WO1990001730A1 - Electrophotographic method - Google Patents

Electrophotographic method Download PDF

Info

Publication number
WO1990001730A1
WO1990001730A1 PCT/US1989/003400 US8903400W WO9001730A1 WO 1990001730 A1 WO1990001730 A1 WO 1990001730A1 US 8903400 W US8903400 W US 8903400W WO 9001730 A1 WO9001730 A1 WO 9001730A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
toner
electrostatic image
developer
color
Prior art date
Application number
PCT/US1989/003400
Other languages
French (fr)
Inventor
Michael Mosehauer
Yee S. Ng
Eric K. Zeise
Original Assignee
Eastman Kodak Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Company filed Critical Eastman Kodak Company
Priority to DE68912299T priority Critical patent/DE68912299T2/en
Publication of WO1990001730A1 publication Critical patent/WO1990001730A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/23Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 specially adapted for copying both sides of an original or for copying on both sides of a recording or image-receiving material
    • G03G15/231Arrangements for copying on both sides of a recording or image-receiving material
    • G03G15/232Arrangements for copying on both sides of a recording or image-receiving material using a single reusable electrographic recording member
    • G03G15/234Arrangements for copying on both sides of a recording or image-receiving material using a single reusable electrographic recording member by inverting and refeeding the image receiving material with an image on one face to the recording member to transfer a second image on its second face, e.g. by using a duplex tray; Details of duplex trays or inverters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/01Electrographic processes using a charge pattern for multicoloured copies
    • G03G13/013Electrographic processes using a charge pattern for multicoloured copies characterised by the developing step, e.g. the properties of the colour developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/06Developing
    • G03G13/08Developing using a solid developer, e.g. powder developer
    • G03G13/09Developing using a solid developer, e.g. powder developer using magnetic brush
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0167Apparatus for electrophotographic processes for producing multicoloured copies single electrographic recording member
    • G03G2215/0174Apparatus for electrophotographic processes for producing multicoloured copies single electrographic recording member plural rotations of recording member to produce multicoloured copy

Definitions

  • This invention relates to color electrophotography and more specifically to a method of forming a multicolor image on the same frame or area of a photoconductive member, so ' that it may be transferred or otherwise utilized in a single step.
  • U. S. Patent 3,057,720 suggests that two color toner images can be formed consecutively on the same image frame without fixing the first image if the second toning step is not so harsh as to clean off the first toner image.
  • Three color systems are disclosed using either positive development or discharged area development. A variety of development methods are suggested.
  • Japanese Ko ai 56-144452 (1981) also discloses a process in which two or three color toner images are formed on the same frame of a photoconductive member.
  • the photoconductive member is uniformly charged, exposed and reverse developed with a toner of a first color. With the unfixed toner electrostatically adhering to the exposed areas the photoconductive member is exposed to a second image that does not overlap with the first image. That image is then developed by application of a second color toner to the newly exposed areas. The process can be repeated for more colors.
  • the resulting multicolor image is transferred to a receiving sheet in one step.
  • Toners usable in the process are limited, limiting the colors available; especially difficult to use in this process are those of lighter hue, such as yellow. It is a difficult process to establish a background controlling electrical field.
  • U.S. Patents 4,546,060; 4,473,029 and 4,531,832 describe a method of toning in which a magnetic brush applicator supplies two component developer including small hard magnetic carrier particles and electrically insulative toner to an image which moves past the development station at a predetermined velocity.
  • the brush includes a rapidly rotating core which tumbles the hard carrier particles through a development zone. The tumbling of the carrier is apparently due to the changing magnetic field which continuously flips the carrier. This process has a number of advantages in image quality, and is being used commercially. Disclosure of the Invention
  • the development process disclosed in U. S. Patents 4,546,060; 4,473,029 and 4,531,832 provide high density images at good speed without substantial damage to the prior toner images.
  • the developer is transported through the development zone by rotating an alternating-pole magnetic core within a non-magnetic shell upon which shell the developer flows through said zone, and the developer includes hard magnetic carrier particles that are sufficiently hard that they flip or tumble as they pass through the development zone.
  • Prior magnetic brushes typically include soft magnetic carrier, for example, carrier that has a coercivity substantially less than 100 gauss. As such particles are subjected to a changing magnetic field their magnetism changes with the field. This permits a brush to transport the carrier in the form of long relatively static bristles through the development zone. To apply substantial toner at medium speed, the brush generally requires relative motion with respect to the electrostatic image, commonly obtained by rotating a non-magnetic sleeve in a direction opposite to the direction of the image. The bristles have a tendency to brush at least portions of any prior toner image off the image ar.ea.
  • Fig. 1 is a schematic side illustration of an electrophotographic printer utilizing the invention
  • Figs. 2 and 3 are side views generally illustrating a magnetic brush apparatus particularly usable in the electrophotographic printer shown in Fig 1;
  • Figs. 4 and 5 are cross sections of a preferred magnetic brush usable in the printer shown in Fig. 1; and
  • Fig. 6 is a cross section of an alternative magnetic brush usable in the printer shown in Fig. 1. Best Mode of Carrying Out the Invention
  • the invention can be used in a variety of electrophotographic applications. It will be described with regard to an electronic printer.
  • an electronic printer 1 includes a photoconductive member, for example, photoconductive web 2 entrained about a series of rollers 10, 11, 12, 13, 14 and 15.
  • the photoconductive web 2 is a multilayer structure which can take various forms, but is commonly a photoconductive layer 9 on a conductive backing 8 with a suitable support.
  • the web 2 is driven by one of the rollers at a constant velocity through operative relationship with a series of electrophotographic stations.
  • a irst charging station 20 imparts a uniform charge to an image area of the photoconductive surface on the web 2 which charge may be of either polarity depending on the characteristics of the photoconductive web.
  • the uniformly charged image area is then exposed at a first electronic exposure station 30 to dissipate the charge creating a first electrostatic image.
  • the electronic exposure station 30 can be any known device which converts electrical signals into a light image, for example, a scanning laser or an LED printhead.
  • An optical exposure for example, by flash or optical scanning, can also be used.
  • the first electrostatic image is toned at a first development station 40 by the application of finely-divided marking particles which are charged to the same polarity as the original charge placed on the web by first charging station 20 to thereby tone the areas of the web that are discharged by exposure at the first electronic exposing station 30 to create a first toner image of a first color, for example, black.
  • the same image area of the web then passes into operative relation with a second charging station 22 which essentially repeats the process of the first charging station, uniformly charging the web to a polarity the same as the polarity imparted by first charging station 20.
  • the uniformly charged photoconductive member 2 is now imagewise exposed at second electronic exposure station 32 to create a second electrostatic image by imagewise discharging the photoconductor.
  • the second electrostatic image is then toned at second development station 42 by the application again of finely-divided toner of a second color having a charge the same as the uniform charge placed on the photoconductive member at second charging station 22 to create a second toner image of a second color, for example, red.
  • the process is then repeated using a third charging station 24 to lay down a uniform charge, a third electronic exposure station 34 to create a third electrostatic . image and third development station 44 to create a third toner image of a different color, for example, blue.
  • a single frame or image area on the photoconductive member contains three distinct color images, i.e., a multicolor toner image.
  • a fourth set of stations could create a fourth color in the same way.
  • the multicolor image is then transferred to a copy sheet at first transfer station 35.
  • the same process * is repeated for the next frame resulting in another multicolor toner image.
  • the copy sheet is inverted using a turnaround drum 4 and the second multicolor toner image is transferred to the side opposite that receiving the first multicolor toner image at second transfer station 36.
  • the copy sheet is then fed without disturbing the toner images to a fuser 45 which fixes both images to the copy sheet simultaneously.
  • the copy sheet is then fed to an output tray 46.
  • This particular duplexing mechanism is well-known for monocolor reproduction, see for example, U.S. Patent 4,191,465.
  • the conventional commercial approach to producing three color multicolor images is to create three consecutive images of different colors and superpose them in registration to a copy sheet at a transfer station. Superposition of the images is accomplished by either attaching the copy sheet to a rotating drum or by recirculating it back through what might conventionally be termed a duplex paper path to pick up subsequent images. In any case, multiple transfer to the paper is necessary which creates registration problems between color frames. Transfer drums for such systems are generally expensive. As mentioned above, duplex requires multiple fusing. Equally significant, for a three color reproduction, the apparatus delivers only one-third throughput that it would deliver for monocolor copies.
  • rollers 10, 11 and 12 which encoders assure the accuracy of placement of electronically controlled exposures by exposure stations 30, 32 and 34.
  • the rollers 10, 11 and 12 can also include sprockets which engage perforations in the member 2 to carefully control the location of the member during consecutive exposure.
  • Each encoder would signal the angular location of its sprocket which in turn is positioned by a perforation engaging a tooth in the sprocket, which perforation is the same for comparable portions of all three images. If the images are placed in substantially different areas of the frame and if movement of the . web is relatively constant, no encoder may be necessary. As an intermediate alternative suitable for most applications, one encoder can handle registration for all three exposure stations.
  • the photoconductive member 2 is cleaned at cleaning station 50 for reuse, as is well-known in the art.
  • the third charging station 24 exposure station 34 and toning station 44 can be eliminated.
  • Two-color systems have particular application to high speed printers in which the primary mode of operation is monocolor, i.e., black, and the second color, usually red or blue, is used to highlight certain passages of text or give a flair to letterheads, logos, and the like.
  • the first development station 40 or the second station 42 can be a larger, heavier duty development station than the other station.
  • a serious problem faced by the method and apparatus described with regard to Fig. 1 is that the second and third development stations have a tendency to disturb the previously applied toner, i.e., that applied by the first and second toning stations.
  • a magnetic brush development mechanism includes a two-component developer, one component including large magnetic carrier particles and the other smaller pigmented toner particles.
  • the mixing of the two components triboelectrically charges them to opposite polarities.
  • the magnetic characteristic of the carrier is used to transport the developer into close proximity with the electrostatic image in the presence of an electric field which urges the toner particles to some portion of the image.
  • the toner particles become charged triboelectrically to a polarity the same as the charge placed on the photoconductive member 2 and therefore are attracted in the presence of a carefully controlled electric field to the discharged portions of the electrostatic image.
  • Prior magnetic brushes typically include soft magnetic carrier, for example, carrier that has a coercivity substantially less than 100 gauss. As such particles are subjected to a changing magnetic field their magnetism changes with the field. This permits a brush to transport the carrier in the form of long relatively static bristles through the development zone. To apply substantial toner at medium speed, the brush generally requires relative motion with respect to the electrostatic image, commonly obtained by rotating a non-magnetic sleeve in a direction opposite to the direction of the image. The bristles have a tendency to brush any prior toner image off the image area.
  • a magnetic brush is illustrated which is useable in the process and apparatus illustrated in Fig. 1.
  • a photoconductive member 2 is moving in a direction indicated by the arrow and carries an electrostatic image, not shown.
  • the magnetic brush includes a rotatable magnetic core 5 which includes a plurality of magnets with alternating north and south poles arranged around the core periphery.
  • a non-magnetic shell 6 is concentric with the core 5. As is well-known in the art, if the core 5 is rotated in a counterclockwise direction as shown in Fig. 2 developer 7 is driven in a direction clockwise around the non-magnetic shell 6.
  • the non-magnetic shell 6 is driven in a clockwise direction as shown in Fig. 2, it has a tendency to move the developer 7 in a clockwise direction.
  • such apparatus uses a developer of electrically insulative toner particles and "hard" magnetic carrier particles having high minimum coercivity when magnetically saturated.
  • the developer disclosed in the Miskinis patent can be used with a large variety of toner colors and if the magnetic core is rotated at a relatively high velocity, for example, 1500 RPM, enough developer can be brought into operative relation with an electrostatic image to do high quality toning at high speeds.
  • the carrier itself can be used as part of the development electrode which gives greater control over background toning than in mono-component systems.
  • Fig. 3 the general constructional features of the brush shown in Fig. 2 are illustrated. More specifically the core 5 is mounted on bearings 60 and 61 for rotation as driven by a drive 62.
  • the core includes a ferrous material 63 with a plurality of permanent magnet strips 64 located around its periphery in alternating polarity relation.
  • the shell 6 is made of non-magnetic material such as stainless steel and is mounted for rotation and driven by a drive 65.
  • such developer comprises charged toner particles and oppositely charged carrier particles that contain a magnetic material which exhibits a predetermined high-minimum level of coercivity when magnetically saturated. More particularly such high minimum level of saturated coercivity is at least 100 gauss (when measured as described below) and the carrier particles can be binderless carriers (i.e., carrier particles that contain no binder or matrix material) or composite carriers (i.e., carrier particles that contain a plurality of magnetic material particles dispersed in a binder). Binderless and composite carrier particles containing magnetic materials complying with the 100 gauss minimum saturated coercivity levels are referred to herein as "hard” magnetic carrier particles. Coercivity levels in excess of 1000 gauss are preferred.
  • the hard magnetic carrier particles tumble in a direction that causes them to be transported in the opposite direction of the shell, which shell can be roughened to assist the tumbling and transportation process.
  • the tumbling carrier provides a "soft" brush to the electrostatic image that does not require relative movement to develop images at high speed.
  • FIGs. 4 and 5 illustrate a commercial embodiment of a development station useable in the position of any of the development stations shown in Fig. 1, but particularly useable as the second development station and the third development stations 42 and 44.
  • Photoconductive member 2 is moving from left to right as shown by the arrow in Figs. 4 and 5.
  • a housing 70 defines a sump 71 containing a two-component developer mix as described above.
  • An applicator 72 includes a core 73 5 containing magnets 74 which core and magnets are rotatable in a counterclockwise direction as illustrated by the arrow.
  • a cylindrical non-magnetic shell 75 surrounding the core is rotatable in a clockwise direction. The core 73 and the shell 75 o cooperate as described with respect to Figs.
  • a blade 25 engages the shell 5 downstream of the development zone between the shell and the photoconductive member 2 to remove unused developer material from the shell and return it to the sump.
  • Developer in sump 71 can be mixed, agitated Q and triboelectrically charged by means of a ribbon blender 76.
  • the feeding mechanism includes a cylindrical transport roller 78 which is rotatable in a clockwise direction and has an outer surface which is deeply fluted as shown in Figs. 4 and 5. The fluted surface picks up developer from the lower portion of the feeding mechanism and transports it to the applicator 72.
  • a magnet 79 inside transport roller 78 attracts developer to the roller 78 from the ribbon blender 76.
  • a gating and metering mechanism 80 includes a gating tube 81 spaced from and surrounding transport roller 78 that provide an annular space for the flow of developer. Tube 81 has an elongate relatively wide slot 48 and a much narrower elongate slot 50.
  • Slot 48 is relatively wide so that a substantial amount of developer material from sump 71 can pass through slot 48 and enter the space between tube 81 and transport roller 78 to be transported by roller 78 to the slot 50.
  • Slot 50 on the other hand is much narrower and meters the desired amount of development material to the applicator 72.
  • Tube 81 is oscillated between the positions shown in Fig. 1 and Fig. 2 to control the flow of developer material to the applicator 72.
  • Such movement can be accomplished in any suitable manner.
  • a pin 52 secured to the tube can be coupled to a solenoid 54 as shown diagrammatically at 56, so that the solenoid is effective to move the tube between these two positions.
  • the solenoid can be controlled from a logic and control unit of the printer so that it is actuated at precisely the correct time relative to movement of images on photoconductive member 2 past the development station.
  • slot 48 is between the ribbon blender and the magnet 79 so that developer from the sump can be driven by the ribbon blender through the slot.
  • Such material is attracted to roller 78 by the magnet 79.
  • the roller transports the material to the top where it is attracted toward the applicator 72 by the magnets 74 on the core 73. Thus, some of the developer will flow through the smaller slot 50 to the applicator 72.
  • the tube In order to shut off the flow of developer to the applicator, the tube is rotated approximately 6 degrees from its Fig. 4 position to its Fig. 5 position. At this time the larger slot 48 is spaced from the ribbon blender and the sump so that material from the ribbon blender and sump cannot pass through the slot into the space between the tube and the roller. Also, the smaller slot 50 is spaced from the applicator 72. When slot 50 is in its Fig. 5 position, any developer material flowing through the slot from the space between the tube and roller falls under the influence of gravity back into the sump.
  • the flow of developer can be totally cut off quite abruptly without movement of the station as a whole.
  • the gating structure can be used to '• prevent developer from contacting the photoconductive member at the unused development stations 42 and 44.
  • the embodiment shown in Figs. 4 and 5 suggests an attractive alternative to the Fig. 1 apparatus in which the exposure station 34 and the third charging station 24 are eliminated.
  • Fig. 6 shows a substantially different embodiment of a toning station useful in the method shown in Fig. 1 which is also described in U.S. Patent 4,797,704 to Hill et al.
  • toner is kept in a toner supply 142 and is fed on demand by a driven metering roller 154 to a sump area containing a rotatably driven paddle wheel 155.
  • An applicator 156 includes a magnetic core 112 substantially as described with regard to Figs. 2, 3, 4 and 5 which is rotatable in a clockwise direction.
  • a non-magnetic non-rotatable sleeve 114 controls the movement of developer from the sump up the right side, as shown in the Fig.
  • an electrical bias is applied by a bias applying means 59 to the non-magnetic shell 6.
  • This bias is picked to create an electric field which discourages the deposition of toner in the background areas.
  • the background areas are the portions of the image area that are fully charged. For example, a charge of +600 volts is placed on the photoconductive member 2 at the first charging station 20 and an LED printhead at the first exposing station 30 dissipates image areas down to +100 volts.
  • positively charged toner mixed with negatively charged carrier is applied to the electrostatic image under an electric field created by a bias on the non-magnetic sleeve of +500 volts.
  • This field will encourage positively charged toner toward the less positively charged exposed areas which are at +100 volts but will discourage disposition at the more positively charged background areas which are maintained at +600 volts.
  • This is a concept well-known in the art which varies according to the parameters of the system. For that reason, depending on the toner and carrier used, the bias at the second development station may well be optimized at a 5 different level than that of the first development station even though the polarites remain the same. Similarly, the level of charge applied at stations 20, 22 and 24 can also be varied to advantage.
  • the second and third charging stations 22 and 24 are necessary in the process only if the previous toning stations adversely affect the charge originally placed by charging station 20 or if a different charge is desired for the second imaging step.
  • the development mechanism described in this 5 invention has shown very little adverse effect on the original charge. Although it may be advantageous for highest quality work to include a small boost and leveling of the uniform charge, particularly to areas containing deposited toners, it does not appear to be 0 necessary for most applications.
  • the apparatus shown in Fig. 1 is capable of creating multicolor duplex output at full machine speed with the duplex images being formed in their natural order. This makes this particular apparatus particularly useful as a high speed color printer.

Abstract

A multicolor reproduction is made by uniformly charging a photoconductive member (2), imagewise exposing that member to create a first electrostatic image, developing the first electrostatic image with a toner of a first color to create a first toner image, preferably uniformly recharging the photoconductive member, imagewise exposing the charged member creating a second electrostatic image, developing the second electrostatic image by the application of toner of a second color to the exposed areas. The process can be repeated for any number of colors. The multicolor image is then transferred in a single step to a receiving sheet. The second and subsequent development steps are carried out by a magnetic brush developing device (42, 44) employing hard magnetic carrier particles that are tumbled through a development zone which tumbling does not adversely affect the prior toner images. Preferably the hard magnetic carrier particles have a coercivity of at least 100 gauss when magnetically saturated, but more preferably a coercivity of at least 1000 gauss when magnetically saturated. Two multicolor images so formed are transferred to opposite sides of a copy sheet and the images fused simultaneously to provide duplex multicolor images.

Description

ELECTROPHOTOGRAPHIC METHOD
This invention relates to color electrophotography and more specifically to a method of forming a multicolor image on the same frame or area of a photoconductive member, so 'that it may be transferred or otherwise utilized in a single step. Background Art
U. S. Patent 3,057,720 suggests that two color toner images can be formed consecutively on the same image frame without fixing the first image if the second toning step is not so harsh as to clean off the first toner image. Three color systems are disclosed using either positive development or discharged area development. A variety of development methods are suggested.
Japanese Ko ai 56-144452 (1981) also discloses a process in which two or three color toner images are formed on the same frame of a photoconductive member. As disclosed, the photoconductive member is uniformly charged, exposed and reverse developed with a toner of a first color. With the unfixed toner electrostatically adhering to the exposed areas the photoconductive member is exposed to a second image that does not overlap with the first image. That image is then developed by application of a second color toner to the newly exposed areas. The process can be repeated for more colors. The resulting multicolor image is transferred to a receiving sheet in one step.
These processes can be set up to double the speed of prior two color processes in which separate images are made on separate frames and then transferred in registration. Further, the required registration of the exposing steps is far easier to accomplish with accuracy than is registration in the transfer step.
However, this process has an inherent problem when used with conventional magnetic brush systems that the second and subsequent toning steps have a tendency to scrape or brush off the toner applied in the earlier toning steps. The above disclosure is representative of many which suggest the only way to solve this problem is to leave a gap between the brush and the image. By any of a number of approaches suggested in the prior art the toner (from both mono-component and dual-component developer) is propelled or projected across the gap to develop the electrostatic image without brushing off the prior formed toner images. See U.S. Patent 4,629,669; European Patent Application 0240888; European Patent Application 0066141; U.S. Patent 4,599,285 and U.S. Patent 3,775,106.
However, projection toning brings its own set of problems to the system. The most serious is a difficulty in doing high density toning at reasonably fast machine speeds. Also, the gap between toner and image is critical and must be maintained. Toners usable in the process are limited, limiting the colors available; especially difficult to use in this process are those of lighter hue, such as yellow. It is a difficult process to establish a background controlling electrical field.
U.S. Patents 4,546,060; 4,473,029 and 4,531,832 describe a method of toning in which a magnetic brush applicator supplies two component developer including small hard magnetic carrier particles and electrically insulative toner to an image which moves past the development station at a predetermined velocity. The brush includes a rapidly rotating core which tumbles the hard carrier particles through a development zone. The tumbling of the carrier is apparently due to the changing magnetic field which continuously flips the carrier. This process has a number of advantages in image quality, and is being used commercially. Disclosure of the Invention
It is an object of the invention to provide a method of developing an electrostatic image on an image area, which image area already contains a first toner image without substantially disturbing the first toner image'.
It is another object of the invention to provide a method for making multicolor reproductions using a single frame or area of a photoconductive member which method generally uses a two component developer for creating at least the second of two toner images in said area, but in which toning of the second image does not materially disturb the first toner image and in which no gap need be maintained between the developer and the image with the attendant disadvantages thereof.
We have discovered that while prior magnetic brushes in which the developer contacts the image has a tendency to clean off the prior toner images while developing the electrostatic image, the development process disclosed in U. S. Patents 4,546,060; 4,473,029 and 4,531,832 provide high density images at good speed without substantial damage to the prior toner images. According to a preferred embodiment the developer is transported through the development zone by rotating an alternating-pole magnetic core within a non-magnetic shell upon which shell the developer flows through said zone, and the developer includes hard magnetic carrier particles that are sufficiently hard that they flip or tumble as they pass through the development zone.
Prior magnetic brushes typically include soft magnetic carrier, for example, carrier that has a coercivity substantially less than 100 gauss. As such particles are subjected to a changing magnetic field their magnetism changes with the field. This permits a brush to transport the carrier in the form of long relatively static bristles through the development zone. To apply substantial toner at medium speed, the brush generally requires relative motion with respect to the electrostatic image, commonly obtained by rotating a non-magnetic sleeve in a direction opposite to the direction of the image. The bristles have a tendency to brush at least portions of any prior toner image off the image ar.ea. The invention disclosed in the patents cited above to Miskinis et al, Kroll et al, and Fritz et al, uses hard magnetic carrier particles which do not adapt magnetically to a changing field. Rather they are flipped or tumbled by the changing field. Without intending to be limited to any technical theory of operation, it is believed that the remarkable results obtained herein are because excellent development can be obtained with these tumbling, magnetically hard carrier particles without creating bristles in the development zone that have a tendency to clean off the image. The bristles, as mentioned, generally require substantial relative movement for reasonable speed and density development, while this system works best with little or no relative movement between the overall body of developer and the image.
It is another object of the invention to provide a duplex color reproduction method that has the advantages of single pass duplexing. This latter object is accomplished by forming two consecutive multicolor images by exposing and toning the same areas with different color toners without fixing or transferring the previous color toners, and transferring first one multicolor image to one side of a copy sheet and then transferring the second multicolor image to the other side of the same copy sheet. Brief Description of the Drawings In the detailed description of the preferred embodiment of the invention presented below reference is made to the accompanying drawings, in which:
Fig. 1 is a schematic side illustration of an electrophotographic printer utilizing the invention;
Figs. 2 and 3 are side views generally illustrating a magnetic brush apparatus particularly usable in the electrophotographic printer shown in Fig 1; Figs. 4 and 5 are cross sections of a preferred magnetic brush usable in the printer shown in Fig. 1; and
Fig. 6 is a cross section of an alternative magnetic brush usable in the printer shown in Fig. 1. Best Mode of Carrying Out the Invention
The invention can be used in a variety of electrophotographic applications. It will be described with regard to an electronic printer.
According to Fig. 1 an electronic printer 1 includes a photoconductive member, for example, photoconductive web 2 entrained about a series of rollers 10, 11, 12, 13, 14 and 15. The photoconductive web 2 is a multilayer structure which can take various forms, but is commonly a photoconductive layer 9 on a conductive backing 8 with a suitable support. The web 2 is driven by one of the rollers at a constant velocity through operative relationship with a series of electrophotographic stations.
A irst charging station 20 imparts a uniform charge to an image area of the photoconductive surface on the web 2 which charge may be of either polarity depending on the characteristics of the photoconductive web. The uniformly charged image area is then exposed at a first electronic exposure station 30 to dissipate the charge creating a first electrostatic image. The electronic exposure station 30 can be any known device which converts electrical signals into a light image, for example, a scanning laser or an LED printhead. An optical exposure, for example, by flash or optical scanning, can also be used. The first electrostatic image is toned at a first development station 40 by the application of finely-divided marking particles which are charged to the same polarity as the original charge placed on the web by first charging station 20 to thereby tone the areas of the web that are discharged by exposure at the first electronic exposing station 30 to create a first toner image of a first color, for example, black.
The same image area of the web then passes into operative relation with a second charging station 22 which essentially repeats the process of the first charging station, uniformly charging the web to a polarity the same as the polarity imparted by first charging station 20. The uniformly charged photoconductive member 2 is now imagewise exposed at second electronic exposure station 32 to create a second electrostatic image by imagewise discharging the photoconductor. The second electrostatic image is then toned at second development station 42 by the application again of finely-divided toner of a second color having a charge the same as the uniform charge placed on the photoconductive member at second charging station 22 to create a second toner image of a second color, for example, red.
The process is then repeated using a third charging station 24 to lay down a uniform charge, a third electronic exposure station 34 to create a third electrostatic. image and third development station 44 to create a third toner image of a different color, for example, blue.
At this stage in the process, a single frame or image area on the photoconductive member contains three distinct color images, i.e., a multicolor toner image. A fourth set of stations could create a fourth color in the same way.
The multicolor image is then transferred to a copy sheet at first transfer station 35. In the preferred embodiment shown in Fig. 1 the same process* is repeated for the next frame resulting in another multicolor toner image. The copy sheet is inverted using a turnaround drum 4 and the second multicolor toner image is transferred to the side opposite that receiving the first multicolor toner image at second transfer station 36. The copy sheet is then fed without disturbing the toner images to a fuser 45 which fixes both images to the copy sheet simultaneously. The copy sheet is then fed to an output tray 46. This particular duplexing mechanism is well-known for monocolor reproduction, see for example, U.S. Patent 4,191,465. However, because prior color methods do substantial handling of the copy sheet to pick up several color images in registration, it has always been necessary to fuse one multicolor image before transferring images to the opposite side. With this method and apparatus single pass color duplexing is accomplished. It provides the advantages of such systems, for example, only one pass of the copy sheet through the fuser, a short uncomplicated paper path and printing of images in an order more convenient for a printer(than double pass systems), but with the added feature of color.
The conventional commercial approach to producing three color multicolor images is to create three consecutive images of different colors and superpose them in registration to a copy sheet at a transfer station. Superposition of the images is accomplished by either attaching the copy sheet to a rotating drum or by recirculating it back through what might conventionally be termed a duplex paper path to pick up subsequent images. In any case, multiple transfer to the paper is necessary which creates registration problems between color frames. Transfer drums for such systems are generally expensive. As mentioned above, duplex requires multiple fusing. Equally significant, for a three color reproduction, the apparatus delivers only one-third throughput that it would deliver for monocolor copies.
In the apparatus described in Fig. 1 three color images are produced at the same rate as monocolor images. Registration need only be accomplished between the exposing stations 30, 32 and 34. The sophistication of that registration depends on the requirements of the system. To obtain the most accurate registration, encoders 16, 17 and 18 are attached to rollers 10, 11 and 12, which encoders assure the accuracy of placement of electronically controlled exposures by exposure stations 30, 32 and 34. For the greatest accuracy the rollers 10, 11 and 12 can also include sprockets which engage perforations in the member 2 to carefully control the location of the member during consecutive exposure. Each encoder would signal the angular location of its sprocket which in turn is positioned by a perforation engaging a tooth in the sprocket, which perforation is the same for comparable portions of all three images. If the images are placed in substantially different areas of the frame and if movement of the . web is relatively constant, no encoder may be necessary. As an intermediate alternative suitable for most applications, one encoder can handle registration for all three exposure stations.
After the copy sheet has left the web to go to the fuser 45, the photoconductive member 2 is cleaned at cleaning station 50 for reuse, as is well-known in the art.
Obviously, if a two-color system alone is desired for a particular apparatus, the third charging station 24 exposure station 34 and toning station 44 can be eliminated. Two-color systems have particular application to high speed printers in which the primary mode of operation is monocolor, i.e., black, and the second color, usually red or blue, is used to highlight certain passages of text or give a flair to letterheads, logos, and the like. In such apparatus the first development station 40 or the second station 42 can be a larger, heavier duty development station than the other station.
A serious problem faced by the method and apparatus described with regard to Fig. 1 is that the second and third development stations have a tendency to disturb the previously applied toner, i.e., that applied by the first and second toning stations.
By far, the most common development method used in dry electrophotography is magnetic brush development. Conventionally, a magnetic brush development mechanism includes a two-component developer, one component including large magnetic carrier particles and the other smaller pigmented toner particles. The mixing of the two components triboelectrically charges them to opposite polarities. The magnetic characteristic of the carrier is used to transport the developer into close proximity with the electrostatic image in the presence of an electric field which urges the toner particles to some portion of the image. In reverse development, as used in the apparatus shown in Fig. 1, the toner particles become charged triboelectrically to a polarity the same as the charge placed on the photoconductive member 2 and therefore are attracted in the presence of a carefully controlled electric field to the discharged portions of the electrostatic image.
Prior magnetic brushes typically include soft magnetic carrier, for example, carrier that has a coercivity substantially less than 100 gauss. As such particles are subjected to a changing magnetic field their magnetism changes with the field. This permits a brush to transport the carrier in the form of long relatively static bristles through the development zone. To apply substantial toner at medium speed, the brush generally requires relative motion with respect to the electrostatic image, commonly obtained by rotating a non-magnetic sleeve in a direction opposite to the direction of the image. The bristles have a tendency to brush any prior toner image off the image area.
Certain prior art, mentioned above, has attempted to solve this problem by the use of what is commonly known as "projection" development. In this approach mono-component developer, that is, toner with or without a significant carrier is brought generally into an area associated with the image and vibrated in that area by an oscillating electric field which causes the toner to appear to "jump" across a gap between the body of developer and the image. The gap between the brush and the electrostatic image may inhibit brushing off prior toner images, but this approach is limited in the colors of toners available, the speed with which it can deposit toner and the bias control of the deposition process, especially the control of unwanted background.
However, these problems can be solved by the use of a particular magnetic brush method and apparatus, known per se, that does not have the problems of the prior art. That method is disclosed in U.S.Patent 4,546,060, Miskinis et al, issued Oct. 8, 1985; U.S.Patent 4,473,029, Fritz et al, issued Sept. 25, 1984; and U.S.Patent 4,531,832, Kroll et al, issued July 30 1985, discussed above. According to those patents, the developer is transported through the development zone by rotating an alternating-pole magnetic core within a non-magnetic shell upon which shell the developer flows through said zone, and the developer includes hard magnetic carrier particles that are sufficiently hard that they flip or tumble as they pass through the development zone.
The invention disclosed in the patents cited above uses hard magnetic carrier particles which do not adapt magnetically to a changing field. Rather they are spun or tumbled by the field. Without intending to be limited to any technical theory of operation, it is believed that the remarkable results obtained herein are because excellent development can be obtained with these tumbling, magnetically hard carrier particles without creating bristles in the development zone that have a tendency to clean off the image. These three patents will be discussed with respect to Fig. 2 herein.
According to Fig. 2, a magnetic brush is illustrated which is useable in the process and apparatus illustrated in Fig. 1. A photoconductive member 2 is moving in a direction indicated by the arrow and carries an electrostatic image, not shown. The magnetic brush includes a rotatable magnetic core 5 which includes a plurality of magnets with alternating north and south poles arranged around the core periphery. A non-magnetic shell 6 is concentric with the core 5. As is well-known in the art, if the core 5 is rotated in a counterclockwise direction as shown in Fig. 2 developer 7 is driven in a direction clockwise around the non-magnetic shell 6.
Similarly, if the non-magnetic shell 6 is driven in a clockwise direction as shown in Fig. 2, it has a tendency to move the developer 7 in a clockwise direction. According to the Miskinis, Fritz and Kroll patents, such apparatus uses a developer of electrically insulative toner particles and "hard" magnetic carrier particles having high minimum coercivity when magnetically saturated. Unlike the projection toning systems suggested in the prior art or processes similar to that shown in Fig. 1, the developer disclosed in the Miskinis patent can be used with a large variety of toner colors and if the magnetic core is rotated at a relatively high velocity, for example, 1500 RPM, enough developer can be brought into operative relation with an electrostatic image to do high quality toning at high speeds. Because it is basically a two-component system the carrier itself can be used as part of the development electrode which gives greater control over background toning than in mono-component systems. According to Fig. 3 the general constructional features of the brush shown in Fig. 2 are illustrated. More specifically the core 5 is mounted on bearings 60 and 61 for rotation as driven by a drive 62. The core includes a ferrous material 63 with a plurality of permanent magnet strips 64 located around its periphery in alternating polarity relation. The shell 6 is made of non-magnetic material such as stainless steel and is mounted for rotation and driven by a drive 65.
The characteristics of the dry developer compositions that are particularly useful in the present invention are described below and in more detail in said Miskinis et al patent. In general such developer comprises charged toner particles and oppositely charged carrier particles that contain a magnetic material which exhibits a predetermined high-minimum level of coercivity when magnetically saturated. More particularly such high minimum level of saturated coercivity is at least 100 gauss (when measured as described below) and the carrier particles can be binderless carriers (i.e., carrier particles that contain no binder or matrix material) or composite carriers (i.e., carrier particles that contain a plurality of magnetic material particles dispersed in a binder). Binderless and composite carrier particles containing magnetic materials complying with the 100 gauss minimum saturated coercivity levels are referred to herein as "hard" magnetic carrier particles. Coercivity levels in excess of 1000 gauss are preferred.
When the core is driven in one direction, the hard magnetic carrier particles tumble in a direction that causes them to be transported in the opposite direction of the shell, which shell can be roughened to assist the tumbling and transportation process. The tumbling carrier provides a "soft" brush to the electrostatic image that does not require relative movement to develop images at high speed.
Figs. 4 and 5 illustrate a commercial embodiment of a development station useable in the position of any of the development stations shown in Fig. 1, but particularly useable as the second development station and the third development stations 42 and 44. Photoconductive member 2 is moving from left to right as shown by the arrow in Figs. 4 and 5. A housing 70 defines a sump 71 containing a two-component developer mix as described above. An applicator 72 includes a core 73 5 containing magnets 74 which core and magnets are rotatable in a counterclockwise direction as illustrated by the arrow. A cylindrical non-magnetic shell 75 surrounding the core is rotatable in a clockwise direction. The core 73 and the shell 75 o cooperate as described with respect to Figs. 2 and 3 to move developer in a clockwise direction and are driven at velocities to move the developer at substantially the same linear speed as the photoconductive member. A blade 25 engages the shell 5 downstream of the development zone between the shell and the photoconductive member 2 to remove unused developer material from the shell and return it to the sump.
Developer in sump 71 can be mixed, agitated Q and triboelectrically charged by means of a ribbon blender 76.
Material" from sump 71 is moved by the ribbon blender 76 not only axially in the sump but also radially outwardly so that some of the material is 5 provided to a feeding mechanism 77. The feeding mechanism includes a cylindrical transport roller 78 which is rotatable in a clockwise direction and has an outer surface which is deeply fluted as shown in Figs. 4 and 5. The fluted surface picks up developer from the lower portion of the feeding mechanism and transports it to the applicator 72. A magnet 79 inside transport roller 78 attracts developer to the roller 78 from the ribbon blender 76. A gating and metering mechanism 80 includes a gating tube 81 spaced from and surrounding transport roller 78 that provide an annular space for the flow of developer. Tube 81 has an elongate relatively wide slot 48 and a much narrower elongate slot 50.
Slot 48 is relatively wide so that a substantial amount of developer material from sump 71 can pass through slot 48 and enter the space between tube 81 and transport roller 78 to be transported by roller 78 to the slot 50. Slot 50 on the other hand is much narrower and meters the desired amount of development material to the applicator 72. Tube 81 is oscillated between the positions shown in Fig. 1 and Fig. 2 to control the flow of developer material to the applicator 72. Such movement can be accomplished in any suitable manner. For example, a pin 52 secured to the tube can be coupled to a solenoid 54 as shown diagrammatically at 56, so that the solenoid is effective to move the tube between these two positions. The solenoid can be controlled from a logic and control unit of the printer so that it is actuated at precisely the correct time relative to movement of images on photoconductive member 2 past the development station.
When the tube is in its Fig. 1 position slot 48 is between the ribbon blender and the magnet 79 so that developer from the sump can be driven by the ribbon blender through the slot. Such material is attracted to roller 78 by the magnet 79. The roller transports the material to the top where it is attracted toward the applicator 72 by the magnets 74 on the core 73. Thus, some of the developer will flow through the smaller slot 50 to the applicator 72.
In order to shut off the flow of developer to the applicator, the tube is rotated approximately 6 degrees from its Fig. 4 position to its Fig. 5 position. At this time the larger slot 48 is spaced from the ribbon blender and the sump so that material from the ribbon blender and sump cannot pass through the slot into the space between the tube and the roller. Also, the smaller slot 50 is spaced from the applicator 72. When slot 50 is in its Fig. 5 position, any developer material flowing through the slot from the space between the tube and roller falls under the influence of gravity back into the sump.
With the gating and metering structure described in this development station the flow of developer can be totally cut off quite abruptly without movement of the station as a whole. Thus, referring back to Fig. 1, if the apparatus shown therein is to be operated for a number of copies using only the first development station 40 to make, for example, a series of reproductions using only black toner, the gating structure can be used to '•prevent developer from contacting the photoconductive member at the unused development stations 42 and 44. The embodiment shown in Figs. 4 and 5 suggests an attractive alternative to the Fig. 1 apparatus in which the exposure station 34 and the third charging station 24 are eliminated. The exposure for the second color would then be accomplished by exposure station 32 but that color could be either of the colors carried in development stations 42 or 44 depending on which gate structure permits development. The embodiment shown in Figs. 4 and 5 is also described and claimed in U.S. Patent 4,690,096 to Hacknauer.
Fig. 6 shows a substantially different embodiment of a toning station useful in the method shown in Fig. 1 which is also described in U.S. Patent 4,797,704 to Hill et al. According to Fig. 6, toner is kept in a toner supply 142 and is fed on demand by a driven metering roller 154 to a sump area containing a rotatably driven paddle wheel 155. An applicator 156 includes a magnetic core 112 substantially as described with regard to Figs. 2, 3, 4 and 5 which is rotatable in a clockwise direction. A non-magnetic non-rotatable sleeve 114 controls the movement of developer from the sump up the right side, as shown in the Fig. 6, of the sleeve across a development zone adjacent the photoconductive member 2 and then down the left side of the sleeve where it leaves the influence of the magnetic core 112 and falls back into the sump. With this apparatus clockwise rotation of the magnetic core can move the developer across the development zone at substantially the same linear speed as the movement of an electrostatic image carried by a photoconductive member 2.
Referring to Fig. 3 an electrical bias is applied by a bias applying means 59 to the non-magnetic shell 6. This bias is picked to create an electric field which discourages the deposition of toner in the background areas. In reverse development, the background areas are the portions of the image area that are fully charged. For example, a charge of +600 volts is placed on the photoconductive member 2 at the first charging station 20 and an LED printhead at the first exposing station 30 dissipates image areas down to +100 volts. At the first development station 40, positively charged toner mixed with negatively charged carrier is applied to the electrostatic image under an electric field created by a bias on the non-magnetic sleeve of +500 volts. This field will encourage positively charged toner toward the less positively charged exposed areas which are at +100 volts but will discourage disposition at the more positively charged background areas which are maintained at +600 volts. This is a concept well-known in the art which varies according to the parameters of the system. For that reason, depending on the toner and carrier used, the bias at the second development station may well be optimized at a 5 different level than that of the first development station even though the polarites remain the same. Similarly, the level of charge applied at stations 20, 22 and 24 can also be varied to advantage.
The second and third charging stations 22 and 24 are necessary in the process only if the previous toning stations adversely affect the charge originally placed by charging station 20 or if a different charge is desired for the second imaging step. The development mechanism described in this 5 invention has shown very little adverse effect on the original charge. Although it may be advantageous for highest quality work to include a small boost and leveling of the uniform charge, particularly to areas containing deposited toners, it does not appear to be 0 necessary for most applications.
Although the process has been described with respect to reverse development systems in which each consecutive image does not overlap its previous images, the invention in its broadest form applies to 5 any process in which an electrostatic image is to be toned in the same general area containing a first toner image, whether or not the second image overlaps with the first, whether or not the second image is to be toned with ordinary positive development and whether or not the second image is of a different color than the first. (One, for example, could be magnetic and the other not.)
Note that the apparatus shown in Fig. 1 is capable of creating multicolor duplex output at full machine speed with the duplex images being formed in their natural order. This makes this particular apparatus particularly useful as a high speed color printer.
The invention has been described in detail with particular reference to a preferred embodiment thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention as described hereinabove and as defined in the appended claims.

Claims

We claim:
1. A method of developing an electrostatic image on an image area, which image area already contains a first toner image without substantially disturbing the first toner image, said method comprising: moving said image area containing said first toner image and said electrostatic image through a development zone, and rotating a magnetic core(5) that includes a plurality of alternating magnetic pole portions that are arranged around the core periphery within a non-magnetic shell(6) to move develoρer(7) including hard magnetic carrier particles and electrically insulative toner particles along the surface of said shell through said development zone in developing relation with the electrostatic image.
2. The method according to claim 1 wherein said hard magnetic carrier particles have a coercivity sufficient to be tumbled through said development zone in response to rotation of said magnetic core.
3. The method according to claim 2 wherein said hard magnetic carrier particles have a coercivity of at least 100 gauss when magnetically saturated.
4. The method according to claim 2 wherein said hard magnetic carrier particles have a coercivity of at least 1000 gauss when magnetically saturated.
5. The method according to claim 1 wherein said developer and said electrostatic image are moved at substantially the same velocity in said development zone.
6. The method according to any of the preceding claims wherein said first toner image and said toner particles are of different color.
7. A multicolor electrophotographic reproduction method of the type including the steps of creating a first electrostatic image on an image receiving area of a photoconductive member, said image having reduced levels of charge compared to the rest of said area, applying finely divided toner of a first color to said image to create a first toner image, creating a second electrostatic image on said image receiving area, said second electrostatic image having reduced levels of charge compared to the rest of said area, and applying finely divided toner of a second color to said second electrostatic image to form a second toner image without substantially disturbing the first toner image, characterized in that said step of applying toner of a second color includes the steps of moving said second electrostatic image through a development zone, and transporting developer, including hard magnetic carrier particles and electrically insulative toner particles, through said development zone in developing relation with the second electrostatic image by rotating an alternating-pole magnetic core within a non-magnetic shell upon which shell the developer flows through said development zone.
8. The method according to claim 7 further including the step of rotating said non-magnetic shell in a direction opposite to the rotation of said core, the combined rotations of said core and shell contributing to the movement of said developer through the development zone at substantially the velocity of said second electrostatic image.
9. The method according to claim 8 further including the step of applying at said development zone an electric field that deters development of the portions of said image receiving area that do not contain reduced levels of charge.
10. The method according to claim 7 wherein said core is rotated in a direction opposite to the direction of movement of the developer.
11. The method according to claim 9 wherein said shell moves in the same direction as the electrostatic image and the developer in the development zone.
12. A duplex multicolor reproduction method comprising: creating a first electrostatic image on an image receiving area of an image member, applying finely divided toner of a first color to said image to create a first toner image, creating a second electrostatic image on said image receiving area, applying finely divided toner of a second color to said second electrostatic image without having fixed said first image to form a first unfixed multicolor toner image, repeating the above steps to form a second multicolor image on a second image receiving area of said member, transferring said first multicolor image to " a first side of a receiving sheet, and transferring the second multicolor image to the reverse side of said receiving sheet.
13. The method according to claim 12 wherein said transferring steps are carried out without fixing the images until both images are transferred and said images are then fixed simultaneously.
14. The method according to claim 12 wherein said imaging member is a photoconductive member and each of said electrostatic images is created by uniformly charging and imagewise exposing said photoconductive member.
PCT/US1989/003400 1988-08-15 1989-08-09 Electrophotographic method WO1990001730A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE68912299T DE68912299T2 (en) 1988-08-15 1989-08-09 ELECTROPHOTOGRAPHIC PROCESS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23207388A 1988-08-15 1988-08-15
US232,073 1988-08-15

Publications (1)

Publication Number Publication Date
WO1990001730A1 true WO1990001730A1 (en) 1990-02-22

Family

ID=22871769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1989/003400 WO1990001730A1 (en) 1988-08-15 1989-08-09 Electrophotographic method

Country Status (4)

Country Link
EP (1) EP0381751B1 (en)
JP (1) JPH03500937A (en)
DE (1) DE68912299T2 (en)
WO (1) WO1990001730A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040003A (en) * 1990-06-04 1991-08-13 Eastman Kodak Company Method and apparatus for recording color with plural printheads

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538677B1 (en) * 2000-05-17 2003-03-25 Heidelberger Druckmaschinen Ag Apparatus and method for gray level printing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4033688A (en) * 1975-02-14 1977-07-05 Agfa-Gevaert, Aktiengesellschaft Color copying apparatus
US4473029A (en) * 1983-07-01 1984-09-25 Eastman Kodak Company Electrographic magnetic brush development method, apparatus and system
US4477176A (en) * 1983-12-27 1984-10-16 Eastman Kodak Company Apparatus for producing multiple image simplex and duplex copies in a single pass
US4546060A (en) * 1982-11-08 1985-10-08 Eastman Kodak Company Two-component, dry electrographic developer compositions containing hard magnetic carrier particles and method for using the same
US4611901A (en) * 1983-07-08 1986-09-16 Kabushiki Kaisha Toshiba Electrophotographic method and apparatus
US4690096A (en) * 1986-12-22 1987-09-01 Eastman Kodak Company Magnetic brush development apparatus having a gating and metering mechanism
US4734735A (en) * 1985-08-23 1988-03-29 Konishiroku Photo Industry Co., Ltd. Image apparatus having a color separation function
WO1988005563A1 (en) * 1987-01-27 1988-07-28 Eastman Kodak Company Color electrostatographic apparatus having an intermediate transfer member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4033688A (en) * 1975-02-14 1977-07-05 Agfa-Gevaert, Aktiengesellschaft Color copying apparatus
US4546060A (en) * 1982-11-08 1985-10-08 Eastman Kodak Company Two-component, dry electrographic developer compositions containing hard magnetic carrier particles and method for using the same
US4473029A (en) * 1983-07-01 1984-09-25 Eastman Kodak Company Electrographic magnetic brush development method, apparatus and system
US4611901A (en) * 1983-07-08 1986-09-16 Kabushiki Kaisha Toshiba Electrophotographic method and apparatus
US4477176A (en) * 1983-12-27 1984-10-16 Eastman Kodak Company Apparatus for producing multiple image simplex and duplex copies in a single pass
US4734735A (en) * 1985-08-23 1988-03-29 Konishiroku Photo Industry Co., Ltd. Image apparatus having a color separation function
US4690096A (en) * 1986-12-22 1987-09-01 Eastman Kodak Company Magnetic brush development apparatus having a gating and metering mechanism
WO1988005563A1 (en) * 1987-01-27 1988-07-28 Eastman Kodak Company Color electrostatographic apparatus having an intermediate transfer member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040003A (en) * 1990-06-04 1991-08-13 Eastman Kodak Company Method and apparatus for recording color with plural printheads

Also Published As

Publication number Publication date
DE68912299D1 (en) 1994-02-24
EP0381751A1 (en) 1990-08-16
JPH03500937A (en) 1991-02-28
DE68912299T2 (en) 1994-07-07
EP0381751B1 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
US5001028A (en) Electrophotographic method using hard magnetic carrier particles
US5409791A (en) Image forming method and apparatus
US5036364A (en) Image forming apparatus including developer carrying member having repelling magnetic brush
US4766468A (en) Developing method and apparatus for a photocopier
JPS6360472A (en) Electrophotographic device
US5095340A (en) Method of controlling the operation of a magnetic brush toning station
EP0381751B1 (en) Electrophotographic method
US6785498B2 (en) Development system for developing an image on an image bearing member
US4771311A (en) Development apparatus
US5376997A (en) Rotating sleeve-type magnetic brush cleaning device
US5574546A (en) Developing apparatus for an electrophotographic machine
US6032014A (en) Method of using an image forming apparatus
US4267201A (en) Magnetic brush development apparatus and method
US5078086A (en) Developer unit having an indexable magnet
JPH0792813A (en) Developing device
US4982238A (en) Developer material mixing apparatus for a development unit
JPH0583903B2 (en)
US6014537A (en) Method of developing an image in an image forming apparatus
US3648657A (en) Electrostatic image development apparatus
JP2727850B2 (en) Developing device
JPH04199073A (en) Image forming device
JPS61254959A (en) Image forming device
JPS61201270A (en) Developing device for color selectable monochromatic copying device
JPH0384565A (en) Image forming device
US20040208677A1 (en) Coated carrier particles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989910393

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989910393

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989910393

Country of ref document: EP