WO1990012421A1 - Trench jfet integrated circuit elements - Google Patents

Trench jfet integrated circuit elements Download PDF

Info

Publication number
WO1990012421A1
WO1990012421A1 PCT/US1990/000239 US9000239W WO9012421A1 WO 1990012421 A1 WO1990012421 A1 WO 1990012421A1 US 9000239 W US9000239 W US 9000239W WO 9012421 A1 WO9012421 A1 WO 9012421A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
forming
gate
region
substrate
Prior art date
Application number
PCT/US1990/000239
Other languages
French (fr)
Inventor
Allen L. Solomon
Original Assignee
Grumman Aerospace Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grumman Aerospace Corporation filed Critical Grumman Aerospace Corporation
Publication of WO1990012421A1 publication Critical patent/WO1990012421A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • H01L29/66901Unipolar field-effect transistors with a PN junction gate, i.e. JFET with a PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • H01L27/0738Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors in combination with resistors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/098Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being PN junction gate field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate

Definitions

  • the present invention finds application in connection with thin silicon plates or wafers formed to support a multiplicity of monolithically integrated data processor circuits. More particularly, the invention is for the production of junction field effect transistor (JFET) integrated circuit elements formed on silicon wafers and used to interface devices such as infrared detector elements to a processing network that amplifies, stores and interprets detected infrared frequency signals.
  • JFET junction field effect transistor
  • the infrared spectrum covers a range of wavelengths longer than the visible wavelengths, but shorter than microwave wavelengths. Visible wavelengths are generally regarded as between 0..4 and 0.75 micrometers. The infrared wavelengths extend from 0.75 micrometers to 1 millimeter.
  • the function of infrared detectors is to respond to the energy of a wavelength within some particular portion of the infrared region. Heated objects generate radiant energy having characteristic wavelengths within the infrared spectrum.
  • Many current infrared image detection systems incorporate arrays with large numbers of discrete, highly sensitive detector elements, the electrical outputs of which are connected to processing circuitry. By analyzing the pattern and sequence of detector element excitation, the processing circuitry can identify and track sources of infrared radiation.
  • HEET miniaturiz tion of the detector array and accompanying circuitry of minimization of circuit generated noise that results in lower sensitivity of the detected signal, and of improvements in the reliability and economical production of detector arrays and the accompanying circuitry.
  • Contemporary arrays of detectors may be sized to include 256 detector elements on a side, or a total of 65,536 detectors, the size of each square detector being ⁇ proximately 0.009 centimeters on a side, with 0.00116 centimeters spacing between detectors. Such a subarray would therefore be 2.601 centimeters on a side. Interconnection of such a subarray to processing circuitry would require connecting each of the 65,536 detectors to processing circuitry within a square, a little more than one inch on a side. Each subarray may, in turn, be joined to other subarrays to form an array that connects to 25,000,000 detectors or more.
  • 1/f noise A type of noise that is particularly significant where the preamplifier operates at low frequency is commonly called flicker or 1/f noise. Because 1/f noise can be the principal noise component at low frequencies of operation, it is highly desirable that circuits operating within such frequencies be constructed in such a manner as to decrease 1/f noise to an acceptably low level.
  • Reduction of 1/f noise in the preamplifier, where the preanplif ier transistor is a field effect device, is conventionally obtained by increasing the area of the channel region under the gate. This large area over the semiconductor substrate surface results in a decrease in circuit component density or decreased circuit componen miniaturization.
  • the channel region of a juncttion field effect transistor (JFET) i formed in a trench in the semiconductor. The transisto then occupies far less semiconductor substrate surface an so enables a high component density circuit to b obtained.
  • JFET juncttion field effect transistor
  • Such constructions provide large area trench gate regions to obtain low 1/f noise without consuming large amounts of semiconductor surface area.
  • the present invention expands on the disclosure of applicants co-pending applications by modifying the transistor construction to provide additional radiation hardness to the circuit.
  • Conventional construction of a MOSFET utilizes a layer of silicon dioxide separating the gate electrode from the channel semiconductor region. When such a transistor it is irradiated by gamma rays; one result is to establish a residual charge in the silicon dioxide, which provides a constant bias on the transistor channels. This bias typically impedes the operation of the transistor by, for example, keeping the transistor in an on state, or by varying its threshold.
  • JFET junction field effect transistor
  • the junction field effect transistor is characterized by a construction wherein the insulating layer is replaced by a p-n junction which does not accumulate a bias charge on irradiation. Consequently, the JFET construction avoids the need to use materials that would result in storing a residual charge upon irradiation. It further extensively utilizes silicon nitride as a dielectric and insulator in place of silicon dioxide. Since silicon nitride does not accumulate charge from ionizing radiation, it avoids spurious residual charge effects that can otherwise appear at silicon dioxide, silicon interfaces.
  • a method and construction are disclosed to form a trench gate JFET transistor.
  • the invention comprises forming a first trench in a semiconductor substrate, forming a gate channel in the trench and forming a conductive layer upon the surface of the gate channel.
  • Source and drain regions are formed adjacent to a trench and disposed in electrical contact with the gate channel.
  • An integral capacitor may be added to the construction by forming a second trench, which extends through and excavates a portion of the first trench.
  • the drain region is extended about the surface of the second trench to remain in electrical contact with the gate channel.
  • a layer of insulating material is applied to the second trench, which is then filled with a body of conductive material.
  • the conductive material is insulated from the conductive layer by the insulating layer.
  • the present invention may be embodied in the construction of the trench gate JFET transistor alone, or with the construction of an integral capacitor. In either case the construction may be supplemented by the formation of a complementary trench gate JFET in an additional region of doped material isolating the source region, drain region and gate channel from the substrate.
  • the present invention includes a complementary trench gate JFET that can be connected to the integral JFET-capacitor device to form a circuit wherein a complementary JFET preamplifier is connected in series with a storage capacitor.
  • the substrate is formed of p-type silicon
  • the gate channel is formed of n-type material formed within the trench by shallow diffusion and a conductive layer is formed of p-type material grown on the gate channel.
  • a region of doped material isolating the substrate from the source, drain and gate regions is formed of n+ type material in the preferred embodiment.
  • Figure 1 is a cross sectional view of a contemporary JFET structure
  • Figure 2 is a cross sectional view of a trench gate JFET in accordance with the present invention.
  • Figures 3-10 are cross sectional views illustrating the construction of an integrated trench JFET-capacitor circuit element in accordance with the present invention
  • Figures 11-16 are cross sectional views illustrating the construction of a complementary trench JFET integrated circuit element in accordance with the present invention
  • Figure 17 is a schematic representation of a trench JFET-capacitor integrated circuit element in accordance with the present invention.
  • Figure 18 is a cross sectional view of an integral JFET-capacitor circuit element and a complementary JFET where the transistor drains are connected in series with the capacitor.
  • Each detector element in the detector array may be connected to a preamplifie r, such as a CMOS pre ampl if e r, in an anal og proce ssor circuit .
  • Low preamplifier noise is essential to prevent degradation of detector sensitivity . Since the preamplif iers are operated at low frequency , a principal source of noise if flicker or 1/f noise .
  • the 1/f noise is inversely proportional to the area of the channel or gate regions of an MOS transistor, as expressed in the following equati on: * :
  • W the width of the gate
  • L the length of the gate. *See: R. Gregorian and G.C. Temes, Analog MOS Integrated Circuits In Signal Processing, John Wiley & Sons, N.Y. , N.Y. (1986).
  • the MOS transistor gate region may be regarded as a capacitor, which is formed by a metal oxide semiconductor cross section. Large area capacitors that preserve semiconductor surface are obtained in bulk silicon by using the walls of trenches , grooves or holes, which are cut in silicon, for example, by p la sma or reactive ion etching .
  • gate region area may be enhanced by using the depth of the trench to enlarge the electrode channel area without the need to use a large amount of the semiconductor surface.
  • the present invention recognizes the capacitive characteristics of the MOS transistor gate region and appl ies particular trench forming techniques to the construction of the MOS transistor . In such a manner the MOS transistor gate channel area or gate channel region, is enhanced, mitigating 1/f noise, without the need to use large amounts of the semiconductor surface.
  • Figure 1 ill ustrates a j unction f ield ef f ect transistor ( JEET) constructed in accordance with conventional techn iques .
  • n-JFET 11 is formed of an n-doped source region 21 and an n-doped drain region 23 formed in p-doped silicon 20.
  • the channel between source and drain is the shallow n-type region 25.
  • the gate j unction i formed by the p-type layer 27 over region 35.
  • the characteristic 1/f noise is related to the width and length of the gate area intermediate to the source and drain.
  • the length of the gate area labeled L
  • the width of the gate area is orthogonal to the plane of the drawing .
  • 1/f noise is reduced, though the maximum speed at which the c ircuit wil l effic iently operate is reduced.
  • the present inventi on is directed to a construction and technique viier ein the gate area is enhanced without the need to appropriate greater surface area of the semiconductor waf e r .
  • Figure 2 illustrates one embodiment of the present invention.
  • JFET 13 comprises an n-doped source region 21, and an n-doped drain region 23, both formed in p-doped silicon 20.
  • a trench 31 is formed in the silicon substrate.
  • the trench may be formed by any of a variety of techniques, such as reactive ion etching.
  • a shallow n-type layer 33 is formed by dopant diffusion in the vertical and bottom silicon surfaces of trench 31.
  • the gate junction can be formed by growing a p-type epitaxial layer of silicon 35 over layer 33. It may be necessary to apply a supporting conductive layer, such as metal or degenerately doped polycrystalline silicon, over layer 35 to provide sufficiently high gate electrode conductivity.
  • the trench can be filled with an insulator material such as silicon nitride or silicon dioxide or with a conductive material without the need for a supporting conductive film.
  • Electrodes 37, 39 may be formed on the upper exposed surfaces of source 21 and drain 23, respectively.
  • An additional electrode (not shown) may be formed to facilitate contact with the gate layer 35.
  • trench 31 is formed to be up to approximately 10 to 20 microns deep and 2 to 3 microns wide.
  • the width of the trench is in the range of 10 to 20 microns. The particular dimensions may be selected in accordance with the desired noise characteristics and speed of the transistor, and the available surface area.
  • the construction illustrated at Figure 2 provides the advantages of low 1/f noise without the penalty in terms of semiconductor surface area. Unlike a MOSFET with a silicon dioxide gate insulator layer, there is virtually no residual bias charge accumulation in the p-n junction gate of the JIET caused by irradiation by a source of gamma rays.
  • the present invention provides for integration of a capacitor in series with the transistor drain, as schematically represented at Figure
  • the first, illustrated at Figures 3-10 results in the construction of a trench gate n-JEET integrated circuit element, which may optionally incorporate a series capacitor.
  • the second technique, illustrated at Figures 11-16, results in the construction of a complimentary p-JFET integrated circuit.
  • n-JFET The construction of the n-JFET, and integrated series capacitor, proceeds as follows. First, a trench 31 is formed in the silicon dioxide or nitride 43 coated substrate 20. Contemporary techniques such as reactive ion etching may be used to form the trench. The depth of the trench may vary in accordance with the desired operating characteristics of the circuit. It is presently anticipated that the trench 31 could extend up to approximately 20 microns.
  • the substrate may be p-type bulk silicon.
  • an n-type region 45 is then formed at the surface of trench 41.
  • the region 45 may be formed by shallow diffusion.
  • the n-type region 45 forms a transistor channel as described more fully below.
  • a p-type epitaxial layer 47 is then grown on the n-type region 45 to form the gate junction characteristic of a JFET.
  • the p-type layer 47 is preferably doped to assure operation at low temperature. It is anticipated that in some applications it may be desirable to form an additional conductive layer, such as a metal film, above p-type layer 47 to insure sufficient gate electrode conductivity in such low temperature applications.
  • trench 41 is then substantially filled with a body of insulating material 49, such as silicon dioxide. It should be noted that the use of silicon dioxide as such insulating material to form body 49 will not result in the undesirable residual gate bias conditions described above.
  • FIG. 7 a construction is illustrated wherein a capacitor is integrated into the construction of the trench gate JFET. It is to be understood, however, that the present invention finds application without the construction of an integral series capacitor.
  • the construction steps are sequenced for the most convenient formation of an integral JFET-capacitor circuit. However, as will be recognized by those of ordinary skill in the art, certain of the steps may be excluded or modified in sequence in the event that an integral capacitor circuit is not desired.
  • a second trench 51 is then formed in the substrate 20.
  • the second trench 51 extends through and excavates a portion of trench 41.
  • the depth of both trenches may be varied in accordance with the desired characteristics of the JFET and the series capacitor.
  • the trench 51 provides space for the formation of a film capacitor disposed in series with the JFET.
  • Source region 53 and drain region 55 are preferrably formed by diffusion to form n+ type regions.
  • the regions 53 and 55 extend to layer 47.
  • the n+ type regions 53 and 55 are heavily doped in relation to n-type region 45.
  • the channel region 45 is constructed to be thin and less heavily doped than the source and drain regions 53 and 55 to enable charge carriers to be depleted and so to reduce current flow in the channel when a small signal is applied to gate layer 47.
  • Figure 9 illustrates the formation of the capacitor dielectric 57.
  • the dielectric 57 may be formed by thermal oxidation of the exposed surface trench 51.
  • the oxidation of the surface of trench 51 produces an insulating layer of silicon dioxide, which comprises the dielectric 57.
  • the dielectric 57 can also be made by vapor depositing a film of either silicon dioxide or silicon nitride. Chemical vapor deposition, of either materials is well practiced process.
  • Figure 10 illustrates the formation of the capacitor electrode 59.
  • the electrode 59 may be formed by filling the trench 51 with a body of conductive material, such as metal or degenerately doped poly crystalline silicon.
  • Metal film contact pad and lead may be formed on the surface of the wafer (not shown) to facilitate communication of signals to and from the circuit.
  • Figure 17 schematically illustrates the physical circuit depicted at Figure 10, and includes corresponding source, gate, drain and capacitor output terminals.
  • Figures 11-16 illustrate the fabrication of a complementary trench p-JFET transistor in a p-type silicon wafer.
  • the construction technique differs from that described in connection with Figures 3-10 in that the source and drain regions are p-type material and a gate n-p junction, as opposed to the previously described p-n junction, is isolated from the p-type silicon substrate by an n+ type region diffused into the substrate. Additionally, the construction illustrated at Figures 11-16 does not incorporate an integral series capacitor.
  • a trench 61 is formed in insulator coated substrate 20.
  • the substrate 20 in this embodiment is a p-type bulk silicon substrate.
  • the trench 20 may be formed, for example, by reactive ion etching of the substrate.
  • An insulating layer 63 is formed on the upper surface of the substrate.
  • the insulating layer may commonly be silicon dioxide or silicon nitride.
  • a deep n+ region is then formed, by diffusion, within the substrate 20 about trench 61.
  • the n+ region 65 serves to isolate the n-p gate junction, as well as the source and drain regions from the bulk silicon.
  • Figures 13 and 14 illustrate the construction of the gate n-p junction.
  • a thin, lightly doped p-type epitaxial layer 67 is grown in the trench to form the gate channel.
  • An n-type epitaxial layer 69 is then grown on the p-type layer 67 to form the gate junction. It should be understood that it may also be necessary to form an additional conductive layer, such as a metal film, upon n-type layer 69.
  • Figure 15 illustrates filling trench 61 with a body of material 71.
  • the body of material 71 is either silicon dioxide or silicon nitride which has been vapor deposited within trench 61.
  • both the n-JFET illustrated at Figure 6 and the p-JFET illustrated at Figure 16 have application independent of the inclusion of a series capacitor. Because the construction illustrated Figures 15 and 16 does not include an integral series capacitor, it should be understood that the body of material 71 may be conductive material instead of insulating material. Similarly, the body of material 49 ( Figure 6) may also be a conductive material where the capacitor is not formed integral with the n-JFET. Figure 16 illustrates the formation of source region 73 and drain region 75.
  • the source and drain regions are formed by removing a portion of the insulating layer 63 and diffusing p+ type material into the substrate 20 within the n+ region 65.
  • the source and drain regions are isolated from the substrate 20 by the n+ region 65. Consequently, the diffusion of n+ region 65 must be sufficiently deep to facilitate such isolation.
  • Figure 16 illustrates the types of materials applied to form the p-JFET, as well as the location of source, gate and drain terminals. It is to be understood that the gate terminal may be relocated anywhere along layer 69, or upon the surface of body 71, where body 71 is formed of conductive material.
  • Figure 18 illustrates the connection of the integral n-JFET-capacitor and the p-JFET to form a circuit where the output of a complementary JFET circuit element is stored in the capacitor. It should be noted that the gate region of the n-JFET and the p-JFET may be sized to be substantially the same area.

Abstract

The invention comprises forming a first trench (41) in a semiconductor substrate (20), forming a gate channel (45) about the trench (41) and forming a conductive layer (47) upon the surface of the gate channel (45). The conductive layer (47) interfaces with the gate channel (45) to form a p-n junction. Source and drain regions (53, 55) are formed adjacent to a trench and disposed in electrical contact with the gate channel (45). An integral capacitor may be added to the construction by forming a second trench (51), which extends through and excavates a portion of the first trench (41). The drain region (55) is extended about the surface of the second trench (51) to remain in electrical contact with the gate channel (45). A layer of insulating material (57) is applied to the second trench (51), which is then filled with a body of conductive material (59). The conductive material is insulated from the conductive layer (59) by the insulating layer (57).

Description

TRENCH JFET INTEGRATED CIRCUIT ELEMENTS
Background of the Invention
The present invention finds application in connection with thin silicon plates or wafers formed to support a multiplicity of monolithically integrated data processor circuits. More particularly, the invention is for the production of junction field effect transistor (JFET) integrated circuit elements formed on silicon wafers and used to interface devices such as infrared detector elements to a processing network that amplifies, stores and interprets detected infrared frequency signals.
The infrared spectrum covers a range of wavelengths longer than the visible wavelengths, but shorter than microwave wavelengths. Visible wavelengths are generally regarded as between 0..4 and 0.75 micrometers. The infrared wavelengths extend from 0.75 micrometers to 1 millimeter. The function of infrared detectors is to respond to the energy of a wavelength within some particular portion of the infrared region. Heated objects generate radiant energy having characteristic wavelengths within the infrared spectrum. Many current infrared image detection systems incorporate arrays with large numbers of discrete, highly sensitive detector elements, the electrical outputs of which are connected to processing circuitry. By analyzing the pattern and sequence of detector element excitation, the processing circuitry can identify and track sources of infrared radiation. Though the theoretical performance of such contemporary systems is satisfactory for many applications, it is difficult to construct structures that adequately interface large numbers of detector elements with associated circuitry in a practical and reliable manner. Consequently, practical applications for contemporary infrared image detector systems have necessitated further advances in the areas of
HEET miniaturiz tion of the detector array and accompanying circuitry, of minimization of circuit generated noise that results in lower sensitivity of the detected signal, and of improvements in the reliability and economical production of detector arrays and the accompanying circuitry.
Contemporary arrays of detectors, useful for some applications, may be sized to include 256 detector elements on a side, or a total of 65,536 detectors, the size of each square detector being φproximately 0.009 centimeters on a side, with 0.00116 centimeters spacing between detectors. Such a subarray would therefore be 2.601 centimeters on a side. Interconnection of such a subarray to processing circuitry would require connecting each of the 65,536 detectors to processing circuitry within a square, a little more than one inch on a side. Each subarray may, in turn, be joined to other subarrays to form an array that connects to 25,000,000 detectors or more. As would be expected considerable difficulties are presented in electrically connecting the detector elements to associated circuitry, and laying out the circuitry in a minimal area. The problems of forming processing circuitry in such a dense environment require minimization of the surface area used for the circuitry. The outputs of the detector elements typically undergo a series of processing steps in order to permit derivation of the informational content of the detector output signal. The more fundamental processing steps, such as preamplifi cation, tuned band pass filtering, clutter and background rejection, multiplexing and fixed noise pattern suppression, are preferably done at a location adjacent the detector array fcc l plane. As a consequence of such on-focal plane, or up-front signal processing, reductions in size, power and cost of the main processor may be achieved. Moreover, on-focal plane signal processing helps alleviate performance, reliability and economic problems associated with the construction of millions of closely spaced conductors connecting each detector element to the signal processing network.
Aside from the aforementioned physical limitations on the size of the detector module, limitations on the performance of contemporary detection systems can arise due to the presence of electronic circuit generated noise, in particular, from the preamplifier. Such noise components can degrade the minimal level of detectivity available from the detector.
A type of noise that is particularly significant where the preamplifier operates at low frequency is commonly called flicker or 1/f noise. Because 1/f noise can be the principal noise component at low frequencies of operation, it is highly desirable that circuits operating within such frequencies be constructed in such a manner as to decrease 1/f noise to an acceptably low level.
U.S. Patent No. 4,633,086, to Parrish, Input Circuit For Infrared Detector, assigned to the common assignee, describes one technique for biasing the on-focal-p lane processing circuit to maintain the associated detector in a zero bias condition, thus reducing 1/f noise and enhancing the signal to noise ratio of the circuit.
Reduction of 1/f noise in the preamplifier, where the preanplif ier transistor is a field effect device, is conventionally obtained by increasing the area of the channel region under the gate. This large area over the semiconductor substrate surface results in a decrease in circuit component density or decreased circuit componen miniaturization. In the present invention, the channel region of a juncttion field effect transistor (JFET) i formed in a trench in the semiconductor. The transisto then occupies far less semiconductor substrate surface an so enables a high component density circuit to b obtained. In co-pending applications, applicant has disclosed constructions of a trench gate MOS field effect transistor (MOSFET) alone and integrated with a capacitor in a single trench. Such constructions provide large area trench gate regions to obtain low 1/f noise without consuming large amounts of semiconductor surface area. The present invention expands on the disclosure of applicants co-pending applications by modifying the transistor construction to provide additional radiation hardness to the circuit. Conventional construction of a MOSFET utilizes a layer of silicon dioxide separating the gate electrode from the channel semiconductor region. When such a transistor it is irradiated by gamma rays; one result is to establish a residual charge in the silicon dioxide, which provides a constant bias on the transistor channels. This bias typically impedes the operation of the transistor by, for example, keeping the transistor in an on state, or by varying its threshold.
Radiation hardness is provided by a different transistor construction wherein an insulating layer in the gate region is eliminated. The junction field effect transistor (JFET) is characterized by a construction wherein the insulating layer is replaced by a p-n junction which does not accumulate a bias charge on irradiation. Consequently, the JFET construction avoids the need to use materials that would result in storing a residual charge upon irradiation. It further extensively utilizes silicon nitride as a dielectric and insulator in place of silicon dioxide. Since silicon nitride does not accumulate charge from ionizing radiation, it avoids spurious residual charge effects that can otherwise appear at silicon dioxide, silicon interfaces.
Summary of the Invention A method and construction are disclosed to form a trench gate JFET transistor. The invention comprises forming a first trench in a semiconductor substrate, forming a gate channel in the trench and forming a conductive layer upon the surface of the gate channel. Source and drain regions are formed adjacent to a trench and disposed in electrical contact with the gate channel. An integral capacitor may be added to the construction by forming a second trench, which extends through and excavates a portion of the first trench. The drain region is extended about the surface of the second trench to remain in electrical contact with the gate channel. A layer of insulating material is applied to the second trench, which is then filled with a body of conductive material. The conductive material is insulated from the conductive layer by the insulating layer.
The present invention may be embodied in the construction of the trench gate JFET transistor alone, or with the construction of an integral capacitor. In either case the construction may be supplemented by the formation of a complementary trench gate JFET in an additional region of doped material isolating the source region, drain region and gate channel from the substrate.
In another embodiment the present invention includes a complementary trench gate JFET that can be connected to the integral JFET-capacitor device to form a circuit wherein a complementary JFET preamplifier is connected in series with a storage capacitor.
In the presently preferred embodiment the substrate is formed of p-type silicon, the gate channel is formed of n-type material formed within the trench by shallow diffusion and a conductive layer is formed of p-type material grown on the gate channel. For the complementary JFET a region of doped material isolating the substrate from the source, drain and gate regions is formed of n+ type material in the preferred embodiment.
Where an integral capacitor is not desired, it may not be necessary to fill the transistor trench. However, if desired, the trench may be filled with a body of insulating material, such as silicon dioxide. Brief Description of the Drawings Figure 1 is a cross sectional view of a contemporary JFET structure;
Figure 2 is a cross sectional view of a trench gate JFET in accordance with the present invention;
Figures 3-10 are cross sectional views illustrating the construction of an integrated trench JFET-capacitor circuit element in accordance with the present invention; Figures 11-16 are cross sectional views illustrating the construction of a complementary trench JFET integrated circuit element in accordance with the present invention; and Figure 17 is a schematic representation of a trench JFET-capacitor integrated circuit element in accordance with the present invention.
Figure 18 is a cross sectional view of an integral JFET-capacitor circuit element and a complementary JFET where the transistor drains are connected in series with the capacitor.
Detailed Description of the Presently Preferred Embodiment The detailed description set forth below in connection with the appended drawings is intended as a description of the presently preferred embodiment of the invention, and is not intended to represent the only form in which the present invention may be constructed or utilized. The description sets forth the functions and sequence of steps for construction of the invention in connection with the illustrated embodiment. It is to be understood, however, that the same or equivalent functions and sequences may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention. Furthermore, a similar trench gate embodiment can be used to form complementary MOS field effect transistors as well as the junction field ef fect transitors described here .
As previously noted large numbers of closely spaced, high component density integrated circuit processor channels may be used in on-focal-p lane signal pro cess ors . Each detector element in the detector array may be connected to a preamplifie r, such as a CMOS pre ampl if e r, in an anal og proce ssor circuit . Low preamplifier noise is essential to prevent degradation of detector sensitivity . Since the preamplif iers are operated at low frequency , a principal source of noise if flicker or 1/f noise . The 1/f noise is inversely proportional to the area of the channel or gate regions of an MOS transistor, as expressed in the following equati on: * :
~5 KΔf v = coxWLf, where v = the characteristic noise in microvolts;
K = a constant;
Δf = bandwidth f = the frequency of operation; C^ β characteristic capacitance of the oxide layer;
W = the width of the gate; and L = the length of the gate. *See: R. Gregorian and G.C. Temes, Analog MOS Integrated Circuits In Signal Processing, John Wiley & Sons, N.Y. , N.Y. (1986).
A large area gate region in a MOS transistor will produce a low 1/f noise component. However, such a structure requires a large amount of semiconductor surface area. This makes it difficult to obtain a high density of such integrated circuit functions. The present invention is directed to a structure and process for enhancing the area of the gate region without enhancing the semiconductor surface area. The MOS transistor gate region may be regarded as a capacitor, which is formed by a metal oxide semiconductor cross section. Large area capacitors that preserve semiconductor surface are obtained in bulk silicon by using the walls of trenches , grooves or holes, which are cut in silicon, for example, by p la sma or reactive ion etching . In such a manner, gate region area may be enhanced by using the depth of the trench to enlarge the electrode channel area without the need to use a large amount of the semiconductor surface. The present invention recognizes the capacitive characteristics of the MOS transistor gate region and appl ies particular trench forming techniques to the construction of the MOS transistor . In such a manner the MOS transistor gate channel area or gate channel region, is enhanced, mitigating 1/f noise, without the need to use large amounts of the semiconductor surface.
Figure 1 ill ustrates a j unction f ield ef f ect transistor ( JEET) constructed in accordance with conventional techn iques . As shown therein n-JFET 11 is formed of an n-doped source region 21 and an n-doped drain region 23 formed in p-doped silicon 20. The channel between source and drain is the shallow n-type region 25. The gate j unction i s formed by the p-type layer 27 over region 35.
In relation to Figure 1 the characteristic 1/f noise is related to the width and length of the gate area intermediate to the source and drain. The length of the gate area, labeled L, is shown at Figure 1. The width of the gate area is orthogonal to the plane of the drawing . By increasing the length of the gate L, 1/f noise is reduced, though the maximum speed at which the c ircuit wil l effic iently operate is reduced. The present inventi on is directed to a construction and technique viier ein the gate area is enhanced without the need to appropriate greater surface area of the semiconductor waf e r . Figure 2 illustrates one embodiment of the present invention. As with the JFET 11 shown at Figure 1, JFET 13 comprises an n-doped source region 21, and an n-doped drain region 23, both formed in p-doped silicon 20. Unlike the construction shown at Figure 1, a trench 31 is formed in the silicon substrate. The trench may be formed by any of a variety of techniques, such as reactive ion etching. A shallow n-type layer 33 is formed by dopant diffusion in the vertical and bottom silicon surfaces of trench 31. The gate junction can be formed by growing a p-type epitaxial layer of silicon 35 over layer 33. It may be necessary to apply a supporting conductive layer, such as metal or degenerately doped polycrystalline silicon, over layer 35 to provide sufficiently high gate electrode conductivity. In an alternative structure the trench can be filled with an insulator material such as silicon nitride or silicon dioxide or with a conductive material without the need for a supporting conductive film. Electrodes 37, 39 may be formed on the upper exposed surfaces of source 21 and drain 23, respectively. An additional electrode (not shown) may be formed to facilitate contact with the gate layer 35.
In accordance with the construction shown at Figure 2 the gate region intermediate to the source 21 and drain 23 is enlarged by means of a formation of trench 31. In the presently preferred embodiment trench 31 is formed to be up to approximately 10 to 20 microns deep and 2 to 3 microns wide. The width of the trench (orthogonal to the plane of Figure 2) is in the range of 10 to 20 microns. The particular dimensions may be selected in accordance with the desired noise characteristics and speed of the transistor, and the available surface area.
The construction illustrated at Figure 2 provides the advantages of low 1/f noise without the penalty in terms of semiconductor surface area. Unlike a MOSFET with a silicon dioxide gate insulator layer, there is virtually no residual bias charge accumulation in the p-n junction gate of the JIET caused by irradiation by a source of gamma rays. In addition, the present invention provides for integration of a capacitor in series with the transistor drain, as schematically represented at Figure
17.
Two construction sequences are illustrated and described below. The first, illustrated at Figures 3-10 results in the construction of a trench gate n-JEET integrated circuit element, which may optionally incorporate a series capacitor. The second technique, illustrated at Figures 11-16, results in the construction of a complimentary p-JFET integrated circuit.
The construction of the n-JFET, and integrated series capacitor, proceeds as follows. First, a trench 31 is formed in the silicon dioxide or nitride 43 coated substrate 20. Contemporary techniques such as reactive ion etching may be used to form the trench. The depth of the trench may vary in accordance with the desired operating characteristics of the circuit. It is presently anticipated that the trench 31 could extend up to approximately 20 microns. The substrate may be p-type bulk silicon.
As illustrated in Figure 4 an n-type region 45 is then formed at the surface of trench 41. The region 45 may be formed by shallow diffusion. The n-type region 45 forms a transistor channel as described more fully below.
As shown in Figure 5 a p-type epitaxial layer 47 is then grown on the n-type region 45 to form the gate junction characteristic of a JFET. The p-type layer 47 is preferably doped to assure operation at low temperature. It is anticipated that in some applications it may be desirable to form an additional conductive layer, such as a metal film, above p-type layer 47 to insure sufficient gate electrode conductivity in such low temperature applications. As shown at Figure 6, trench 41 is then substantially filled with a body of insulating material 49, such as silicon dioxide. It should be noted that the use of silicon dioxide as such insulating material to form body 49 will not result in the undesirable residual gate bias conditions described above.
Beginning with Figure 7 a construction is illustrated wherein a capacitor is integrated into the construction of the trench gate JFET. It is to be understood, however, that the present invention finds application without the construction of an integral series capacitor. In the embodiments illustrated the construction steps are sequenced for the most convenient formation of an integral JFET-capacitor circuit. However, as will be recognized by those of ordinary skill in the art, certain of the steps may be excluded or modified in sequence in the event that an integral capacitor circuit is not desired.
As shown in Figure 7 a second trench 51 is then formed in the substrate 20. In the illustrated embodiment the second trench 51 extends through and excavates a portion of trench 41. However, the depth of both trenches may be varied in accordance with the desired characteristics of the JFET and the series capacitor. The trench 51 provides space for the formation of a film capacitor disposed in series with the JFET.
As shown in Figure 8 the construction further proceeds by the removal of segments of the insulating layer 43 and the formation of drain and source regions 53, 55, respectively. Source region 53 and drain region 55 are preferrably formed by diffusion to form n+ type regions. The regions 53 and 55 extend to layer 47. The n+ type regions 53 and 55 are heavily doped in relation to n-type region 45. The channel region 45 is constructed to be thin and less heavily doped than the source and drain regions 53 and 55 to enable charge carriers to be depleted and so to reduce current flow in the channel when a small signal is applied to gate layer 47.
Figure 9 illustrates the formation of the capacitor dielectric 57. The dielectric 57 may be formed by thermal oxidation of the exposed surface trench 51. The oxidation of the surface of trench 51 produces an insulating layer of silicon dioxide, which comprises the dielectric 57. The dielectric 57 can also be made by vapor depositing a film of either silicon dioxide or silicon nitride. Chemical vapor deposition, of either materials is well practiced process.
Figure 10 illustrates the formation of the capacitor electrode 59. The electrode 59 may be formed by filling the trench 51 with a body of conductive material, such as metal or degenerately doped poly crystalline silicon. Metal film contact pad and lead may be formed on the surface of the wafer (not shown) to facilitate communication of signals to and from the circuit. Figure 17 schematically illustrates the physical circuit depicted at Figure 10, and includes corresponding source, gate, drain and capacitor output terminals.
Figures 11-16 illustrate the fabrication of a complementary trench p-JFET transistor in a p-type silicon wafer. The construction technique differs from that described in connection with Figures 3-10 in that the source and drain regions are p-type material and a gate n-p junction, as opposed to the previously described p-n junction, is isolated from the p-type silicon substrate by an n+ type region diffused into the substrate. Additionally, the construction illustrated at Figures 11-16 does not incorporate an integral series capacitor.
However, it is to be understood that the construction of the coπplement ry p-JFET transistor may be supplemented to incorporate an integral capacitor in accordance with the same construction steps illustrated in connection with Figures 7-10.
Referring to Figure 11 a trench 61 is formed in insulator coated substrate 20. The substrate 20 in this embodiment is a p-type bulk silicon substrate. The trench 20 may be formed, for example, by reactive ion etching of the substrate. An insulating layer 63 is formed on the upper surface of the substrate. The insulating layer may commonly be silicon dioxide or silicon nitride. As shown in Figure 12 a deep n+ region is then formed, by diffusion, within the substrate 20 about trench 61. The n+ region 65 serves to isolate the n-p gate junction, as well as the source and drain regions from the bulk silicon.
Figures 13 and 14 illustrate the construction of the gate n-p junction. First, a thin, lightly doped p-type epitaxial layer 67 is grown in the trench to form the gate channel. An n-type epitaxial layer 69 is then grown on the p-type layer 67 to form the gate junction. It should be understood that it may also be necessary to form an additional conductive layer, such as a metal film, upon n-type layer 69. Figure 15 illustrates filling trench 61 with a body of material 71. In the presently preferred embodiment the body of material 71 is either silicon dioxide or silicon nitride which has been vapor deposited within trench 61. Should an integral series capacitor be added to the circuit, as illustrated in connection with Figures 7-10, an additional trench may be formed in the substrate. However, both the n-JFET illustrated at Figure 6 and the p-JFET illustrated at Figure 16 have application independent of the inclusion of a series capacitor. Because the construction illustrated Figures 15 and 16 does not include an integral series capacitor, it should be understood that the body of material 71 may be conductive material instead of insulating material. Similarly, the body of material 49 (Figure 6) may also be a conductive material where the capacitor is not formed integral with the n-JFET. Figure 16 illustrates the formation of source region 73 and drain region 75. In practice, the source and drain regions are formed by removing a portion of the insulating layer 63 and diffusing p+ type material into the substrate 20 within the n+ region 65. The source and drain regions are isolated from the substrate 20 by the n+ region 65. Consequently, the diffusion of n+ region 65 must be sufficiently deep to facilitate such isolation.
Figure 16 illustrates the types of materials applied to form the p-JFET, as well as the location of source, gate and drain terminals. It is to be understood that the gate terminal may be relocated anywhere along layer 69, or upon the surface of body 71, where body 71 is formed of conductive material. Figure 18 illustrates the connection of the integral n-JFET-capacitor and the p-JFET to form a circuit where the output of a complementary JFET circuit element is stored in the capacitor. It should be noted that the gate region of the n-JFET and the p-JFET may be sized to be substantially the same area.
As described above it is to be understood that various modifications in the construction and fabrication processes described above may be implemented without departing from the broader aspects of the invention.

Claims

CLAIMS What is claimed is:
1. A method of forming a trench gate JFET comprising: forming a first trench in a semiconductor substrate; forming a gate channel region about the first trench; forming a conductive layer within the first trench upon the surface of said gate channel, said conductive layer interfacing with said gate channel region to form a p-n junction; and forming source and drain regions within said substrate adjacent to said first trench, said gate and source regions being in contact with said gate channel region.
2. The process as recited in Claim 1 further comprising forming a first region of doped material within said substrate prior to forming said gate channel, said first region of doped material being of a type material opposite to that of the substrate, said first region being diffused into the substrate to a depth sufficient to isolate the source region, drain region and gate channel from the substrate.
3. The process as recited in Claim 1 wherein said substrate is formed of p-type silicon.
4. The process as recited in Claim 2 wherein said first doped region is formed of n+ type material.
5. The process as recited in Claim 1 wherein said gate channel region is formed of n-type material formed within the first trench by shallow diffusion.
6. The process as recited in Claim 1 wherein said conductive layer is formed of a p-type material formed over the gate channel region.
7. The process as recited in Claim 1 further comprising forming a body of material within the first trench upon said conductive layer.
8. The process as recited in Claim 7 wherein said body of material is formed of insulating material.
9. A process of forming an integral trench gate JFET transistor-capacitor comprising: forming a first trench in a semiconductor substrate; forming a gate channel about the first trench; forming a conductive layer within the first trench upon said gate channel; forming a second trench within the substrate, said second trench extending through and excavating a portion of said first trench; forming source and drain regions within said substrate adjacent to said first and second trenches respectively, said source and drain regions being in contact with said gate channel; forming a layer of insulating material within said second trench; and filling said second trench with a body of conductive material, said body of conductive material being insulated from said conductive layer by said insulating layer; wherein an output taken from the body of conductive material is representative of a capacitor in series with the drain region.
10. The process as recited in Claim 9 wherein said step of forming said source and drain regions comprises forming a drain region extending about a substantial portion of said second trench.
11. A trench gate JFET comprising: a first trench formed in a semiconductor substrate; a gate channel formed about the first trench; a conductive layer formed within the first trench upon said gate channel; and source and drain regions formed upon the semiconductor substrate surface adjacent opposite sides of said first trench.
12. A trench gate JFET as recited in Claim 10 further comprising a first region of doped material formed within the substrate about said source drain and gate channel, said first region of doped material being formed of a type material opposite to that of the substrate, said first region of doped material being of sufficient thickness to isolate the source region, drain region and gate channel from the substrate.
13. The trench gate JFET as recited in Claim 11 wherein said substrate is formed p-type silicon and said first doped region is formed on n+type material and the gate channel is formed of of n-type material.
14. The trench gate JFET as recited in Claim 10 further comprising a body of insulating material formed within said first trench upon said conductive layer.
15. An integral trench gate JFET transistor/capacitor comprising: a first trench formed in a semiconductor substrate; a gate channel formed about the first trench; a conductive layer formed about the first trench upon said gate channel; a second trench formed within the substrate, said second trench extending through and excavating a portion of said first trench; a layer of insulating material formed about a substantial portion of said second trench; a body of conductive material disposed within said second trench, said body of conductive material being isolated from said conductive layer by said insulating layer; source and drain regions within said semiconductor substrate adjacent said first and second trenches, respectively, said source and drain regions each being in contact with said gate channel; and wherein an output taken from the body of conductive material is representative of a capacitor in series with the transistor drain region.
16. An integral trench gate JFET transistor-capacitor as recited in Claim 15 wherein said drain region extends about said second trench from the substrate upper surface to the gate channel.
17. A method of forming a complementary JFET circuit including an integral and JFET-capacitor and a p-JFET, the method comprising: forming a first trench in a semi-conductor substrate; forming a first gate channel about the first trench; forming a first conductive layer within the first trench upon said first gate channel; forming a second trench within the substrate, said second trench extending through and excavating a portion of said first trench; forming first source and drain regions within said substrate adjacent to said first and second trenches respectively, said first source and drain regions being in contact with said first gate channel; forming a first layer of insulating material within said second trench; filling said second trench with a first body of conductive material, said first body of conductive material being insulated from said conductive layer by said insulating layer; wherein an output taken from said first body of conductive material is representative of a capacitor in series with the first drain region; forming a third trench in the semi-conductor substrate; forming a second gate channel within said third trench; forming a second conductive layer within said third trench upon the surface of said second gate channel, said second conductive layer interfacing with said second gate channel region to form a p-n junction; forming second source and drain regions within said substrate adjacent to said third trench, said second gate and source regions being in contact with said second channel region; connecting said first and second drain regions; and connecting said first and second gate regions.
PCT/US1990/000239 1989-04-03 1990-01-09 Trench jfet integrated circuit elements WO1990012421A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/331,952 US5010025A (en) 1989-04-03 1989-04-03 Method of making trench JFET integrated circuit elements
US331,952 1989-04-03

Publications (1)

Publication Number Publication Date
WO1990012421A1 true WO1990012421A1 (en) 1990-10-18

Family

ID=23296058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1990/000239 WO1990012421A1 (en) 1989-04-03 1990-01-09 Trench jfet integrated circuit elements

Country Status (3)

Country Link
US (1) US5010025A (en)
CA (1) CA2009068C (en)
WO (1) WO1990012421A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300447A (en) * 1992-09-29 1994-04-05 Texas Instruments Incorporated Method of manufacturing a minimum scaled transistor
US5275965A (en) * 1992-11-25 1994-01-04 Micron Semiconductor, Inc. Trench isolation using gated sidewalls
US5479033A (en) * 1994-05-27 1995-12-26 Sandia Corporation Complementary junction heterostructure field-effect transistor
US5599744A (en) * 1995-02-06 1997-02-04 Grumman Aerospace Corporation Method of forming a microcircuit via interconnect
US5621193A (en) * 1995-05-23 1997-04-15 Northrop Grumman Corporation Ceramic edge connect process
US5874346A (en) * 1996-05-23 1999-02-23 Advanced Micro Devices, Inc. Subtrench conductor formation with large tilt angle implant
US5767000A (en) * 1996-06-05 1998-06-16 Advanced Micro Devices, Inc. Method of manufacturing subfield conductive layer
DE19840032C1 (en) * 1998-09-02 1999-11-18 Siemens Ag Semiconductor device for compensation element
US6819089B2 (en) 2001-11-09 2004-11-16 Infineon Technologies Ag Power factor correction circuit with high-voltage semiconductor component
US6825514B2 (en) * 2001-11-09 2004-11-30 Infineon Technologies Ag High-voltage semiconductor component
US7692220B2 (en) * 2007-05-01 2010-04-06 Suvolta, Inc. Semiconductor device storage cell structure, method of operation, and method of manufacture
US8278691B2 (en) 2008-12-11 2012-10-02 Micron Technology, Inc. Low power memory device with JFET device structures

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953879A (en) * 1974-07-12 1976-04-27 Massachusetts Institute Of Technology Current-limiting field effect device
US4049476A (en) * 1974-10-04 1977-09-20 Hitachi, Ltd. Method of manufacturing a semiconductor integrated circuit device which includes at least one V-groove jfet and one bipolar transistor
US4555740A (en) * 1983-04-04 1985-11-26 Hewlett-Packard Company Thin film transducer head for inductive recording and magnetoresistive reading
US4633281A (en) * 1984-06-08 1986-12-30 Eaton Corporation Dual stack power JFET with buried field shaping depletion regions
JPS63128769A (en) * 1986-11-19 1988-06-01 Victor Co Of Japan Ltd Junction-type field-effect transistor
US4754310A (en) * 1980-12-10 1988-06-28 U.S. Philips Corp. High voltage semiconductor device
US4774556A (en) * 1985-07-25 1988-09-27 Nippondenso Co., Ltd. Non-volatile semiconductor memory device
JPS6486561A (en) * 1987-06-17 1989-03-31 Nec Corp Vertical mos transistor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223904A (en) * 1962-02-19 1965-12-14 Motorola Inc Field effect device and method of manufacturing the same
US3930300A (en) * 1973-04-04 1976-01-06 Harris Corporation Junction field effect transistor
JPS5681974A (en) * 1979-12-07 1981-07-04 Toshiba Corp Manufacture of mos type semiconductor device
US4375124A (en) * 1981-11-12 1983-03-01 Gte Laboratories Incorporated Power static induction transistor fabrication
US4571815A (en) * 1981-11-23 1986-02-25 General Electric Company Method of making vertical channel field controlled device employing a recessed gate structure
IT1202313B (en) * 1985-09-26 1989-02-02 Sgs Microelettronica Spa SEMICONDUCTOR POWER DEVICE, NORMALLY INTERDICTED FOR HIGH VOLTAGES AND WITH MODULATED RON

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953879A (en) * 1974-07-12 1976-04-27 Massachusetts Institute Of Technology Current-limiting field effect device
US4049476A (en) * 1974-10-04 1977-09-20 Hitachi, Ltd. Method of manufacturing a semiconductor integrated circuit device which includes at least one V-groove jfet and one bipolar transistor
US4754310A (en) * 1980-12-10 1988-06-28 U.S. Philips Corp. High voltage semiconductor device
US4555740A (en) * 1983-04-04 1985-11-26 Hewlett-Packard Company Thin film transducer head for inductive recording and magnetoresistive reading
US4633281A (en) * 1984-06-08 1986-12-30 Eaton Corporation Dual stack power JFET with buried field shaping depletion regions
US4774556A (en) * 1985-07-25 1988-09-27 Nippondenso Co., Ltd. Non-volatile semiconductor memory device
JPS63128769A (en) * 1986-11-19 1988-06-01 Victor Co Of Japan Ltd Junction-type field-effect transistor
JPS6486561A (en) * 1987-06-17 1989-03-31 Nec Corp Vertical mos transistor

Also Published As

Publication number Publication date
US5010025A (en) 1991-04-23
CA2009068C (en) 1999-01-26
CA2009068A1 (en) 1990-10-03

Similar Documents

Publication Publication Date Title
US5108938A (en) Method of making a trench gate complimentary metal oxide semiconductor transistor
US6392282B1 (en) BiCMOS-integrated photodetecting semiconductor device having an avalanche photodiode
US4901129A (en) Bulk charge modulated transistor threshold image sensor elements and method of making
US5010025A (en) Method of making trench JFET integrated circuit elements
US5825071A (en) Photosensitive element having two regions with superior frequency characteristics and conversion characteristics respectively
CA1238117A (en) Stud-defined integrated circuit structure and fabrication
US20060263924A1 (en) Photosensitive device
US20100155867A1 (en) Semiconductor device and method for manufacturing semiconductor device
US5122851A (en) Trench JFET integrated circuit elements
US5053350A (en) Method of making trench MOSFET capacitor cell for analog signal processing
US5712498A (en) Charge modulation device
US4499590A (en) Semiconductor circuit for compressing the dynamic range of a signal
US4237473A (en) Gallium phosphide JFET
EP0206650B1 (en) Photoelectric conversion device
US6825089B1 (en) Increased quality factor of a varactor in an integrated circuit via a high conductive region in a well
EP0015596B1 (en) Charge-coupled devices
EP0497326B1 (en) A photoelectric transducer switchable to a high-resolution or high sensitive mode
US6285052B1 (en) Integrated capacitor
KR100558527B1 (en) High sensitivity image sensor and fabrication method thereof
US20060151814A1 (en) Optical semiconductor device
CA2009067C (en) Trench gate complimentary metal oxide semiconductor transistor
WO1990011619A1 (en) Single trench mosfet-capacitor cell for analog signal processing
US4894692A (en) MESFET with alpha particle protection
GB2066571A (en) Junction field effect transistor
WO1990011615A1 (en) Trench gate metal oxide semiconductor transistor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE