WO1988003676A1 - Digital servo system - Google Patents

Digital servo system Download PDF

Info

Publication number
WO1988003676A1
WO1988003676A1 PCT/JP1987/000859 JP8700859W WO8803676A1 WO 1988003676 A1 WO1988003676 A1 WO 1988003676A1 JP 8700859 W JP8700859 W JP 8700859W WO 8803676 A1 WO8803676 A1 WO 8803676A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
value
detecting means
command value
motor
Prior art date
Application number
PCT/JP1987/000859
Other languages
French (fr)
Japanese (ja)
Inventor
Masatoyo Sogabe
Kanemasa Okuda
Shunsuke Matsubara
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Publication of WO1988003676A1 publication Critical patent/WO1988003676A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/232Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude with speed feedback only

Definitions

  • the present invention relates to a digital 'servo' system for a motor.
  • Fig. 1 shows the general configuration of a conventional digital servo system for a motor.
  • 1 is that the position of the object is calculated by counting +1 or -1 each time the object passes through a predetermined position set at equal intervals, depending on the direction of the passage.
  • 2 is a position deviation detecting means for detecting a deviation of the output of the position detecting means 1 from a predetermined position (position command value) specified separately
  • 3 is a position deviation detecting means 2
  • Speed command generating means for outputting a speed command value for moving the object in accordance with the output of the object
  • 4 speed detecting means for detecting the moving speed of the object
  • a speed deviation detecting means for detecting a deviation from the speed command value
  • a torque command generating means for outputting a torque command value to a motor in accordance with an output of the speed deviation detecting means, The object is moved according to the torque command value. It is over motor drive means.
  • speed detection means 4 speed deviation detection means 5
  • the torque command generating means 6 and the motor driving means 7 form a motor speed control driving means 10, and receive the speed command to control and drive the motor speed.
  • FIG. 2 shows an example of a hard disk configuration of the digital servo system shown in FIG.
  • the microcomputer 100 performs the numerical control and control, and the ball-screw coder 50, together with the counter function (not shown) inside the micro-computer 100, performs the speed detection shown in FIG. Means 4 and position detection means 1 are realized respectively.
  • the speed detecting means 4 obtains speed information by counting the output of the pulse encoder 50 at every clock cycle of the microcomputer.
  • the switching amplifier 30 of FIG. 2 realizes the motor driving means 7 of FIG. Blocks other than the above in FIG. 1 are all digital numerical value generating means realized by the micro-computer 100.
  • the position command value input to the position deviation detecting means 2 is one count of the position detecting means based on the output (position feedback) of the position detecting means 1.
  • the object linked to the motor moves and the position detecting means 1
  • the counted value of the position detecting means 1 which is incremented by 1 is input to the position deviation detecting means 2, where the counted value is compared with the position command value. Is done.
  • the output of the position deviation detecting means 2 becomes 0, and the output of the speed command generating means 3 also becomes 0.
  • the motor speed control driving means 10 controls the speed to become 0, and the motor and the object interlocked therewith are decelerated, and the speed is reduced by frictional resistance or the like. Stopped.
  • the position detecting means 1 since the position of the object is detected at intervals of the "equal intervals", the object stops at any position between the positions detected at the intervals. I don't know. That is, the positioning accuracy of the stop position has a limit determined by the resolution (for example, 1 m) of the position detecting means 1 (actually, the pulse coder 50). Disclosure of the invention
  • An object of the present invention is to provide a servo system capable of positioning near a scale position set at an interval determined by the resolution of a position detecting means that outputs an incremental output.
  • the digital servo system according to the present invention counts +1 or -1 each time the object passes through a position set at a predetermined interval, depending on the direction of the passage, and counts the object.
  • Position detecting means for detecting the position of the object; and a deviation of the position of the object detected by the position detecting means from a position command value separately commanded.
  • Position deviation detecting means for detecting, speed command generating means for outputting a speed command value for moving the object according to the output of the position deviation detecting means,
  • a motor speed control driving means for controlling the speed of the motor in accordance with the speed command value and driving the motor
  • Speed command offset adding means for adding a constant offset value to the speed command value, and the absolute value of the offset value is determined by the output of the position deviation detecting means corresponding to one count in the position detecting means. Accordingly, the absolute value of the speed command value output from the speed command generating means is smaller than the absolute value of the speed command value.
  • Fig. 1 shows the basic configuration of a conventional motor digital 'servo' system.
  • Fig. 2 shows an example of hardware configuration of the digital servo system.
  • FIG. 3 is a diagram showing a basic configuration of a digital * servo 'system according to the present invention.
  • FIG. 4 is an explanatory diagram of the position of an object in the digital * servo system according to the present invention.
  • FIG. 1 The basic configuration of the present invention is shown in FIG. A speed command offset adding means 8 is provided on the output side of the speed command generating means 3.
  • the other configuration is exactly the same as the configuration shown in FIG.
  • the speed command offset adding means 8 adds a fixed offset value to the speed command value output from the speed command generating means 3.
  • the absolute value of the offset value is determined when the output of the position deviation detecting means 2 is a deviation corresponding to one count in the position detecting means, and the speed command is generated accordingly. It shall be smaller than the absolute value of the speed command value output from the means.
  • the provision of the above-mentioned speed command offset adding means 8 allows the object driven by the motor to move in the direction opposite to the traveling direction every time it passes through the position of the scale determined by the position command value.
  • a small speed command value to be driven in the direction is received, a small vibration is generated around the position command value around the position command value.
  • Co is input as a speed command value with an offset value added.
  • the motor is driven to move the object.
  • the position detecting means 1 increases by one.
  • the count value is input to the position deviation detecting means 2, where the count value is compared with the position command value.
  • the output of the position deviation detecting means 2 becomes 0, and the output of the speed command generating means 3 also becomes 0.
  • the output of the speed command offset adding means 8 inputted to the motor speed control driving means 10 is the offset value C.
  • the target linked to the motor in this way corresponds to the position command value
  • the moving direction is reversed in response to a speed command to move in the opposite direction every time a point on the scale 0 is passed, and a small vibration is made around the point on the scale 0 around the point on the scale 0. This is shown in Figure 4.
  • Offset value C The same applies to the case of ⁇ 0.
  • the count value of the position detecting means 2 slightly vibrates around the scale 1 at which the force changes from 0 to 1.
  • the output of the position deviation detecting means 2 is 0 as described above, and the output of the speed command generating means 3 derived from this is also 0. Powerful, offset value according to the present invention
  • the object vibrates slightly around the position command value near the position of the scale determined by the position command value, and the positioning accuracy is improved.
  • the minimum value that can be detected and output by the position deviation detecting means 2 is 1, and the speed command
  • the gain of generating means 3 is Kp, for example
  • the positioning accuracy has been improved to about 0.2 m. .
  • positioning can be performed with higher accuracy than the resolution of the position detecting means that outputs incrementally.
  • the digital servo system according to the present invention is particularly useful in a system that determines the position of an object with a motor with high accuracy, such as an NC machine tool.o

Abstract

A digital servo system which is featured by improved precision in the ''halt'' position. A position detection means (1) counts +1 or -1 every time when an object is moved by a predetermined distance, and sends the position of the object to a position error detection means (2). The error relative to a position command value obtained by the position error detection means (2) is sent to a velocity command generation means (3), where it is processed into velocity command. To the velocity command is added by a velocity command offset addition means (8) an offset value having an absolute value smaller than a minimum velocity command value. A motor (40) is driven on the velocity command that is added to the offset value.

Description

明 細 書 デ ィ ジタル ' サーボ · システム 技術分野  Description Digital '' Servo System Technical Field
本発明は、 モータのディ ジタル ' サ一ボ ' システムに関す る。 背景技術  The present invention relates to a digital 'servo' system for a motor. Background art
第 1図に従来のモータのディ ジタル ' サーボ · システムの 一般的構成を示す。  Fig. 1 shows the general configuration of a conventional digital servo system for a motor.
1 は、 対象物が、 等間隔に設定された所定の位置を通過す る毎に、 該通過の方向に応じてそれぞれ + 1或いは - 1 を計 数するこ とによ り該対象物の位置を検出する位置検出手段、 2 は前記位置検出手段 1 の出力の、 別に指定された所定の位 置 (位置指令値) からの偏差を検出する位置偏差検出手段、 3 は前記位置偏差検出手段 2 の出力に応じて前記対象物を移 動させるための速度指令値を出力する速度指令発生手段、 4 は、 前記対象物の移動速度を検出する速度検出手段、 5 は、 前記対象物の移動速度の、 前記速度指令値からの偏差を検出 する速度偏差検出手段、 6 は、 前記速度偏差検出手段 5 の出 力に応じてモータへの トルク指令値を出力する トルク指令発 生手段、 7 は、 前記 トルク指令値に応じて前記対象物を移動 させるモータ駆動手段である。  1 is that the position of the object is calculated by counting +1 or -1 each time the object passes through a predetermined position set at equal intervals, depending on the direction of the passage. 2 is a position deviation detecting means for detecting a deviation of the output of the position detecting means 1 from a predetermined position (position command value) specified separately, and 3 is a position deviation detecting means 2 Speed command generating means for outputting a speed command value for moving the object in accordance with the output of the object, 4 speed detecting means for detecting the moving speed of the object, and 5 moving speed of the object A speed deviation detecting means for detecting a deviation from the speed command value, a torque command generating means for outputting a torque command value to a motor in accordance with an output of the speed deviation detecting means, The object is moved according to the torque command value. It is over motor drive means.
上記の構成において速度検出手段 4、 速度偏差検出手段 5、 トルク指令発生手段 6、 およびモータ駆動手段 7 はモータ速 度制御駆動手段 1 0を形成し、 前記速度指令を受けてモータ の速度を制御して駆動する。 In the above configuration, speed detection means 4, speed deviation detection means 5, The torque command generating means 6 and the motor driving means 7 form a motor speed control driving means 10, and receive the speed command to control and drive the motor speed.
第 2図は、 上記第 1図のディ ジタルノ サーボ · システムの ハー ドゥヱァ構成例を示したものである。  FIG. 2 shows an example of a hard disk configuration of the digital servo system shown in FIG.
基本的に数値演箕および制御はマイ ク ロコ ンビュータ 100 が行つており、 バ レスェンコーダ 5 0 は該マィ クロコ ンビュ ータ 100 の内部におけるカウ ンタ機能 (図示せず) と共に、 第 1図の速度検出手段 4と位置検岀手段 1 とをそれぞれ実現 している。 なお速度検出手段 4は、 該マイクロコ ンピュータ が有するク α ックの周期毎に前記パルスェンコーダ 5 0 の出 力を計数することにより速度情報を得ている。 第 2図のスィ ツチングアンプ 3 0 は第 1図のモータ躯動手段 7を実現して いる。 上記以外の第 1図中のブロ ックは全て前記マイ クロコ ンビュータ 100 により実現されるディ ジタル数値演箕手段で ある。  Basically, the microcomputer 100 performs the numerical control and control, and the ball-screw coder 50, together with the counter function (not shown) inside the micro-computer 100, performs the speed detection shown in FIG. Means 4 and position detection means 1 are realized respectively. The speed detecting means 4 obtains speed information by counting the output of the pulse encoder 50 at every clock cycle of the microcomputer. The switching amplifier 30 of FIG. 2 realizes the motor driving means 7 of FIG. Blocks other than the above in FIG. 1 are all digital numerical value generating means realized by the micro-computer 100.
上記のような構成において、 いま仮に上記位置偏差検出手 段 2に入力された位置指令値が、 上記位置検出手段 1 の出力 (位置フィ一ドバック) の値より該位置検出手段の 1 カウ ン ト分大きかったとすると、 該位置偏差検岀手段は + 1を出力 し、 これが速度指令発生手段 3において定数 Κ Ρ 倍ざれて速 度指令値 V cmd ( = K P ) として出力される。 これが前記モー タ速度制御駆動手段 1 0に入力されることにより、 モータが 駆動されモータに連動する前記対象物を移動させる。 該モ— タに連動する対象物が移動して、 前記位置検出手段 1 におい て + 1 カウ ン ト される位置に到達する と、 該位置検出手段 1 の 1増加した計数値は前記位置偏差検出手段 2 に入力され、 こ こで該計数値は、 前記位置指令値と比較される。 このとき 該計数値は該位置指令値と等しいので該位置偏差検出手段 2 の出力は 0 となって、 前記速度指令発生手段 3の出力も 0 と なる。 この 0 となった速度指令値を入力して前記モータ速度 制御駆動手段 1 0 は、 速度が 0 となるように制御し、 モータ およびそれに連動する前記対象物は減速し、 摩擦抵抗等によ つて停止させられる。 しかし、 前記位置検出手段 1 において は、 前記対象物の位置を前記 「等間隔」 をおいて飛び飛びに 検出しているので、 この飛び飛びに検出される位置の間のど こに該対象物が停止したのかはわからない。 すなわち、 この 停止位置の位置決め精度は前記位置検出手段 1 (実際はパル スコーダ 5 0 ) の分解能 (例えば 1 m ) で定められる限度 を有する。 発明の開示 In the above configuration, the position command value input to the position deviation detecting means 2 is one count of the position detecting means based on the output (position feedback) of the position detecting means 1. When min larger, the positional deviation Ken岀means outputs + 1, which is output as a constant kappa [rho times toying with velocity command value V cm d (= K P) in the speed command generating means 3. This is input to the motor speed control driving means 10 so that the motor is driven to move the object linked to the motor. The object linked to the motor moves and the position detecting means 1 When the position reaches +1 counted position, the counted value of the position detecting means 1 which is incremented by 1 is input to the position deviation detecting means 2, where the counted value is compared with the position command value. Is done. At this time, since the count value is equal to the position command value, the output of the position deviation detecting means 2 becomes 0, and the output of the speed command generating means 3 also becomes 0. By inputting the speed command value that has become 0, the motor speed control driving means 10 controls the speed to become 0, and the motor and the object interlocked therewith are decelerated, and the speed is reduced by frictional resistance or the like. Stopped. However, in the position detecting means 1, since the position of the object is detected at intervals of the "equal intervals", the object stops at any position between the positions detected at the intervals. I don't know. That is, the positioning accuracy of the stop position has a limit determined by the resolution (for example, 1 m) of the position detecting means 1 (actually, the pulse coder 50). Disclosure of the invention
本発明の目的は、 イ ンク リ メ ンタルな出力をする位置検出 手段の分解能で定められる間隔に設定される目盛の位置の近 傍に位置決めが可能なサーボシステムを提供することにある。 本発明によるディ ジタル · サ―ボ · システムは、 対象物が 所定の間隔に設定された位置を通過する毎に、 該通過の方向 に応じてそれぞれ + 1或いは - 1を計数して該対象物の位置 を検出する位置検出手段と、 前記位置検出手段で検出された 該対象物の位置の、 別に指令された位置指令値からの偏差を 検出する位置偏差検出手段と、 前記位置偏差検出手段の出力 に応じて前記対象物を移動させるための速度指令値を出力す る速度指令発生手段と、 An object of the present invention is to provide a servo system capable of positioning near a scale position set at an interval determined by the resolution of a position detecting means that outputs an incremental output. The digital servo system according to the present invention counts +1 or -1 each time the object passes through a position set at a predetermined interval, depending on the direction of the passage, and counts the object. Position detecting means for detecting the position of the object; and a deviation of the position of the object detected by the position detecting means from a position command value separately commanded. Position deviation detecting means for detecting, speed command generating means for outputting a speed command value for moving the object according to the output of the position deviation detecting means,
前記速度指令値に応じてモータの速度を制御して躯動する モータ速度制御躯動手段とから構成されるディ ジタル · サー ボ · システムであつて、  A motor speed control driving means for controlling the speed of the motor in accordance with the speed command value and driving the motor;
前記速度指令値に一定のオフセッ ト値を付加する速度指令 オフセッ ト付加手段を有し、 且つ該オフセッ ト値の絶対値は 前記位置偏差検出手段の出力が前記位置検出手段における 1 カウ ン ト分であると にこれに応じて前記速度指令発生手段 から出力される速度指令値の絶対値より も小さいことを特徴 とする。 図面の簡単な説明  Speed command offset adding means for adding a constant offset value to the speed command value, and the absolute value of the offset value is determined by the output of the position deviation detecting means corresponding to one count in the position detecting means. Accordingly, the absolute value of the speed command value output from the speed command generating means is smaller than the absolute value of the speed command value. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 従来のモータのディ ジタル ' サーボ ' システム の基本的構成を示す図、  Fig. 1 shows the basic configuration of a conventional motor digital 'servo' system.
第 2図ばディ ジタル · サーボ ' システムのハ ー ドゥエァ搆 成例を示す図、  Fig. 2 shows an example of hardware configuration of the digital servo system.
第 3図は本発明によるディ ジタル * サ一ボ ' システムの基 本的構成を示す図、 そして  FIG. 3 is a diagram showing a basic configuration of a digital * servo 'system according to the present invention, and
第 4図は本発明によるディ ジタル * サ一ボ · システムにお ける対象物の位置の説明図である。 発明を実施するための最良の形態  FIG. 4 is an explanatory diagram of the position of an object in the digital * servo system according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の基本的構成は第 3図に示される 速度指令発生手段 3 の出力側に速度指令オフセ ッ ト付加手 段 8が設けられている。 その他の構成は前述の第 1 図の構成 と全く 同じである。 The basic configuration of the present invention is shown in FIG. A speed command offset adding means 8 is provided on the output side of the speed command generating means 3. The other configuration is exactly the same as the configuration shown in FIG.
上記速度指令オフセ ッ ト付加手段 8 は、 速度指令発生手段 3から出力された速度指令値に一定のオフセ ッ ト値を加える ものである。 ここで該オフセ ッ ト値の絶対値は、 前記位置偏 差検出手段 2 の出力が前記位置検出手段における 1 カ ウ ン ト 分に相当する偏差であるときにこれに応じて前記速度指令発 生手段から出力される速度指令値の絶対値より も小さいもの とする。  The speed command offset adding means 8 adds a fixed offset value to the speed command value output from the speed command generating means 3. Here, the absolute value of the offset value is determined when the output of the position deviation detecting means 2 is a deviation corresponding to one count in the position detecting means, and the speed command is generated accordingly. It shall be smaller than the absolute value of the speed command value output from the means.
本発明においては、 前述の速度指令オフセ ッ ト付加手段 8 を設けたこ とにより 、 前記モータによって駆動される対象物 は位置指令値によつて定められる目盛の位置を通過する毎に 進行方向と逆方向へ駆動させよう とする小さい速度指令値を 受けることにより、 該位置指令値を中心に該位置指令値の近 傍で微小振動する。  In the present invention, the provision of the above-mentioned speed command offset adding means 8 allows the object driven by the motor to move in the direction opposite to the traveling direction every time it passes through the position of the scale determined by the position command value. When a small speed command value to be driven in the direction is received, a small vibration is generated around the position command value around the position command value.
以下に、 上記速度指令オフセ ッ ト付加手段 8の働きについ て、 より具体的に説明する。  Hereinafter, the function of the speed command offset adding means 8 will be described more specifically.
いま仮に上記位置偏差検出手段 2 に入力された位置指令値 が、 上記位置検出手段 1 の出力 (位置フ ィ ー ドバック) の値 より該位置検出手段の 1 カウ ン ト分大きかったとすると、 該 位置偏差検出手段は + 1を出力し、 これが速度指令発生手段 3 において定数 K P 倍されて速度指令値 V c ni d ( == Κ Ρ ) とし て出力される。 Assuming that the position command value input to the position deviation detecting means 2 is larger than the value of the output (position feedback) of the position detecting means 1 by one count of the position detecting means, the position the deviation detecting means outputs + 1, which is outputted as the speed command value is a constant K P times in the speed command generating means 3 V c ni d (== Κ Ρ).
こ こで本発明によれば上記速度指令値 V c ni d = K p に一定 •のオフセッ ト値 ( C。 とする) を加える。 前述のように I C 0 ί く I K p I である。 Here, according to the present invention, the speed command value V c ni d = K p is fixed. • Add the offset value of (C). As described above, IC0 is IKpI.
こう して前記モータ速度制御躯動手段 1 0にば、 Κ ρ + Thus, when the motor speed control driving means 10 is used, Κ ρ +
C o がオフセッ ト値を付加された速度指令値として入力され る。 これによりモータが駆動され対象物を移動させる。 モ— タに連動する対象物が移動して、 前記位置検出手段 1におい て + 1 カウントされる位置 (これを目盛 0の点とする。 ) に 到達すると、 該位置検出手段 1 の 1増加した計数値は前記位 置偏差検出手段 2に入力され、 こ こで該計数値ば、 前記位置 指令値と比較される。 このとき該計数値は該位置指令値と等 し く なつたので該位置偏差検出手段 2の出力は 0 となって、 前記速度指令発生手段 3の出力も 0 となる。 これにより前記 モータ速度制御駆動手段 1 0 への入力される速度指令オフセ ッ ト付加手段 8 の出力はオフセッ ト値 C。 となる。 Co is input as a speed command value with an offset value added. Thus, the motor is driven to move the object. When the object linked to the motor moves and reaches a position where the position detecting means 1 counts +1 (this point is a point on the scale 0), the position detecting means 1 increases by one. The count value is input to the position deviation detecting means 2, where the count value is compared with the position command value. At this time, since the count value is equal to the position command value, the output of the position deviation detecting means 2 becomes 0, and the output of the speed command generating means 3 also becomes 0. As a result, the output of the speed command offset adding means 8 inputted to the motor speed control driving means 10 is the offset value C. Becomes
例えば、 K P > 0 , C。 < 0 の場合について考えると、For example, K P > 0, C. Consider the case <0,
K p + C。 と逆符号の速度指令 。 を入力して該モータ速度 制御躯勖手段 1 0 は速度を制御してモータを逆方向へ回転さ せる。 こう してモータに連動する前記対象物は再び上記の巨 盛 0の点に戻って来て、 ここを通過する。 このとき前記位置 検出手段 1においては一 1がカウン トされこれが再び位置偏 差手段 に入力されて前記位置指令値と比較される。 ここで 再び該位置指令値の方が + 1 カウン ト分大き く なったので、 前述と全く同じ過程を柽て、 モータは反転し、 該対象物はま た目盔 0の点の方向へ戻って、 該百盛 0の点を通過する。 K p + C. Speed command of opposite sign. Then, the motor speed control means 10 controls the speed to rotate the motor in the reverse direction. In this way, the object linked to the motor returns to the point of the above-mentioned mega 0 again and passes there. At this time, 11 is counted in the position detecting means 1 and this is again input to the position deviation means and compared with the position command value. Here, the position command value becomes larger by +1 count again, so that the motor is reversed in the same manner as described above, and the object returns to the direction of point 0. Pass through the point of Hyakumori 0.
このようにモ―タと連動する対象物は、 位置指令値に対応 する目盛 0 の点を通過する度に逆方向へ移動する速度指令を 受けて移動方向を反転させられ、 該目盛 0 の点の辺りで該目 盛 0 の点を中心に微小振動する。 この様子は、 第 4図に示さ れている。 The target linked to the motor in this way corresponds to the position command value The moving direction is reversed in response to a speed command to move in the opposite direction every time a point on the scale 0 is passed, and a small vibration is made around the point on the scale 0 around the point on the scale 0. This is shown in Figure 4.
オフセ ッ ト値 C。 < 0の場合も同様であって、 同じ く第 4 図に示されるように、 位置検出手段 2の計数値が 0力、ら 1 に 変わる目盛 1 を中心に微小振動する。 この場合は、 対象物の 位置が計数値 0 の範囲にあるときは、 前記のように位置偏差 検出手段 2 の出力は 0で、 ここから導かれる速度指令発生手 段 3の出力も 0である力く、 本発明によりオフセ ッ ト値  Offset value C. The same applies to the case of <0. Similarly, as shown in FIG. 4, the count value of the position detecting means 2 slightly vibrates around the scale 1 at which the force changes from 0 to 1. In this case, when the position of the object is in the range of the count value 0, the output of the position deviation detecting means 2 is 0 as described above, and the output of the speed command generating means 3 derived from this is also 0. Powerful, offset value according to the present invention
C 0 ( > 0 ) が速度指令値に加えられるこ とにより、 対象物は 正の方向に移動して、 やがて目盛 1 を超える。 すると位置検 出手段 1 の計数値は 1 となり、 これに応じて速度指令発生手 段 3 の出力は一 K P となって、 この値に本発明によるオフセ ッ ト値 C。(じ。 > 0 , I C。 | く | K P i ) を加えた負の速度 指令値 - K P + C。 が出される。 速度指令が負方向に出され ることにより、 対象物の位置は再び目盛 1 の位置を超えて計 数値 0 の範囲に入る。 したがって、 対象物の位置が目盛 1 の 位置を超える度に逆方向への速度指令を受けて対象物は目盛 1 の位置を中心に微小振動を行なう。 When C 0 (> 0) is added to the speed command value, the object moves in the positive direction and eventually exceeds scale 1. Then the count value of the position detecting means 1 is 1, as an output one K P of the speed command generating hand stage 3 in response thereto, offset value C. according to the present invention this value (J.> 0, IC. | K | K P i) plus negative speed command-K P + C. Is issued. When the speed command is issued in the negative direction, the position of the target object goes over the scale 1 position again and enters the range of the numerical value 0. Therefore, every time the position of the object exceeds the position of the scale 1, the object receives a speed command in the opposite direction and vibrates slightly around the position of the scale 1.
このよう に、 対象物は位置指令値によって定められる目盛 の位置の近傍で該位置指令値を中心に微小振動することにな り、 位置決め精度が改善されたことになる。  Thus, the object vibrates slightly around the position command value near the position of the scale determined by the position command value, and the positioning accuracy is improved.
前述のオフセッ ト値 c。 としては、 前記位置偏差検出手段 2が検出して出力し得る最小の値を 1 として、 前記速度指令 発生手段 3 のゲイ ンを K p とするとき、 例えば The offset value c described above. The minimum value that can be detected and output by the position deviation detecting means 2 is 1, and the speed command When the gain of generating means 3 is Kp, for example,
1 1  1 1
C o = - K あるいは C 0 K p とすること  C o =-K or C 0 K p
2 2  twenty two
ができる。 Can be.
また、 位置検出手段 1 として、 分解能 (イ ンク リ メ ンタル な出力信号のビッチ) 1 μ mのバルスェンコ一ダに本発明を 適用した例では、 位置決め精度土 0. 2 m程度にまで向上し た。  Further, in the example in which the present invention is applied to a 1 μm resolution ball (inclined output signal bit) as the position detecting means 1, the positioning accuracy has been improved to about 0.2 m. .
以上述べたように、 本発明によるモータのディジタル ' サ —ボ . システムにおいては、 イ ンク リ メ ンタルな出力をする 位置検出手段の分解能より高い精度での位置決めが可能であ る。 産業上の利用可能性  As described above, in the digital servo system for a motor according to the present invention, positioning can be performed with higher accuracy than the resolution of the position detecting means that outputs incrementally. Industrial applicability
本発明によるディ ジタル · サ一ボ · システムは、 特に、 N C工作機械等、 モータにより対象物の位置を高精度に決定 するシステムにおいて有用である o  The digital servo system according to the present invention is particularly useful in a system that determines the position of an object with a motor with high accuracy, such as an NC machine tool.o

Claims

請 求 の 範 囲 The scope of the claims
1. 対象物が所定の間隔に設定された位置を通過する毎に 該通過の方向に応じてそれぞれ + 1或いは— 1を計数して該 対象物の位置を検出する位置検出手段 ( 1 ) と、 1. Each time an object passes a position set at a predetermined interval, a position detecting means (1) which counts +1 or -1 according to the direction of the passage to detect the position of the object. ,
前記位置検出手段で検出された該対象物の位置の、 別に指 令された位置指令値からの偏差を検出する位置偏差検出手段  Position deviation detecting means for detecting a deviation of the position of the object detected by the position detecting means from a separately instructed position command value
( 2 ) と、 (2) and
前記位置偏差検出手段 ( 2 ) の出力に応じて前記対象物を 移動させるための速度指令値を出力する速度指令発生手段  Speed command generating means for outputting a speed command value for moving the object in accordance with the output of the position deviation detecting means (2)
( 3 ) と、  (3) and
前記速度指令値に応じてモータの速度を制御して駆動する モータ速度制御駆動手段 (10) とから構成されるディ ジタル' サーボ · システムであ って、  A motor speed control drive means (10) for controlling and driving the speed of the motor in accordance with the speed command value, wherein:
前記速度指令値に一定のオフセ ッ ト値を付加する速度指令 オフセ ッ ト付加手段 ( 8 ) を有し、 且つ該オフセ ッ ト値の絶 対値は、 全位置偏差検出手段 ( 2 ) の出力が前記位置検出手 段 ( 1 ) における 1 カウ ン ト分であるときにこれに応じて前 記速度指令発生手段 ( 3 ) から出力される速度指令値の絶対 値より も小さいことを特徴とするディ ジタル ' サーボ ' シス テム。  A speed command offset adding means (8) for adding a constant offset value to the speed command value, and an absolute value of the offset value is determined by an output of the total position deviation detecting means (2). Is smaller than the absolute value of the speed command value output from the speed command generating means (3) when the value is one count in the position detecting means (1). Digital 'servo' system.
2. 前記モータ速度制櫛駆動手段 (10) は、 前記対象物の 移動速度を検出する速度検出手段 ( 4 ) と、  2. The motor speed control comb driving means (10) includes: speed detecting means (4) for detecting a moving speed of the object;
前記対象物の移動速度の前記オフセ ツ ト値を付加された速 度指令値からの偏差を検出する速度偏差検出手段 ( 5 ) と、 前記速度偏差検出手段 ( 5 ) の出力に応じてモータへの ト ルク指令値を出力する トルク指令発生手段 ( 6 ) と、 Speed deviation detecting means (5) for detecting a deviation of the moving speed of the object from a speed command value to which the offset value has been added; Torque command generating means (6) for outputting a torque command value to the motor according to the output of the speed deviation detecting means (5);
前記トルク指令値に応じて前記対象物を移動させるモータ 駆動手段 ( 7 ) とから構成される請求の範囲第 1項記載のデ イ ジタル · サーボ . システム。  2. The digital servo system according to claim 1, further comprising: motor driving means (7) for moving said object in accordance with said torque command value.
1 1
o  o
PCT/JP1987/000859 1986-11-06 1987-11-06 Digital servo system WO1988003676A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26262186 1986-11-06
JP61/262621 1986-11-06

Publications (1)

Publication Number Publication Date
WO1988003676A1 true WO1988003676A1 (en) 1988-05-19

Family

ID=17378332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000859 WO1988003676A1 (en) 1986-11-06 1987-11-06 Digital servo system

Country Status (1)

Country Link
WO (1) WO1988003676A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197466A (en) * 1983-01-21 1993-03-30 Med Institute Inc. Method and apparatus for volumetric interstitial conductive hyperthermia

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627405A (en) * 1979-08-09 1981-03-17 Toshiba Corp Drive controller for traveling body
JPS6244814A (en) * 1985-08-23 1987-02-26 Nec Corp Grating point positioning system for digital servo

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627405A (en) * 1979-08-09 1981-03-17 Toshiba Corp Drive controller for traveling body
JPS6244814A (en) * 1985-08-23 1987-02-26 Nec Corp Grating point positioning system for digital servo

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197466A (en) * 1983-01-21 1993-03-30 Med Institute Inc. Method and apparatus for volumetric interstitial conductive hyperthermia

Similar Documents

Publication Publication Date Title
US4507598A (en) Two-axis positioning system
EP0292575B1 (en) Servo motor controller
JPH0230522B2 (en)
WO1988004445A1 (en) Numerical controller
WO1984004161A1 (en) Method of detecting absolute position of servo control system
WO1988003677A1 (en) Digital servo system
JPH0833763B2 (en) Numerical control unit
US3412300A (en) Optimum switching of a bangbang servo
JPH07113856B2 (en) Tracking error control device
WO1988003676A1 (en) Digital servo system
WO1987007404A1 (en) Positioning system
JPH0215887B2 (en)
EP0185776B1 (en) Apparatus for detecting absolute position of servo control system
JP2526855B2 (en) Brushless motor controller
JPS621012A (en) Positioning controller for rotor
US4542327A (en) Speed control apparatus
SU798726A1 (en) Digital servosystem for object movement control
JP3388426B2 (en) Pulse train control method of motor that enables arbitrary interpolation
JPS61196782A (en) Drive device of dc servo motor
Ramirez et al. A Two Freedom Degree Manipulator Control for a Wooden Rotulator based on PIC Microcontrollers
JPH0677222B2 (en) Positioning control device
SU847278A1 (en) Position drive control device
SU1734185A1 (en) Multi-propeller electric drive
SU585474A1 (en) Follow-up system
SU1376062A1 (en) System for controlling arrangement for stacking elastic sheets

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB