially of nitrogen and ozone.
  • Figure 9 we would find the variant of Figure 9 by reversing the direction of offset of the two parts of the partition 95, as shown in phantom in Figure 15.
  • Figure 18 illustrates a device quite similar to that of Figures 13 to 17 but which differs from it only in that the adsorbent bed 49 is of the "flat" type, that is to say with axial flow, instead of being of the radial flow type.
  • the apparatus is modified in the following way: the external grid 47 is removed, and the support 45 is replaced by a horizontal support grid 45 A extending from the grid 48, at the joint 80, up to to the shell 41.
  • the bed 49 extends approximately to the top of the latter and, over the entire height of this bed, the grid 48 is full.
  • the apparatus operates in the same manner as that of FIGS. 13 at 17, except that the gases pass vertically through the bed 49.
  • the principle of the rotary bed illustrated in FIGS. 8 to 11 can be applied in the case of a "flat" adsorbent bed, as shown in FIGS. 19 to 21.
  • the rotary assembly 44 comprises two cylindrical sheets 47 A, 48 A, delimiting an annular space in which is placed the bed of adsorbent 49, which fills it up to a small distance from its sc.rmet.
  • This annular space is closed at its base by a support grid 45 A and is open upwards.
  • the space inside the interior sheet 48 A is closed at its two ends by solid discs upper 99 and lower 100.
  • annular space containing the bed 49 is as previously divided into N sectors 72 by radial plates 73 extending over its entire height and from one sheet to another.
  • a rounded 101 (FIG. 21) which gives it a T-shaped section.
  • the crew 44 rests on a circular bearing 51, at least one of the rollers of which is driven by a non-motor represented. -
  • annular seals 102 fixed respectively at the top and at the bottom of the shell 41 and rubbing on the upper parts and lower of the outer sheet 47 A;
  • n 2 - A lower partition 105 starting from the lower bottom 43 and. amount until close to the crew 44.
  • This partition is located on half of its length in the same plane as the partition 103, and, on the other half of its length, in a plane offset from this plane at an acute angle, corresponding to n sectors 72 3 , 72., in the counterclockwise direction of FIG. 20.
  • n 2
  • the partition 105 carries over its entire length on its upper edge a sealing scraper 106 which rubs on the grid 45 A, on the lower disc 100 and on the lower joint 102.
  • the orifices 67 and 68 open on either side of the partition 103, while the orifices 69 and 70 open on either side of the partition 105.
  • the crew 44 is rotated clockwise.
  • the oxygen-ozone mixture enters through the orifice 67 in the device, crosses from top to bottom N / 2 sectors 72- in the adsorption phase and essentially leaves through the orifice 69 in the form of pure oxygen.
  • Nitrogen enters through port 70, passes from bottom to top
  • the space containing nitrogen is adjacent to that containing oxygen, these two spaces (for example spaces 75 and 74 of FIGS. 8 to 11) being at substantially the same pressure P.
  • these two spaces for example spaces 75 and 74 of FIGS. 8 to 11
  • the risk of nitrogen leakage into the oxygen in the ozonization loop is minimal.
  • the two other spaces, containing the oxygen-ozone mixture and the production mixture respectively are adjacent to each other, the first (space 59 in FIGS. 8 to 11) being at the maximum pressure P + p and the second (space 58 in FIGS. 8 to 11) being at the minimum pressure Pp.
  • the first (space 59 in FIGS. 8 to 11) being at the maximum pressure P + p
  • the second (space 58 in FIGS. 8 to 11) being at the minimum pressure Pp.

Abstract

Procédé de production d'ozone dans une ou plusieurs boucles comportant un compresseur, un ozoneur et un échangeur de chaleur pour refroidir le mélange oxygène-ozone, chacune associée à trois bouteilles emplies de gel de silice. Chaque bouteille fonctionne successivement en adsorption à co-courant, en désorption à contre-courant au moyen d'un gaz de substitution, et en balayage par dérivation d'une partie du débit circulant dans la boucle. Appareil pour la mise en oeuvre du procédé comprenant: un lit annulaire (49) de matière adsorbante divisé en secteurs (72); des cloisons (53, 57, 63 à 66, 71) divisant le volume compris entre ce lit annulaire (49) et l'enveloppe (40) en quatre espaces (59, 74, 75, 58). Ces cloisons font communiquer l'orifice (67) avec un premier ensemble (721) desdits secteurs (72), l'orifice (69) avec un second ensemble (721, 723, 724) de secteurs (72, 721), l'orifice (70) avec un quatrième ensemble de secteurs (722) et l'orifice (68) avec desdits quatrième et troisième ensembles de secteurs (722, 723, 724); et des moyens (51; 55) pour effectuer une rotation relative entre le lit annulaire (49) et lesdites cloisons dans un sens tel que chaque secteur (72) fasse successivement et cycliquement partie desdits premier, quatrième et troisième ensembles.

Description

PROCEDE ET APPAREIL DE PRODUCTION D'OZONE
La présente invention est relative à un procédé de production d'ozone, du type dans lequel de l'oxygène en circulation dans une boucle d'ozonisation est partiellement ozonisé dans un ozoneur, puis l'ozone est piégé par adsorption et désorbé par un gaz de substitution. L'invention a pour but de fournir des perfectionnements aux procédés connus de ce type permettant de réduire l'investissement, notaπrrent pour la production de quantités importantes d'ozone, par exemple de l'ordre de 1800 kg/h d'ozone.
A cet effet, l'invention a pour objet un procédé du type précité, caractérisé en ce que : on envoie le mélange oxygène-ozone dans une première masse d'adsorbant, dans un sens dit co-courant, où l'ozone est adsαrbé ; on envoie simultanément dans une seconde masse d'adsorbant, à contre-courant, un flux de gaz de substitution servant à la désorption de cette seconde masse ; on effectue simultanément un balayage d'une troisième masse d'adsorbant en faisant traverser cette troisième masse d'adsorbant par un flux de gaz de balayage prélevé dans la boucle, chaque masse d'adsorbant étant- successivement traversée par le. mélange oxygène-ozone, le gaz de substitution et le gaz de balayage ; et l'on adjoint au flux de gaz de substitution le flux de gaz de balayage ayant traversé la troisième masse d'adsorbant.
L'invention a également pour objet un appareil destiné à la mise en oeuvre d'un tel procédé. Dans une première variante, cet appareil est caractérisé en ce qu'il comprend :
- une enveloppe contenant un lit annulaire de matière adsorbante divisé en un certain nombre de secteurs ;
- des cloisons divisant le volume compris entre ce lit annulaire et l'enveloppe en quatre espaces cαimuniquant respectivement avec un premier orifice d'entrée de mélange oxygène-ozone , un second orifice de sortie d'oxygène, un troisième orifice d'entrée de gaz de substitution et un quatrième orifice de sortie d'un gaz de production constitué essentiellement du gaz de substitution et d'ozone, ces cloisons faisant ccmπuniquer ledit premier orifice avec le côté amont, vis-à-vis de 1'adsorption, d'un premier ensemble desdits secteurs, ledit second orifice avec le côté aval, vis-à-vis de l'adsorption, d'un second ensemble de secteurs constitué dudit premier ensemble de secteurs et d'un troisième ensemble de secteurs adjacent audit premier ensemble , ledit troisième orifice avec le côté amont, vis-à-vis de la désorption à contre-courant, d'un quatrième ensemble de secteurs constitué par les secteurs restants, et ledit quatriàne orifice avec le côté aval, vis-à-vis de la désorption, desdits quatrième et troisième ensembles de secteurs ; et
- des moyens pour effectuer une rotation relative entre le lit annulaire et lesdites cloisons dans un sens tel que chaque secteur fasse successivement et cycliquement partie dèsdits premier, quatrième et troisième ensembles. Dans une autre variante, l'appareil est caractérisé en ce qu'il comprend :
- une enveloppe contenant un lit annulaire de matière adsorbante divisé en un certain nombre de secteurs ;
- des cloisons divisant le volume compris entre ce lit annulaire et l'enveloppe en quatre espaces communiquant respectivement avec un premier orifice d'entrée de mélange oxygène-ozone , un second orifice de sortie d'oxygène, un troisième orifice d'entrée de gaz de substitution et un quatrième orifice de sortie de gaz de production constitué essentiellement du gaz de substitution et d'ozone, ces cloisons faisant ccπiπiuniquer ledit second orifice avec le côté aval, vis-à-vis de 1'adsorption, d'un premier ensemble de secteurs, ledit premier orifice avec le côté amont, vis-à-vis de l'adsorption, d'un second ensemble de secteurs constitué dudit premier ensemble et d'un troisième ensemble de secteurs adjacents à ce premier ensemble, ledit quatrième orifice avec le côté aval, vis-à-vis de la désorption à contre-courant, d'un quatrième ensemble de secteurs constitué des secteurs restants, et ledit troisième orifice avec le côté amont, vis-à-vis de la désorption, desdits troisième et quatrième ensembles de secteurs ; et
- des moyens pour effectuer une rotation relative entre le lit annulaire et lesdites cloisons dans un sens tel que chaque secteur fasse successivement et cycliquement partie desdits premier, quatrième et troisième ensembles.
Quelques exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels : - la figure 1 est un schéma de principe d'une installation de production d'ozone conforme à l'invention ; - la figure 2 est un diagramne illustrant le fonctionnement de cette installation ; la figure 3 est un schéma de principe d'une autre installation de production d'ozone conforme à l'invention ;
- la figure 4 est un diagramme illustrant le fonctionneirent de l'installation de la figure 3 ;
- les figures 5A et 5B représentent ensemble schématiquement une installation complète correspondant au schéma de la figure 3 ;
- les figures 6 et 7 reprennent plus en détail le schéma de la figure 1, suivant deux variantes. - la figure 8 représente en coupe transversale de dessus un appareil destiné à la mise en oeuvre d'un procédé conforme à l'invention, la coupe étant prise suivant la ligne VTII-VIII de la figure 10 ;
- la figure 9 est une vue analogue d'une variante ;
- les figures 10 et 11 représentent l'appareil de la figure 8 ou de la figure 9 en coupe longitudinale, respectivement suivant les lignes X-X et XI-XI de ces figures ; - la figure 12 montre 1^utilisation d'un appareil tel que représenté aux figures 8 à 11 dans une installation conforme à la figure 6 ;
- la figure 13 est une vue en coupe longitudinale d'un autre appareil destiné à la mise en oeuvre d'un procédé conforme à l'invention ;
- les figures 14 à 17 sont des vues prises en coupe respectivement suivant les lignes XIV-XIV à XVTI-XVTI de la figure 13 ; et la figure 18 est une vue analogue à la figure 13 d'une variante.
La figure 1 représente le principe d'une installation de production d'ozone à partir d'oxygène à une seule boucle d'ozonisation 1.
Cette installation comprend essentiellement un compresseur "Roots" 2, un ozoneur 3 de tout type approprié et trois bouteilles d'adsorption 4, 5, 6 emplies de gel de silice.
A chaque instant, de l'oxygène circule dans la boucle 1 de la façon suivante : l'oxygène, ccnprimé de 1,3 bar (1 bar = une pression
5 absolue de 10 Pa) à 1,5 bar par le compresseur 2, est partiellement ozonisé par l1ozoneur 3, d'où sort un mélange oxygène-ozone à environ 3 % en volume d'ozone ; ce mélange pénètre par le bas dans une des trois bouteilles, par exemple dans la bouteille 4, où l'ozone est piégé par adsorption, la circulation s'effectuant dans un sens dit co-courant ; et l'oxygène sortant du haut de la bouteille 4 retourne au compresseur. Par ailleurs, un gaz porteur ou de substitution, qui peut être de l'azote impur (mélangé à de l'oxygène) ou de l'air sec et qui sera déncïrmé dans la suite "azote" par ccirπiodité, pénètre par une conduite 9 à contre-courant dans une autre bouteille, par exemple la bouteille 6, pour effectuer la désorption de l'ozone, et un mélange de ce gaz et d'ozone ressort de la bouteille 6 par une conduite 10 en constituant le courant de production.
Pendant ce temps, la troisième bouteille (bouteille 5) est purgée par balayage à co-courant en dérivant une partie du mélange oxygène-ozone, juste avant son entrée dans la bouteille 4 ; l'ozone est piégé dans la bouteille 6, et c'est un mélange d'azote et d'oxygène qui sort de cette bouteille ; ce mélange est adjoint, via une conduite 100g, au courant principal d'azote de la conduite 9. La perte de gaz de la boucle 1 due à la production d'ozone et à ce balayage est compensée par un appoint d'oxygène en 11, entre la sortie de la bouteille 4 et l'entrée de l'ozoneur 3.On remarque que le flux de gaz de balayage effectue en même temps le début de la phase d1adsorption de la bouteille 5.
Pour améliorer l'adsorption de l'ozone sans atteindre cependant le risque de voir apparaître ce corps à l'état liquide, très instable, on introduit le mélange oxygène-ozone dans la bouteille 4 à une température de - 90°C, et l'oxygène sortant de cette bouteille à environ - 80°C est mis en relation d'échange the_mique avec le mélange sortant de l'ozoneur dans un échangeur de chaleur 8. L'installation nécessite un appoint de froid, qui peut être apporté de plusieurs manières différentes, comme on le décrira plus loin. L'installation comporte des moyens (non représentés) de commutation entre les trois bouteilles 4 à 6, et fonctionne suivant le cycle illustré à la figure 2 : chaque bouteille fonctionne successivement en adsorption à co-courant (bouteille 4 de la figure 1) , en désorption à contre-courant (bouteille 6 de la figure 1) et en balayage à co-courant (bouteille 5 de la figure 1) , et ces trois phases ont la même durée, par exemple de 4 minutes.
A titre d'exemple d'ordre de grandeur, avec à peu près les mêmes conditions de pression et de température dans les trois bouteilles 4 à 6, si un débit de 1000 __n3/h (mètres cubes normaux par heure) d'oxygène est traité par l'ozoneur, la sortie azote + ozone de production a un débit du même ordre, le débit de balayage dans la bouteille 5, recyclé vers la bouteille 6, est de l'ordre de 45 __m3/h, et l'appoint en oxygène en 7 est de l'ordre de 90 _ta3/h.
En variante, comme illustré en trait mixte à la figure 1, le balayage de la bouteille 5 peut s'effectuer au moyen de l'oxygène sortant de la bouteille 4 ; cet oxygène circule à contre-courant et est adjoint, à sa sortie de la bouteille 5, au flux d'azote chargé d'ozone sortant de la bouteille 6 en phase de désorption. On remarque que dans ce cas, l'oxygène de balayage est aussi utilisé pour compléter la désorption de la bouteille 5. L'installation schématisée à la figure 3 est de type modulaire, c'est-à-dire qu'elle comporte plusieurs boucles d'ozonisation indépendantes 1A à 1D. Ceci présente des avantages importants du point de vue de la fiabilité (disposition des boucles dans des locaux individuels facilitant l'entretien boucle par boucle) et l'adaptation à des besoins variables en ozone. De plus, grâce à un couplage de toutes les boucles pour la désorption et le balayage, on réduit le nombre de bouteilles d'adsorbant de trois à deux pour chaque boucle, de la manière suivante.
Chaque boucle 1A à 1D comprend canne précédemment, respectivement, un compresseur "Roots" 2A à 2D, un ozoneur 3A à 3D et un échangeur de chaleur 8A à 8D. A chaque boucle sont associées deux bouteilles de gel de silice 4A, 5A à 4D, 5 D. Il existe'un collecteur 9 d'arrivée de gaz porteur, déncarmé "azote" corme précédemment, un collecteur 10 de sortie de mélange azote-ozone, et un collecteur 11 d'appoint d'oxgène. Les collecteurs 9 et 10 peuvent respectivement être reliés sélectivement à l'entrée supérieure et à l'entrée inférieure de chaque bouteille, tandis que le collecteur 11 est relié en permanence, par quatre dérivations 11A à 11D, aux quatre boucles 1A à 1D en amont du compresseur. Ceci assure un débit constant d'oxygène dans le compresseur et dans 1*ozoneur. A chaque instant, quatre bouteilles (ici 4A à 4D) fonctionnent en adsorption à co-courant, trois bouteilles (ici 5A à 5C) fonctionnent en désorption à contre-courant par l'azote, et une bouteille (ici 5D) fonctionne en balayage par dérivation du mélange 0--O, avant son entrée dans la bouteille associée 4D. Pour compenser ce balayage, chaque dérivation du collecteur 11 alimentant les quatre boucles fournit à la boucle comportant un balayage un débit supplémentaire correspondant d'oxygène. L'entrée supérieure de chaque bouteille peut être reliée par ne conduite telle que 1005_ au collecteur 9 pour récupérer le débit de balayage dans le gaz porteur.
L'installation comporte des moyens de commutation (non représentés) qui assurent un fonctionnement cyclique de toutes le bouteilles, cαtme illustré à la figure 4 : pour un cycle de 8 minutes, chaque bouteille assure successivement une phase d'adsorption à co-courant de 4 minutes, une phase de désorption à contre-courant de 3 minutes et une phase de balayage à co-courant d'une minute, les débits d'azote et de balayage étant adaptés en conséquence. Le tableau suivant résume ce fonctionnement. Dans les cases de ce tableau, "A" désigne une phase d'adsorption, "D" une phase de désorption et "B" une phase de balayage.
Figure imgf000009_0001
Ce principe pourra s'étendre à une installation à n boucles : à chaque instant, ri bouteilles sont en phase d'adsorption à co-courant,
(n - 1) bouteilles en phase de désorption à contre-courant, et une bouteille est en phase de balayage à co-courant. Si la durée de
1' dsorption est prise corme unité, la durée de balayage est en principe n __ *ι
1_ et, par conséquent, la durée de désorption . En variante, on n n pourrait envisager de réduire la durée de balayage et, éventuellement, augmenter d'autant la durée d'une au moins des autres phases de la boucle correspondante.
En revenant à la figure 3, en ce qui concerne le débit et avec les mêmes hypothèses globales que pour la figure 1, chaque ozoneur traite
250 _δrι3/h d'oxygène, chaque boucle reçoit en permanence un appoint de
45/4 î__3/h ; et le balayage, qui doit être effectué pendant une durée égale au quart de la durée d'adsorption, consomme 45 .toi3/h, de sorte que la dérivation correspondante (ici 11D) fournit à la boucle 1D un ccmplément d'oxygène de 45 __n3/h. Ce gaz de balayage est récupéré dans le collecteur 9, et de chacune des trois bouteilles en désorption sort à contre-courant un débit de 1000 Nm3/h de mélange azote-ozone.
3
Dans le cas de la figure 3 ccïrme dans celui de la figure 1, la récupération du débit de balayage permet de diminuer le débit de gaz porteur à fournir. S'il s'agit d'azote impur, corme on le verra plus loin dans le cas où l'installation est couplée à- un appareil de séparation d'air, c'est le débit d'azote qui définit la taille de cet appareil, et le gain, de l'ordre de 5 %, obtenu sur ce débit permet de diminuer l'investissement et l'énergie. Si le gaz porteur est de l'air, il doit être déshydraté, ce qui est coûteux, et la récupération précitée assure également un gain.
Les figures 5A et 5B représentent ensemble une installation complète de production d'ozone comprenant d'une part (figure 5A) un appareil de séparation d'air adapté à cette application, et d'autre part (figure 5B) quatre boucles agencées de la mâπe manière qu'à la figure 3.
L'appareil de la figure 5A fournit aux quatres boucles de la figure 5B l'oxygène d'appoint, via le collecteur 11, et l'azote porteur via le collecteur 9. Il est également relié aux quatres boucles par le collecteur 10 de production transportant le mélange azote-ozone. Il fournit la totalité des gaz et du froid nécessaires pour la production de l'ozone.
Cet appareil comprend un compresseur d'air 20, un dispositif 21 d'épuration de l'air comprimé, un ensemble turbine 22 - surpresseur 23, une ligne d'échange thermique 24 et une colonne de distillation 25.
L'air, comprimé à 4 bar par le compresseur 20 puis épuré, est cc_rprimé à
5 bar par le surpresseur 23 puis est refroidi depuis la température ambiante dans la ligne d'échange 24. Une partie importante, par exemple de l'ordre de la moitié, voire plus, du débit d'air est dérivée avant d'atteindre le bout froid de cette ligne d'échange et est turbinée en 22, ce qui assure la tenue en froid de l'installation ainsi que l'entraînement mécanique du surpresseur 23. Le débit turbiné, détendu vers 1,4 bar, est introduit dans une zone intermédiaire de la colonne 25. Le reste de l'air est refroidi jusqu'à environ - 175°C, liquéfié dans un condenseur-vaporiseur de cuve 26 de la colonne puis détendu à 1,4 ata et injecté au sαrmet de cette dernière. Ainsi, la colonne 25 produit en cuve de l'oxygène à une pureté comprise entre 95 % et 99,5 % et en tête un gaz résiduaire R constitué d'azote et de 10 à 15 % d'oxygène. C'est ce gaz qui constituera le gaz porteur de l'ozone et sera dénommé "azote" dans la suite pour plus de commodité. Ce gaz contribue égalaient au sous-refroidissement de l'air dans un échangeur de chaleur 26a_ associé à la colonne.
L'azote soutiré en tête de la colonne est réchauffé dans la ligne d'échange 24 à contre-courant de l'air jusqu'à environ - 90°C puis passe dans le collecteur 9. Le mélange de production azote-ozone pénètre sensiblement au mêrne niveau dans la ligne d'échange 24 et se réchauffe à contre-courant de l'air jusqu'à la température ambiante, sous environ 1,1 ata. Une partie de l'azote, dérivée dans une conduite 27 avant d'entrer dans la ligne d'échange, traverse celle-ci de bout en bout et sert à la régénération des bouteilles d'adsorbant du dispositif d'épuration 21.
On retrouve à la figure 5B les éléments de la figure 3, avec en plus le détail des echangeurs de chaleur 8A à 8D et des moyens de circulation des gaz, qui se retrouvent de façon similaire dans toutes les boucles.
Le collecteur d'azote 9 est en fait dédoublé en un premier collecteur 9, et un deuxième collecteur 9-. Pour chaque boucle, par exemple la boucle A, une dérivation 9^ réchauffe l'azote jusqu'à environ - 80°C dans l'échangeur 8A à contre-courant du mélange 02 - 0,, puis débouche dans le collecteur 92, d'où l'azote peut se distribuer dans les trois bouteilles en désorption (ici 5A à 5C) par des dérivations 9^ à 92 , puis en ressortir par des dérivations 10A à 10C du collecteur 10. Le collecteur 11 d'oxygène comporte deux branches : une branche
11,, commandée par une vanne 28 à débit constant, d'où partent quatre dérivations I ,, .... débouchant dans chaque boucle juste en amont du compresseur 2 correspondant ; et une branche 112 d'où partent quatre dérivations H , • •• • commandées par des vannes 29A, .... asservies à la pression de la boucle correspondante et débouchant également juste en amont du compresseur 2 correspondant. En considérant la boucle 1A, le mélange oxygène-ozone sortant de l'ozoneur 3A est refroidi à - 90°C en traversant de bout en bout l'échangeur 8A à contre-courant de l'azote, traverse la bouteille (ici 4A) en adsorption, en ressort vers - 80°C, pénètre à cette -température dans l'échangeur 8A, s'y réchauffe à contre-courant du mélange oxygène-ozone et retourne à la température ambiante au compresseur 2A.
Corme on l'a vu précédemment, trois boucles cαrportent une bouteille en phase de désorption par l'azote, tandis que la quatrième
(ici 1D) comporte une bouteille (ici 5D) en phase de balayage. Pour cela, du mélange oxygène-ozone est dérivé de la boucle avant de pénétrer dans la bouteille 4D en adsorption et traverse à co-courant la bouteille 5D, puis rejoint par la conduite 100- un collecteur de récupération 106. Celui-ci débouche dans le collecteur 92 par l'intermédiaire d'une vanne 30"à débit constant réglée sur le même débit que la vanne 28. Ainsi, à tout instant, le débit de balayage est compensé par un débit égal injecté dans la boucle par la dérivation correspondante 11, (ici Hln) r et toute éventuelle différence de débit est compensée par l'intervention de la vanne 29 correspondante (ici 29D) qui ramène à la valeur de consigne la pression de la boucle à l'entrée du compresseur "Roots" (ici 2D) .
La figure 5B montre également l'ensemble des conduites de liaison et des électrovannes qui permettent la circulation des gaz et la permutation des rôles des bouteilles, de la manière expliquée plus haut. On a encore illustré, pour chaque boucle, un by-pass 31 d'oxygène ; grâce à celui-ci, un débit d'oxygène froid peut éviter l'échangeur 8A, ... afin d'effectuer un réglage de température, ce débit étant asservi à la température de l'azote sortant de l'échangeur.
Lorsque l'installation est en régime permanent, on a vu que l'appoint d'oxygène nécessaire est relativement faible, tandis que le débit d'azote est du même ordre de grandeur que le débit circulant dans les boucles. C'est en général ce débit d'azote qui impose la taille de l'appareil de séparation d'air.
Pour diminuer ce débit d'azote et, par suite, réduire l'investissement et l'énergie, on peut penser, pour la phase de 11
désorption, utiliser soit de l'azote plus chaud, soit de l'azote à plus basse pression (par rapport à la pression de la phase d'adsorption) . Cependant, la première solution est à écarter du fait de la brève durée des diverses phases, qui ne permet pas de jouer sur les températures ; il ne reste donc que la seconde solution, qui peut se réaliser en augmentant la pression de marche des ozoneurs, la pression de désorption étant fixée par la pression d'utilisation du mélange azote-ozone (ici 1,1 bar environ) .En variante, on peut aussi diminuer la pression de désorption en plaçant dans la conduite 10 une machine de compression qui refoule à la pression d'utilisation désirée. Pour une teneur en ozone de 3 à 5 % molaire, on pourrait ainsi utiliser une pression d'adsorption de 1,1 à 2,5 ata et une pression de désorption comprise entre 0,5 et 1,5 ata. Un autre avantage éventuel de la désorption à pression inférieure à celle de l'adsorption est une concentration en ozone plus élevée dans le gaz de production R + 03 sensiblement majorée dans le rapport inverse des pressions absolues.
On a illustré aux figures 6 et 7 d'autres variantes d'amenée du froid aux bouteilles d'adsorption, le choix dépendant des divers paramètres de chaque application, par exemple de la longueur des conduites de liaison entre l'appareil de séparation d'air et le site des boucles d'ozonisation. On a représenté ces deux variantes dans le cas d'une installation à une seule boucle, correspondant au schéma de la figure 1, couplée à l'appareil de séparation d'air de la figure 5A.
A la figure 6, on retrouve la boucle 1 avec le compresseur "Roots" 2, l'ozoneur 3, les trois bouteilles d'adsorbant 4 à 6, l'échangeur de chaleur 8 et les collecteurs 9 d'azote, 10 de mélange azote-ozone et 11 d'oxygène d'appoint.
Dans ce cas, corme il n'y a qu'une seule boucle d'ozonisation, le collecteur 9 n'est pas dédoublé ; l'azote est simplement réchauffé jusqu'à environ - 80°C dans 1*échangeur 8 puis envoyé à la bouteille (ici 6) en désorption, et le mélange azote-ozone est récupéré par le collecteur 10. Le mélange oxygène-ozone circulant dans la boucle traverse la bouteille en adsorption (ici 4) et pénètre dans l'échangeur 8 au niveau de température (environ - 80°C) où en sort l'azote de désorption, puis est réchauffé jusqu'à la température ambiante et renvoyé au compresseur 2. C'est le débit de balayage dérivé de la boucle qui traverse la troisième bouteille (ici 5) via un collecteur 32 et une dérivation 32.. et est récupéré par une conduite 100- dans le collecteur 9, en aval de l'échangeur 8. Les trois conduites 1004, 100g et 100g se rejoignent pour former le collecteur de récupération 100, corrmandé par la vanne 30 à débit constant. De même que le collecteur 9, le collecteur 11 comporte une seule branche. L'oxygène d'appoint sort de la ligne d'échange 24 de la figure 5A au même niveau de température que l'azote, soit environ - 90°C, corrme indiqué en trait interrompu en lia à la figure 5A, et est réchauffé jusqu'à la température ambiante dans l'échangeur 8, à contre-courant du mélange oxygène-ozone, avant d'être injecté dans la boucle 1, par l'intermédiaire de la vanne 29 asservie à la pression de cette boucle. On retrouve également un by-pass 31 de réglage de température.
La variante de la figure 7 diffère de la précédente par le fait que le refroidissement du mélange oxygène-ozone de la boucle 1 est entièrement assuré à contre-courant par l'oxygène d'appoint, lequel est amené par le collecteur 11 sous forme gazeuse mais à son point de rosée, soit environ - 175°C, comme indiqué en trait mixte en 11b à la figure 5A, voire même à l'état liquide, et injecté dans la boucle au bout froid de 1'échangeur 8. Dans ce cas, l'azote est extrait de la ligne d'échange 24 directement à la température de désorption, soit environ - 80°C. Afin d'éviter le risque d'apparition au point d'injection de l'oxygène d'une phase liquide riche en ozone, l'appoint de gaz froid a été fait non pas directement dans le mélange oxygène-ozone avant son introduction dans l'adsorbeur 4, mais dans le fluide sortant de ce dernier, donc dans un fluide à très faible concentration en ozone.
Le procédé tel qu'il a été décrit permet d'obtenir dans un débit maintenu constant de gaz de substitution une teneur en ozone pratiquement constante du début à la fin de la phase de désorption, avec cependant une légère chute régulière de cette teneur fonction du dimentionnement des adsorbeurs et de la durée des phases. La solution à i boucles d'ozonisation (figure 3 et figure 5B) conduit, du fait du décalage dans le temps des mises en phase de désorption des bouteilles des différentes boucles, à une réduction dans le rapport ri de la baisse de teneur en ozone par rapport à une installation à une seule boucle. Si l'utilisateur est intéressé non pas tant par une teneur constante, mais par une quantité constante d'ozone délivrée, le procédé permet d'assurer cette constance de la production en modulant le débit de gaz de substitution au cours de la phase de désorption de façon à compenser la légère baisse de teneur par une augmentation sensiblement proportionnelle du débit.
On peut aussi utiliser la même propriété du système, à savoir la présence permanente d'un ballast massif d'ozone dans les adsorbeurs, pour faire face à une augmentation instantanée de la demande en ozone : il suffit d'augmenter instantanément le débit de gaz de substitution envoyé en désorption pour augmenter sensiblement dans les mêmes proportions la production d'ozone ; bien entendu, on augmentera simultanément la production d'ozone à l'ozoneur, par augmentation du débit d'oxygène à teneur en ozone constante ou par augmentation de la teneur en ozone à débit d'oxygène constant, selon le mode de réglage préféré, mais le fait de prélever sur le ballast d'ozone permet de répondre instantanément à la demande, sans attendre le temps d'un cycle. il en est de même lors d'une diminution de la demande en ozone. Si l'on agit sur 1Ozoneur par variation du débit d'oxygène à teneur constante en ozone, le nouveau régime à l'équilibre sera obtenu avec un gaz de substitution à teneur inchangée, mais à débit modifié aussi longtemps que la demande ne varie pas à nouveau. Si au contraire on agit sur l'ozoneur par variation de la teneur en ozone à débit d'oxygène inchangé, le nouveau régime à l'équilibre sera obtenu avec un gaz de substitution à teneur en ozone modifié, mais à débit inchangé ; le débit n'aura été modifié que provisoirement, le temps de reconstituer dans les adsorbeurs le ballast d'ozone correspondant au nouveau régime de fonctionnement.
Il est à noter que l'association d'un appareil de distillation d'air et d'une installation de production d'ozone permet d'adsorber l'ozone dans une plage de températures optimale (-50°C à -110°C environ) inférieure à celles que l'on peut atteindre au moyen des machines frigorifiques industrielles disponibles dans le commerce.
On va maintenant décrire des appareils qui permettent de mettre en oeuvre les procédés expliqués ci-dessus, en mettant en particulier à profit les caractères spécifiques de ces procédés : pression d'adsorption voisine de la pression de désorption; possibilité d'adjoindre de l'oxygène au mélange de production azote-ozone (le seul inconvénient étant le coût de l'oxygène ainsi perdu pour la boucle d'ozonisation) , mais nécessité de ne pas laisser des quantités notables d'azote pénétrer dans la boucle d'ozonisation pour ne pas enrichir progressivement celle-ci en azote jusqu'au-delà d'une valeur limite acceptable peur le bon fonctionnβnent de l'ozoneur.
L'appareil représenté aux figures 8,10 et 11 comprend une enveloppe extérieure 40, constituée d'une virole cylindrique 41 d'axe X - X vertical et de deux fonds bombés supérieur 42 et inférieur 43, dans laquelle est monté coaxialement un équipage rotatif 44. ce dernier comporte un support inférieur horizontal 45 en forme de plaque circulaire, un couvercle supérieur annulaire 46 et deux grilles cylindriques, extérieure 47 et intérieure 48, entre lesquelles est disposé un lit annulaire 49 de matière adsorbante . La grille 47 relie les périphéries extérieures du support 45 et du couvercle 46, tandis que la grille 47 traverse l'ouverture centrale de ce couvercle et est guidée à rotation à son extrémité supérieure par un roulement ëtanche 50 solidaire du fond 42 de l'enveloppe .
Les deux grilles sont perforées sur toute leur hauteur sauf dans leur partie supérieure, à partir d'un niveau situé un peu au-dessous du couvercle 46. Le support 45 est monté sur un roulement circulaire 51 à galets porté par le fond inférieur 43 de l'enveloppe par l'intermédiaire d'une ossature métallique 52 comprenant un plancher 53. L'équipage 44 peut être entraîné en rotation autour de l'axe X-X par un pignon 54 relié à un moteur 55 intérieur à l'enveloppe et attaquant une couronne dentée 56 fixée sous le support 45.
Une cloison radiale 57 divise l'espace intérieur de la grille 48 en deux demi-espaces 58,59. Cette cloison est fixée au fond supérieur 42 et frotte d'une part, le long de son bord inférieur, sur le support 45 par l'intermédiaire d'une raclette d'étanchéité 60, d'autre part, le long de chaque bord longitudinal, sur la grille 48 par l'intermédiaire de deux raclettes d'étanchéité 61, 62 (figures 8 et 11) . De plus, l'espace situe entre l'équipage rotatif 44 et l'enveloppe 40 est divisé en deux de la manière suivante.
D'une part, il est prévu, sur toute la hauteur de l'équipage 44, du couvercle 46 au plancher fixe 53, deux cloisons radiales (figure 8) : une cloison radiale 63 coplanaire à' la cloison 57, et une autre cloison radiale 64 décalée angulairement d'un angle aigu dans le sens antihoraire (en considérant la figure 8) par rapport à la position diamétralement opposée à la cloison 63. Chacune des cloisons 63 et 64 est fixée par son bord extérieur à la virole 41 et frotte par une raclette d'étanchéité sur la grille 47.
D'autre part, il est prévu deux joints d'étanchéité s'étendant chacun dans un plan horizontal sur un peu plus d'un demi-cercle, de la cloison 63 à la cloison 64. Le joint supérieur 65 est fixé au fond supérieur 42 de l'enveloppe et frotte sur la périphérie extérieure du couvercle 46, tandis que le joint inférieur 66 est fixé sur la face supérieure du plancher 53 et frotte sur la périphérie extérieure du support 45. Pour la distribution des gaz, le sommet du fond supérieur 42 comporte deux orifices 67,68 débouchant à l'intérieur de la grille 48, de part et d'autre de la cloison 57, tandis que le fond inférieur 43 présente deux orifices 69,70 débouchant sous le support 45, de part et d'autre d'une cloison radiale 71 qui fait partie de l'ossature 52. Le lit d'adsorbant 49 est par ailleurs divisé en de multiples secteurs 72 (au nombre de trente-deux dans l'exemple représenté) par des plaques radiales
73 (figure 8) reliant les deux grilles.
Ainsi, l'espace compris entre l'équipage 44 et l'enveloppe 40 est divisé de façon étanche en un demi-espace 74 qui communique seulement avec l'orifice 69 et, à travers une partie des secteurs 72 du lit d'adsorbant, avec l'orifice 67, et en un demi-espace 75 qui ccxriπunique seulement avec l'orifice 70 et, à travers une autre partie des secteurs 72, avec l'orifice 68.
Cet appareil est utilisé de la façon suivante pour mettre en oeuvre un procédé analogue à celui illustré en trait mixte à la figure 1, l'appareil remplaçant les trois bouteilles illustrées sur cette figure.
L'orifice 67 est relié à la boucle 1, en aval de l'échangeur de chaleur 8, de sorte qu'il est alimenté en permanence par le mélange oxygène-ozone refroidi par cet échangeur .L'orifice 68 est relié à la conduite de gaz de production 10. L'orifice 69 est relié à la boucle 1, en amont du retour dans l'échangeur 8. L'orifice 70 est relié à la conduite 9 d'alimentation en azote. L'équipage 44 est entraîné en rotation à vitesse constante dans le sens horaire de la figure 8.
On supposera que l'oxygène à l'orifice 69 et l'azote à l'orifice 70 sont sensiblement à la même pression P, par exemple légèrement supérieure à la pression atmosphérique ; compte tenu d'une perte de charge p, par exemple de l'ordre de 30 mb, à la traversée du lit 49, on aura une pression P + p à l'orifice 65 et P — p à l'orifice 68, ce qui impose les sens de circulation des gaz.
Les cloisons 57,63 et 64 (figure 8) répartissent les secteurs 72 en trois catégories : - de la cloison 63 à l'emplacement diamétralement opposé 76, en tournant dans le sens antihoraire, la moitié de ces secteurs, référencés 72-, sont traversés radialement de l'intérieur vers l'extérieur par le mélange oxygène-ozone, qui s'appauvrit progressivement en ozone du fait de l'adsorption pour laisser sortir dans le demi-espace extérieur 74 de l'oxygène pur ;
- de la même cloison 63 à la cloison 64, en tournant dans le sens horaire, un peu moins de la moitié restante des secteurs 72, référencés 722, sont traversés de l'extérieur vers l'intérieur par de l'azote, qui s'enrichit progressivement en ozone pour délivrer dans le demi-espace intérieur 58 en regard un mélange azote-ozone constituant le produit de l'installation ;
- un secteur 72, ou un petit nombre de secteurs 72 ( au nombre de deux, référencés 72., et 72. sur la figure 8) , situées) entre la cloison 64 et l'emplacement 76. Ce ou ces secteurs sont alimentés par l'extérieur par l'oxygène de l'espace 74,qui s'enrichit progressivement en ozone et balaie l'azote encore présent, de sorte qu'ils délivrent un mélange oxygène-ozone-azote dans le demi-espace central 58 qui ccxriπunique avec l'orifice 68.
Ainsi, si l'on considère un secteur 72 donné, tournant sur un tour complet à partir de l'emplacement 76 :
- de cet emplacement 76 jusqu'à la cloison 63, ce secteur subit une phase d'adsorption de l'ozone du mélange oxygène-ozone refroidi sortant de l'échangeur de chaleur 8 (figure 1) et introduit dans le demi-espace central 59 par l'orifice 67 ; - de la cloison 63 à la cloison 64, le même secteur 72 est désorbé à contre-courant (c'est-à-dire radialement de l'extérieur vers l'intérieur) par de l'azote introduit dans le demi-espace extérieur 75 par l'orifice 70;
- de la cloison 64 à l'eirplacement 76, ce secteur 72 subit un balayage à contre-courant par de l'oxygène , cet oxygène complétant par ailleurs la phase de désorption de ce secteur. En considérant l'ensemble des N secteurs 72, on a à chaque instant N/2 secteurs en adsorption, n secteurs en balayage-désorption (nombre de secteurs compris entre la cloison 64 et l'emplacement 76) et
(N/2) — n secteurs en désorption. L'installation fournit ainsi en permanence un débit constant de mélange constitué essentiellement d'azote et d'ozone, sans qu'aucune vanne de ccmmutation soit nécessaire.
Comme on le comprend, on peut régler la durée relative de chaque phase d'adsorption, de désorption et de balayage-désorption par le choix du décalage angulaire entre la cloison 64 et le plan des cloisons 57 et 63, et la durée absolue de chaque phase par le choix de la vitesse de rotation de l'équipage 44.
On remarque que les roulements 50 et 51 ainsi que le pignon 54 et son moteur d'entraînement 55 sont entièrement contenus dans le demi-espace 75, et donc sous atmosphère d'azote, ce qui est avantageux pour leur bon fonctionnement et pour la sécurité.
La variante de la figure 9 ne diffère de celle de la figure 8 que par le fait que la cloison 64 est décalée angulairement dans le sens horaire par rapport à l'emplacement 76. Par suite, le ou les secteurs 72_ 72. compris entre l'emplacement 76 et la cloison 64 sont en phase de balayage à co-courant (radialement de l'intérieur vers l'extérieur) par le mélange oxygène-ozone provenant du demi-espace central 59, et le mélange oxygène-azote qui en ressort parvient dans le demi-espace extérieur 75 et se mélange avec l'azote qui alimente ce dernier pour participer avec cet azote à la désorption à contre-courant des N/2 secteurs compris entre la cloison 63 et l'emplacement 76.
On comprend donc que l'appareil de la figure 9, en remplaçant les trois bouteilles 4 à 6 de la figure 1, permet de mettre en oeuvre le procédé illustré en trait plein sur cette figure 1, sans qu'aucune vanne de ccîrπiutation soit nécessaire. Cette simplification de l'installation, qui a pour conséquence une réduction considérable des risques de fuites, est représentée sur la figure 12, qui reprend à titre d'exemple le schéma de la figure 6, avec les mêmes numéros de référence, mais utilise l'appareil à lit d'absorbant rotatif de la manière expliquée ci-dessus. L'appareil représenté aux figures 13 à 15 est basé sur le mare principe général que ceux des figures 8 à 11, et les éléments correspondants portent les mêmes numéros de référence : un lit annulaire d'adsorbant 49 délimité par deux grilles extérieure 47 et intérieure 48 est divisé en N secteurs 72 par des plaques radiales 73 s'étendant entre ces deux grilles, et chacun de ces secteurs est mis successivement en communication avec une alimentation en mélange oxygène-ozone, avec une alimentation en azote et avec une alimentation en un gaz de balayage qui est, dans l'exemple représenté, de l'oxygène. La différence essentielle réside dans le fait que, maintenant, le lit 49 est fixe tandis que l'appareil comprend un noyau tournant, constituant l'équipage rotatif 44, qui assure la distribution désirée des trois gaz entre les secteurs 72. Plus précisément, l'enveloppe 40 comporte dans sa partie inférieure un double fond 77 convergent vers le bas qui se termine, à son extrémité inférieure, par un cylindre ouvert 78. Une tubulure constituant l'orifice 69 part radialement de ce cylindre et traverse à joint étanche la virole 41, et deux joints d'étanchéité annulaires 79 sont fixés dans le cylindre 78, au-dessus et au-dessous de cette tubulure . L'orifice 70 débouche dans l'espace compris entre le fond inférieur 43 et le double fond 77.
Les deux grilles 47 et 48 sont reliées à leur sommet par le fond supérieur 42 et à leur base par le support 45, qui est ici à peu près tronconique et parallèle au double fond 77. La grille intérieure 48 se prolonge vers le bas jusqu'au cylindre 78, et un joint d'étanchéité annulaire 80 est fixé dans la grille 47 au niveau du raccordement entre celle-ci et le support 45. De plus, les plaques 73 se prolongent vers l'extérieur jusqu'au fond 42, à la virole 41 et au double fond 77, de sorte que c'est tout l'espace délimité par la grille 47, le fond 42, la virole 41 et le double fond 77 qui est divisé en N secteurs, comme on le voit aux figures 14 et 15.
L'enveloppe 40 présente à son sommet une ouverture 81 de même diamètre que la grille 48 et sur laquelle est fixé un dôme cylindrique 82 de même diamètre, fermé à son sommet et ouvert à sa base. Deux tubulures, constituant respectivement les orifices 67 et 68, débouchent radialement dans la partie inférieure et dans la partie supérieure, respectivement, du dôme 82. Deux joints d'étanchéité annulaires 83 sont fixés dans le dame respectivement entre les deux tubulures 67 et 68 et au-dessous de la tubulure 67.
Le noyau tournant 44 est guidé par un roulement supérieur 84 prévu au sommet du dôme 82 et par un roulement inférieur 85 prévu au point bas du fond 83. Il est entraîné en rotation par un moteur 55 fixé sur le fond 43, à l'intérieur de l'enveloppe 40, par l'intermédiaire d'une vis sans fin 86 qui attaque une roue dentée 87 solidaire du noyau. Près de chaque extrémité, le noyau 44 comprend un boisseau cylindrique ouvert à ses deux extrémités. Le boisseau supérieur 88 coopère par ses parties d'extrémité avec les deux joints 83 et présente entre ceux-ci une fente semi-circulaire 89 dont le bord supérieur est relié à la périphérie d'une plaquette horizontale 90 en forme de demi- lune ( figure 16) . Du bord rectiligne et diamétral de cette plaquette 90 part vers le bas une cloison verticale diamétrale 57 dont la largeur est égale au diamètre intérieur du boisseau 88. Sur toute la hauteur de la grille 48, la cloison 57 porte deux raclettes 61, 62 qui frottent sur cette grille (figure 14) , de façon à délimiter deux demi-espaces intérieurs 58 et 59. A son extrémité inférieure, la cloison 57 porte un obturateur 91 en forme de coupelle inversée 91 dont la paroi périphérique coopère avec le joint 80.
Le boisseau inférieur 92 coopère par ses parties d'extrémité avec les deux joints 79 et présente entre ceux-ci une fente 93 dont le bord inférieur est relié à la périphérie d'une plaquette horizontale 94 située à l'aplomb de la plaquette 90.
Corme on le voit aux figures 15 et 17, la plaquette 94 a une forme s'étendant un peu au-delà d'une demi-lune et est limitée par deux rayons formant entre eux un angle obtus ; l'un de ses rayons se trouve dans le plan de la cloison 57, et l'autre est décalé d'un angle aigu dans le sens horaire (en considérant les figures -14,15 et 17) par rapport au rayon diamétralement opposé, ce décalage correspondant à un petit nombre de secteurs n, avec n = 2 dans l'exemple représenté. Une cloison 95, formant un dièdre de même angle, s'étend verticalement entre ces rayons et la face inférieure de l'obturateur 91. Entre le joint supérieur 79 et le joint 80, cette cloison 95 frotte par ses deux bords, munis de raclettes d'étanchéité, sur le prolongement inférieur de la grille 48.
Chaque boisseau 88, 92 délimite un espace annulaire, respectivement 96, 97, avec la paroi cylindrique 82,78 qui l'entoure.
En fonctionnement, les orifices 67 à 70 sont branchés comme aux figures 8 à 12, et le noyau 44 est entraîné en rotation dans le sens horaire des figures 14 et 15. Le mélange oxygène-ozone arrive par la tubulure 67 et pénètre dans l'espace 59 à travers la fente 89 et éventuellement l'espace 96. De là, ce mélange traverse N/2 secteurs 72- (figure 14), et de l'oxygène sort dans les compartiments 98 correspondants situés à l'extérieur de la grille 47. Cet oxygène se rassemble sous l'obturateur 91, à l'intérieur du prolongement inférieur de la grille 48, et, grâce à la forme de la cloison 95, est redistribué sur(N/2) + n secteurs 72^ 723, 724
Ainsi, une partie de l'oxygène retraverse en sens inverse, c'est-à-dire vers l'axe X-X,n secteurs 723 et 724 (figure 14) , et l'essentiel de l'oxygène sort par la tubulure 69 via la fente 93, et éventuellement l'espace annulaire 97, du boisseau inférieur 92.
Simultanément, l'azote introduit par la tubulure 70 traverse le boisseau 92 de bas en haut, pénètre dans les (N/2) — n compartiments 98 restants et, de là, traverse les secteurs 722 correspondants vers l'axe X-X, pour s'évacuer par la tubulure 68 sous forme de mélange azote-ozone (avec un peu d'oxygène) , après avoir traversé de bas en haut le boisseau supérieur 88.
On comprend que centre dans le cas des figures 8, 10 et 11, chaque secteur 72 subit successivement une phase d'adsorption de l'ozone du mélange oxygène-ozone, une phase de désorption à contre-courant par l'azote et une phase de balayage à contre-courant par de l'oxygène, cet oxygène complétant en même temps la désorption et se retrouvant dans le gaz de production constitué essentiellement d'azote et d'ozone. Bien entendu, on retrouverait la variante de la figure 9 en inversant le sens du décalage des deux parties de la cloison 95, comme illustré en trait mixte à la figure 15. la figure 18 illustre un appareil tout-à-fait similaire à celui des figures 13 à 17 mais qui n'en diffère que par le fait que le lit d'adsorbant 49 est du type "plat", c'est-à-dire à écoulement axial, au lieu d'être du type à écoulement radial. Pour cela, l'appareil est modifié de la manière suivante : la grille extérieure 47 est supprimée, et le support 45 est remplacé par une grille-support horizontale 45 A s'étendant de la grille 48, au niveau du joint 80, jusqu'à la virole 41. Le lit 49 s'étend à peu près jusqu'au sommet de cette dernière et, sur toute la hauteur de ce lit, la grille 48 est pleine .L'appareil fonctionne de la même manière que celui des figures 13 à 17, à ceci près que les gaz traversent verticalement le lit 49. De même, le principe du lit rotatif illustré aux figures 8 à 11 peut s'appliquer au cas d'un lit d'adsorbant "plat", comme représenté aux figures 19 à 21.
Dans cette variante, l'équipage rotatif 44 comprend deux tôles cylindriques 47 A, 48 A, délimitant un espace annulaire dans lequel est disposé le lit d'adsorbant 49, qui l'emplit jusqu'à une faible distance de son sc.rmet.Cet espace annulaire est fermé à sa base par une grille- support 45 A et est ouvert vers le haut. L'espace intérieur à la tôle intérieur 48 A est fermé à ses deux extrémités par des disques pleins supérieur 99 et inférieur 100.
Par ailleurs, l'espace annulaire contenant le lit 49 est comme précédemment divisé en N secteurs 72 par des plaques radiales 73 s'étendant sur toute sa hauteur et d'une tôle à l'autre. Sur le bord supérieur de chaque cloison 73 est fixé un arrondi 101 (figure 21) qui lui confère une section en T. L'équipage 44 repose sur un roulement circulaire 51, dont l'un au moins des galets est entraîné par un moteur non représenté. -
Pour assurer la séparation des espaces contenant les différents gaz et distribuer les gaz entre les secteurs 72, il est prévu : - deux joints d'étanchéité annulaires 102, fixés respectivement en haut et en bas de la virole 41 et frottant sur les parties supérieure et inférieure de la tôle extérieure 47 A ;
- une cloison diamétrale 103 partant du fond supérieur 42 et descendant jusqu'à proximité de l'équipage 44 ; cette cloison porte à son extrémité inférieure, sur toute sa longueur, une raclette d'étanchéité 104 qui coopère avec le disque 99 et le joint supérieur et, tour à tour, avec tous les arrondis 101 (figure 21) pendant la rotation de l'équipage 44 ;
- une cloison inférieure 105 partant du fond inférieur 43 et. montant jusqu'à proximité de l'équipage 44. Cette cloison se trouve sur la moitié de sa longueur dans le même plan que la cloison 103, et, sur l'autre moitié de sa longueur, dans un plan décalé par rapport à ce plan d'un angle aigu, correspondant à n secteurs 723, 72., dans le sens antihoraire de la figure 20. Dans l'exemple représenté, on a choisi n = 2. La cloison 105 porte sur toute sa longueur sur son bord supérieur une raclette d'étanchéité 106 qui frotte sur la grille 45 A, sur le disque inférieur 100 et sur le joint inférieur 102. Les orifices 67 et 68 débouchent de part et d'autre de la cloison 103, tandis que les orifices 69 et 70 débouchent de part et d'autre de la cloison 105.
En fonctionnèrent, l'équipage 44 est entraîné en rotation dans le sens horaire. Comme précêderrment, le mélange oxygène-ozone pénètre par l'orifice 67 dans l'appareil, traverse de haut en bas N/2 secteurs 72- en phase d'adsorption et sort pour l'essentiel par l'orifice 69 sous forme d'oxygène pur. L'azote pénètre par l'orifice 70, traverse de bas en haut
(N/2) — n secteurs 722 en phase de désorption et sort par l'orifice 68 sous forme du mélange de production constitué essentiellement d'azote et d'ozone. Une partie de l'oxygène est renvoyé de bas en haut à travers les n secteurs restants 72- 72. , pour compléter la désorption de ces secteurs et en effectuer le balayage. Là encore, en décalant dans l'autre sens la moitié de la cloison 105, on pourrait effectuer un balayage à co-courant (de haut en bas) des n secteurs 72_, 72. par du mélange oxygène-ozone, l'oxygène résultant étant réuni à l'azote de désorption.
On remarque que dans tous les modes de réalisation décrits ci-dessus, l'espace contenant de l'azote est adjacent à celui contenant de l'oxygène, ces deux espaces (par exemple les espaces 75 et 74 des figures 8 à 11) étant sensiblement à la même pression P. Ainsi, le risque de fuites d'azote dans l'oxygène de la boucle d'ozonisation est minimal. De même, les deux autres espaces, contenant respectivement le mélange oxygène-ozone et le mélange de production, sont adjacents l'un à l'autre, le premier (espace 59 des figures 8 à 11) étant à la pression maximale P + p et le second (espace 58 des figures 8 à 11) étant à la pression πûnimale P-p. Ainsi il peut se produire une perte d'oxygène de la boucle, mais, là encore, l'azote ne peut pas passer dans celle-ci.

Claims

REVENDICATICNS
1. - Procédé de production d'ozone, du type dans lequel de l'oxygène en circulation dans une boucle d'ozonisation (1) est partiellement ozonisé dans un ozoneur (3) , puis l'ozone est piégé par adsorption et désorbé par un gaz de susbtitution, caractérisé en ce que : on envoie le mélange oxygène-ozone dans une première masse d'adsorbant (4 ; 72,), dans un sens dit co-courant, où l'ozone est adsorbé ; on envoie simultanément dans une seconde masse d'adsorbant (6 ; 722) , à contre-courant, un flux de gaz de substitution servant à la désorption de cette seconde masse ; on effectue simultanément un balayage d'une troisième masse d'adsorbant (5 ; 72-., 72.) en faisant traverser cette troisième masse d'adsorbant par un flux de gaz de balayage prélevé dans la boucle (1) , chaque masse d'adsorbant (4 à 6 ; 72- à 72.) étant successivement traversée par le mélange oxygène-ozone, le gaz de substitution et le gaz de balayage ; et l'on adjoint au flux de gaz de substitution le flux de gaz*de balayage ayant traversé la troisième masse d'adsorbant (5 ; 72_, 72.).
2. - Procédé suivant la revendication 1, caractérisé en ce qu'on utilise comme gaz de balayage une partie du mélange oxygène-ozone circulant dans la boucle (1) , ce gaz de balayage circulant à co-courant dans ladite troisième masse d'adsorbant (5 ; 72_, 72.), et en ce qu'on l'adjoint au gaz de substitution avant que ce dernier pénètre dans ladite seconde masse d'adsorbant (6 ; 72-) .
3.- Procédé suivant la revendication 1, caractérisé en ce qu'on utilise comme gaz de balayage une partie de l'oxygène sortant de ladite première masse d'adsorbant (4 ; 72, ) , cet oxygène circulant à contre courant dans ladite troisième masse d'adsorbant (5 ; 72-., 72.) , et en ce qu'on l'adjoint au gaz de substitution sortant de ladite seconde masse d'adsorbant (6, 72-)
4. - Procédé de production d'ozone, notarrment suivant l'une quelconque des revendications 1 à 3, du type dans lequel, dans au moins une boucle d'ozonisation (1 ; 1A ..., 1D) , de l'oxygène est partiellement ozonisé dans un ozoneur (3) , puis l'ozone est piégé à froid par adsorption et désorbé par un gaz de substitution, caractérisé en ce qu'on produit par distillation d'air l'oxygène à ozoniser et un gaz résiduaire, et en ce qu'on utilise le gaz résiduaire comme gaz de substitution et l'un au moins de ces deux gaz pour fournir l'appoint de froid nécessaire pour amener le mélange oxygène-ozone à la température froide d'adsorption.
5. - Procédé suivant la revendication 4, caractérisé en ce qu'on produit la totalité du froid nécessaire en détendant dans une
5 turbine (22) une partie importante, notamment la moitié ou plus , du débit d'air avant de la distiller, l'énergie mécanique ainsi produite étant utilisée pour compléter la compression de l'air.
6. - Procédé suivant l'une quelconque des revendications 1 à 5, caractérisé en ce qu'on utilise un débit de gaz de substitution du mare 0 ordre que le débit de mélange oxygène-ozone.
7. - Procédé suivant l'une quelconque des revendication 1 à 6, caractérisé en ce que le gaz de substitution est utilisé pour la désorption à une température légèrement supérieure à la température d'adsorption.
15 8. - Procédé suivant l'une quelconque des revendications 1 à 7, caractérisé en ce que le gaz de substitution est utilisé pour la désorption à une pression inférieure à la pression d'adsorption.
9. - Procédé suivant l'une quelconque des revendications 1 à 8, caractérisé en ce qu'on module au cours de la phase de désorption le
20 débit de gaz de substitution de manière à maintenir sensiblement constante la quantité d'ozone délivrée à l'utilisateur.
10. - Procédé suivant l'une quelconque des revendications 1 à 9, caractérisé en ce que, pour répondre instantanément à une variation de la demande d'ozone, on fait varier instantanément dans le marne sens le
25. débit de gaz de substitution.
11. - Procédé de production d'ozone, notamment suivant l'une quelconque des revendications 1 à 10, à n boucles d'ozonisation (1A, .., 1D) , du type dans lequel, dans chaque boucle, de l'oxygène est partiellement ozonisé dans un ozoneur (3), puis l'ozone est piégé par
30 adsorption et désorbé par un gaz de substitution, caractérisé en ce.que, dans chaque boucle, on utilise deux bouteilles d'adsorption (4A, 5A, ..., 4D, 5D) ,de la manière suivante : le mélange oxygène-ozone est refroidi et envoyé dans une bouteille d'adsorption (4) , dans un sens dit co-courant, où l'ozone est adsorbê, puis on envoie dans la mare bouteille, à contre
35 courant , un flux de gaz de substitution, puis on effectue un balayage en faisant traverser la même bouteille par un flux de gaz de balayage prélevé dans la boucle, et en ce que, dans une partie au moins de chaque nième de cycle, on a simultanément une bouteille (4A, ..., 4D) de chaque boucle en phase d'adsorption à co-courant, une bouteille (5A, 5B, 5C) de (n- 1) boucles (1A, 1B, 1C) en phase de désorption à contre-courant et la bouteille restante (5D) de la niè e boucle (ID) en phase de balayage par un flux de gaz de balayage prélevé dans cette nième boucle.
12. - Procédé suivant la revendication 11, caractérisé en ce que les temps de désorption et de balayage de chaque bouteille (4A, 5A,... 4D, 5D) sont respectivement (n-1) /n et 1/n et par rapport au temps d'adsorption pris comme unité.
13. - Appareil pour la mise en oeuvre d'un procédé suivant l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comprend :
- une enveloppe (40) contenant un lit annulaire (49) de matière adsorbante divisé en un certain nombre de secteurs (72) ; - des cloisons (53, 57, 63 à 66, 71 ; 57, 88, 91, 92, 95 ; 102,
103, 105) divisant le volume compris entre ce lit annulaire (49) et l'enveloppe (40) en quatre espaces (59, 74, 75, 58) communiquant respectivement avec un premier orifice (67) d'entrée de mélange oxygène-ozone , un second orifice (69) de sortie d'oxygène, un troisième orifice (70) d'entrée de gaz de substitution et un quatrième orifice (68) de sortie d'un gaz de production constitué essentiellement du gaz de substitution et d'ozone, ces cloisons faisant ccirmuniquer ledit premier orifice (67) avec le côté amont, vis-à-vis de l'adsorption, d'un premier ensemble (72-) des dits secteurs (72) , ledit second orifice (69) avec le côté aval, vis-à-vis de l'adsorption, d'un second ensemble (72-, 72-., 72.) de secteurs (72) constitué dudit premier ensemble de secteurs (72-) et d'un troisième ensemble de secteurs (72-, 72.) adjacent audit premier ensemble (72-) , ledit troisième orifice (70) avec le côté amont, vis-à-vis de la désorption à contre-courant, d'un quatrième ensemble de secteurs (722) constitué par les secteurs restants, et ledit quatrièrre orifice (68) avec le côté aval, vis-à-vis de la désorption, des dits quatrième et troisième ensembles de secteurs (722, 723, 72.) ; et
- des moyens (51 ; 55) pour effectuer une rotation relative entre le lit annulaire (49) et lesdites cloisons dans un sens tel que chaque secteur (72) fasse successivement et cycliquement partie desdits premier, quatrième et troisième ensembles.
14. - Appareil pour la mise en oeuvre d'un procédé suivant l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comprend :
- une enveloppe (40) contenant un lit annulaire (49) de matière adsorbante divisé en un certain nombre de secteurs (72) ;
- des cloisons (53, 57, 63 à 66, 71 ; 57, 88, 91, 92, 95, 102, 103, 105) divisant le volume compris entre ce lit annulaire (49) et l'enveloppe (40) en quatre espaces (59, 74, 75, 58) ccπmuniquant respectivement avec un premier orifice (67) d'entrée de mélange oxygène-ozone , un second orifice (69) de sortie d'oxygène, un troisième orifice (70) d'entrée de gaz de substitution et un quatrième orifice (68) de sortie de gaz de production constitué essentiellement du gaz de substitution et d'ozone, ces cloisons faisant ccmmuniquer ledit second orifice (69) avec le côté aval, vis-à-vis de l'adsorption, d'un premier ensemble . de secteurs (72,) , ledit premier orifice (67) avec le côté amont, vis-à-vis de l'adsorption, d'un second ensemble de secteurs (72., 72,, 72.) constitué dudit premier ensemble (72.) et d'un troisième ensemble de çecteurs (72,, 72.) adjacent à ce premier ensemble, ledit quatrième orifice (68) avec le côté aval, vis-à-vis de la désorption à contre-courant, d'un quatrième ensemble de secteurs (722) constitué des secteurs restants, et ledit troisième orifice (70) avec le côté amont, vis-à-vis de la désorption, desdits troisième et quatrième ensembles de secteurs (722, 72-, 72.) ; et
-des moyens (51 ; 55) pour effectuer une rotation relative entre le lit annulaire (49) et lesdites cloisons dans un sens tel que chaque secteur (72) fasse successivement et cycliquement partie desdits premier, quatrième et troisième ensembles.
15. - Appareil suivant l'une des revendications 13 et 14, caractérisé en ce que le lit d'adsorbant (49) est monté rotatif dans l'enveloppe (40) tandis que les cloisons sont fixes.
16. - Appareil suivant l'une des revendications 13 et 14, caractérisé en ce que le lit d'adsorbant (49) est fixe tandis que les cloisons sont montées rotatives dans l'enveloppe (40) .
17. - Appareil suivant la revendication 16, caractérisé en ce que les cloisons constituent un noyau tournant (44) disposé au centre du lit d'adsorbant (49) , ce noyau comportant deux boisseaux (88, 92) .
18. - Appareil suivant l'une quelconque des revendications 13 à 17, caractérisé en ce que le lit d'adsorbant (49) est du type à écoulement radial.
19. - Appareil suivant l'une quelconque des revendications 13 à 17, caractérisé en ce que le lit d'adsobant (49) est du type à écoulement axial .
20. - Appareil suivant l'une quelconque des revendications 13 à 19, caractérisé en ce que les moyens (51, 54 à 56) d'entraînement en rotation sont entièrement contenus dans un même espace (75) de l'enveloppe (40) contenant le gaz de substitution.
21.- Appareil suivant l'une quelconque des revendications 13 à 20, caractérisé en ce que les espaces (58, 59) c rimuniquan respectivement avec lesdits quatrième orifice (68) et premier orifice (67) sont adjacents l'un à l'autre, de mâme que les deux autres espaces (74, 75).
PCT/FR1986/000126 1985-04-16 1986-04-15 Procede et appareil de production d'ozone WO1986006056A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT86902421T ATE43823T1 (de) 1985-04-16 1986-04-15 Verfahren und vorrichtung zur erzeugung von ozon.
BR8606627A BR8606627A (pt) 1985-04-16 1986-04-15 Processo e aparelho de producao de ozonio
DE8686902421T DE3663794D1 (en) 1985-04-16 1986-04-15 Method and apparatus for the production of ozone
EP86902421A EP0218660B2 (fr) 1985-04-16 1986-04-15 Procede et appareil de production d'ozone
KR1019860700890A KR930006688B1 (ko) 1985-04-16 1986-04-15 오존 생성방법 및 그 장치
FI865064A FI78441C (fi) 1985-04-16 1986-12-11 Foerfarande och anlaeggning foer produktion av ozon.
NO864998A NO167275C (no) 1985-04-16 1986-12-11 Fremgangsmaate og apparat for fremstilling av ozon.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR85/05699 1985-04-16
FR8505699A FR2580271B1 (fr) 1985-04-16 1985-04-16 Procede de production d'ozone

Publications (1)

Publication Number Publication Date
WO1986006056A1 true WO1986006056A1 (fr) 1986-10-23

Family

ID=9318272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1986/000126 WO1986006056A1 (fr) 1985-04-16 1986-04-15 Procede et appareil de production d'ozone

Country Status (16)

Country Link
US (2) US4786489A (fr)
EP (1) EP0218660B2 (fr)
JP (1) JP2562815B2 (fr)
KR (1) KR930006688B1 (fr)
AT (1) ATE43823T1 (fr)
BR (1) BR8606627A (fr)
DE (1) DE3663794D1 (fr)
ES (1) ES8708199A1 (fr)
FI (1) FI78441C (fr)
FR (1) FR2580271B1 (fr)
MX (1) MX170450B (fr)
NO (1) NO167275C (fr)
NZ (1) NZ215839A (fr)
PT (1) PT82371B (fr)
WO (1) WO1986006056A1 (fr)
ZA (1) ZA862817B (fr)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT392256B (de) * 1989-06-26 1991-02-25 Voest Alpine Ind Anlagen Verfahren zur herstellung von sauerstoff und/oder ozon
FR2667801B1 (fr) * 1990-10-11 1992-12-04 Air Liquide Procede et equipement de separation par adsorption d'au moins un constituant d'un melange gazeux.
GB9207298D0 (en) * 1992-03-31 1992-05-13 Boc Group Plc Treating materials with ozone
BE1005764A3 (nl) * 1992-04-15 1994-01-18 Atlas Copco Airpower Nv Inrichting voor het drogen van een gas.
CA2136265C (fr) * 1993-11-22 1999-07-27 Masami Shimizu Appareil de production et de condensation d'ozone
FR2728554B1 (fr) * 1994-12-27 1997-06-20 Air Liquide Procede et dispositif de traitement d'un melange gazeux comprenant de l'ozone
US5730783A (en) * 1995-02-06 1998-03-24 Nippon Sanso Corporation Ozone concentrating process
US5807422A (en) * 1995-03-03 1998-09-15 Grgich; George R. Divided radial and spherical desiccant bed adsorption units
US5632802A (en) * 1995-03-03 1997-05-27 Grgich; George R. Apparatus and method of regenerating adsorbers for drying air
US5810910A (en) * 1995-10-06 1998-09-22 Air Products And Chemicals, Inc. Adsorbents for ozone recovery from gas mixtures
JP3980091B2 (ja) * 1996-03-01 2007-09-19 三菱電機株式会社 オゾン貯蔵装置
US5759242A (en) * 1996-07-23 1998-06-02 Praxair Technology, Inc. Radial bed vaccum/pressure swing adsorber vessel
US5846298A (en) * 1997-05-09 1998-12-08 Air Products And Chemicals, Inc. Ozone recovery by zeolite adsorbents
US6193852B1 (en) 1997-05-28 2001-02-27 The Boc Group, Inc. Ozone generator and method of producing ozone
GB9712165D0 (en) * 1997-06-11 1997-08-13 Air Prod & Chem Processes and apparatus for producing a gaseous product
US7094275B2 (en) * 1997-12-01 2006-08-22 Questair Technologies, Inc. Modular pressure swing adsorption apparatus
AU752114B2 (en) * 1997-12-01 2002-09-05 Air Products And Chemicals, Inc. Modular pressure swing adsorption apparatus
JPH11335102A (ja) * 1998-05-22 1999-12-07 Iwatani Internatl Corp 高濃度オゾン連続発生方法及びその装置
WO2000074819A1 (fr) * 1999-06-04 2000-12-14 Flair Corporation Systeme et procede d'adsorbeur a tambour rotatif
CA2274318A1 (fr) * 1999-06-10 2000-12-10 Questor Industries Inc. Adsorption modulee en pression avec machine a compression axiale ou centrifuge
US6136284A (en) * 1999-12-09 2000-10-24 The Boc Group, Inc. Process for the removal of nitrogen oxides from gas streams
JP2001248794A (ja) * 2000-03-02 2001-09-14 Kansai Electric Power Co Inc:The オゾン貯蔵方法および装置
US6585805B1 (en) * 2001-12-13 2003-07-01 General Motors Corporation Gas stream apparatus and method
US8211374B2 (en) 2003-07-18 2012-07-03 David Richard Hallam Air cleaning device
US7392657B2 (en) * 2004-06-09 2008-07-01 American Air Liquide, Inc. Methods of dissolving ozone in a cryogen
FR2873750B1 (fr) * 2004-08-02 2009-04-17 Inst Francais Du Petrole Dispositif pour la production d'un gaz chaud par oxydation utilisant un reacteur rotatif simule
US20090229459A1 (en) 2005-06-27 2009-09-17 John Lee Warren Process and Apparatus for Generating and Delivering an Enriched Gas Fraction
US20080028933A1 (en) * 2006-08-07 2008-02-07 Ross David A Radial sieve module
WO2009069774A1 (fr) * 2007-11-30 2009-06-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation Appareil de production de gaz à forte concentration en ozone et procédé de production de gaz à forte concentration en ozone
US8029603B2 (en) 2009-01-23 2011-10-04 Air Products And Chemicals, Inc. Pressure swing adsorption cycle for ozone production
US8182772B2 (en) * 2009-06-26 2012-05-22 Leon Yuan Radial flow continuous reaction/regeneration apparatus
FR2963417B1 (fr) * 2010-08-02 2014-03-28 Air Liquide Vaporiseur a tubes en forme de u
US8840705B2 (en) * 2011-07-07 2014-09-23 Linde Aktiengesellschaft Methods for the ozonolysis of organic compounds
US8808426B2 (en) * 2012-09-04 2014-08-19 Exxonmobil Research And Engineering Company Increasing scales, capacities, and/or efficiencies in swing adsorption processes with hydrocarbon gas feeds
DE102014218344B4 (de) * 2014-09-12 2023-08-03 Dürr Systems Ag Verfahren und Anlage zum Abtrennen von Verunreinigungen aus Prozessabluft
FR3033264B1 (fr) * 2015-03-05 2017-03-03 Ifp Energies Now Reacteur radial a lits catalytiques fixes
WO2017044684A1 (fr) * 2015-09-10 2017-03-16 Linde Aktiengesellschaft Procédés de séparation d'ozone
DE102016210224A1 (de) * 2016-06-09 2017-12-14 Friedrich-Alexander-Universität Erlangen-Nürnberg Reaktor und Verfahren zur Umsetzung von gleichgewichtslimitierten Reaktionen
WO2018026517A1 (fr) 2016-08-04 2018-02-08 Exxonmobil Research And Engineering Company Augmentation des échelles, des capacités et/ou des efficacités dans des procédés d'adsorption modulée avec des alimentations en gaz hydrocarbonés
US10695710B2 (en) * 2018-08-02 2020-06-30 Messer Industries Usa, Inc. Methods for producing ozone and oxygen mixtures
US10730004B2 (en) 2018-08-03 2020-08-04 Messer Industries Usa, Inc. Recovery of oxygen used in ozone production

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3504483A (en) * 1967-09-08 1970-04-07 Hitachi Ltd Apparatus for the removal of sulfur oxides from waste gases
GB1451645A (fr) * 1973-12-20 1976-10-06
JPS5354192A (en) * 1976-10-28 1978-05-17 Mitsubishi Electric Corp Oxygen recycling ozonizer
US4324564A (en) * 1980-07-07 1982-04-13 Near Equilibrium Research Associates Adsorption beds and method of operation thereof
JPS5925724A (ja) * 1982-08-04 1984-02-09 オリンパス光学工業株式会社 内視鏡插入部の先端部
EP0103144A2 (fr) * 1982-08-20 1984-03-21 Messer Griesheim Gmbh Procédé pour la production d'ozone

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2630191A (en) * 1946-10-28 1953-03-03 Jefferson Lake Sulphur Co Cyclic adsorption process
US2799362A (en) * 1956-10-19 1957-07-16 Jefferson Lake Sulphur Co Cyclic adsorption process
DE1181674B (de) * 1959-01-05 1964-11-19 Dr Josef Heyes Vorrichtung zur Trennung von Gas- oder Fluessigkeitsgemischen
SE332052B (fr) * 1967-07-20 1971-01-25 Munters C
US3607133A (en) * 1968-10-23 1971-09-21 Kachita Co Ltd Apparatus for removing carbon monoxide from room air and exhaust gas
SE368662B (fr) * 1972-03-10 1974-07-15 Munters Ab Carl
JPS5239793B2 (fr) * 1973-12-29 1977-10-07
JPS50116389A (fr) * 1973-12-29 1975-09-11
US3921002A (en) * 1974-04-22 1975-11-18 Martin Marietta Corp Ozone generator
JPS5167266A (en) * 1974-12-09 1976-06-10 Daikin Ind Ltd Chitsuso sansokongogasuhatsuseisochi
US3963625A (en) * 1975-03-12 1976-06-15 W. R. Grace & Co. Ozone generation and recovery system
JPS539290A (en) * 1976-07-13 1978-01-27 Mitsubishi Electric Corp Ozone supplier
DE2706992C3 (de) * 1977-02-18 1981-08-06 Hoechst Ag, 6000 Frankfurt Verfahren zur Bestimmung des Ozongehaltes von Gasgemischen
JPS5925724B2 (ja) * 1977-06-14 1984-06-20 石川島播磨重工業株式会社 連続式オゾン添加装置
US4143118A (en) * 1977-08-08 1979-03-06 Xerox Corporation Apparatus and method for ozone reduction in electrostatographic reproduction equipment
US4421533A (en) * 1978-03-27 1983-12-20 Takeda Chemical Industries, Ltd. Method of removing ozone and composition therefor
JPS54130493A (en) * 1978-03-31 1979-10-09 Sumitomo Precision Prod Co Ozonizer
JPS54134091A (en) * 1978-04-11 1979-10-18 Kiyoshi Fukui Ozoneecontaining gas manufacturing method and apparatus
JPS5547202A (en) * 1978-09-29 1980-04-03 Osaka Oxgen Ind Ltd Treating method for ozone contained in gas
DE2854060A1 (de) * 1978-12-14 1980-07-03 Linde Ag Verfahren zum bereitstellen eines einsatzgases fuer eine chemische reaktion und zum abtrennen eines gasfoermigen reaktionsproduktes
JPS55158107A (en) * 1979-05-29 1980-12-09 Mitsubishi Electric Corp Oxygen recycling type ozone generating apparatus
US4240798A (en) * 1979-07-05 1980-12-23 Aga Aktiebolag Method and apparatus for reducing ozone
US4388274A (en) * 1980-06-02 1983-06-14 Xerox Corporation Ozone collection and filtration system
DE3132758A1 (de) * 1981-08-19 1983-03-03 Linde Ag, 6200 Wiesbaden Absorptionsverfahren
US4589892A (en) * 1983-04-07 1986-05-20 Bry-Air, Inc. Sequenced modular bed carousel dehumidifier
US4522726A (en) * 1984-07-30 1985-06-11 Progress Equities Incorporated Advanced separation device and method
US4764276A (en) * 1984-07-30 1988-08-16 Advanced Separation Technologies Incorporated Device for continuous contacting of fluids and solids
DE3434169A1 (de) * 1984-09-18 1986-04-24 Messer Griesheim Gmbh, 6000 Frankfurt Verfahren zur gewinnung von ozon
US4617182A (en) * 1985-08-26 1986-10-14 Air Products And Chemicals, Inc. Cascade heat recovery with coproduct gas production
US4619821A (en) * 1985-12-02 1986-10-28 Amoco Corporation Ozone decomposition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3504483A (en) * 1967-09-08 1970-04-07 Hitachi Ltd Apparatus for the removal of sulfur oxides from waste gases
GB1451645A (fr) * 1973-12-20 1976-10-06
JPS5354192A (en) * 1976-10-28 1978-05-17 Mitsubishi Electric Corp Oxygen recycling ozonizer
US4324564A (en) * 1980-07-07 1982-04-13 Near Equilibrium Research Associates Adsorption beds and method of operation thereof
JPS5925724A (ja) * 1982-08-04 1984-02-09 オリンパス光学工業株式会社 内視鏡插入部の先端部
EP0103144A2 (fr) * 1982-08-20 1984-03-21 Messer Griesheim Gmbh Procédé pour la production d'ozone

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 101, no. 18, 29 October 1984, Columbus, Ohio, US; abstract no. 148794V, page 127; column RIGHT; *
CHEMICAL ABSTRACTS, vol. 89, no. 18, 30 October 1978, Columbus, Ohio, US; abstract no. 148794V, page 111; column LEFT; *

Also Published As

Publication number Publication date
ES553897A0 (es) 1987-10-01
FI78441B (fi) 1989-04-28
DE3663794D1 (en) 1989-07-13
PT82371A (fr) 1986-05-01
FI865064A (fi) 1986-12-11
KR930006688B1 (ko) 1993-07-22
EP0218660B2 (fr) 1996-08-07
NZ215839A (en) 1989-07-27
ES8708199A1 (es) 1987-10-01
FR2580271B1 (fr) 1994-07-08
ZA862817B (en) 1986-11-26
KR870700221A (ko) 1987-05-30
PT82371B (pt) 1992-07-31
US4863497A (en) 1989-09-05
BR8606627A (pt) 1987-08-04
JPS62502682A (ja) 1987-10-15
NO167275C (no) 1991-10-23
FI865064A0 (fi) 1986-12-11
FI78441C (fi) 1989-08-10
FR2580271A1 (fr) 1986-10-17
ATE43823T1 (de) 1989-06-15
EP0218660B1 (fr) 1989-06-07
JP2562815B2 (ja) 1996-12-11
NO864998L (no) 1986-12-11
EP0218660A1 (fr) 1987-04-22
US4786489A (en) 1988-11-22
NO167275B (no) 1991-07-15
MX170450B (es) 1993-08-23

Similar Documents

Publication Publication Date Title
EP0218660B1 (fr) Procede et appareil de production d'ozone
EP0480840B1 (fr) Procédé et équipement de séparation par adsorption d'au moins un constituant d'un mélange gazeux
EP2129449B1 (fr) Procédé et installation de purification ou de séparation utilisant plusieurs adsorbeurs décalés en phase
FR2804618A1 (fr) Procede de decarbonation de gaz brules, et appareil de decarbonation
EP1638669A1 (fr) Procede de prepurification d'air par cycle tsa accelere
US4350500A (en) Process and apparatus for separating gaseous component from a mixture
FR2651149A1 (fr) Procede continu et dispositif de separation chromatographique d'un melange d'au moins trois constituants en trois effluents purifies au moyen d'un seul solvant a deux temperatures et/ou a deux pressions differentes.
LU88160A1 (fr) Procede et dispositif de separation de gaz par adsorption selective a pression variable
FR2799987A1 (fr) Procede d'epuration d'un gaz par adsorption de deux impuretes et dispositif correspondant
FR2585968A1 (fr) Installation pour recuperer des solvants dans un courant de gaz de traitement
WO2020169900A1 (fr) Installation et procédé de séparation des gaz de l'air mettant en œuvre un adsorbeur de forme parallélépipédique
EP0988883A1 (fr) Procédé de traitement d'un mélange gazeux par adsorption à modulation de pression, à débit variable de production
FR3093009A1 (fr) Procédé et installation de purification d’un flux gazeux de débit élevé
EP3174618A1 (fr) Adsorbeur avec secheur rotatif
NO854134L (no) Gass-utvinning.
EP1079909A1 (fr) Procede de purification, et de concentration en un constituant minoritaire, d'un melange gazeux, procede de detection de ce constituant, et installation
CA1280999C (fr) Procede de production d'ozone
WO2002053265A1 (fr) Procede de traitement d'un gaz par adsorption et installation correspondante
EP0537831B1 (fr) Procédé de production d'un gaz à teneur substantielle en oxygène
EP1714061B1 (fr) Distributeur rotatif fonctionnant en continu
EP3274074B1 (fr) Procédé de production d'oxygène par vpsa comprenant quatre adsorbeurs
EP0842691A1 (fr) Procédé et installation de séparation de mélanges gazeux par adsorption à variation de pression
WO2019186008A1 (fr) Procédé de production d'un flux gazeux mettant en œuvre un réservoir de stockage
WO2008078028A2 (fr) Adsorbeurs radiaux installes en parallele
BE671808A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR DK FI JP KR NO SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CF CG CH CM DE FR GA GB IT LU ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1986902421

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 865064

Country of ref document: FI

WWP Wipo information: published in national office

Ref document number: 1986902421

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1986902421

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 865064

Country of ref document: FI