WO1990012278A1 - Process for the detection without a sensor of the angle of rotation in undamped synchronous machines, preferably excited by permanent magnets - Google Patents

Process for the detection without a sensor of the angle of rotation in undamped synchronous machines, preferably excited by permanent magnets Download PDF

Info

Publication number
WO1990012278A1
WO1990012278A1 PCT/AT1990/000024 AT9000024W WO9012278A1 WO 1990012278 A1 WO1990012278 A1 WO 1990012278A1 AT 9000024 W AT9000024 W AT 9000024W WO 9012278 A1 WO9012278 A1 WO 9012278A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
measurement
carried out
synchronous machine
rotation
Prior art date
Application number
PCT/AT1990/000024
Other languages
German (de)
French (fr)
Inventor
Manfred Schrödl
Thomas Stefan
Original Assignee
Elin Energieanwendung Gesellschaft M.B.H.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elin Energieanwendung Gesellschaft M.B.H. filed Critical Elin Energieanwendung Gesellschaft M.B.H.
Publication of WO1990012278A1 publication Critical patent/WO1990012278A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/243Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the phase or frequency of ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation

Definitions

  • the invention relates to a method for sensorless rotation angle detection of damperless, preferably permanently magnet-excited, synchronous machines, the reaction of electrical test signals sent to the synchronous machine being measured.
  • REPLACEMENT LEAF Stator winding-induced voltage space vector is in general unambiguously related to the rotor position sought. Non-sinusoidal induction distributions in the air gap can also be permitted. This induced voltage space vector can be calculated from the terminal voltages taking into account the ohmic and inductive voltage drops.
  • the varying magnetic saturation caused by the permanent magnets is measured by means of electrical test signals. Since this type of measurement can be reproduced, the rotor position can be determined exactly. The knowledge of the polarity of the magnets necessary for carrying out the measurement can be determined by changing the magnetic operating point and measuring its effect on the impedance. It is hier'eLL Eru réelle the rotor position can also be at a standstill • "machine.
  • a relatively high-frequency current generated by means of a converter is superimposed as a test signal on the actual useful signal.
  • the basic idea here is that an electrical alternating signal switched in a certain (space vector) direction generally also causes a reaction in the orthogonal direction due to the different inductances in the longitudinal and transverse axes. Such a coupling does not occur only in the event that the alternating signal is applied exactly in the longitudinal or transverse direction of the rotor. This results in a criterion as to whether the signal is applied in the desired excellent direction or not.
  • a prerequisite for achieving exact measurement results is a permanent magnet-excited synchronous machine with salient pole character, that is to say with unequal inductivities in the longitudinal and transverse directions, such as in the case of flux-concentrating arrangements.
  • the majority of the permanent magnet excited synchronous machines are not constructed in a flux-concentrating manner, but with a constant air gap and magnets glued onto the rotor surface. This is simpler in terms of production technology and, when using high-quality samarium-cobalt or neodymium-iron magnets, allows air gap induction of approximately 1 Tesla.
  • the object of the invention is therefore to implement a method for sensor-free position detection of the rotor of a permanent magnet-excited synchronous machine by measuring only electrical variables and to avoid the disadvantages or inaccuracies of the known methods.
  • test signals are voltage jumps generated by a feeding converter belonging to the synchronous machine to be measured, and that the measured data determined are fed to a computer which calculates the rotor position from the dependence of the stator reactance, and that at the start of the A pre-magnetization is set in the synchronous machine and a measurement is carried out with a field-weakening and a field-strengthening effect.
  • the advantage of the method according to the invention lies both in its great accuracy and in the fact that no analog additional current sources are required for the pole wheel location, but rather the supply converter, which is present anyway, is used as a test signal generator.
  • pole wheel locating method according to the invention can be implemented without any problems in the usual control concepts (tolerance band guidance, pulse pattern specification, etc.).
  • two successive test measurements are carried out with a short measuring frequency.
  • Another feature of the invention is that a test measurement is carried out with instantaneous estimates of the angle of rotation and speed and a current space pointer.
  • FIG. 1 shows a measuring method with fixed measuring times.
  • 2 shows the integration of the method according to the invention into a voltage control with a fixed pulse pattern.
  • the application of the invention with defined current changes in a drive with a tolerance band current regulator is shown in FIG. 3.
  • the circuit is only drawn for one strand of the stator winding; it is of course analogous for the other two strands.
  • the method according to the invention is based on the fact that, at air gap induction values of approximately 1 Tesla, certain iron parts are saturated in the machine. With permanent magnet excitation, the stator teeth are primarily saturated. Furthermore, a certain saturation in the yoke is conceivable with the appropriate design. ,
  • a (small) fan current signal causes an additional magnetic field in the stator which, depending on the direction of the current pointer, runs on paths with different magnetic conductivities.
  • the additional magnetic field runs in the areas which are heavily magnetically loaded; when the current space vector is applied normally, the saturated areas are largely unaffected.
  • the magnetic distribution in the machine thus defines an operating point on the magnetic characteristic curve for each spatial pointer direction of a measuring stator current, which indicates the relationship between the spatial pointer amounts of flooding and magnetic flux.
  • this working point fluctuates between a minimum value in the linear part and a maximum value in the curvature of the characteristic.
  • This modulation of the operating point can be detected by measuring the differential inductance of the space pointer direction under consideration.
  • the change in current compared to the nominal current is negligible, so that the magnetic conditions are almost unaffected.
  • the influence of the stator resistance is so small that it can be neglected.
  • the converter itself is used as a test signal generator in the method according to the invention.
  • Switched voltages from the converter branches are switched to the synchronous machine as a test signal.
  • the differential inductance is then determined on the basis of the increase in the current space pointer amount.
  • a measurement with equivalent information as by means of an analog additional signal source can be achieved. Repeated measurements during operation can be used to carry out a statistical evaluation of the information which is obtained, and thus a high measurement accuracy can be achieved.
  • the effect of the rotationally induced voltage is largely eliminated by combining two measurements. Two measurements are carried out, a switching operation being carried out after the first measurement in one branch (for example branch A or alternatively in all other branches except A; both result in a measurement in the same spatial pointer direction). The value of measurement 2 is then subtracted from the value of measurement 1.
  • the voltage difference space pointer points in the direction of the string connected to the switched inverter branch, so that it is sufficient to measure the current change during the intervals I and II only in the relevant string. (Due to the different inductances due to the presaturation, the voltage and measuring current space pointers deviate slightly from one another. Under normal saturation conditions, this deviation is a maximum of 7 degrees. However, this deviation is a reproducible effect and therefore a correctable error.) By this Measuring strategy, the effect of the rotationally induced voltage is compensated.
  • the measuring process of interval II can be split into two partial measurements, the first part being carried out before and the second part after interval I. (The same voltage space vector is applied in both partial measurements.) As a result, practically the same (average) value of the induced voltage occurs.
  • the induced voltage is also not negligible at higher speeds. As a result of this voltage, the current change no longer takes place parallel to the stator voltage space vector applied, but in the direction of the difference between the stator voltage and induced voltage space vector.
  • the measurement is apparently carried out in intervals I and II in more or less different spatial pointer directions. It is (using the
  • the polarity is determined by using the converter alone. After determining the direction of the minimum and maximum inductance, which is directly related to the position of the magnet wheel or the direction of magnetization of the rotor, in a relatively large stator current space vector is applied in this direction, as a result of which there is a certain shift in the magnetic operating point. An inductance measurement, as described above, is now carried out at this new magnetic operating point. A decision can be made as to whether this additional signal has brought an increase or a decrease in saturation if the opposite additional flooding is applied and the differential inductance is determined again.
  • the amount of flux linked to the stator changes linearly with time, while the current increases progressively when the magnetic saturation range is reached.
  • the inductance is measured, for example, with a constant current change interval. The times between the switching operations are then a measure of the differential inductance.
  • the low stator inductance has the consequence that even currents in the order of magnitude of the nominal value do not result in a serious change in the saturation conditions in the machine.
  • the inductance ellipses 11 are somewhat flattened, the course of the angle-dependent inductance is retained and the effect is measurable. It is possible to store the load-dependent saturation conditions in a read-only memory and to query the corresponding characteristic values depending on the load current.
  • the load points can be restricted to the extent that only stator current components that are normal to the flow, that is to say torque-forming, occur.
  • the two most important methods are to specify a fixed measuring interval or a fixed amount of current change. If a fixed measuring interval is specified, the time of interval I is set equal to that of interval II and constant. If one assumes that the inductance is to be measured in the direction of the strand A, the state of the inverter branches A, B, C in the interval I is, for example, 1, 0, 0 (1 means: inverter branch at positive double circuit potential) and in the interval II, for example 0, 0, 0 or 1, 1, 1 or 0, 1, 1. In any case, the differential voltage space pointer points in the direction of the strand axis A. If one mentally places the real axis of the space pointer coordinate system in the strand axis to be measured, the result is that the reciprocal of the inductance sought is proportional to the difference between the relevant phase current changes in the interval I and II.
  • Fig. 1 shows the integration of this variant in a current-controlled, permanent magnet-excited synchronous machine with time-discrete switching state control, namely in one phase (1) of the stator winding.
  • the regulation of the phase current is carried out in such a way that a target-actual comparison is carried out with the aid of a comparator (2) without hysteresis, which is then used at discrete, equidistant times as a criterion as to whether an affected inverter bridge branch (3) is up to the next Interrogation time is switched to positive or negative DC link potential or remains.
  • the time is discretized using a D flip-flop (4).
  • the additional measuring device consists of a logic (5) which carries out a measuring cycle as required, regardless of the target / actual comparison. As already mentioned, this consists of two time periods I and II, which in this case are of the same length. At higher speeds, the
  • Measurement can be extended to four time periods (Cycles I-II-II-I or vice versa), which means for both Measuring sections is the same mean rotor position.
  • an actual value acquisition or processing is carried out, which records the magnitude of the current changes.
  • the current actual value is recorded via a current transformer (6), the current actual value is fed to the N input of the comparator (2) and a module (8) for analog signal processing of a computer (7).
  • the module (8) for analog signal processing provides the information regarding the current setpoint to the P input of the comparator (2).
  • Two lines (10 and 11) connect a module (9) for digital control with the logic (5) and transmit information about the comparator or bridge status.
  • the synchronization clock is fed from the module (9) for digital control to the dynamic input of the D flip-flop (4) via a line (12).
  • FIG. 2 the method described with reference to FIG. 1 is integrated into a voltage control with a fixed pulse pattern.
  • the measuring cycles are inserted directly into the pulse pattern; the signal processing is then informed via status lines when a measurement cycle is carried out.
  • Fig. 2 shows the stator winding of a permanent magnet excited synchronous machine - with the circuit according to the invention for one strand (21) - and an inverter bridge arm (22).
  • a pulse noise generator (23) with integrated measuring cycles receives the voltage or frequency specification from a control module (26) via two lines (24 and 25).
  • the control signal is transmitted from the pulse pattern generator (23) to the inverter bridge branch (22) via a line (30).
  • the current actual value acquisition for measuring the current change takes place via a current transformer (28)
  • the actual current value is fed to the control module (27) via a line (29).
  • the principle of the current regulation is based on the fact that the difference between the current target value and the actual value is fed to a comparator (42) which is subject to hysteresis.
  • the logic output of the comparator (42) controls an inverter bridge arm (43) which is responsible for a string (41), as a result of which the current (mostly) is prevented from leaving the tolerance band defined by the hysteresis.
  • the extension for the position measurement is - ⁇ similar to the method of Fig. 1 - from a higher-level logic (45) for the measuring operation, whereby a control of an inverter drive and control logic (4), regardless of the comparator (42) is possible.
  • the current actual value is recorded via a current transformer (46), the current actual value is fed to the N input of the comparator (42).
  • a control module (47) provides the information regarding the current setpoint to the P input of the comparator (42).
  • Two lines (48 and 49) connect the control module (47) to the higher-level logic (45) for the measuring process and transmit the information about the comparator or bridge status.
  • a measuring cycle is now carried out by keeping the current setpoint constant in the relevant branch and preventing switching operations in the other branches.

Abstract

The reaction of abrupt voltage changes generated by a converter belonging to an undamped, preferably permanent-magnet-excited synchronous machine, and applied to said machine is measured and the rotor position is calculated from the angular dependence of the stator reactance.

Description

"Verfahren zur senso losen Dreh inkelerfassung von dämpferlosen, vor- zugsweise permanentmagneterregten, Synchronmaschinen""Process for the senseless rotation angle detection of damperless, preferably permanent magnet excited, synchronous machines"
Die Erfindung betrifft ein Verfahren zur sensorlosen Drehwinkelerfassung von dämpferlosen, vorzugsweise permanentmagneterregten, Synchronmaschinen, wobei die Rückwirkung von an die Synchronmaschine abgesetzten elektrischen Testsignalen gemessen wird.The invention relates to a method for sensorless rotation angle detection of damperless, preferably permanently magnet-excited, synchronous machines, the reaction of electrical test signals sent to the synchronous machine being measured.
Permanentmagneterregte Synchronmaschinen gewinnen durch die Fortschritte auf dem Sektor der Magnetmaterialien, der Leistungs- und Informationselektronik zunehmend an Bedeutung in der Antriebstechnik- Sie zeichnen sich gegenüber Asynchronmaschinen durch eine einfachere regelungstechnische Struktur und höheren Wirkungsgrad aufgrund der sehr geringen Rotorverluste aus.Due to advances in the field of magnetic materials, power and information electronics, permanent magnet excited synchronous machines are becoming increasingly important in drive technology. Compared to asynchronous machines, they are characterized by a simpler control technology structure and higher efficiency due to the very low rotor losses.
Für die Durchführung der Regelalgorithmen bei dynamisch hochwertigen feld- bzw. polradorientierten Regelkonzepten ergibt sich die Notwendigkeit eines mechanischen Gebers zur Erfassung der Polradposition. Es ist daher das Ziel vieler Forschungsaktivitäten, den mechanischen Geber durch mathematische Modelle oder durch Ausnützung physi¬ kalischer Effekte zu ersetzen.For the implementation of the control algorithms for dynamically high-quality field or magnet wheel-oriented control concepts, there is a need for a mechanical encoder to detect the magnet wheel position. It is therefore the goal of many research activities to replace the mechanical encoder with mathematical models or with the use of physical effects.
Es sind verschiedene Verfahren zur Lageerfassung des Polrades einer permanentmagneterregten Synchronmaschine bekannt.Various methods for detecting the position of the magnet wheel of a permanent magnet-excited synchronous machine are known.
Ein derartiges Verfahren wird im Kapitel "Algorithmus zur rechnerischen Erfassung der Polradlage einer permanent¬ magneterregten Synchronmaschine ohne Lagegeber" von M. Schrödl und T. Stefan im Tagungsbuch (Seite 48 bis 54) der ETG/VDE-Konferenz "AntriebsSysteme für die Geräte- und Kraftfahrzeugtechnik", veranstaltet 1988 in Bad Nauheim, BRD, beschrieben. Dabei erfolgt die Erfassung der Polradlage bei Vollpolmaschinen durch Auswertung der induzierten Spannung. Ab einer gewissen mechanischen Drehzahl kann ein dauermagneterregter Rotor selbst als Lagegeber verwendet werden, da ein in einerSuch a method is described in the chapter "Algorithm for the Computational Acquisition of the Magnetic Wheel Position of a Permanent Magnet-Excited Synchronous Machine Without a Position Encoder" by M. Schrödl and T. Stefan in the conference book (pages 48 to 54) of the ETG / VDE conference "Drive Systems for Device and Automotive Technology ", held in 1988 in Bad Nauheim, Germany. The pole wheel position in full-pole machines is determined by evaluating the induced voltage. From a certain mechanical speed, a permanent magnet excited rotor itself can be used as a position encoder, since one in one
ERSATZBLATT Statorwicklung induzierter Spannungsraumzeiger im allge¬ meinen in eindeutiger Weise mit der gesuchten Rotorposi¬ tion in Zusammenhang steht. Dabei können auch nichtsinusförmige Induktionsverteilungen im Luftspalt zugelassen werden. Dieser induzierte Spannungsraumzeiger kann aus den Klemmenspannungen unter Berücksichtigung der ohmschen und induktiven Spannungsabfälle berechnet werden.REPLACEMENT LEAF Stator winding-induced voltage space vector is in general unambiguously related to the rotor position sought. Non-sinusoidal induction distributions in the air gap can also be permitted. This induced voltage space vector can be calculated from the terminal voltages taking into account the ohmic and inductive voltage drops.
Nachteilig dabei ist, daß diese Auswertung erst ab einer gewissen Mindestdrehzahl erfolgen kann, da der induzierte Spannungsraurazeigerbetrag proportional mit der Drehzahl abnimm .The disadvantage here is that this evaluation can only take place from a certain minimum speed, since the induced voltage roughness indicator amount decreases proportionally with the speed.
über ein anderes Verfahren berichtet das Kapitelthe chapter reports on another procedure
"Detection of the rotor position of a permanent magnet synchronous machine at standstill" von M. Schrödl, enthalten in den Proceedings, die zur "International Conference on Electrical Machines" 1986 in Pisa, Italien, publiziert wurden."Detection of the rotor position of a permanent magnet synchronous machine at standstill" by M. Schrödl, contained in the proceedings published for the "International Conference on Electrical Machines" 1986 in Pisa, Italy.
Bei diesem Verfahren wird mittels elektrischer Testsi¬ gnale die von den permanenten Magneten hervorgerufene, variierende magnetische Sättigung gemessen. Da sich diese Art der Messung reproduzieren läßt, ist die Rotorposition exakt feststellbar. Die für die Durchführung der Messung notwendige Kenntnis der Polarität der Magnete läßt sich durch Veränderung des magnetischen Arbeitspunktes und die Messung seiner Auswirkung auf die Impedanz feststellen. Es ist hier'eLL Eruierung der Rotorpostion auch bei stillstehender»Maschine möglich.In this method, the varying magnetic saturation caused by the permanent magnets is measured by means of electrical test signals. Since this type of measurement can be reproduced, the rotor position can be determined exactly. The knowledge of the polarity of the magnets necessary for carrying out the measurement can be determined by changing the magnetic operating point and measuring its effect on the impedance. It is hier'eLL Eruierung the rotor position can also be at a standstill "machine.
Der Nachteil . dieser Methode besteht darin, daß durch die Notwendigkeit einer zusätzlichen analogen Stromquelle das Meßverfahren sehr aufwendig ist. Auch die Dissertation "Die permanenterregte umrichtergespeiste Synchronmaschine ohne Polradgeber als drehzahlgeregelter Antrieb" von H. Vogelmann (Universi¬ tät Karlsruhe, BRD, 1986) befasst sich mit einem Verfah- ren zur Ortung der Polradlage.The disadvantage . This method consists in the fact that the measurement method is very complex due to the need for an additional analog current source. The dissertation "The permanently excited converter-fed synchronous machine without magnet wheel encoder as speed-controlled drive" by H. Vogelmann (University of Karlsruhe, FRG, 1986) also deals with a method for locating the magnet wheel position.
Dabei wird ein mittels eines Umrichters erzeugter, relativ hochfrequenter Strom als Prüfsignal dem eigent¬ lichen Nutzsignal überlagert. Der Grundgedanke dabei ist, daß ein in eine gewisse (Raumzeiger-) Richtung aufge¬ schaltetes elektrisches Wechselsignal aufgrund der unterschiedlichen Induktivitäten in Längs- und Querachse im allgemeinen auch in der orthogonalen Richtung eine Reaktion hervorruft. Nur für den Fall, daß das Wechsel¬ signal genau in der Rotor-Längs- bzw. -Querrichtung aufgebracht wird, tritt eine derartige Verkopplung nicht auf. Damit ergibt sich ein Kriterium, ob das Signal in die gesuchte ausgezeichnete Richtung appliziert wird oder nicht. Eine Voraussetzung zur Erreichnung exakter Meßer¬ gebnisse ist eine permanentmagneterregte Synchronmaschine mit Schenkelpolcharakter, also mit ungleichen Induktivi¬ täten in Längs- und Querrichtung, wie etwa bei flußkonzentrierenden Anordnungen.A relatively high-frequency current generated by means of a converter is superimposed as a test signal on the actual useful signal. The basic idea here is that an electrical alternating signal switched in a certain (space vector) direction generally also causes a reaction in the orthogonal direction due to the different inductances in the longitudinal and transverse axes. Such a coupling does not occur only in the event that the alternating signal is applied exactly in the longitudinal or transverse direction of the rotor. This results in a criterion as to whether the signal is applied in the desired excellent direction or not. A prerequisite for achieving exact measurement results is a permanent magnet-excited synchronous machine with salient pole character, that is to say with unequal inductivities in the longitudinal and transverse directions, such as in the case of flux-concentrating arrangements.
Der überwiegende Teil der permanentmagneterregten Syn¬ chronmaschinen wird jedoch nicht in flußkonzentrierender Bauweise ausgeführt, sondern mit konstantem Luftspalt und auf die Rotoroberfläche aufgeklebten Magneten. Dies ist fertigungstechnisch einfacher und erlaubt bei Verwendung von hochwertigen Samarium-Kobalt- bzw. Neodym-Eisen-Ma¬ gneten Luftspaltinduktionen von etwa 1 Tesla.However, the majority of the permanent magnet excited synchronous machines are not constructed in a flux-concentrating manner, but with a constant air gap and magnets glued onto the rotor surface. This is simpler in terms of production technology and, when using high-quality samarium-cobalt or neodymium-iron magnets, allows air gap induction of approximately 1 Tesla.
Bei den erwähnten Ortungsverfahren besteht also der Nachteil, daß sich damit nur bei Maschinen mit ausge- prägter Schenkelpolcharakteristik brauchbare Ergebnisse ergeben. Aufgabe der Erfindung ist es daher, ein Verfahren zur geberlosen Lageerfassung des Rotors einer permanentma¬ gneterregten Synchronmaschine durch Messung ausschlie߬ lich elektrischer Größen zu realisieren und die Nach- teile bzw. Ungenauigkeiten der bekannten Verfahren zu vermeiden.In the case of the locating methods mentioned, there is the disadvantage that only useful results are obtained with machines with a pronounced salient pole characteristic. The object of the invention is therefore to implement a method for sensor-free position detection of the rotor of a permanent magnet-excited synchronous machine by measuring only electrical variables and to avoid the disadvantages or inaccuracies of the known methods.
Die Aufgabe wird durch die Erfindung gelöst. Diese ist dadurch gekennzeichnet, daß die Testsignale Spannungs- sprünge sind, die ein zur zu messenden Synchronmaschine gehörender, speisender Umrichter generiert, und daß die ermittelten Meßdaten einem Rechner zugeführt werden, der aus der Abhängigkeit der Statorreaktanz die Rotorstellung berechnet, und daß zum Start der Synchronmaschine eine Vormagnetisierung eingestellt und je eine Messung bei feldschwächender und bei feldstärkender Wirkung durchge¬ führt wird.The object is achieved by the invention. This is characterized in that the test signals are voltage jumps generated by a feeding converter belonging to the synchronous machine to be measured, and that the measured data determined are fed to a computer which calculates the rotor position from the dependence of the stator reactance, and that at the start of the A pre-magnetization is set in the synchronous machine and a measurement is carried out with a field-weakening and a field-strengthening effect.
Der Vorteil des erfindungsgemäßen Verfahrens besteht sowohl in seiner großen Genauigkeit als auch darin, daß für die Polradortung keine analogen Zusatzstromquellen benötigt werden, sondern der - ohnehin vorhandene - speisende Umrichter als Testsignalgenerator eingesetzt wird.The advantage of the method according to the invention lies both in its great accuracy and in the fact that no analog additional current sources are required for the pole wheel location, but rather the supply converter, which is present anyway, is used as a test signal generator.
Weiters ist vorteilhaft, daß mit der Erfindung die exakte Polradortung bei beliebiger Last durchführbar ist.It is also advantageous that the exact polar wheel location can be carried out with any load with the invention.
Ein zusätzlicher Vorteil ist dadurch gegeben, daß der übersichtliche Schaltungsaufbau äußerste Betriebssi¬ cherheit garantiert.An additional advantage is given by the fact that the clear circuit structure guarantees maximum operational safety.
Zudem kann das erfindungsgemäße Polradortungsverfahren bei den gängigen Regelkonzepten (Toleranzbandführung, Pulsraustervorgabe usw. ) problemlos implementiert werden. In einer Ausgestaltung der Erfindung werden zwei hinter- einanderfolgende Testmessungen mit kurzer Meßfrequenz durchgeführt.In addition, the pole wheel locating method according to the invention can be implemented without any problems in the usual control concepts (tolerance band guidance, pulse pattern specification, etc.). In one embodiment of the invention, two successive test measurements are carried out with a short measuring frequency.
Auf diese Weise wird der Effekt der vom Magneten herrüh¬ renden rotatorisch induzierten Spannung kompensiert. Dadurch funktioniert das Verfahren bei allen Drehzahlen, wobei auch im tiefsten Drehzahlbereich und im Stillstand dieselbe hohe Genauigkeit gegeben ist.In this way, the effect of the rotationally induced voltage originating from the magnet is compensated for. As a result, the process works at all speeds, with the same high accuracy even in the lowest speed range and at a standstill.
Ein weiteres Merkmal der Erfindung besteht darin, daß eine Testmessung mit momentanen Schätzwerten von Dreh¬ winkel und Drehzahl sowie einem Stromraumzeiger durchge¬ führt wird.Another feature of the invention is that a test measurement is carried out with instantaneous estimates of the angle of rotation and speed and a current space pointer.
Dadurch ist es möglich, mit nur einer Messung und in Kombination mit tabellarischen Korrekturwerten, eine hohe Genauigkeit zu erzielen.This makes it possible to achieve high accuracy with just one measurement and in combination with tabular correction values.
An Hand von Ausführungsbeispielen soll nun die Erfindung, unter Verwendung dreistrangiger Synchronmaschinen, näher erläutert werden. (Dasselbe erfindungsgemäße Prinzip ist für Synchronmaschinen mit anderen Strangzahlen in gleicher Weise anwendbar.) Dabei zeigt Fig. 1 ein Meß- verfahren mit fixen Meßzeiten. In Fig. 2 ist die Inte¬ gration des erfindungsgemäßen Verfahrens in eine Span¬ nungssteuerung mit fixem Pulsmuster dargestellt. Die Anwendung der Erfindung mit definierten Stromänderungen bei einem Antrieb mit Toleranzband-Stromregler ist in Fig. 3 aufgezeigt. In allen drei Figuren ist die Schal¬ tung jeweils nur für einen Strang der Statorwicklung gezeichnet; sie ist für die beiden anderen Stränge selbstverständlich analog.The invention will now be explained in more detail using exemplary embodiments using three-strand synchronous machines. (The same principle according to the invention can be used in the same way for synchronous machines with different number of strands.) FIG. 1 shows a measuring method with fixed measuring times. 2 shows the integration of the method according to the invention into a voltage control with a fixed pulse pattern. The application of the invention with defined current changes in a drive with a tolerance band current regulator is shown in FIG. 3. In all three figures the circuit is only drawn for one strand of the stator winding; it is of course analogous for the other two strands.
Das erfindungsgemäße Verfahren basiert auf der Tatsache, daß bei Luftspaltinduktionswerten von etwa 1 Tesla gewisse Eisenpartien in der Maschine gesättigt werden. Bei Permanentmagneterregung werden in erster Linie die Statorzähne beträchtlich gesättigt. Weiters ist, bei entsprechender Auslegung, eine gewisse Sättigung im Joch denkbar. .The method according to the invention is based on the fact that, at air gap induction values of approximately 1 Tesla, certain iron parts are saturated in the machine. With permanent magnet excitation, the stator teeth are primarily saturated. Furthermore, a certain saturation in the yoke is conceivable with the appropriate design. ,
Ein (kleines) __ftatorstromsignal ruft im Stator ein zusätzliches Magnetfeld hervor, das je nach Stromzeiger¬ richtung auf Pfaden mit unterschiedlichen magnetischen Leitwerten verläuft. Bei einem Stromraumzeiger parallel zum Raumzeiger des vom Dauermagneten hervorgerufenen magnetischen Flusses verläuft das Zusatzmagnetfeld in den magnetisch stark belasteten Gebieten, bei Aufbringung des Stromraumzeigers normal dazu werden die gesättigten Gebiete weitgehend nicht berührt.A (small) fan current signal causes an additional magnetic field in the stator which, depending on the direction of the current pointer, runs on paths with different magnetic conductivities. In the case of a current space vector parallel to the space vector of the magnetic flux caused by the permanent magnet, the additional magnetic field runs in the areas which are heavily magnetically loaded; when the current space vector is applied normally, the saturated areas are largely unaffected.
Die magnetische Verteilung in der Maschine definiert also für jede Raumzeigerrichtung eines Meß-Statorstromes einen Arbeitspunkt auf der magnetischen Kennlinie, die den Zusammenhang zwischen den Raumzeigerbeträgen von Durchflutung und magnetischem Fluß angibt. Je nach betrachteter ^Raumzeigerrichtung schwankt dieser Arbeits- punkt zwischen einem Minimalwert im linearen Teil und einem Maximalwert in der Krümmung der Kennlinie. Diese Modulation des Arbeitspunktes kann durch Messung der differentiellerTInduktivität der betrachteten Raumzei¬ gerrichtung erfaßt werden. Dabei ist die Stromänderung im Vergleich zum Nennstrom vernachlässigbar klein, so daß die magnetischen Verhältnisse fast nicht beeinflußt werden. Der Einfluß des Statorwiderstandes ist dabei so klein, daß er vernachlässigt werden kann.The magnetic distribution in the machine thus defines an operating point on the magnetic characteristic curve for each spatial pointer direction of a measuring stator current, which indicates the relationship between the spatial pointer amounts of flooding and magnetic flux. Depending on the direction of the space pointer considered, this working point fluctuates between a minimum value in the linear part and a maximum value in the curvature of the characteristic. This modulation of the operating point can be detected by measuring the differential inductance of the space pointer direction under consideration. The change in current compared to the nominal current is negligible, so that the magnetic conditions are almost unaffected. The influence of the stator resistance is so small that it can be neglected.
Um die sich bei Messung mittels einer analogen Testspan- nungsquelle und sinusförmigen Testsignalen ergebenden Nachteile (Messung nur bei stillstehendem, unbelastetem Rotor möglich; großer Meß- und Rechenaufwand; Testsi¬ gnalgenerator als Zusatzeinrichtung ist während der Messung anstatt des Umrichters auf die Synchronmaschine geschaltet) , zu vermeiden, ist beim erfindungsgemäßen Verfahren der Umrichter selbst als Testsignalgenerator eingesetzt.In order to avoid the disadvantages resulting from measurement using an analog test voltage source and sinusoidal test signals (measurement only possible when the rotor is at a standstill and not under load; large measurement and computing effort; test signal generator as an additional device is on the synchronous machine during the measurement instead of the converter switched), the converter itself is used as a test signal generator in the method according to the invention.
Stillstehende Maschine:Stationary machine:
Als Testsignal werden geschaltete Spannungen aus den Umrichterzweigen auf die Synchronmaschine geschaltet. Es wir dann die differentielle Induktivität aufgrund des Anstiegs des Stromraumzeigerbetrages ermittelt. Damit ist für die möglichen Spannungsraumzeigerrichtungen (0, 120, 240 Grad bei Dreiphasensystemen) eine Messung mit äqui¬ valentem Aussagewert wie mittels einer analogen Zusatz¬ signalquelle erzielbar. Durch wiederholte Messungen während des Betriebes kann eine statistische Auswertung der anfallenden Information durchgeführt und somit eine große Messgenauigkeit erzielt werden.Switched voltages from the converter branches are switched to the synchronous machine as a test signal. The differential inductance is then determined on the basis of the increase in the current space pointer amount. For the possible voltage space pointer directions (0, 120, 240 degrees in three-phase systems), a measurement with equivalent information as by means of an analog additional signal source can be achieved. Repeated measurements during operation can be used to carry out a statistical evaluation of the information which is obtained, and thus a high measurement accuracy can be achieved.
Rotierende Maschine:Rotating machine:
Durch Kombination von zwei Messungen wird der Effekt der rotatorisch induzierten Spannung weitestgehend elimi¬ niert. Es werden zwei Messungen durchgeführt, wobei nach der ersten Messung in einem Zweig (beispielsweise Zweig A oder alternativ in allen anderen Zweigen außer A; beides bewirkt eine Messung in die gleiche Raumzeigerrichtung) eine Schalthandlung durchgeführt wird. Sodann wird der Wert der Messung 2 vom Wert der Messung 1 subtrahiert. Der Spannungsdifferenzraumzeiger weist in die Richtung des mit dem geschalteten Wechselrichterzweig verbundenen Stranges, so daß es genügt, die Stromänderung während der Intervalle I und II nur im betreffenden Strang zu messen. (Durch die verschiedenen Induktivitäten aufgrund der Vorsättigung weichen Spannungs- und Meßstromraumzeiger leicht voneinander ab. Bei üblichen Sättigungsverhält¬ nissen beträgt diese Abweichung maximal 7 Grad. Diese Abweichung ist jedoch ein reproduzierbarer Effekt und dadurch ein korrigierbarer Fehler. ) Durch diese Meßstrategie wird die Auswirkung der rotatorisch indu¬ zierten Spannung kompensiert.The effect of the rotationally induced voltage is largely eliminated by combining two measurements. Two measurements are carried out, a switching operation being carried out after the first measurement in one branch (for example branch A or alternatively in all other branches except A; both result in a measurement in the same spatial pointer direction). The value of measurement 2 is then subtracted from the value of measurement 1. The voltage difference space pointer points in the direction of the string connected to the switched inverter branch, so that it is sufficient to measure the current change during the intervals I and II only in the relevant string. (Due to the different inductances due to the presaturation, the voltage and measuring current space pointers deviate slightly from one another. Under normal saturation conditions, this deviation is a maximum of 7 degrees. However, this deviation is a reproducible effect and therefore a correctable error.) By this Measuring strategy, the effect of the rotationally induced voltage is compensated.
Bei höheren Drehzahlen ist die Drehung während der Meßzeit nicht vernachlässigbar. In diesem Fall kann der Meßvorgang des Intervalls II in zwei Teilmessungen aufgespaltet werden, wobei der erste Teil vor und der zweite Teil nach Interval I durchgeführt wird. (In beiden Teilmessungen wird der gleiche Spannungsraumzeiger angelegt. ) Dadurch tritt jeweils praktisch derselbe (mittlere) Wert der induzierten Spannung auf.At higher speeds, the rotation during the measuring time is not negligible. In this case, the measuring process of interval II can be split into two partial measurements, the first part being carried out before and the second part after interval I. (The same voltage space vector is applied in both partial measurements.) As a result, practically the same (average) value of the induced voltage occurs.
Auch die induzierte Spannung ist bei höheren Drehzahlen nicht vernachlässigbar. Durch diese Spannung erfolgt die Stromänderung nicht mehr parallel zum angelegten Stator- spannungsraumzeiger, sondern in die Richtung der Diffe¬ renz zwischen Statorspannungs- und induziertem Span¬ nungsraumzeiger. Die Messung erfolgt also scheinbar in den Intervallen I und II in mehr oder weniger abweichende Raumzeigerrichtungen. Es ist (unter Verwendung derThe induced voltage is also not negligible at higher speeds. As a result of this voltage, the current change no longer takes place parallel to the stator voltage space vector applied, but in the direction of the difference between the stator voltage and induced voltage space vector. The measurement is apparently carried out in intervals I and II in more or less different spatial pointer directions. It is (using the
Raumzeigerreσhnung) , mathematisch eindeutig nachweisbar, daß die Messung durch die Differenzbildung der zweiRaumzeigerreσhnung), mathematically clearly demonstrable that the measurement by the difference between the two
Intervalle wirklich den Induktivitätswert der gewünschtenIntervals really are the inductance value of the desired
Richtung liefert.Direction delivers.
Zum Start des Systems ist es unbedingt notwendig, die Polarität des .Permanentmagneten zu bestimmen, da sonst die bestimmte Rotorposition mit einer Unsicherheit von 180 Grad (elektrisch) behaftet ist. Dies ist darin begründet, daß die Induktivitätsschwankungen sich zweimal pro elektrischer Umdrehung wiederholen.To start the system, it is absolutely necessary to determine the polarity of the permanent magnet, otherwise the specific rotor position is subject to an uncertainty of 180 degrees (electrical). This is due to the fact that the inductance fluctuations are repeated twice per electrical revolution.
Im vorliegenden Fall erfolgt die Polaritätsbestimmung durch alleinige Verwendung des Umrichters. Nach der Bestimmung der Richtung minimaler und maximaler Indukti¬ vität, welche unmittelbar mit der Polradlage bzw. der Magnetisierungsrichtung des Rotors zusammenhängt, wird in etwa diese Richtung ein relativ großer Statorstromraum¬ zeiger aufgebracht, wodurch eine gewisse Verschiebung des magnetischen Arbeitspunktes erfolgt. In diesem neuen magnetischen Arbeitspunkt wird nun eine Induktivitäts- messung, wie zuvor beschrieben, durchgeführt. Ob dieses Zusatzsignal eine Erhöhung oder eine Verminderung der Sättigung gebracht hat, kann entschieden werden, wenn genau die entgegengesetzte Zusatzdurchflutung aufgebracht und wieder die differentielle Induktivität bestimmt wird.In the present case, the polarity is determined by using the converter alone. After determining the direction of the minimum and maximum inductance, which is directly related to the position of the magnet wheel or the direction of magnetization of the rotor, in a relatively large stator current space vector is applied in this direction, as a result of which there is a certain shift in the magnetic operating point. An inductance measurement, as described above, is now carried out at this new magnetic operating point. A decision can be made as to whether this additional signal has brought an increase or a decrease in saturation if the opposite additional flooding is applied and the differential inductance is determined again.
Legt man einen konstanten Spannungsraumzeiger an die Maschine, so ändert sich der Betrag des mit dem Stator verketteten Flusses linear mit der Zeit, während der Strom progressiv zunimmt, wenn der Bereich magnetischer Sättigung erreicht wird. Die Messung der Induktivität erfolgt beispielsweise mit einem konstanten Stromände¬ rungsintervall. Die Zeiten zwischen den Schalthandlungen sind dann ein Maß für die differentielle Induktivität.If a constant voltage space vector is applied to the machine, the amount of flux linked to the stator changes linearly with time, while the current increases progressively when the magnetic saturation range is reached. The inductance is measured, for example, with a constant current change interval. The times between the switching operations are then a measure of the differential inductance.
Die geringe Statorinduktivität hat zur Folge, daß selbst Ströme in der Größenordnung des Nennwertes keine gravie¬ rende Änderung der Sättigungsverhältnisse in der Maschine nach sich ziehen. Es werden zwar die "Induktivitäts-El¬ lipsen11 etwas abgeplattet, jedoch bleibt der Verlauf der winkelabhängigen Induktivität erhalten und der Effekt meßbar. Es besteht die Möglichkeit, die lastabhängigen Sättigungsverhältnisse in einem Festwertspeicher abzule¬ gen und die entsprechenden Kennwerte je nach Lastrom abzufragen. Die Lastpunkte können dahingehend einge- schränkt werden, daß nur flußnormale, also drehmomentbildende Statorstromkomponenten auftreten.The low stator inductance has the consequence that even currents in the order of magnitude of the nominal value do not result in a serious change in the saturation conditions in the machine. Although the inductance ellipses 11 are somewhat flattened, the course of the angle-dependent inductance is retained and the effect is measurable. It is possible to store the load-dependent saturation conditions in a read-only memory and to query the corresponding characteristic values depending on the load current. The load points can be restricted to the extent that only stator current components that are normal to the flow, that is to say torque-forming, occur.
Zur praktischen Bestimmung der Rotorposition sind ver¬ schiedene Möglichkeiten des Meßablaufs denkbar. Die zwei wichtigsten Methoden sind, ein festes Meßintervall oder einen festen Stromänderungsbetrag vorzugeben. Bei Vorgabe eines festen Meßintervalls wird die Zeit des Intervalls I gleich der des Intervalls II und konstant gesetzt. Nimmt man an, daß die Induktivität in Richtung des Stranges A gemessen werden soll, so ist der Zustand der Wechselrichterzweige A, B, C im Intervall I bei¬ spielsweise 1, 0, 0 (1 bedeutet: Wechselrichterzweig an positivem Zwiselienkreispotential) und im Intervall II beispielsweise 0, 0, 0 oder 1, 1, 1 oder 0, 1, 1. In jedem Fall zeigt der Differenzspannungsraumzeiger in Richtung zur Strangachse A. Legt man gedanklich die reelle Achse des Raumzeiger-Koordinatensystems in die zu messende Strangachse, so ergibt sich, daß der Kehrwert der gesuchten Induktivität proportional der Differenz der betreffenden Strangstromänderungen im Intervall I und II ist.Various possibilities of the measurement sequence are conceivable for the practical determination of the rotor position. The two most important methods are to specify a fixed measuring interval or a fixed amount of current change. If a fixed measuring interval is specified, the time of interval I is set equal to that of interval II and constant. If one assumes that the inductance is to be measured in the direction of the strand A, the state of the inverter branches A, B, C in the interval I is, for example, 1, 0, 0 (1 means: inverter branch at positive double circuit potential) and in the interval II, for example 0, 0, 0 or 1, 1, 1 or 0, 1, 1. In any case, the differential voltage space pointer points in the direction of the strand axis A. If one mentally places the real axis of the space pointer coordinate system in the strand axis to be measured, the result is that the reciprocal of the inductance sought is proportional to the difference between the relevant phase current changes in the interval I and II.
Fig. 1 zeigt die Integration dieser Variante in eine stromgeregelte, permanentmagneterregte Synchronmaschine mit zeitdiskreter Schaltzustandssteuerung, und zwar in einen Strang (1) der Statorwicklung. Die Regelung des Strangstromes erfolgt so, daß mit Hilfe eines Komparators (2) ohne Hysterese ein Soll-Ist-Vergleich durchgeführt wird, welcher dann zu diskreten, äquidistanten Zeitpunkten als Kriterium verwendet wird, ob ein betroffener Wechselrichter-Brückenzweig (3) bis zum nächsten Abfragezeitpunkt auf positives oder nega¬ tives Zwischenkreispotential geschaltet wird bzw. bleibt. Die Zeitdiskretisierung erfolgt mittels eines D-Flipflops (4).Fig. 1 shows the integration of this variant in a current-controlled, permanent magnet-excited synchronous machine with time-discrete switching state control, namely in one phase (1) of the stator winding. The regulation of the phase current is carried out in such a way that a target-actual comparison is carried out with the aid of a comparator (2) without hysteresis, which is then used at discrete, equidistant times as a criterion as to whether an affected inverter bridge branch (3) is up to the next Interrogation time is switched to positive or negative DC link potential or remains. The time is discretized using a D flip-flop (4).
Die zusätzliche Meßeinrichtung besteht aus einer Logik (5) , welche unabhängig vom Soll-Ist-Vergleich bei Bedarf einen Meßzyklus durchführt. Dieser besteht, wie bereits erwähnt, aus zwei Zeitperioden I und II, die in diesem Fall gleich lang sind. Bei höherer Drehzahl kann dieThe additional measuring device consists of a logic (5) which carries out a measuring cycle as required, regardless of the target / actual comparison. As already mentioned, this consists of two time periods I and II, which in this case are of the same length. At higher speeds, the
Messung auf vier Zeitperioden ausgedehnt werden (Zyklen¬ folge I-II-II-I oder umgekehrt), wodurch für beide Meßabschnitte die gleiche mittlere Rotorposition vor¬ liegt.Measurement can be extended to four time periods (Cycles I-II-II-I or vice versa), which means for both Measuring sections is the same mean rotor position.
Neben dieser Logik (5) wird noch eine Istwerterfassung bzw. -Verarbeitung durchgeführt, welche die Größe der Stromänderungen erfaßt. Die Stromistwerterfassung erfolgt über einen Stromwandler (6) , der Stromistwert wird dem N-Eingang des Komparators (2) und einem Modul (8) für analoge Signalverarbeitung eines Rechners (7) zugeführt. Vom Modul (8) für analoge Signalverarbeitung erfolgt die Information bezüglich des Stromsollwertes an den P- Eingang des Komparators (2) .In addition to this logic (5), an actual value acquisition or processing is carried out, which records the magnitude of the current changes. The current actual value is recorded via a current transformer (6), the current actual value is fed to the N input of the comparator (2) and a module (8) for analog signal processing of a computer (7). The module (8) for analog signal processing provides the information regarding the current setpoint to the P input of the comparator (2).
Zwei Leitungen (10 bzw. 11) verbinden ein Modul (9) für digitale Steuerung mit der Logik (5) und übertragen Informationen über den Komparator- bzw. Brückenstatus. Über eine Leitung (12) wird der Synchronisiertakt vom Modul (9) für digitale Steuerung dem dynamischen Eingang des D-Flipflops (4) zugeführt.Two lines (10 and 11) connect a module (9) for digital control with the logic (5) and transmit information about the comparator or bridge status. The synchronization clock is fed from the module (9) for digital control to the dynamic input of the D flip-flop (4) via a line (12).
In Fig. 2 wird das anhand von Fig. 1 beschriebene Ver¬ fahren in eine Spannungssteuerung mit fixem Pulsmuster integriert. Dabei werden in das Pulsmuster die Meßzyklen direkt eingefügt; die Signalverarbeitung wird dann über Statusleitungen informiert, wann ein Meßzyklus durchge¬ führt wird. Fig. 2 zeigt wiederum die Statorwicklung einer permanentmagneterregten Synchronmaschine - mit der erfindungsgemäßen Schaltung für einen Strang (21) - und einen Wechselrichter-Brückenzweig (22). Ein Pulsrauster- generator (23) mit integrierten Meßzyklen erhält über zwei Leitungen (24 bzw. 25) die Spannungs- bzw. Fre¬ quenzvorgabe von einem Steuerungsmodul (26). Die Über¬ mittlung des Ansteuersignais vom Pulsmustergenerator (23) zum Wechselrichter-Brückenzweig (22) erfolgt über eine Leitung (30). Die Stromistwerterfassung zur Messung der Stromänderung erfolgt über einen Stromwandler (28), der Stromistwert wird über eine Leitung (29) dem Steuerungs¬ modul (27) zugeführt.In FIG. 2 the method described with reference to FIG. 1 is integrated into a voltage control with a fixed pulse pattern. The measuring cycles are inserted directly into the pulse pattern; the signal processing is then informed via status lines when a measurement cycle is carried out. Fig. 2 shows the stator winding of a permanent magnet excited synchronous machine - with the circuit according to the invention for one strand (21) - and an inverter bridge arm (22). A pulse noise generator (23) with integrated measuring cycles receives the voltage or frequency specification from a control module (26) via two lines (24 and 25). The control signal is transmitted from the pulse pattern generator (23) to the inverter bridge branch (22) via a line (30). The current actual value acquisition for measuring the current change takes place via a current transformer (28) The actual current value is fed to the control module (27) via a line (29).
Ein wichtiger Spezialfall ist gegeben, wenn die Stromän¬ derung des Meßabschnittes I definiert und gleich der negativen Änderung des Abschnittes II gesetzt ist. In diesem Fall sind die Zeiten der Meßabschnitte I und II zu messen. Die Summe ihrer Kehrwerte ist dann proportional der invertierten Induktivität. Dieses Verfahren eignet sich besonders gut zur Implementierung bei Maschinen mit Toleranzband-Stromregelung, wie in Fig. 3 gezeigt wird.An important special case exists if the current change of the measuring section I is defined and is set equal to the negative change of the section II. In this case, the times of measurement sections I and II must be measured. The sum of their reciprocal values is then proportional to the inverted inductance. This method is particularly well suited for implementation in machines with tolerance band current control, as shown in FIG. 3.
Das Prinzip der Stromregelung beruht darauf, daß die Differenz zwischen Strom-Soll und -Istwert einem hysteresebehafteten Komparator (42) zugeführt wird. Der logische Ausgang des Komparators (42) steuert einen für einen Strang (41) zuständigen Wechselrichter-Brückenzweig (43), wodurch der Strom (meist) am Verlassen des durch die Hysterese definierten Toleranzbandes gehindert wird.The principle of the current regulation is based on the fact that the difference between the current target value and the actual value is fed to a comparator (42) which is subject to hysteresis. The logic output of the comparator (42) controls an inverter bridge arm (43) which is responsible for a string (41), as a result of which the current (mostly) is prevented from leaving the tolerance band defined by the hysteresis.
Die Erweiterung für die Positionsmessung besteht - ähnlich wie beim Verfahren nach Fig. 1 - aus einer übergeordneten Logik (45) für den Meßvorgang, wodurch eine Kontrolle über eine Wechselrichter-Treiber- und Ansteuerlogik ( 4) , unabhängig vom Komparator (42) , möglich ist. Die Stromistwerterfassung erfolgt über einen Stromwandler (46) , der Stromistwert wird dem N-Eingang des Komparators (42) zugeführt. Von einem Steuerungsmodul (47) erfolgt die Information bezüglich des Stromsoll¬ wertes an den P-Eingang des Komparators (42). Zwei Leitungen (48 bzw. 49) verbinden das Steuerungsmodul (47) mit der übergeordneten Logik (45) für den Meßvorgang und übertragen die Informationen über den Komparator- bzw. Brückenstatus. Ein Meßzyklus wird nun durchgeführt, indem der Strom¬ sollwert im betreffenden Zweig konstant gehalten und Schalthandlungen in den anderen Zweigen unterbunden werden. Dadurch wird im erstgenannten Strang (41) der gewünschte Stromverlauf erreicht. Die Komparatorfunktion in diesem Zweig bleibt aufrecht. Da bei diesem Verfahren nur Zeiten gemessen werden, ist hier, im Gegensatz zum Verfahren nach Fig. 1, keine Analog/Digitalwandlung für einen angeschlossenen Rechner erforderlich. The extension for the position measurement is - similar to the method of Fig. 1 - from a higher-level logic (45) for the measuring operation, whereby a control of an inverter drive and control logic (4), regardless of the comparator (42) is possible. The current actual value is recorded via a current transformer (46), the current actual value is fed to the N input of the comparator (42). A control module (47) provides the information regarding the current setpoint to the P input of the comparator (42). Two lines (48 and 49) connect the control module (47) to the higher-level logic (45) for the measuring process and transmit the information about the comparator or bridge status. A measuring cycle is now carried out by keeping the current setpoint constant in the relevant branch and preventing switching operations in the other branches. As a result, the desired current profile is achieved in the first-mentioned line (41). The comparator function in this branch remains. Since only times are measured in this method, in contrast to the method according to FIG. 1, no analog / digital conversion is required for a connected computer.

Claims

PATENTANSPRÜCHE PATENT CLAIMS
1. Verfahren zur sensorlosen Drehwinkelerfassung von dämpferlosen, vorzugsweise permanentmagneterregten, Synchronmaschinen, wobei die Rückwirkung von an die Synchronmaschine abgesetzten elektrischen Testsi- gnalen gemessen wird, dadurch gekennzeichnet, daß die Testsignale Spannungssprünge sind, die ein zur zu messenden Synchronmaschine gehörender, speisender Umrichter generiert, und daß die ermittelten Meßda¬ ten einem Rechner zugeführt werden, der aus der Winkelabhängigkeit der Statorreaktanz die Rotor¬ stellung berechnet, und daß zum Start der Synchron¬ maschine eine Vormagnetisierung eingestellt und je eine Messung bei feldschwächender und bei feldstärkender Wirkung durchgeführt wird.1. A method for sensorless detection of the angle of rotation of damperless, preferably permanent magnet-excited, synchronous machines, the reaction of electrical test signals sent to the synchronous machine being measured, characterized in that the test signals are voltage jumps generated by a feeding converter belonging to the synchronous machine to be measured, and that the measured data determined are fed to a computer which calculates the rotor position from the angular dependence of the stator reactance, and that at the start of the synchronous machine a pre-magnetization is set and a measurement is carried out with a field-weakening and a field-strengthening effect.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zwei hintereinanderfolgende Testmessungen mit kurzer Meßfrequenz durchgeführt werden.2. The method according to claim 1, characterized in that two successive test measurements are carried out with a short measuring frequency.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Testmessung mit momentanen Schätzwerten von Drehwinkel und Drehzahl sowie einem Stromraumzeiger durchgeführt wird. 3. The method according to claim 1, characterized in that a test measurement is carried out with instantaneous estimates of the angle of rotation and speed and a current space pointer.
PCT/AT1990/000024 1989-04-06 1990-04-03 Process for the detection without a sensor of the angle of rotation in undamped synchronous machines, preferably excited by permanent magnets WO1990012278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0081089A AT408591B (en) 1989-04-06 1989-04-06 METHOD FOR SENSORLESS TURNING ANGLE OF DAMPERLESS, PREFERRED PERMANENTLY MAGNETIC, SYNCHRONOUS MACHINES
ATA810/89 1989-04-06

Publications (1)

Publication Number Publication Date
WO1990012278A1 true WO1990012278A1 (en) 1990-10-18

Family

ID=3500243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1990/000024 WO1990012278A1 (en) 1989-04-06 1990-04-03 Process for the detection without a sensor of the angle of rotation in undamped synchronous machines, preferably excited by permanent magnets

Country Status (2)

Country Link
AT (1) AT408591B (en)
WO (1) WO1990012278A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462729A2 (en) * 1990-06-21 1991-12-27 Seagate Technology International Method and apparatus for detecting the rotor position of a brushless DC motor
WO1992019038A1 (en) * 1991-04-11 1992-10-29 Elin Energieanwendung Gesellschaft M.B.H. Process and circuits for determining machine-related electromagnetic and mechanical state variables on electrodynamic induction machines supplied via converters
WO2000072437A1 (en) * 1999-05-19 2000-11-30 Abb Industry Oy Starting procedure of open-loop vector control in synchronous machine
FR2844403A1 (en) * 2002-09-05 2004-03-12 Alstom System for calculating and determining angular stop position of a rotating electrical machine such as a synchronous polyphase electrical motor, includes reading response signal of stator windings on application of voltage vectors
DE10311028A1 (en) * 2003-03-13 2004-10-07 Siemens Ag Method for determining starting rotor position and revs for permanent magnet excited synchronous machine, involves calculating minimal value depending on current response for switch-on period of zero voltage vector
EP1133049A4 (en) * 1999-09-20 2006-01-04 Mitsubishi Electric Corp Pole-position detector of synchronous motor
EP2051368A1 (en) * 2007-10-16 2009-04-22 ABB Schweiz AG Method for determining the rotor position of a separately excited electric machine
DE102009045247A1 (en) * 2009-10-01 2011-04-21 GÄRTNER ELECTRONIC-DESIGN GmbH Method and device for monitoring and correcting sensorless rotor position detection in permanent-magnet motors
EP2453571A1 (en) 2010-11-11 2012-05-16 Celeroton AG Converter and method for driving an electric AC machine
US10396692B2 (en) 2015-02-10 2019-08-27 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft Method for operating a brushless direct current motor
EP1856792B2 (en) 2005-02-22 2021-12-22 Robert Bosch GmbH Method for detecting the position of a rotor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358095B2 (en) * 2009-07-31 2013-01-22 GM Global Technology Operations LLC Method and system for testing electric motors
DE102018127412A1 (en) 2018-11-02 2020-05-07 Elmos Semiconductor Aktiengesellschaft Method for sensorless position detection of a motor by deleting the magnetic history
DE102019127051A1 (en) 2018-11-06 2020-05-07 Elmos Semiconductor Aktiengesellschaft Process for the silent, pulse-free control of the commutation of a BLDC motor in stop mode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2082308A5 (en) * 1970-03-10 1971-12-10 Mo
SE372858B (en) * 1971-12-31 1975-01-13 Asea Ab
US4743786A (en) * 1984-11-20 1988-05-10 Kabushiki Kaisha Sg Rotational position detection device
US4764767A (en) * 1985-08-27 1988-08-16 Kabushiki Kaisha Sg Absolute rotational position detection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450396A (en) * 1980-09-23 1984-05-22 Massachusetts Institute Of Technology Electrically controlled synchronous machine
DE3306642A1 (en) * 1983-02-25 1984-09-13 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Method for stepping the stator rotating field of a synchronous machine onwards
EP0228535A1 (en) * 1985-12-04 1987-07-15 Siemens Aktiengesellschaft Method and device to determine the flux angle of an induction machine i.e. to operate the machine according to position
JP2585376B2 (en) * 1987-06-12 1997-02-26 株式会社日立製作所 Control method of induction motor
US4814677A (en) * 1987-12-14 1989-03-21 General Electric Company Field orientation control of a permanent magnet motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2082308A5 (en) * 1970-03-10 1971-12-10 Mo
SE372858B (en) * 1971-12-31 1975-01-13 Asea Ab
US4743786A (en) * 1984-11-20 1988-05-10 Kabushiki Kaisha Sg Rotational position detection device
US4764767A (en) * 1985-08-27 1988-08-16 Kabushiki Kaisha Sg Absolute rotational position detection device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462729A2 (en) * 1990-06-21 1991-12-27 Seagate Technology International Method and apparatus for detecting the rotor position of a brushless DC motor
EP0462729A3 (en) * 1990-06-21 1993-04-21 Seagate Technology International Method and apparatus for detecting the rotor position of a brushless dc motor
WO1992019038A1 (en) * 1991-04-11 1992-10-29 Elin Energieanwendung Gesellschaft M.B.H. Process and circuits for determining machine-related electromagnetic and mechanical state variables on electrodynamic induction machines supplied via converters
US5796235A (en) * 1991-04-11 1998-08-18 Schrodl; Manfred Process and circuits for determining machine-related electro-magnetic and mechanical state variables on electrodynamic induction machines supplied via converters
WO2000072437A1 (en) * 1999-05-19 2000-11-30 Abb Industry Oy Starting procedure of open-loop vector control in synchronous machine
US6498452B1 (en) 1999-05-19 2002-12-24 Abb Oy Starting procedure of open-loop vector control in synchronous machine
AU761856B2 (en) * 1999-05-19 2003-06-12 Abb Oy Starting procedure of open-loop vector control in synchronous machine
EP1133049A4 (en) * 1999-09-20 2006-01-04 Mitsubishi Electric Corp Pole-position detector of synchronous motor
EP1398869A1 (en) * 2002-09-05 2004-03-17 Alstom Process and calculator for the angular position determination of a rotor at standstill, controller and system incorporating the calculator
US6850863B2 (en) 2002-09-05 2005-02-01 Alstom Method and a computer for determining the stopped angular position of a rotor, a control unit, and a system incorporating the computer
FR2844403A1 (en) * 2002-09-05 2004-03-12 Alstom System for calculating and determining angular stop position of a rotating electrical machine such as a synchronous polyphase electrical motor, includes reading response signal of stator windings on application of voltage vectors
DE10311028A1 (en) * 2003-03-13 2004-10-07 Siemens Ag Method for determining starting rotor position and revs for permanent magnet excited synchronous machine, involves calculating minimal value depending on current response for switch-on period of zero voltage vector
DE10311028B4 (en) * 2003-03-13 2008-06-19 Siemens Ag Method for determining a starting rotor position and speed at pulse enable of a converter-fed, permanent-magnet synchronous machine without position and speed sensor
EP1856792B2 (en) 2005-02-22 2021-12-22 Robert Bosch GmbH Method for detecting the position of a rotor
EP2051368A1 (en) * 2007-10-16 2009-04-22 ABB Schweiz AG Method for determining the rotor position of a separately excited electric machine
DE102009045247A1 (en) * 2009-10-01 2011-04-21 GÄRTNER ELECTRONIC-DESIGN GmbH Method and device for monitoring and correcting sensorless rotor position detection in permanent-magnet motors
US8766579B2 (en) 2009-10-01 2014-07-01 Gärtner-Electronic-Design Gmbh Method and device for monitoring and correcting a sensorless rotor position detection in permanently excited motors
EP2453571A1 (en) 2010-11-11 2012-05-16 Celeroton AG Converter and method for driving an electric AC machine
US10396692B2 (en) 2015-02-10 2019-08-27 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft Method for operating a brushless direct current motor

Also Published As

Publication number Publication date
AT408591B (en) 2002-01-25
ATA81089A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
EP0539401B1 (en) Process and circuit for the sensor-less detection of the angle of rotation in a synchronous machine without a damper and preferably excited by a permanent magnet and powered via a converter
EP0536113B1 (en) Motor or position transducer
EP0579694B1 (en) Process and circuits for determining machine-related electromagnetic and mechanical state variables on electrodynamic induction machines supplied via converters
DE3543941C2 (en)
WO1990012278A1 (en) Process for the detection without a sensor of the angle of rotation in undamped synchronous machines, preferably excited by permanent magnets
EP0847617B1 (en) Process and device for correcting the flow direction of the model flow of a sensor-free, field-oriented rotating magnetic field machine down to zero frequency
EP3172829B1 (en) Method for determining a rotor frequency and/or a rotor angle of a rotor of a reluctance machine, control device and drive assembly
WO2014012637A2 (en) Method for determining the rotor position of an electronically-commuted multi-phase direct current motor
DE3724117A1 (en) CONTROL DEVICE FOR INDUCTION MOTORS
EP2026461A2 (en) Method for sensorless control of a three-phase machine
EP2474090B1 (en) Method and device for determining a rotor position of a synchronous machine
DE3102655C2 (en) Method for recording machine-internal variables in asynchronous squirrel cage motors
AT395487B (en) Method and circuit arrangement for sensorless detection of the angle of rotation of a damperless synchronous machine which is preferably excited by permanent magnet(s) and is fed via a converter
DE2132477A1 (en) Electric motor
DE4407390A1 (en) Startup and commutation procedures for synchronous machines
DE4103270C2 (en) Method for determining stator flux linkage in a three-phase machine
EP3704790B1 (en) Method for determining the rotor position of synchronously running electric machines without a mechanical sensor
EP1383231A1 (en) Method for acquiring the magnetic flux, the rotor position and/or the rotation speed
DE19843133A1 (en) Method of measuring the speed of an induction machine
DE69915263T2 (en) CORRECTION PROCEDURE FOR THE RIVER HALFING POINT IN FLOW-CONTROLLED AC SYSTEMS
AT397440B (en) Method and circuit arrangement for detecting rotation angles, without sensors, in a synchronous machine which preferably has permanent-magnet excitation and is fed by a converter
EP4016835A1 (en) Method for determining the angular position of the rotor of a synchronous motor fed by an inverter and device for carrying out the method
AT399602B (en) Method and circuit arrangement for rotor position determination and for applying torque to a reluctance machine fed via a converter
AT397884B (en) Method for magnetic flux determination and for dynamically high-quality torque application to an asynchronous machine fed via a converter
EP3930178A1 (en) Method for controlling an electric three-phase machine and three-phase machine system for such a method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): HU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE