WO1990012274A1 - Berührungslos arbeitendes wegmesssystem - Google Patents

Berührungslos arbeitendes wegmesssystem Download PDF

Info

Publication number
WO1990012274A1
WO1990012274A1 PCT/DE1990/000090 DE9000090W WO9012274A1 WO 1990012274 A1 WO1990012274 A1 WO 1990012274A1 DE 9000090 W DE9000090 W DE 9000090W WO 9012274 A1 WO9012274 A1 WO 9012274A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
sensor
measuring system
shield
coils
Prior art date
Application number
PCT/DE1990/000090
Other languages
English (en)
French (fr)
Inventor
Franz Hrubes
Original Assignee
Micro-Epsilon Messtechnik Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro-Epsilon Messtechnik Gmbh & Co. Kg filed Critical Micro-Epsilon Messtechnik Gmbh & Co. Kg
Priority to DE9090902614T priority Critical patent/DE59001325D1/de
Priority to JP2502546A priority patent/JPH0794963B2/ja
Priority to US07/768,540 priority patent/US5302894A/en
Publication of WO1990012274A1 publication Critical patent/WO1990012274A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures

Definitions

  • the invention relates to a non-contact displacement measuring system with a sensor having a measuring side and a connecting side, a supply / evaluation electronics and a cable leading from the sensor to the supply / evaluation electronics with preferably two inner conductors, the sensor being a sensor housing , at least one coil arranged in the sensor housing, from the inner conductors of the cable to the coil or to the coils connecting leads and possibly an embedding material fixing the coil or the coils and the connecting leads.
  • Non-contact measuring systems have been known for years in practice in various versions. According to their principle of operation, they can be divided into displacement measuring systems based on eddy current, inductive and capacitive displacement measuring systems, and optical or acoustic displacement measuring systems.
  • the present invention relates to non-contact displacement measuring systems with a sensor having at least one coil, that is, to displacement measuring systems which operate either on an eddy current basis or inductively.
  • a high-frequency alternating current flows through a coil which is usually cast into a housing and which forms a resonant circuit by connecting capacitors in parallel.
  • the coil emits an electromagnetic coil field.
  • This coil field induces eddy currents in a conductive object, which draw energy from the resonant circuit.
  • the reaction of the induced eddy currents appears in particular, which changes the real part of the coil impedance as a mutual induction.
  • the influence on the imaginary part of the coil impedance depends on the magnetic properties and the working frequency.
  • Non-magnetic measuring objects reduce the coil inductance when approaching the coil.
  • the resonant circuit amplitude changes depending on the distance. Demodulated, linearized and possibly amplified, the change in amplitude provides a voltage that changes in proportion to the distance between the sensor and the measurement object.
  • the coil arranged in the sensor is also part of an oscillating circuit.
  • the imaginary part of the coil impedance mainly changes. This applies above all to low operating frequencies, i.e. for working frequencies up to several 100 kHz.
  • Magnetic objects increase the inductance when approaching the coil, non-magnetic objects reduce it.
  • a demodulated output signal is proportional to the distance between the sensor and the test object.
  • the change in the impedance of a measuring coil arranged in a sensor is measured when an electrically and / or magnetically conductive measuring object approaches.
  • the measurement signal therefore corresponds to the measurement distance.
  • the change in impedance caused by the change in distance between the sensor and the measurement object thus results on the one hand from a change in the inductance of the coil, and on the other hand from the change in the real resistance of the coil.
  • the imaginary part of the coil impedance is predetermined, inter alia, by the capacitance of the measuring coil and thus by the overall configuration of the sensor.
  • the electrical emerging from the sensor during measurement Field lines are therefore a determining factor for the sensor's own capacitance.
  • the capacitance of the measuring coil is influenced.
  • the change in capacitance is a few pF.
  • the water - or another material with a high dielectric constant - is permanently present, the influence of the water on the intrinsic capacity of the coil can be taken into account when calibrating the measuring system.
  • the space between the sensor and the measurement object is not protected against splash water, for example, if water gets into the measurement section uncontrollably and only temporarily, measurement errors occur in the distance measurement, which increase with the distance between the sensor and the measurement object. This is due to the fact that a movement of the measurement object with a large distance between the sensor and the measurement object causes only a slight change in the impedance of the coil.
  • the working frequency or resonance frequency of the sensor oscillating circuit is calculated according to the known formula
  • C coil is the self-capacitance of the sensor coil and C E is the supplementary capacitance for the desired working frequency.
  • C E is the supplementary capacitance for the desired working frequency.
  • the percentage change in the resonance frequency is only slight, since the capacitance C Erg is significantly larger than the intrinsic capacitance of the coil.
  • the percentage change in the resonance frequency increases almost quadratically with the frequency, since C Erg decreases accordingly. This means that the influence at 1 MHz is 100 times greater than at 100 kHz.
  • the invention is therefore based on the object of providing a non-contact displacement measuring system in which the influence of liquids or solids with a high dielectric constant on the measured values is largely eliminated.
  • the contactless measuring system solves the problem outlined above in that a shield is provided on the measuring side of the sensor and that the shield is at least largely impermeable to electrical field lines emanating from the coil or from the coils, on the other hand, for electromagnetic field lines emanating from the coil or from the coils is at least largely permeable.
  • FIG. 2 shows a schematic representation of a typical sensor which works according to the measuring principle from FIG. 1,
  • Fig. 3 in a schematic representation, enlarged and partial, the sensor of Fig. 2 and the course of the electric field lines emanating from the sensor and
  • Fig. 4 in a schematic representation of a sensor
  • a sensor (2) represented for the sake of simplicity only by a coil (1), is connected on its connection side (3) with its connection lines (4) via inner conductors (5) of a cable (6) to a supply / Evaluation electronics (7) connected.
  • An electromagnetic field extends from the coil (1) or the sensor (2) or electromagnetic field lines (9) run to a measurement object (10) and are closed there.
  • an electrically conductive measurement object (10) eddy currents are induced in the measurement object (10) on the one hand, and an eddy current occurs on the other Change the inductance of the coil (1).
  • ferritic measuring objects (10) the inductance of the coil (1) changes.
  • the sensor (2) shows the basic structure of a known contactless sensor (2) which operates according to the eddy current measuring method or the inductive measuring method.
  • the sensor (2) consists essentially of a sensor housing (11), the coil (1) arranged in the sensor housing (11), the one from the coil (1) to the cable (6) or to the inner conductors (5) of the cable (6) leading connecting lines (4) and an investment material (13) for fixing the coil (1) within the sensor housing (11).
  • the cable (6) leading to the supply / evaluation electronics (7) (not shown in FIG. 2) is preferably shielded against electrical and electromagnetic fields. This is preferably a coaxial cable.
  • FIG. 3 clearly shows the influence of an object (14) with a relatively large dielectric constant ⁇ r between the sensor (2) and the actual measurement object (10) - located in the measurement section.
  • the resulting influencing of the electrical field lines (12) results in a change in the capacitance of the coil (1).
  • Fig. 4 partially shows the sensor (2) of a contactless measuring system according to the invention.
  • a measuring system consists essentially of a sensor (2) having a measuring side (8) and a connecting side (3). a supply / evaluation electronics (7) and the cable (6) leading from the sensor (2) to the supply / evaluation electronics with two inner conductors (5). 4, for the sake of simplicity, only the measuring side (8) of the sensor (2) is shown.
  • the sensor (2) includes the sensor housing (11), the coil (1) arranged in the sensor housing (11), two connection leads leading from the two inner conductors (5) of the cable (6) to the coil (1) lines (4) and the investment (13) fixing the coil (1) and the connecting lines (4).
  • a further coil for example a reference coil for temperature compensation, could be arranged within the sensor housing. It would also be possible to arrange a plurality of coils operating as measuring coils within the sensor housing.
  • Fig. 4 clearly shows that a shield (15) is provided on the measuring side (8) of the sensor (2).
  • This shield (15) is largely impermeable for electrical field lines (12) emanating from the coil (1) on the one hand, and largely permeable for electromagnetic field lines emanating from the coil (1) and not shown in FIG. 4.
  • the above-mentioned shielding could be arranged directly on the coil. It would be particularly advantageous to design the shield for the electrical field lines as a coil casing.
  • the shielding could be implemented in a simple manner as a lacquer layer enveloping the coil from a manufacturing point of view. It would also be conceivable to evaporate the shield onto the coil, as a result of which particularly thin layers could be produced.
  • Such an embodiment of the shield would have the advantage that the shield would be protected from the investment compound together with the coil inside the sensor housing.
  • the shield (15) is designed as a cover (16) provided on the measuring side (8) of the sensor (2). The cover (16) closes the sensor housing (11) on the eating side and could therefore serve at the same time to protect the coil (1) or the investment material (13) against aggressive media, temperature or pressures.
  • the cover could be attached to the sensor in different ways.
  • the cover could be attached to the sensor housing on the measurement side in a structurally simple manner.
  • a screwable attachment of the cover to the sensor housing would also be conceivable.
  • the above attachment options for the cover would be advantageous insofar as the cover would be easily replaceable if necessary, for example in the event of damage.
  • cover adhesively, e.g. by gluing to connect with the sensor housing or with the investment material of the sensor.
  • the cover could also be connected to the sensor housing in a material-locking manner.
  • the cover firmly connected to the sensor housing forms an effective seal for the sensor housing, which is particularly advantageous when the sensor is used in a harmful atmosphere.
  • a suitable shielding of the electrical field can be achieved by an electrically conductive material.
  • the shield could accordingly also consist of a conductive plastic or graphite.
  • the shielding is made of ceramic in a particularly advantageous manner, there are only very little or no damping problems with respect to the electromagnetic field.
  • a ceramic shield as used, for example, in multilayer capacitors, i.e. with shielding with a dielectric constant ⁇ r> 1000, there is practically no damping of the electromagnetic field, but the electric field is largely shielded.

Abstract

Ein berührungslos arbeitendes Wegmeßsystem mit einem ein Sensorgehäuse (11), mindestens eine im Sensorgehäuse (11) angeordnete Spule (1) und eine die Spule (1) fixierende Einbettmasse (13) aufweisenden Sensor (2) und einer Versorgungs-/Auswerteelektronik ist so ausgeführt, daß der Einfluß von Flüssigkeiten oder Festkörpern mit hoher Dielektrizitätszahl auf die Meßwerte weitgehend eliminiert ist. Dazu ist auf der Meßseite (8) des Sensors (2) eine Abschirmung (15) vorgesehen, die einerseits für von der Spule (1) ausgehende elektrische Feldlinien (9) zumindest weitgehend undurchlässig, jedoch für von der Spule (1) ausgehende elektromagnetische Feldlinien weitgehend durchlässig ist.

Description

"Berührungslos arbeitendes Wegmeßsystem"
Die Erfindung betrifft ein berührungslos arbeitendes Wegmeßsy¬ stem mit einem eine Meßseite und eine Anschlußseite aufweisen¬ den Sensor, einer Versorgungs-/Auswerteelektronik und einem vom Sensor zu der Versorgungs-/Auswerteelektronik führenden Kabel mit vorzugsweise zwei Innenleitern, wobei der Sensor ein Sen¬ sorgehäuse, mindestens eine in dem Sensorgehäuse angeordnete Spule, von den Innenleitern des Kabels zur Spule bzw. zu den Spulen führende Anschlußleitungen und ggf. eine die Spule bzw. die Spulen und die Anschlußleitungen fixierende Einbettmasse aufweist.
Berührungslos arbeitende Wegmeßsysteme sind seit Jahren aus der Praxis in verschiedenen Ausführungen bekannt. Sie lassen sich nach ihrer prinzipiellen Funktionsweise einerseits in Wegmeßsy¬ steme auf Wirbelstrombasis, induktive und kapazitive Wegmeßsy¬ steme, andererseits in optische oder akustische Wegmeßsysteme gliedern.
Die vorliegende Erfindung bezieht sich auf berührungslose Weg¬ meßsysteme mit einem mindestens eine Spule aufweisenden Sensor, also auf Wegmeßsysteme, die entweder auf Wirbelstrombasis oder induktiv arbeiten.
Bei nach dem Wirbelstrom-Meßverfahren arbeitenden Wegmeßsyste¬ men durchfließt ein hochfrequenter Wechselstrom eine üblicher¬ weise in einem Gehäuse eingegossene Spule, die durch Parallel¬ schaltung von Kapazitäten einen Schwingkreis bildet. Dabei geht von der Spule ein elektromagnetisches Spulenfeld aus. Dieses Spulenfeld induziert in einem leitfähigen Objekt Wirbelströme, die dem Schwingkreis Energie entziehen. Bei höheren Arbeitsfre- quenzen tritt vor allem die Rückwirkung der induzierten Wirbel¬ ströme in Erscheinung, die als Gegeninduktion den Realteil der Spulenimpedanz ändert. Der Einfluß auf den Imaginärteil der Spulenimpedanz hängt dabei von den magnetischen Eigenschaften und der Arbeitsfrequenz ab. Nichtmagnetische Meßobjekte verrin¬ gern bei Annäherung an die Spule die Spuleninduktivität.
Abhängig vom Abstand ändert sich die Schwingkreisamplitude. De¬ moduliert, linearisiert und ggf. verstärkt liefert die Amplitu¬ denänderung eine proportional zum Abstand zwischen Sensor und Meßobjekt sich ändernde Spannung.
Beim induktiven Meßverfahren ist die im Sensor angeordnete Spule ebenfalls Teil eines Schwingkreises. Bei Annäherung eines leitfähigen Meßobjektes ändert sich hauptsächlich der Imaginär¬ teil der Spulenimpedanz. Dies gilt vor allem für niedrige Ar¬ beitsfrequenzen, d.h. für Arbeitsfrequenzen bis mehrere 100 kHz. Magnetische Objekte vergrößern bei Annäherung an die Spule die Induktivität, nichtmagnetische Objekte verringern sie. Auch hier ist ein demoduliertes Ausgangssignal proportional zum Ab¬ stand zwischen Sensor und Meßobjekt.
Sowohl beim Wirbelstrommeßverfahren als auch beim induktiven Meßverfahren wird die Änderung der Impedanz einer in einem Sen¬ sor angeordneten Meßspule bei Annäherung eines elektrisch und/oder magnetisch leitfähigen Meßobjektes gemessen. Das Mes- signal entspricht also dem Meßabstand.
Die durch die Abstandsänderung zwischen Sensor und Meßobjekt hervorgerufene Impedanzänderung ergibt sich also einerseits aus einer Änderung der Induktivität der Spule, andererseits aus der Änderung des Realwiderstandes der Spule. Der Imaginärteil der Spulenimpedanz wird u.a. durch die Eigenkapazität der Meßspule und damit durch die gesamte Ausgestaltung des Sensors vorgege¬ ben. Die beim Messen aus dem Sensor austretenden elektrischen Feldlinien sind demnach mitbestimmend für die Eigenkapazität des Sensors.
Nähert sich dem Sensor ein elektrisch leitfähiges Meßobjekt, so wird dadurch auch das vom Sensor ausgehende elektrische Feld beeinflußt. Dies ist auch der Fall, wenn sich ein Objekt mit relativ hoher Dielektrizitätszahl nähert. Folglich verursacht ein zwischen dem Sensor und dem eigentlichen Meßobjekt befind¬ licher Werkstoff mit hoher Dielektrizitätszahl eine Änderung der Eigenkapazität und damit der Gesamtimpedanz der Meßspule.
Gelangt beispielsweise Wasser (εr -_ 80) zwischen Sensor und Meßobjekt, so wird die Eigenkapazität der Meßspule beeinflußt. Bei gebräuchlichen Sensoren liegt dabei die Änderung der Kapa¬ zität bei wenigen pF. Ist das Wasser - oder ein anderer Werk¬ stoff mit hoher Dielektrizitätszahl - dauernd vorhanden, so kann der Einfluß des Wassers auf die Eigenkapazität der Spule bei der Kalibrierung des Meßsystems berücksichtigt werden. Ist jedoch der Raum zwischen Sensor und Meßobjekt beispielsweise nicht spritzwassergeschutzt, gelangt also Wasser unkontrolliert und nur zeitweise in die Meßstrecke, so treten Meßfehler bei der Abstandsmessung auf, die mit dem Abstand zwischen Sensor und Meßobjekt zunehmen. Dies liegt daran, daß eine Bewegung des Meßobjekts bei großem Abstand zwischen Sensor und Meßobjekt nur eine geringe Impedanzänderung der Spule bewirkt.
Die Arbeitsfrequenz bzw. Resonanzfrequenz des Sensorschwing¬ kreises berechnet sich nach der bekannten Formel
f(Res) =
2 * r TC Spule + cEerg*1
wobei CSpule die Eigenkapazität der Sensorspule und CE die Ergänzungskapazität für die gewünschte Arbeitsfrequenz ist. Bei niedrigen Frequenzen und gegebener Induktivität L ist die prozentuale Änderung der Resonanzfrequenz nur gering, da die Kapazität CErg wesentlich größer als die Eigenkapazität der Spule ist. Die prozentuale Änderung der Resonanzfrequenz nimmt jedoch annähernd quadratisch mit der Frequenz zu, da entspre¬ chend CErg abnimmt. Das bedeutet, daß der Einfluß bei 1 MHz 100 mal so groß ist wie bei 100 kHz.
Der Erfindung liegt daher die Aufgabe zugrunde, ein berührungs¬ los arbeitendes Wegmeßsystem zu schaffen, bei dem der Einfluß von Flüssigkeiten oder Festkörpern mit hoher Dielektrizitäts¬ zahl auf die Meßwerte weitgehend eliminiert ist.
Das erfindungsgemäße, berührungslos arbeitende Wegmeßsystem löst die zuvor aufgezeigte Aufgabe dadurch, daß auf der Me߬ seite des Sensors eine Abschirmung vorgesehen ist und daß die Abschirmung einerseits für von der Spule bzw. von den Spulen ausgehende elektrische Feldlinien zumindest weitgehend undurch¬ lässig, andererseits für von der Spule bzw. von den Spulen aus¬ gehende elektromagnetische Feldlinien zumindest weitgehend durchlässig ist.
Erfindungsgemäß ist erkannt worden, daß der Einfluß von in der Meßstrecke befindlichen Flüssigkeiten oder Festkörpern hoher Dielektrizitätszahl auf die Meßwerte eliminiert werden kann, wenn die vom Sensor normalerweise ausgehenden elektrischen Feldlinien nach außen hin abgeschirmt werden, d.h. wenn das elektrische Feld allseits geschlossen wird. Das zur Abschirmung des elektrischen Feldes verwendete Material darf dabei das zur Messung erforderliche elektromagnetische Feld nicht oder nur geringfügig beeinflussen.
Es gibt nun verschiedene Möglichkeiten, die Lehre der vorlie¬ genden Erfindung in vorteilhafter Weise auszugestalten und wei¬ terzubilden. Dazu ist einerseits auf die dem Patentanspruch 1 nachgeordneten Ansprüche, andererseits auf die nachfolgende Er¬ läuterung eines Ausführungsbeispiels der Erfindung anhand der Zeichnung zu verweisen. In Verbindung mit der Erläuterung des bevorzugten Ausführungsbeispiels der Erfindung anhand der Zeichnung werden auch im allgemeinen bevorzugte Ausgestaltungen und Weiterbildungen der Lehre erläutert. In der Zeichnung zeigt
Fig. 1 in schematischer Darstellung das der berührungslosen Wegmessung zugrundeliegende Meßprinzip,
Fig. 2 in schematischer Darstellung einen typischen Sensor, der nach dem Meßprinzip aus Fig. 1 arbeitet,
Fig. 3 in schematischer Darstellung, vergrößert und ausschnittsweise den Sensor aus Fig. 2 und den Verlauf der vom Sensor ausgehenden elektrischen Feldlinien und
Fig. 4 in schematischer Darstellung einen Sensor mit
Abschirmung nach dem erfindungsgemäßen, berührungslos arbeitenden Wegmeßsystem.
Fig. 1 zeigt das der berührungslosen Wegmessung sowohl nach dem Wirbelstrom-Meßverfahren als auch nach dem induktiven Meßver¬ fahren zugrundeliegende bekannte Meßprinzip. Ein der Einfach¬ heit halber lediglich durch eine Spule (1) dargestellter Sensor (2) ist auf seiner Anschlußseite (3) mit seinen Anschlußleitun¬ gen (4) über Innenleiter (5) eines Kabels (6) mit einer Versor- gungs-/Auswerteelektronik (7) verbunden. Von der Spule (1) bzw. dem Sensor (2) aus erstreckt sich ein elektromagnetisches Feld bzw. verlaufen elektromagnetische Feldlinienen (9) zu einem Meßobjekt (10) und werden dort geschlossen. Im Falle eines elektrisch leitenden Meßobjektes (10) werden einerseits im Me߬ objekt (10) Wirbelströme induziert, erfolgt andererseits eine Änderung der Induktivität der Spule (1). Bei ferritischen Me߬ objekten (10) erfolgt eine Induktivitätsänderung der Spule (1) .
In Fig. 2 ist der prinzipielle Aufbau eines bekannten, nach dem Wirbelstrom-Meßverfahren oder nach dem induktiven Meßverfahren arbeitenden berührungslosen Sensors (2) dargestellt. Der Sensor (2) besteht im wesentlichen aus einem Sensorgehäuse (11) , der im Sensorgehiuse (11) angeordneten Spule (1) , den von der Spule (1) zu dem Kabel (6) bzw. zu den Innenleitern (5) des Kabels (6) führenden Anschlußleitungen (4) und einer Einbettmasse (13) zur Fixierung der Spule (1) innerhalb des Sensorgehäuses (11) . Das zu der in Fig. 2 nicht gezeigten Versorgungs- /Auswerteelektronik (7) führende Kabel (6) ist vorzugsweise ge¬ gen elektrische und elektromagnetische Felder abgeschirmt. Da¬ bei handelt es sich vorzugsweise um ein Koaxialkabel.
Im Betrieb des in Fig. 2 dargestellten, aus der Praxis bekann¬ ten Sensors treten sowohl die zur Wegmessung erforderlichen elektromagnetischen Feldlinien als auch elektrische Feldlinien in Richtung des Meßobjektes nach außen. Fig. 3 zeigt deutlich den Einfluß eines zwischen dem Sensor (2) und dem eigentlichen Meßobjekt (10) - in der Meßstrecke - befindlichen Objektes (14) mit relativ großer Dielektrizitätszahl εr. Die daraus resultie¬ rende Beeinflussung der elektrischen Feldlinien (12) hat eine Änderung der Eigenkapazität der Spule (1) zur Folge.
Fig. 4 zeigt teilweise den Sensor (2) eines erfindungsgemäßen, berührungslos arbeitenden Wegmeßsystems. Wie in den Fig. 1 und 2 gezeigt, besteht ein solches Wegmeßsystem im wesentlichen aus dem eine Meßseite (8) und eine Anschlußseite (3) aufweisenden Sensor (2) ,. einer Versorgungs-/Auswerteelektronik (7) und dem vom Sensor (2) zu der Versorgungs-/Auswerteelektronik führenden Kabel (6) mit zwei Innenleitern (5) . Bei der Darstellung in Fig. 4 ist der Einfachheit halber lediglich die Meßseite (8) des Sensors (2) gezeigt. Zu dem Sensor (2) gehören das Sensorgehäuse (11) , die im Sen¬ sorgehäuse (11) angeordnete Spule (1) , zwei von den beiden In¬ nenleitern (5) des Kabels (6) zur Spule (1) führende Anschlu߬ leitungen (4) und die die Spule (1) und die Anschlußleitungen (4) fixierende Einbettmasse (13) . Innerhalb des Sensorgehäuses könnte eine weitere Spule - beispielsweise eine Referenzspule zur Temperaturkompensation - angeordnet sein. Auch eine Anord¬ nung mehrerer als Meßspulen arbeitender Spulen innerhalb des Sensorgehäuses wäre möglich.
Bzgl. der Einbettmasse ist darauf hinzuweisen, daß das dazu verwendete Material in Abhängigkeit von den Einsatzbedingungen des Sensors - Einsatz unter hohen Temperaturen, unter starken Druckschwankungen, in Schadatmosphäre etc. - auszuwählen ist.
Fig. 4 zeigt deutlich, daß auf der Meßseite (8) des Sensors (2) eine Abschirmung (15) vorgesehen ist. Diese Abschirmung (15) ist einerseits für von der Spule (1) ausgehende elektrische Feldlinien (12) weitgehend undurchlässig, andererseits für von der Spule (1) ausgehende, in Fig. 4 nicht gezeigte elektroma¬ gnetische Feldlinien weitgehend durchlässig.
Die zuvor erwähnte Abschirmung könnte in einer bevorzugten Aus¬ führungsform des erfindungsgemäßen, berührungslos arbeitenden Wegmeßsystems direkt an der Spule angeordnet sein. Dabei wäre es besonders vorteilhaft, die Abschirmung für die elektrischen Feldlinien als Spulenummantelung auszuführen. Beispielsweise könnte die Abschirmung in unter fertigungstechnischen Gesichts¬ punkten einfacher Weise als die Spule umhüllende Lackschicht ausgeführt sein. Auch wäre es denkbar, die Abschirmung auf die Spule aufzudampfen, wodurch besonders dünne Schichten erzeugt werden könnten. Eine solche Ausgestaltung der Abschirmung hätte den Vorteil, daß die Abschirmung gemeinsam mit der Spule inner¬ halb des Sensorgehäuses von der Einbettmasse geschützt wäre. Nach dem in Fig. 4 dargestellten Ausführungsbeispiel ist die Abschirmung (15) als auf der Meßseite (8) des Sensors (2) vor¬ gesehene Abdeckung (16) ausgeführt. Die Abdeckung (16) schließt dabei das Sensorgehäuse (11) eßseitig ab und könnte daher gleichzeitig zum Schutz der Spule (1) oder der Einbettmasse (13) vor aggressiven Medien, Temperatur oder Drücken dienen.
Die Abdeckung könnte auf unterschiedliche Arten am Sensor befe¬ stigt sein. Beispielsweise könnte die Abdeckung in konstruktiv einfacher Weise meßseitig auf das Sensorgehäuse aufgesteckt sein. Auch eine schraubbare Anbringung der Abdeckung am Sensor¬ gehäuse wäre denkbar. Voranstehende Anbringungsmöglichkeiten der Abdeckung wären insoweit vorteilhaft, als die Abdeckung bei Bedarf, beispielsweise im Falle einer Beschädigung, einfach austauschbar wäre.
Ebenso wäre es denkbar, die Abdeckung adhäsiv, z.B. durch Kle¬ ben, mit dem Sensorgehäuse bzw. mit der Einbettmasse des Sen¬ sors zu verbinden. Die Abdeckung könnte schließlich auch mate¬ rialschlüssig mit dem Sensorgehäuse verbunden sein. Im Gegen¬ satz zu der zuvor erörterten abnehmbaren Abdeckung bildet die fest mit dem Sensorgehäuse verbundene Abdeckung eine wirksame Abdichtung des Sensorgehäuses, die insbesondere beim Einsatz des Sensors in Schadatmosphäre von Vorteil ist.
Im folgenden soll nun erörtert werden, welche Werkstoffe für die Abschirmung der vom Sensor ausgehenden elektrischen Feldli¬ nien in Frage kommen. Beispielsweise läßt sich eine geeignete Abschirmung des elektrischen Feldes durch einen elektrisch leitfähigen Werkstoff erreichen. Damit jedoch nicht auch gleichzeitig das zur Messung erforderliche elektromagnetische Feld abgeschirmt wird, muß eine solche Abschirmung dünnschich¬ tig ausgeführt sein. Die Abschirmung könnte entsprechend auch aus einem leitfähigen Kunststoff oder aus Graphit bestehen. We- sentlich für eine Abschirmung des vom Sensor ausgehenden elek¬ trischen Feldes mittels elektrisch leitfähiger Werkstoffe ist jedenfalls die Tatsache, daß die Abschirmung dünnschichtig aus¬ gebildet sein muß und daß dabei entsprechend der Eindringtiefe des elektromagnetischen Feldes dieses nur unerheblich bedämpft wird.
Ist dagegen die Abschirmung in besonders vorteilhafter Weise aus Keramik hergestellt, so gibt es nur sehr geringe bzw. gar keine Dämpfungsprobleme bzgl. des elektromagnetischen Feldes. Bei einer Abschirmung aus Keramik, wie sie beispielsweise in Vielschichtkondensatoren Verwendung findet, d.h. bei einer Ab¬ schirmung mit einer Dielektrizitätszahl εr>1000, findet prak¬ tisch keine Bedämpfung des elektromagnetischen Feldes statt, das elektrische Feld ist dabei jedoch weitgehend abgeschirmt.
Abschließend sei darauf hingewiesen, daß der Kern der vorlie¬ genden Erfindung - Abschirmung des elektrischen Feldes und Durchlassen des elektromagnetischen Feldes eines berührungslos arbeitenden Sensors - bei allen bislang bekannten, nach dem Wirbelstrommeßverfahren oder nach dem induktiven Meßverfahren arbeitenden Wegmeßsystemen realisiert werden kann.

Claims

P a t e n t a n s p r ü c h e
1. Berührungslos arbeitendes Wegmeßsystem mit einem eine Me߬ seite (8) und eine Anschlußseite (3) aufweisenden Sensor (2) , einer Versorgungs-VAuswerteelektronik (7) und einem vom Sensor (2) zu der Versorgungs-/Auswerteelektronik (7) führenden Kabel (6) mit vorzugsweise zwei Innenleitern (5) , wobei der Sensor (2) ein Sensorgehäuse (11) , mindestens eine in dem Sensorge¬ häuse (11) angeordnete Spule (1) , von den Innenleitern (5) des Kabels (6) zur Spule (1) bzw. zu den Spulen (1) führende An¬ schlußleitungen (4) und ggf. eine die Spule (1) bzw. die Spulen (1) und die Anschlußleitungen (4) fixierende Einbettmasse (13) aufweist, d a d u r c h g e k e n n z e i c h n e t, daß auf der Meßseite (8) des Sensors (2) eine Abschirmung (15) vorgese¬ hen ist und daß die Abschirmung (15) einerseits für von der Spule (1) bzw. von den Spulen (1) ausgehende elektrische Feld¬ linien (12) zumindest weitgehend undurchlässig, andererseits für von der Spule (1) bzw. von den Spulen (1) ausgehende elek¬ tromagnetische Feldlinien (9) zumindest weitgehend durchlässig ist.
2. Wegmeßsystem nach Anspruch 1, dadurch gekennzeichnet, daß die Abschirmung direkt an der Spule bzw. an den Spulen ange¬ ordnet ist.
3. Wegmeßsystem nach Anspruch 2, dadurch gekennzeichnet, daß die Abschirmung als Spulenummantelung ausgeführt ist.
4. Wegmeßsystem nach Anspruch 3, dadurch gekennzeichnet, daß die Abschirmung als die Spule bzw. die Spulen umhüllende Lack¬ schicht ausgeführt ist.
5. Wegmeßsystem nach Anspruch 3, dadurch gekennzeichnet, daß die Abschirmung auf die Spule bzw. die Spulen aufgedampft ist.
6. Wegmeßsystem nach Anspruch 1, dadurch gekennzeichnet, daß die Abschirmung (15) als auf der Meßseite (8) des Sensors (2) vorgesehene Abdeckung (16) ausgeführt ist.
7. Wegmeßsystem nach Anspruch 6, dadurch gekennzeichnet, daß die Abdeckung (16) das Sensorgehäuse (11) meßseitig abschließt.
8. Wegmeßsystem nach Anspruch 6 oder 7, dadurch gekennzeich¬ net, daß die Abdeckung meßseitig auf das Sensorgehäuse aufge¬ steckt ist.
9. Wegmeßsystem nach Anspruch 6 oder 7, dadurch gekennzeich¬ net, daß die Abdeckung meßseitig auf das Sensorgehäuse aufge¬ schraubt ist.
10. Wegmeßsystem nach Anspruch 6 oder 7, dadurch gekennzeich¬ net, daß die Abdeckung meßseitig adhäsiv mit dem Sensorgehause bzw. mit der Einbettmasse des Sensors verbunden ist.
11. Wegmeßsystem nach Anspruch 6 oder 7, dadurch gekennzeich¬ net, daß die Abdeckung materialschlüssig mit dem Sensorgehäuse verbunden ist.
12. Wegmeßsystem nach einem der Ansprüche 1 bis 11, dadurch ge¬ kennzeichnet, daß die Abschirmung dünnschichtig ausgeführt ist und aus einem elektrisch leitfähigen Werkstoff besteht.
13. Wegmeßsystem nach Anspruch 12, dadurch gekennzeichnet, daß die Abschirmung aus einem leitfähigen Kunststoff besteht.
14. Wegmeßsystem nach Anspruch 12, dadurch gekennzeichnet, daß die Abschirmung aus Graphit besteht.
15. Wegmeßsystem nach einem der Ansprüche 1 bis 11, dadurch ge¬ kennzeichnet, daß die Abschirmung aus Keramik besteht.
16. Wegmeßsystem nach Anspruch 15, dadurch gekennzeichnet, daß die Abschirmung eine relative Dielektrizitätszahl εr>1000 auf¬ weist.
PCT/DE1990/000090 1989-03-30 1990-02-12 Berührungslos arbeitendes wegmesssystem WO1990012274A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE9090902614T DE59001325D1 (de) 1989-03-30 1990-02-12 Beruehrungslos arbeitendes wegmesssystem.
JP2502546A JPH0794963B2 (ja) 1989-03-30 1990-02-12 非接触変位測定システム
US07/768,540 US5302894A (en) 1989-03-30 1990-02-12 Noncontacting displacement measuring system having an electric field shield

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3910297A DE3910297A1 (de) 1989-03-30 1989-03-30 Beruehrungslos arbeitendes wegmesssystem
DEP3910297.1 1989-03-30

Publications (1)

Publication Number Publication Date
WO1990012274A1 true WO1990012274A1 (de) 1990-10-18

Family

ID=6377476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1990/000090 WO1990012274A1 (de) 1989-03-30 1990-02-12 Berührungslos arbeitendes wegmesssystem

Country Status (5)

Country Link
US (1) US5302894A (de)
EP (1) EP0470958B1 (de)
JP (1) JPH0794963B2 (de)
DE (2) DE3910297A1 (de)
WO (1) WO1990012274A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088672A3 (de) * 2006-01-31 2009-10-28 Micro-Epsilon Messtechnik GmbH & Co. KG Schaltung zum Einstellen einer Impedanz

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4035403A1 (de) * 1990-11-07 1992-05-14 Weidmueller C A Gmbh Co Sensorsystem zur beruehrungslosen abstandsmessung
DE4239635C2 (de) * 1992-11-23 1998-02-12 Hartmann & Braun Ag Einrichtung zur Wegerfassung von Ventilstangenbewegungen elektropneumatischer Stellungsregler
US5444143A (en) * 1992-12-25 1995-08-22 Mitsui Toatsu Chemicals, Inc. Preparation process of polyhydroxycarboxylic acid
US5801530A (en) * 1995-04-17 1998-09-01 Namco Controls Corporation Proximity sensor having a non-ferrous metal shield for enhanced sensing range
US5705751A (en) * 1995-06-07 1998-01-06 Setra Systems, Inc. Magnetic diaphragm pressure transducer with magnetic field shield
DE19602230A1 (de) * 1996-01-23 1997-07-24 Teves Gmbh Alfred Sensor
DE19624801A1 (de) * 1996-06-21 1998-01-02 Wabco Gmbh Induktiver Wegsensor
US5955880A (en) * 1996-12-05 1999-09-21 Beam; Palmer H. Sealless pump rotor position and bearing monitor
EP0875727A1 (de) * 1997-04-29 1998-11-04 Brath ApS Berührungsloser Sensor und Verfahren zu dessen Herstellung
DE19814042C1 (de) * 1998-03-30 1999-07-15 Sew Eurodrive Gmbh & Co Verfahren zum Überwachen des Verschleißes von Bremsbelägen bei Elektromotoren mit Bremse
US5925951A (en) * 1998-06-19 1999-07-20 Sundstrand Fluid Handling Corporation Electromagnetic shield for an electric motor
JP3901897B2 (ja) * 1999-08-25 2007-04-04 株式会社荏原製作所 磁気軸受装置
US6631555B1 (en) 2000-02-08 2003-10-14 Cardiac Pacemakers, Inc. Method of thin film deposition as an active conductor
DE10050193A1 (de) * 2000-10-09 2002-04-18 Micro Epsilon Messtechnik Sensoranordnung
DE10103177A1 (de) * 2001-01-22 2002-08-01 Balluff Gmbh Gratprüfungs-Sensorvorrichtung
US6879404B2 (en) 2001-01-22 2005-04-12 Balluff Gmbh Device and method for checking bores in or edges on an object of measurement
DE10120976A1 (de) * 2001-05-01 2002-11-14 Bizerba Gmbh & Co Kg Kraftmesszelle
US6768958B2 (en) * 2002-11-26 2004-07-27 Lsi Logic Corporation Automatic calibration of a masking process simulator
US7353713B2 (en) 2003-04-09 2008-04-08 Loadstar Sensors, Inc. Flexible apparatus and method to enhance capacitive force sensing
US7570065B2 (en) * 2006-03-01 2009-08-04 Loadstar Sensors Inc Cylindrical capacitive force sensing device and method
KR20060008321A (ko) * 2003-05-16 2006-01-26 더 비오씨 그룹 인코포레이티드 샘플 질량을 결정하기 위한 자기공명 방법
US7199581B2 (en) * 2003-05-16 2007-04-03 The Boc Group, Inc. Magnetic resonance measuring system determining the mass of samples in a production line with monitored drift compensation
WO2004104599A2 (en) * 2003-05-16 2004-12-02 The Boc Group, Inc. Cleaning method for nmr check weighing system
CN1788215A (zh) * 2003-05-16 2006-06-14 波克股份有限公司 核磁共振测量系统
DE102004006680B3 (de) * 2004-02-09 2006-01-12 Balluff Gmbh Sensorvorrichtung zur Prüfung von Oberflächen
US7064548B2 (en) * 2004-04-30 2006-06-20 The Boc Group, Inc. RF probe apparatus for NMR check weighing system
US7061239B2 (en) * 2004-04-30 2006-06-13 The Boc Group, Inc. Method for magnetic field tracking in a NMR check weighing system
US7084627B2 (en) * 2004-04-30 2006-08-01 The Boc Group, Inc. Method for triggering NMR measurement in a NMR check weighing system
WO2005111562A1 (en) * 2004-05-03 2005-11-24 The Boc Group, Inc. Method for accurate determination of sample temperature in a nmr check weighing system
EP1743145A2 (de) * 2004-05-04 2007-01-17 The Boc Group, Inc. Verfahren zur kompensation von naher-nachbar-sample-effekten in einem nmr-prüfwägesystem
US7274984B2 (en) 2004-06-14 2007-09-25 General Motors Corporation Vehicle stability enhancement system
US7228900B2 (en) * 2004-06-15 2007-06-12 Halliburton Energy Services, Inc. System and method for determining downhole conditions
US7088094B2 (en) * 2004-07-20 2006-08-08 Infinia Corporation Displacement sensing system and method
WO2006039236A2 (en) * 2004-09-29 2006-04-13 Loadstar Sensors, Inc. Gap-change sensing through capacitive techniques
US20060267321A1 (en) * 2005-05-27 2006-11-30 Loadstar Sensors, Inc. On-board vehicle seat capacitive force sensing device and method
US7343814B2 (en) * 2006-04-03 2008-03-18 Loadstar Sensors, Inc. Multi-zone capacitive force sensing device and methods
EP2442077A1 (de) * 2010-10-12 2012-04-18 Future Technology (Sensors) Ltd Sensoranordnungen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1900894B2 (de) * 1968-01-11 1976-12-02 International Research and Development Corp., Worthington, Ohio (V.St.A.) Verfahren zur herstellung eines induktiven messumformers zur abstandsmessung
DE3801828A1 (de) * 1987-01-26 1988-08-04 Tdk Corp Verschiebungsfuehler

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE975225C (de) * 1954-08-29 1961-10-05 Siemens Ag Einrichtung zur induktiven Spaltmessung in Gas- und Dampfturbinen
DE1698348B1 (de) * 1962-03-31 1970-07-02 Siemens Ag Geber fuer induktive Spaltmesseinrichtungen
JPS51115852A (en) * 1975-04-04 1976-10-12 Nissan Motor Co Ltd Detector of the revolving angle and revolution of a revolving body
US4042876A (en) * 1976-04-29 1977-08-16 The United States Of America As Represented By The United States Energy Research And Development Administration Eddy current gauge for monitoring displacement using printed circuit coil
JPS5455463A (en) * 1977-10-12 1979-05-02 Shin Nippon Sokki Kk Sensor
US4678994A (en) * 1984-06-27 1987-07-07 Digital Products Corporation Methods and apparatus employing apparent resonant properties of thin conducting materials
US4956606A (en) * 1984-10-17 1990-09-11 Mine Safety Appliances Company Non-contact inductive distance measuring system with temperature compensation
DE3540195C2 (de) * 1985-11-13 1995-05-18 Festo Kg Signalgeber
DE3717932A1 (de) * 1987-05-27 1988-12-08 Pepperl & Fuchs Schutzhuelse fuer die aktive stirnflaeche eines naeherungsinitiators
DE3907321A1 (de) * 1989-03-07 1990-09-13 Wacker Chemitronic Verfahren zur ueberwachung des schnittverlaufes beim innenlochsaegen von halbleitermaterial und wirbelstromsensor zu seiner durchfuehrung
US5068607A (en) * 1990-06-22 1991-11-26 Data Instruments, Inc. Electrical linear position transducer with silicon steel foil shield surrounding transducer coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1900894B2 (de) * 1968-01-11 1976-12-02 International Research and Development Corp., Worthington, Ohio (V.St.A.) Verfahren zur herstellung eines induktiven messumformers zur abstandsmessung
DE3801828A1 (de) * 1987-01-26 1988-08-04 Tdk Corp Verschiebungsfuehler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088672A3 (de) * 2006-01-31 2009-10-28 Micro-Epsilon Messtechnik GmbH & Co. KG Schaltung zum Einstellen einer Impedanz
US7808314B2 (en) 2006-01-31 2010-10-05 Micro-Epsilon Messtechnik Gmbh & Co. Kg Circuit for adjusting an impedance

Also Published As

Publication number Publication date
DE3910297A1 (de) 1990-10-04
EP0470958A1 (de) 1992-02-19
EP0470958B1 (de) 1993-04-28
US5302894A (en) 1994-04-12
DE3910297C2 (de) 1991-04-18
JPH04504304A (ja) 1992-07-30
DE59001325D1 (de) 1993-06-03
JPH0794963B2 (ja) 1995-10-11

Similar Documents

Publication Publication Date Title
EP0470958B1 (de) Berührungslos arbeitendes wegmesssystem
EP0760931B1 (de) Drehwinkel- oder drehzahlgeber
EP0654140B1 (de) Berührungslos arbeitendes wegmesssystem und verfahren zur berührungslosen wegmessung
DE10044839B4 (de) Induktiver Positionssensor
DE3903278A1 (de) Speisung induktiver sensoren
DE19908612B4 (de) Anordnung zum Detektieren einer Rotation eines Drehelements
DE19806290C2 (de) Integrierte Entfernungsmeßschaltung
DE102013103445A1 (de) Magnetischer Linear- oder Drehgeber
EP2100102B1 (de) Messanordnung
DE102004063229A1 (de) Meßvorrichtung und -verfahren zur Erkennung von Fremdkörpern in einem Produkt, insbesondere in Tabak, Baumwolle oder einem anderen Faserprodukt
WO2017045675A1 (de) Vorrichtung und sensor zur kontaktlosen abstands- und/oder positionsbestimmung eines messobjektes
EP1018024B1 (de) Kombinierter kleinsignal-strom- und spannungswandler
DE3744196C2 (de)
DE10127978C1 (de) Vorrichtung zur Erkennung des Verschmutzungsgrades einer Flüssigkeit
DE102008021327A1 (de) Induktiver Sensor für Drehzahl-, Drehrichtungs- und Positionsmessungen im Bereich hoher Temperaturen
EP3824323B1 (de) Detektor zum detektieren von elektrisch leitfähigem material
DE102020112721A1 (de) Induktiver Positionssensor mit einer Abschirmungsschicht und Verfahren hierfür
DE102014200060A1 (de) Sensorelement und Sensor mit einem entsprechenden Sensorelement
DE2420120B2 (de) Messvorrichtung
DE10064507C5 (de) Magnetfeldempfindlicher Näherungssensor
DE3615738C1 (en) Device for the contactless indirect electrical measurement of a mechanical quantity
DE102022102893B4 (de) Sensoreinrichtung zur Erfassung wenigstens einer physikalischen Größe
DE4445591A1 (de) Magnetisch-induktives Durchflußmeßgerät für strömende Medien
DE102008056092A1 (de) Sensorvorrichtung zum Detektieren eines Gegenstandes und dessen Bewegung in einem Messbereich der Sensorvorrichtung
DE10124079C2 (de) Elektronisches Schaltgerät

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990902614

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990902614

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990902614

Country of ref document: EP