WO1990015460A1 - Frequenzverdoppelter laser - Google Patents

Frequenzverdoppelter laser Download PDF

Info

Publication number
WO1990015460A1
WO1990015460A1 PCT/EP1990/000836 EP9000836W WO9015460A1 WO 1990015460 A1 WO1990015460 A1 WO 1990015460A1 EP 9000836 W EP9000836 W EP 9000836W WO 9015460 A1 WO9015460 A1 WO 9015460A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
mirror
frequency
crystal
linear crystal
Prior art date
Application number
PCT/EP1990/000836
Other languages
English (en)
French (fr)
Inventor
Hans-Peter Kortz
Dörte Wedekind
Original Assignee
Adlas Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adlas Gmbh & Co. Kg filed Critical Adlas Gmbh & Co. Kg
Priority to DE59010511T priority Critical patent/DE59010511D1/de
Priority to EP90908212A priority patent/EP0474683B1/de
Publication of WO1990015460A1 publication Critical patent/WO1990015460A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation

Definitions

  • the invention relates to a laser according to the preamble of claim 1.
  • Nd-YAG laser delivers laser radiation with a wavelength of 1064 nm. Therefore, attempts are made to convert this laser light into visible light by doubling the frequency.
  • a non-linear crystal is used inside or outside a resonator.
  • the laser light is coupled into the crystal and laser radiation with double frequency is obtained at the exit of the crystal.
  • the ratio of the intensity of the light with twice the frequency to the intensity of the light with the original laser frequency is relatively low; it depends on the intensity of the laser light of the fundamental wavelength entering the crystal.
  • DE-OS 36 43 648 proposes that in addition to the non- linear crystal arranged decoupling mirror with a concave partially mirrored surface in order to obtain the most favorable beam shaping in the resonator.
  • the concave mirror surface is intended to focus the radiation.
  • the coupling-out mirror in the vicinity of the non-linear crystal is designed as a concave mirror.
  • the yield of the frequency-doubled light is relatively low. There are fluctuations in intensity, which are particularly noticeable in continuous wave mode. Strong intensity peaks can be observed.
  • the invention is based on the object of specifying a laser of the type mentioned at the outset which, with a high degree of efficiency, shows only slight fluctuations in the intensity of the frequency-doubled radiation.
  • This object is achieved by the invention specified in claim 1.
  • the invention provides two alternative options. First of all, it is considered indispensable to use a polarizer to determine a clear polarization of the fundamental wave in the resonator, since this is a prerequisite for stable operation.
  • the polarizer is arranged between the non-linear crystal and the laser medium.
  • the decoupling mirror is designed as a plane mirror or approximately as a plane mirror.
  • the invention therefore expressly deviates from the concave coupling-out mirror which has hitherto been regarded as practically indispensable in the technical field. While the arrangement of the non-linear crystal in the area of the focal point of the concave coupling-out mirror was previously considered to be practically indispensable, the design of the laser according to the invention dispenses with the highest possible light intensity in the center of the non-linear crystal, however this waiver is more than made up for by a gain which can be attributed to the avoidance of undesired beam displacement within the nonlinear crystal. This will be explained in more detail in the following:
  • the light entering the non-linear crystal is generally divided into two extraordinary beams which are polarized perpendicular to one another.
  • these are the known ordinary and extraordinary partial beams.
  • the intensities of the two beams are approximately the same size, since the polarizer upstream of the crystal polarizes the light in a direction that forms an angle of 45 ° to the two polarization directions. Both beams obey different calculation laws and are laterally deflected relative to each other and emerge offset from the crystal.
  • the measure according to the invention of using a plane mirror as the decoupling mirror means that beam intensity is no longer lost.
  • the measure according to the invention does not exclude that other focusing means can be provided, for example, in accordance with the prior art, the first mirror in front of the laser medium can be designed as a concave mirror with respect to the resonator.
  • two non-linear crystals can be arranged one behind the other to avoid the beam dislocations explained above, these crystals being arranged around the beam axis Are rotated 90 ° against each other. As a result of this measure, the second crystal repeats the beam displacement in the first crystal of the partial beams which run differently in the crystals canceled.
  • the invention can in principle be used in practically all types of lasers, but the invention is particularly suitable in connection with solid-state lasers. Furthermore, a laser diode or a field of laser diodes is preferably used as the pump light source.
  • the coupling-out mirror of the resonator should have a higher permeability for the frequency-doubled radiation than for the La ⁇ ser fundamental frequency.
  • the coupling mirror should be practically impermeable to the fundamental frequency of the laser.
  • Fig. 1 is a schematic side view of a laser with frequency doubling
  • FIG. 2 shows a schematic sketch of an alternative embodiment for a non-linear crystal as a frequency doubling element.
  • a pump device 1 outputs light 3 onto a lens 4 via a laser diode 2.
  • the lens 4 couples the light 3 serving as pump light into a resonator R.
  • the resonator is delimited on the left side in FIG. 1 by a concave mirror 5. This is followed in the order shown by a laser medium, a Brewster plate 7 serving as a polarizer, a KTP as a non-linear crystal 8, optionally (optionally) a ⁇ / 4 plate 10 and a plan serving as an output mirror Mirror 9 with a plane mirror surface 11 facing the laser space.
  • the pump light 3 generates a laser radiation with the frequency fl in the laser medium 6. This light is polarized by the Brewster plate 7, so that linearly polarized light reaches the KTP, where the beams are divided into two extraordinary partial beams.
  • the light emerging on the other side of the KTP 8 has the frequency 2 x .f ⁇ . This frequency-doubled laser light is coupled out via the coupling-out mirror 9 and emerges on the right in FIG. 1.
  • the laser medium 6 is a doped crystal, for example Nd: YAG.
  • the non-linear crystal is KTP.
  • other non-linear crystals known per se can also be used instead, for example KTA, KDP, BBO, LiNB0 3 , KNb0 3 , BaNaNbO 3, LilO 3, etc.
  • the KTP 8 shown in FIG. 1 can be replaced by the two non-linear crystals 8a and 8b shown in FIG. 2, which are arranged rotated by 90 ° with respect to the beam axis of the laser light. The displacements in the individual crystals 8a and 8b thus cancel each other out, as indicated by individual arrows for the direction of passage of the laser beams.
  • the coupling-out mirror 9 is preferably also designed as a plane mirror, but it can also - as is known per se - be designed as a concave mirror.

Abstract

Ein frequenzverdoppelter Laser enthält Laserdioden als Pumplichtquelle und einen Resonator (R), der in der genannten Reihenfolge einen ersten Spiegel (5), ein Lasermedium (6), als Polarisator eine Brewster-Platte (7), einen nicht-linearen Kristall (8) für die Frequenzverdopplung und als Auskoppelspiegel einen Planspiegel (9) umfaßt. Durch den Planspiegel wird erreicht, daß in dem nicht-linearen Kristall erfolgende Strahlversetzungen auch beim Rücklaufen durch den Kristall im Strahlenbereich bleiben, im Gegensatz zum Stand der Technik, bei dem als Auskoppelspiegel Hohlspiegel verwendet werden, bei denen versetzte Strahlen aus dem nicht-linearen Kristall aus dem Strahlengang fortgelenkt werden. Durch die erfindungsgemäße Maßnahme wird ein von Intensitätsschwankungen praktisch freies Laserlicht bei hohem Wirkungsgrad erzielt.

Description

Frequenzverdoppelter Laser
Beschreibung:
Die Erfindung betrifft einen Laser nach dem Oberbe¬ griff des Anspruchs 1.
Viele interessante Laser liefern Laserlicht, deren Wellenlängen allerdings für viele Anwendungsfälle nicht oder nur schlecht brauchbar ist. Speziell für optische Anwendungen wird sichtbares Laserlicht be¬ nötigt. Ein Nd-YAG-Laser liefert zum Beispiel Laser¬ strahlung mit einer Wellenlänge von 1064 nm. Des¬ halb versucht man, dieses Laserlicht durch Frequenz¬ verdopplung in sichtbares Licht umzusetzen.
Es sind zahlreiche Vorschläge bekannt, wie eine Fre¬ quenzverdopplung von Laserlicht erreicht wird. Zum Beispiel wird dabei ein nicht-linearer Kristall in einem oder außerhalb einesResonator verwendet. Das Laserlicht wird in den Kristall eingekoppelt und am Ausgang des Kristalls erhält man Laserstrahlung mit der doppelten Frequenz. Das Verhältnis der Intensität des Lichts mit der doppelten Frequenz zu der Intensität des Lichts mit der ursprünglichen Laserfrequenz ist jedoch relativ gering; es hängt von der Intensität des in den Kri¬ stall gelangenden Laserlichts der Fundamentalwellen¬ länge ab.
Angesichts dieser Tatsache hat man bislang durchwegs versucht, den nicht-linearen Kristall an einer Stelle anzuordnen, wo eine beträchtliche Intensitätskonzen- tration vorhanden ist. So ist zum Beispiel in der DE-OS 36 43 648 vorgeschlagen, den neben dem nicht- linearen Kristall angeordneten Auskoppelspiegel mit einer konkaven teilverspiegelten Oberfläche auszubil¬ den, um so eine möglichst günstige Strahlformung im Resonator zu erhalten. Durch die konkave Spiegelflä¬ che soll eine Fokussierung der Strahlung erreicht werden.
Bei praktisch sämtlichen bisher bekannten Vorschlä¬ gen für einen frequenzverdoppelten Laser ist der Auskoppelspiegel in der Nachbarschaft des nicht¬ linearen Kristalls als konkaver Spiegel ausgebil¬ det.
Dennoch ist die Ausbeute des frequenzverdoppelten Lichts relativ gering. Es kommt zu Intensitäts- schwankungen, die sich besonders gravierend im Dauerstrich-Betrieb bemerkbar machen. Es sind starke Intensitäts.pitzen zu beobachten.
Es gibt eine Reihe von theoretischen und prakti¬ schen Untersuchungen, um die Ursachen für derarti¬ ge IntensitätsSchwankungen erklären und beheben zu können.
Allerdings sind die Bemühungen, die Intensitäts- schwankungen, wenn nicht völlig auszuschalten, so doch zumindest zu beseitigen, bislang ohne durch¬ schlagenden Erfolg geblieben.
Der Erfindung liegt die Aufgabe zugrunde, einen La¬ ser der eingangs genannten Art anzugeben, der bei hohem Wirkungsgrad nur geringe Intensitätsschwan- kungen der frequenverdoppelten Strahlung zeigt. Diese Aufgabe wird durch die im Anspruch 1 angege¬ bene Erfindung gelöst. Grundsätzlich sieht die Er- fingung zwei alternative Möglichkeiten vor. Zu¬ nächst wird als unabläßlich angesehen, mit Hilfe eines Polarisators eine eindeutige Polarisation der Grundwelle im Resonator festzulegen, da dies Voraussetzung für einen stabilen Betrieb ist. Der Polarisator ist zwischen dem nicht-linearen Kri¬ stall und dem Lasermedium angeordnet.
In einer ersten Ausgestaltung der Erfindung ist vorgesehen, daß der Auskoppelspiegel als Planspie¬ gel oder annähernd als Planspiegel ausgebildet ist. Die Erfindung weicht also ausdrücklich von dem bis¬ lang in der Fachwelt als praktisch unerläßlich an¬ gesehenen konkaven Auskoppelspiegel ab. Während früher die Anordnung des nicht-linearen Kristalls im Bereich des Brennpunkts des konkaven Auskoppel- spiegels als praktisch unerläßlich angesehen wurde, verzichtet man bei der erfindungsgemäßen Ausgestal¬ tung des Lasers auf die höchstmögliche Lichtinten- sität in der Mitte des nicht-linearen Kristalls, allerdings wird dieser Verzicht mehr als wett gemacht durch einen Gewinn, der auf die Vermeidung einer uner¬ wünschten Strahlversetzung innerhalb des nicht-linearen Kristalls zurückzuführen ist. Dies soll im folgen¬ den näher erläutert werden:
Das in den nicht-linearen Kristall eintretende Licht wird, wie bekannt, im allgemeinen Fall in zwei außer¬ ordentliche Strahlen aufgeteilt, die zueinander senk¬ recht polarisiert sind. In dem Spezialfall der uni¬ axialen Kristalle sind dies die bekannten ordentli¬ chen und außerordentlichen Teilstrahlen. Bei dem hier behandelten Typ II der Frequenzverdopplung sind die Intensitäten der beiden Strahlen etwa gleich groß, da der dem Kristall vorgeschaltete Polarisator das Licht in einer Richtung polari¬ siert, die zu den beiden Polarisationsrichtun- gen einen Winkel von 45° bildet. Beide Strahlen gehorchen unterschiedlichen Berechnungsgesetzen und werden relativ zueinander seitlich abgelenkt und treten versetzt aus dem Kristall aus. Treffen diese Strahlen nun auf den Hohlspiegel, so kann nur einer der beiden in sich zurückreflektiert werden während der andere zur Seite abgelenkt wird, so daß beträchtliche nutzbare Strahlenleistung ver¬ lorengeht. Durch die erfindungsgemäße Maßnahme, als Auskoppelspiegel einen Planspiegel zu verwenden, geht im Gegensatz zur Verwendung eines Hohlspiegels keine StrahlIntensität mehr verloren.
Die erfindungsgemäße Maßnahme schließt aber nicht aus, daß andere fokussierende Mittel vor¬ gesehen sein können, so kann man beispielswei¬ se in Übereinstimmung mit dem Stand der Technik den ersten Spiegel vor dem Lasermedium als be¬ züglich des Resonators konkaven Spiegel ausbil¬ den.
In einer alternativen Ausführungsform der Erfindung, die beliebige gekrümmte Auskoppelspiegel erlaubt, jedoch die Möglichkeit des Planspiegels als Auskoppelspiegel ausdrücklich miteinschließt, können zur Vermeidung der oben erläuterten Strahl- Versetzungen zwei nicht-lineare Kristalle hinter¬ einander angeordnet werden, wobei diese Kristalle um die Strahlenachse um 90° gegeneinander verdreht sind. Duϊrch diese Maßnahme wird von dem zweiten Kristall die in dem ersten Kristall erfolgende Strahlversetzung der in den Kristallen unterschied¬ lich verlaufenden Teilstrahlen zueinander wieder aufgehoben.
Dadurch, daß ein seitliches Austreten des außer¬ ordentlichen Strahls aus der optischen Achse ver¬ mieden wird, werden sowohl Verluste weitestgehend ausgeschaltet als auch ein Anlaß zum Anschwingen höherer transversaler Moden vermieden.
Die Erfindung kann grundsätzlich bei praktisch allen Typen von Lasern eingesetzt werden, insbe¬ sondere eignet sich die Erfindung jedoch in Ver¬ bindung mit Festkörperlasern. Ferner wird vorzugs¬ weise als Pumplichtqüelle eine Laserdiode oder ein Feld von Laserdioden verwendet.
Um als nutzbare frequenzverdoppelte Strahlung möglichst Laserlicht mit einer einzigen Frequenz zur Verfügung zu haben, nämlich einer Frequenz, die dem zweifachen der Laser-Grundfrequenz ent¬ spricht, sollte der Auskoppelspiegel des Resona¬ tors für die frequenzverdoppelte Strahlung eine höhere Durchlässigkeit aufweisen als für die La¬ ser-Grundfrequenz. Im Idealfall sollte der Aus¬ koppelspiegel für die Grundfrequenz des Lasers praktisch undurchlässig sein.
Im folgenden werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert. Es zeigen:
Fig. 1 eine schematische Seitenansicht eines Lasers mit Frequenzverdopplung, und
Fig. 2 eine schematische Skizze einer alter¬ nativen Ausführungsform für einen nicht-linearen Kristall als frequenz- verdoppelndes Element.
Eine Pumpeinrichtung 1 gibt über eine Laserdiode 2 Licht 3 auf eine Linse 4. Die Linse 4 koppelt das als Pumplicht dienende Licht 3 in einen Resonator R ein.
Der Resonator ist auf der linken Seite in Fig. 1 von einem konkaven Spiegel 5 begrenzt. Daran an¬ schließend folgen in der dargestellten Reihenfolge ein Lasermedium, eine als Polarisator dienende Brewster-Platte 7, ein KTP als nicht-linearer Kristall 8, gegebenenfalls (optional) eine ^ /4-Plat- te 10 und ein als Auskoppelspiegel dienender Plan¬ spiegel 9 mit einer zum Laserraum gerichteten Plan¬ spiegelfläche 11.
Durch das Pumplicht 3 wird in dem Lasermedium 6 eine Laserstrahlung mit der Frequenz fl erzeugt. Die¬ ses Licht wird von der Brewster-Platte 7 polarisiert, so daß linear polarisiertes Licht in den KTP gelangt, wo die Strahlen in zwei außerordentliche Teilstrahlen aufgeteilt werden. Das auf der anderen Seite des KTP 8 austretende Licht hat die Frequenz 2 x .f Λ . Dieses frequenzverdoppelte Laserlicht wird über den Auskoppel¬ spiegel 9 ausgekoppelt und tritt in Fig. 1 auf der rechten Seite aus.
Bei dem Lasermedium 6 handelt es sich um einen do¬ tierten Kristall, zum Beispiel Nd:YAG. Bei dem nicht-linearen Kristall handelt es sich hier um KTP. Stattdessen können jedoch auch andere, an sich bekannte nicht-lineare Kristalle verwendet werden, zum Beispiel KTA, KDP, BBO, LiNB03 , KNb03 , BaNaNbO 3 , LilO 3 , etc. In einer abgewandelten Ausführungsform kann der in Fig. 1 dargestellten KTP 8 ersetzt werden durch die beiden in Fig. 2 dargestellten nicht-linearen Kristalle 8a und 8b, die bezüglich der Strahlen¬ achse des Laserlichts um 90° gegeneinander ver¬ dreht angeordnet sind. Damit heben sich die Ver¬ setzungen in den einzelnen Kristallen 8a bzw. 8b gegeneinander auf, wie durch einzelne Pfeile für die eine Durchlaufrichtung der Laserstrahlen an¬ gedeutet ist. Bei dieser Ausführungsform ist der Auskoppelspiegel 9 vorzugsweise ebenfalls als Plan¬ spiegel ausgebildet, er kann jedoch auch - wie an sich bekannt - als Hohlspiegel ausgebildet sein.

Claims

Frequenzverdoppelter LaserPatentansprüche:
1. Laser, mit einer Pumplichtquelle (1, 2) und einem Resonator (R) mit folgenden Merkmalen: einem ersten Spiegel (5) , einem Lasermedium (6) , einem Polarisator (7) mindestens einem nicht¬ linearen Kristall (8; 8a, 8b) zur Frequenzver¬ dopplung vom Typ II, und einem zweiten, als Auskop¬ pelspiegel dienenden Spiegel (9) , dadurch g e ¬ k e n n z e i c h n e t, daß der zweite Spiegel (9) eine konkave Spiegelfläche (11) mit extrem gros- sem Krümmungsradius aufweist, vorzugsweise als Planspiegel ausgebildet ist, und/oder zwei nicht¬ lineare Kristalle (8a, Sb) vorgesehen sind, die bezüglich der Strahlenachse um 90° gegeneinander verdreht angeordnet sind.
2. Laser nach Anspruch 1, dadurch g e e n n¬ z e i c h n e t, daß das Lasermedium (6) ein Fest¬ körper, insbesondere ein dotierter Kristall ist.
3. Laser nach Anspruch 1 oder 2, dadurch g e- k e n n z e i c h n e t, daß der Planspiegel (9) auf der dem Lasermedium (6) abgewandten Oberfläche des nicht-linearen Kristalls (8) angebracht ist.
4. Laser nach Anspruch 3, dadurch g e k e n n¬ z e i c h n e t, daß der Planspiegel (9) eine auf dem nicht-linearen Kristall ausgebildete Verspie- gelung ist, und/oder daß der erste Spiegel als Ver- spiegelung an einer Seite des Lasermediums (6) aus¬ gebildet ist.
5. Laser nach einem der Ansprüche 1 bis 4, da¬ durch g e k e n n z e i c h n e t, daß die Pump¬ lichtquelle (1, 2) eine oder mehrere Laserdioden (2) aufweist.
6. Laser nach einem der Ansprüche 1 bis 5, da¬ durch g e k e n n z e i c h n e t, daß der Aus¬ koppelspiegel (9) des Resonators (R) für die frequenz- verdoppelte Strahlung eine höhere Durchlässigkeit als für die Laserfrequenz aufweist.
PCT/EP1990/000836 1989-06-01 1990-05-23 Frequenzverdoppelter laser WO1990015460A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE59010511T DE59010511D1 (de) 1989-06-01 1990-05-23 Frequenzverdoppelter laser
EP90908212A EP0474683B1 (de) 1989-06-01 1990-05-23 Frequenzverdoppelter laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3917902.8 1989-06-01
DE3917902A DE3917902A1 (de) 1989-06-01 1989-06-01 Frequenzverdoppelter laser

Publications (1)

Publication Number Publication Date
WO1990015460A1 true WO1990015460A1 (de) 1990-12-13

Family

ID=6381863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1990/000836 WO1990015460A1 (de) 1989-06-01 1990-05-23 Frequenzverdoppelter laser

Country Status (6)

Country Link
US (1) US5249190A (de)
EP (1) EP0474683B1 (de)
JP (1) JP2753145B2 (de)
AT (1) ATE143183T1 (de)
DE (2) DE3917902A1 (de)
WO (1) WO1990015460A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2254483A (en) * 1991-02-28 1992-10-07 Amoco Corp Frequency doubled laser.
WO1993014542A1 (en) * 1992-01-10 1993-07-22 Allied-Signal Inc. High power laser employing fiber optic delivery means
EP0541581B1 (de) * 1990-10-11 1996-01-24 ADLAS GMBH & CO. KG Einzelmode-laser
CN109638640A (zh) * 2019-01-08 2019-04-16 惠州学院 半导体激光器

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9202949U1 (de) * 1992-03-02 1992-05-27 Lar-Laser And Analytical Research Analytik & Umweltmesstechnik Gmbh, 1000 Berlin, De
US5321718A (en) * 1993-01-28 1994-06-14 Sdl, Inc. Frequency converted laser diode and lens system therefor
US5381428A (en) * 1993-07-30 1995-01-10 The United States Of America As Represented By The Secretary Of The Navy Tunable ytterbium-doped solid state laser
US5477378A (en) * 1994-08-11 1995-12-19 Spectra-Physics Lasers, Inc. Multiple crystal non-linear frequency conversion apparatus
US5511085A (en) * 1994-09-02 1996-04-23 Light Solutions Corporation Passively stabilized intracavity doubling laser
EP0759574B1 (de) * 1995-02-09 2003-11-05 Melles Griot, Inc. Vorrichtung zur erzeugung der zweiten harmonischen und laservorrichtung
US5982789A (en) * 1995-11-22 1999-11-09 Light Solutions Corporation Pulsed laser with passive stabilization
DE19646073C1 (de) * 1996-11-08 1998-04-16 Daimler Benz Ag Verfahren zur Minderung des Amplitudenrauschens von Festkörperlasern mit resonatorinterner Frequenzverdopplung
US5790303A (en) 1997-01-23 1998-08-04 Positive Light, Inc. System for amplifying an optical pulse using a diode-pumped, Q-switched, intracavity-doubled laser to pump an optical amplifier
JP3479205B2 (ja) * 1997-07-16 2003-12-15 日本電気株式会社 レーザ光の波長変換方法および波長変換素子
US5949802A (en) * 1997-10-08 1999-09-07 Uniphase Corporation High efficiency intracavity doubled laser and method
US6122097A (en) * 1998-04-16 2000-09-19 Positive Light, Inc. System and method for amplifying an optical pulse using a diode-pumped, Q-switched, extracavity frequency-doubled laser to pump an optical amplifier
US6021140A (en) * 1998-04-17 2000-02-01 Spectra-Physics Lasers, Inc. Polarization based mode-locking of a laser
US6141143A (en) * 1998-05-01 2000-10-31 Light Solutions Corporation CW laser amplifier
EP0968833B1 (de) * 1998-07-03 2004-11-10 Fuji Photo Film Co., Ltd. Bildaufzeichnungsgerät
US6282223B1 (en) * 1999-08-11 2001-08-28 Lumenis Inc. Asymmetrical laser-resonator having solid-state gain-medium symmetrically filled by resonator-mode
US20070189338A1 (en) * 2006-02-14 2007-08-16 Wolf Seelert White light solid-state laser source
US20070189343A1 (en) * 2006-02-14 2007-08-16 Wolf Seelert White light solid-state laser source with adjustable RGB output
JP5127830B2 (ja) * 2007-07-30 2013-01-23 三菱電機株式会社 波長変換レーザ装置
WO2012019129A2 (en) * 2010-08-06 2012-02-09 University Of North Texas Monolithic, fiber-to-fiber coupled nonlinear resonator for brewster cut periodically poled crystals
US9172201B2 (en) * 2011-03-17 2015-10-27 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion laser light source, and image display device
US10965091B2 (en) * 2017-10-06 2021-03-30 Alakai Defense Systems, Inc. UV lasers and UV Raman systems for effective and efficient molecular species identification with Raman spectroscopy
CN109323852B (zh) * 2018-11-13 2020-09-08 清华大学 一种激光倍频晶体频率转换效率测量系统及性能表征方法
DE102021202391A1 (de) 2021-03-11 2022-09-15 Photon Energy Gmbh Frequenzumwandelndes Lasergerät

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130582A (ja) * 1987-11-17 1989-05-23 Toshiba Corp レーザ発振装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619637A (en) * 1968-11-20 1971-11-09 Tokyo Shibaura Electric Co Harmonic generator having cascaded crystals
US4739507A (en) * 1984-11-26 1988-04-19 Board Of Trustees, Stanford University Diode end pumped laser and harmonic generator using same
JPH0795614B2 (ja) * 1985-04-17 1995-10-11 クワントロニツクス コ−ポレ−シヨン 周波数2倍レ−ザ
US4656635A (en) * 1985-05-01 1987-04-07 Spectra-Physics, Inc. Laser diode pumped solid state laser
US4653056A (en) * 1985-05-01 1987-03-24 Spectra-Physics, Inc. Nd-YAG laser
US4791631A (en) * 1987-08-31 1988-12-13 International Business Machines Corporation Wide tolerance, modulated blue laser source
US4884277A (en) * 1988-02-18 1989-11-28 Amoco Corporation Frequency conversion of optical radiation
JPH0324781A (ja) * 1989-06-22 1991-02-01 Hamamatsu Photonics Kk レーザ発生装置における位相整合方法
US5047668A (en) * 1990-06-26 1991-09-10 Cornell Research Foundation, Inc. Optical walkoff compensation in critically phase-matched three-wave frequency conversion systems
US5030851A (en) * 1990-07-13 1991-07-09 Hoya Optics Inc. (REx Y1-x Al3 (BO3)4 crystals in electrooptic and nonlinear devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130582A (ja) * 1987-11-17 1989-05-23 Toshiba Corp レーザ発振装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Journal of the Optical Society of America B/Optical Physics, Band 4, Nr. 8, August 1987, Optical Society of America, (Woodbury, NY, US), P.E. PERKINS et al.: "Efficient Intracavity Doubling in Flash-Lamp-Pumped Nd: YLF", seiten 1281-1285 *
Optics Letters, Band 14, Nr. 1, 1. Januar 1989, Optical Society of America, (New York, NY, US), R. BURNHAM et al.: "High-Power Diode-Array-Pumped Frequency-Doubled cw", Nd: YAG Laser", seiten 27-29 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0541581B1 (de) * 1990-10-11 1996-01-24 ADLAS GMBH & CO. KG Einzelmode-laser
GB2254483A (en) * 1991-02-28 1992-10-07 Amoco Corp Frequency doubled laser.
FR2689694A1 (fr) * 1991-02-28 1993-10-08 Amoco Corp Laser doublé en fréquence, à fréquence unique.
GB2254483B (en) * 1991-02-28 1995-01-25 Amoco Corp Single-frequency, frequency doubled laser
WO1993014542A1 (en) * 1992-01-10 1993-07-22 Allied-Signal Inc. High power laser employing fiber optic delivery means
CN109638640A (zh) * 2019-01-08 2019-04-16 惠州学院 半导体激光器

Also Published As

Publication number Publication date
ATE143183T1 (de) 1996-10-15
EP0474683A1 (de) 1992-03-18
JPH04506130A (ja) 1992-10-22
US5249190A (en) 1993-09-28
JP2753145B2 (ja) 1998-05-18
DE3917902A1 (de) 1990-12-13
EP0474683B1 (de) 1996-09-18
DE59010511D1 (de) 1996-10-24

Similar Documents

Publication Publication Date Title
EP0474683B1 (de) Frequenzverdoppelter laser
DE19955599B4 (de) Laser mit Wellenlängenumwandlung und Bearbeitungsvorrichtung mit einem solchen Laser
DE19980508B4 (de) Verfahren zur resonanten Frequenzkonversion von Laserstrahlung und Vorrichtung zur Resonanzverstärkung
DE19603704B4 (de) Optisch gepumpter Laser mit polarisationsabhängiger Absorption
EP1145390A2 (de) Laserverstärkersystem
EP1891718A1 (de) Lasersystem mit mehreren longitudinal gepumpten laseraktiven festkörpern
DE602004006914T2 (de) Medizinisches Lasergerät
EP0556582A1 (de) Frequenzverdoppelter Festkörperlaser
DE2021621C3 (de) Akustooptische Vorrichtung
EP0977328B1 (de) Rauscharmer frequenzvervielfachter Laser mit Strahlseparator
DE19512984C2 (de) Abstimmbarer optischer parametrischer Oszillator
DE102012212672B4 (de) Laseroszillator und Verfahren zum gleichzeitigen Erzeugen zweier Laserstrahlen unterschiedlicher Wellenlängen
EP0741924B1 (de) Transversal gepumpter festkörperlaser
DE19946176B4 (de) Diodengepumpter Laser mit interner Frequenzverdopplung
DE4304178C2 (de) Aktives gefaltetes Resonatorsystem
DE19634161A1 (de) Erzeugung schmalbandiger kohärenter Strahlung
DE4008226C2 (de)
DE19536880B4 (de) Laseranordnung zur Skalierung von frequenzverdoppelten Lasern
DE3301092A1 (de) Mehrfarbenlaser
DE10009380B4 (de) Faserverstärker
DE4311454C2 (de) Raman-Laser und dessen Verwendung
DE10118793B4 (de) UV-Festkörperlaser
WO2005076420A1 (de) Gekoppelte optische resonatoren
DE19610371A1 (de) Diodengepumpter Festkörperlaser
WO2002044807A2 (de) Uv-festkörperlaser

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990908212

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990908212

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990908212

Country of ref document: EP