WO1991002818A1 - Enhanced nucleic acid amplification process - Google Patents

Enhanced nucleic acid amplification process Download PDF

Info

Publication number
WO1991002818A1
WO1991002818A1 PCT/US1990/004733 US9004733W WO9102818A1 WO 1991002818 A1 WO1991002818 A1 WO 1991002818A1 US 9004733 W US9004733 W US 9004733W WO 9102818 A1 WO9102818 A1 WO 9102818A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
rna
template
sequence
primer
Prior art date
Application number
PCT/US1990/004733
Other languages
French (fr)
Inventor
Lawrence T. Malek
Cheryl Davey
Graham Henderson
Roy Sooknanan
Original Assignee
Cangene Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cangene Corporation filed Critical Cangene Corporation
Priority to AU63365/90A priority Critical patent/AU647411B2/en
Priority to EP90913353A priority patent/EP0487628B1/en
Priority to DE69030955T priority patent/DE69030955T2/en
Priority to KR1019910700408A priority patent/KR960005737B1/en
Publication of WO1991002818A1 publication Critical patent/WO1991002818A1/en
Priority to FI920766A priority patent/FI100192B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6832Enhancement of hybridisation reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6865Promoter-based amplification, e.g. nucleic acid sequence amplification [NASBA], self-sustained sequence replication [3SR] or transcription-based amplification system [TAS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/81Packaged device or kit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Definitions

  • This invention relates to an enhanced process for amplifying a specific nucleic acid sequence.
  • nucleic acids are highly specific in binding to complementary nucleic acids and are thus useful to determine whether a specific nucleic acid is present in a sample.
  • telomere sequence means a single stranded or double stranded nucleic acid which one wishes to amplify;
  • sample means a mixture containing nucleic acids;
  • sufficiently complementary means that two nucleic acids, a primer and a template, are capable of specific interaction which allows efficient, primer-dependent and template-directed synthesis of DNA, under given conditions of ionic strength and temperature.
  • DMSO means dimethyl sulfoxide of sufficient purity to be used in molecular genetic reactions without any ill-effects on substrates or enzymes used; other functionally equivalent alkyl sulfoxides may also be used instead of DMSO.
  • BSA bovine serum albumin of a quality suitable for use in molecular biologic reactions and, in this regard, should be free from any DNases, DNA nicking activity, RNases and proteases.
  • Other functionally equivalent and equally suitable "carrier” proteins may be used in place of BSA.
  • nucleic acid probes are highly specific, it is preferable in some situations to probe the nucleic acid sequence itself rather than the protein produced by the nucleic acid sequence.
  • a diagnostic method based solely on protein detection would be unreliable for determining the presence of infectious Particles of hepatitis B virus, due to the presence of significant levels of non-infectious antigen particles which lack the DNA genome.
  • the various subtypes of human papilloma virus found in either pre-cancerous or benign cervical tumors can be distinguished only by the use of nucleic acid probe hybridization.
  • the specific genetic makeup of an AIDS virus makes it certain that an assay based on the presence of an AIDS virus specific nucleic acid sequence would be superior as a diagnostic.
  • ribosomal RNA up to 100,000 copies per cell
  • GenProbe to facilitate diagnosis of certain bacterial pathogens, such as Legionella and Mycoplasma
  • this strategy cannot be used with non-cellular pathogens, such as viruses, or with probed nucleic acid sequences with low copy numbers.
  • Copy number is a particular problem with the development of a nucleic acid probe method for the detection of AIDS virus, where the integrated provirus may be present in less than one of ten thousand peripheral blood lymphocytes.
  • the particular nucleic acid sequence suspected to be present in a sample could be amplified, the copy number problem could be circumvented and probe assays could be more readily used.
  • amplification process In a normal biological sample, containing only a few cells, and consequently only a few copies of a particular gene, it is necessary to utilize an amplification process in order to overcome the copy number problem.
  • One method to amplify is to 'grow out' the sample, that is, to arrange conditions so that the living biological material present in the sample can replicate itself. Replication could increase the quantity of nucleic acid sequences to detectable levels.
  • food samples In the food industry, for example, in order to test processed food for the food-poisoning bacteria Salmonella, food samples must be incubated for a number of days to increase the quantity of nucleic acid copy numbers. In clinical samples, pathogens must also be allowed to increase their number by growing out over some considerable time.
  • United States Patent No. 4,683,195 issued on July 28, 1987 to Cetus Corporation and United States Patent No. 4,683,202 issued on July 28, 1987 to Cetus Corporation are each directed to a process for amplifying a target nucleic acid sequence contained in a sample.
  • United States Patent No. 4,683,195 relates to a process in which a sample suspected of containing a target DNA sequence is treated with oligonucleotide primers such that a primer extension product is synthesized which in turn serves as a template, resulting in amplification of the target a DNA sequence. The primer extension product is separated from the template in the preferred embodiment using heat denaturation.
  • United States Patent No. 4,683,202 relates to a process for amplifying a target DNA sequence having two separate complementary strands.
  • the process includes treating the strands with primers to synthesize extension products, separating the primer extension products from the templates, and in turn using the primer extension products as templates.
  • each cycle of the amplifi ⁇ cation process takes place by the synthesis from a first template, of a second template, the second template in turn is used to synthesize the first, template. This procedure is repeated, thus, each cycle of the amplification process is based on the synthesis of one product from one substrate.
  • a need exists for improvements to the amplification process It would be preferable if the amplification process required less participation and fewer manipulations by the user and not be restricted to DNA. Further, it would be advantageous if the amplification took place at a relatively constant ambient temperature so that the activity of the enzymes involved in the process would not be affected. It would be more expedient if a template could be used to generate more than one product from one substrate in each cycle of the amplification process.
  • This invention relates to an amplification process of single stranded RNA (ssRNA) , single- stranded DNA (ssDNA) or double-stranded DNA (dsDNA) which is expedient and requires less participation and fewer manipulations by the user of the process than conventional amplification processes.
  • the amplification takes place at a relatively constant ambient temperature.
  • each cycle of the process generates a plurality of copies of product from one antisense RNA template.
  • the amplification process of this invention may be used to increase the quantity of a specific nucleic acid thus circum ⁇ venting the copy number problem. Hence, probe assays may be more readily used.
  • the amplification process could also be used to increase the purity of a specific nucleic acid sequence as a substitute for conventional cloning methodology.
  • a process for amplifying a specific nucleic . acid sequence involves the synthesis of single-stranded RNA, single-stranded DNA, and double stranded DNA.
  • the single stranded antisense RNA is a first template for a second primer.
  • the single stranded DNA is a second template for a first primer.
  • the double stranded DNA is a third template for the synthesis of a plurality of copies of the first template.
  • a sequence of the first or the second primer is sufficiently complementary to a sequence of the specific nucleic acid sequence and a sequence of the first or the second primer is sufficiently homologous to a sequence of the specific nucleic acid sequence.
  • a second primer binds to the 3 ' end of the first RNA template and generates the second DNA template.
  • a 3 ' end of the first primer hybridizes to the 3 ' end of the second DNA template.
  • the second template is removed from the first template and is used to generate a complementary DNA strand.
  • the resulting duplex DNA serves as a third template for synthesizing a plurality of first templates which in turn repeat the above-described cycle.
  • a process for amplifying a specific nucleic acid sequence is used.
  • the process involves:
  • the first primer has a DNA sequence which is sufficiently complementary to a RNA sequence of the first template
  • the second primer has a DNA sequence which is sufficiently complementary to a DNA sequence of the second template.
  • the second primer also has a complementary sequence of a promoter and a complementary sequence of a transcription initiation site for a RNA polymerase; (e) synthesizing a second DNA sequence covalently attached to the second primer and complementary to the DNA sequence of the second template and synthesizing a third DNA sequence covalently attached to the second template and complementary to the DNA sequence of the second primer.
  • the second and third DNA sequences, the second primer and the second template comprise a third template; (f) synthesizing a plurality of copies of the
  • RNA sequence of the first template from the third template is derived from the third template.
  • Step (A) provides a single reaction medium containing a first oligodeoxynucleotide primer, the first primer comprising a sequence that is a functional promoter; a second oligodeoxynucleotide primer, the second primer comprising a 5' end segment complementary to a functional promotor; an RNA-directed DNA polymerase; a DNA-directed DNA polymerase; a DNA-directed RNA polymerase; a ribonuclease that removes RNA of.
  • Step (B) provides for adding to the reaction medium one or more of the following (i) a single-stranded RNA molecule comprising (a.) a sense RNA sequence that hybridizes at its 3 ' -end to a portion of the 3' end of the second primer; or (b) an anti-sense RNA sequence that is hybridized at its 3' end by the first primer, (ii) a single-stranded DNA molecule comprising (a) ' a second-primer binding DNA sequence that hybridizes at its 3 ' end to the 3 ' end of the second primer; or (b) a promotor- complementary DNA sequence that comprises a 5'-end sequence complementary to a functional promoter; or (c) a first-primer binding DNA sequence that is hybridized at its 5' end by
  • Step (C) provides for establishing conditions such that at least one of the group consisting of a portion of the RNA molecule, the single-stranded DNA molecule and the double-stranded DNA molecule is used as a template for generating one or more copies of the anti-sense RNA sequence and wherein the anti- sense RNA sequence initiates a cycle in the reaction medium comprising the steps of: (i)hybridizing the first primer to a region at the 3' end of the anti- sense RNA sequence; (ii) forming an RNA/DNA hybrid by action of the RNA-directed DNA polymerase, the RNA/DNA hybrid comprising a first DNA segment covalently attached to the 3' end of the first primer to form a second DNA segment, the first DNA segment being complementary to at least a portion of the anti-sense RNA sequence; (iii) releasing the second DNA segment from the RNA/DNA hybrid by action of the ribonuclease on at least some portion of the anti- sense RNA sequence; (iv)
  • a sequence of the first or the second primer is sufficiently complementary to a sequence of the specific nucleic acid sequence and a sequence of the first or the second primer is sufficiently homologous to a sequence of the specific nucleic acid sequence.
  • a 3' end of the first primer is oriented towards a 3' end of the second primer on complementary strands.
  • the second primer of DNA has a sequence at its 3' end which is sufficiently complementary to the DNA sequence of the second template.
  • the second primer has at its 5' end a complementary sequence of a promoter and a complementary sequence of a transcription initiation site for a RNA polymerase.
  • the third DNA sequence covalently attached to the second template is complementary to the DNA sequence at the 5' end of the second primer.
  • a process for amplifying a specific nucleic acid sequence is used.
  • the process involves combining a first primer, a second primer, ribonuclease H, a RNA- directed DNA polymerase, a DNA-directed DNA poly ⁇ merase, a RNA polymerase, ribonucleoside tripho- sphates and deoxyribonucleotide triphosphates with -a sample.
  • the first primer of DNA has a sequence which is sufficiently complementary to a first template of RNA.
  • the second primer of DNA has a sequence which is sufficiently complementary to a second template of DNA, and a complementary sequence of a promoter and a complementary sequence of a transcription initiation site which are recognized as substrate by the RNA polymerase.
  • a sequence of the first primer or the second primer is sufficiently complementary to a sequence of the specific nucleic acid sequence and a sequence of the first primer or the second primer is sufficiently homologous to a sequence of the specific nucleic acid.
  • a 3' end of the first primer is oriented towards a 3' end of the second primer on complementary strands.
  • a process for amplifying a specific nucleic acid sequence involves adding a first primer, a second primer, avian myoblastosis viral polymerase, E. coli ribonuclease H, bacteriophage T7 RNA polymerase, ribonucleoside triphosphates and deoxyribonucleotide triphosphates to a sample.
  • the first primer of DNA has a sequence which is sufficiently complementary to a first template of RNA.
  • the second primer of DNA has a sequence which is sufficiently complementary to a second template of DNA, and a complementary sequence of a promoter and a complementary sequence of a tran ⁇ scription initiation site which are recognized as substrate by T7 RNA polymerase.
  • a sequence of the first primer or the second primer is sufficiently complementary to a sequence of the specific nucleic acid sequence and a sequence of the first primer or the second primer is sufficiently homologous to a sequence of the specific nucleic acid sequence.
  • a 3' end of the first primer is oriented towards a 3' end of the second primer on complementary strands.
  • kits for amplifying nucleic acid molecules comprising an assemblage of (a) a receptacle containing a solution of a first oligonucleotide primer, (b) a receptacle containing a solution of a second oligonucleotide primer, (c) a receptacle containing a solution of a ribonuclease that hydrolyses RNA of an RNA/DNA hybrid without attacking single- or double-stranded RNA or DNA, (d) a receptacle containing a solution of an RNA- directed DNA polymerase, (e) a receptacle containing a solution of a DNA-directed RNA polymerase, (f) a receptacle containing a solution of a DNA directed DNA polymerase, (g) a receptacle containing a solution of ribonucleoside triphosphates, (h) a receptacle
  • a nucleic acid amplification process wherein the DMSO is provided at a concentration in the in the range from 0-30% and the BSA is provided at a concentration in the range of 5- 2500 lg/ l.
  • the DMSO is provided at a concentration in the in the range from 0%-30% and the BSA is provided at a concentration in the range of 50-500 lg/ml.
  • the DMSO is provided at a concentration in the in the range from 15-25% and the BSA is provided at a concentration in the range of 50-500 lg/ml.
  • the amplification with DMSO and BSA is increased over the amplification without added DMSO or BSA at least 10 fold.
  • the amplification is increased over the amplification without added DMSO or BSA at least 1000 fold.
  • the amplification is increased over the amplification without added DMSO or BSA at least 10 4 fold.
  • the amplification is increased over the amplification without added DMSO or BSA at least 10 6 fold.
  • the amplification is increased over the amplification without added DMSO or BSA at least 10 8 fold.
  • Figure la is a general illustration of the nucleic acid amplification process
  • Figure lb is an example of the nucleic acid amplification process starting with a sense (+) RNA molecule.
  • Figure lc is an example of the nucleic acid amplification process starting with a dsDNA that has been cut with a restriction endonuclease and then denatured.
  • Figure Id is an example of the nucleic acid amplification process starting with a dsDNA that has been denatured.
  • Figure 2 shows the synthetic oligonucleotides DNA sequences which are used for testing the amplification process:
  • Figure 2A the gag test sequence;
  • Figure 2B the gag2 test sequence;
  • Figure 3 is an autoradiogram of PAGE analysis of amplification reactions using different primer concentrations;
  • Figure 4 is an autoradiogram of PAGE analysis of amplification reactions using different template concentrations
  • Figure 5 is an autoradiogram of Dot-blot hybridization on amplification reactions
  • Figure 6 is an autoradiogram of PAGE analysis of amplification reaction using restriction fragments as template.
  • Figure 7 is an ethidium bromide stained agarose gel for a titration of amplification reactions with no HIV target sequence (no template) using 0-20% DMSO showing effect on non-specific products (NSPs) .
  • Figure 8 is an ethidium bromide stained agarose gel of amplification reactions with no template (nt) and 10 4 copies of template using 0% (-) and 15% (+) DMSO showing elimination of NSPs.
  • Figure 9 is an autoradiogram of a slot-blet hybridization analysis of amplification reactions using 0% (-) and 15% (+) DMSO with no template (nt) and 10 3 and 10 4 template copies, showing increased reproducibility and sensitivity.
  • Figure 10A is an ethidium bromide stained agarose gel of amplification reactions with no template (nt) and 10 4 copies of template using 501g/ml BSA, 0% DMSO and 0% BSA, 15% DMSO and 50 lg/ml BSA, 15% DMSO and 100 lg/ml BSA, and 15% DMSO showing increased sensitivity of the combination of BSA and DMSO for detection of amplified template.
  • Figure 10B is an autoradiogram of a slot-blot hybridization analysis of amplification reactions with no template (nt) and 10 4 copies of template using 501g/ml BSA, 0% DMSO and 0% BSA, 15% DMSO and 50 lg/ml BSA, 15% DMSO and 100 lg/ml BSA, and 15% DMSO showing increased sensitivity of the combination of BSA and DMSO for detection of amplified template, and for increased reproducibility using DMSO alone.
  • Figure 11 is an autoradiogram of a slot-blot hybridization analysis of amplification reactions with no template (nt) and 10 3 and 10 4 copies of template using 15% DMSO alone and 15% DMSO and 100 lg/ml BSA showing increased sensitivity of the combination of BSA and DMSO for detection of amplified template, and for increased reproducibility using DMSO alone.
  • This invention relates to a process for amplifying a specific nucleic acid sequence.
  • the amplification involves the alternate synthesis of DNA and RNA and is generally and specifically illustrated in Figures la-Id.
  • single-stranded antisense (-) RNA is converted to single-stranded DNA which in turn is converted to dsDNA and becomes a functional template for the synthesis of a plurality of copies of the original single-stranded RNA.
  • a first primer and a second primer are used in the amplification process.
  • a sequence of the first primer or the second primer is sufficiently comple ⁇ mentary to a sequence of the specific nucleic acid sequence and a sequence of the first or the second primer is sufficiently homologous to a sequence of the specific nucleic acid sequence.
  • both the first primer and second primer are sufficiently complementary and sufficiently homologous to a sequence of the specific nucleic acid sequence, for example, if the specific nucleic acid sequence is double stranded DNA.
  • the (-) RNA is converted to single-stranded DNA by hybridizing an oligonucleotide primer (the first primer) to 3' end of the RNA (the first template) and synthesizing a complementary strand of DNA from the first primer (the first DNA sequence) by using a RNA-directed DNA polymerase.
  • the resulting single-stranded DNA (the second template) is separated from the first template by, for example, hydrolysis of the first template by using a ribonuclease which is specific for RNA-DNA hybrids (for example, ribonuclease H) .
  • the second template is converted to a form which is capable of RNA synthesis by hybridizing a synthetic oligonucleotide (the second primer) , which contains at its 3' end a sequence which is sufficiently complementary to the 3' end of the second template and toward its 5' end a sequence containing a complementary strand of a promoter and antisense sequence of a transcription initiation site, and by synthesizing a second DNA sequence covalently attached to the 3' end of the second primer using the second template as a template and synthesizing a third DNA sequence covalently attached to the 3' end of the second template using the second primer as a template, using DNA-directed DNA polymerase.
  • the second primer synthetic oligonucleotide
  • the resulting functional derivative of the second template which is a third template, is used for the synthesis of a plurality of copies of RNA, the first template, by using a RNA polymerase which is specific for the promoter and transcription initiation site defined by the second primer.
  • Each newly synthesized first template can be converted to further copies of the second template and the third template by repeating the cycle. In addition, repetition of the cycle does not require participation or manipulation by the user.
  • the amplification process commences with the addition of a suitable template nucleic acid to the appropriate enzymes, primers, and cofactors under the appropriate reaction conditions.
  • This template nucleic acid is in a form which is capable of homo ⁇ genous and continuous amplification and can function as an intermediate in the cycle set forth in Figure la.
  • the amplification process involves the net consumption of precursors (primers, ribonucleoside triphosphates and deoxyribonucleotide triphosphates) and the net accumulation of products (RNA and DNA) .
  • precursors primary, ribonucleoside triphosphates and deoxyribonucleotide triphosphates
  • RNA and DNA net accumulation of products
  • the processes of RNA and DNA synthesis will proceed asynchronously until sufficient levels of nucleic acids have been synthesized to allow detection.
  • the amplification process may be monitored by, for example, the synthesis of a labeled product from a labeled precursor.
  • amplification may involve another process either in addition to or in place of the one generally illustrated in Figure la.
  • certain counter-productive enzymatic reactions which occur at permissibly low rates. Included among the possible non-productive side reactions is the synthesis of RNA and/or DNA in the absence of an added template nucleic acid. Such RNA and/or DNA products can be discriminated from desired products by determining whether a particular sequence which would be found only between the two priming sites of the specific nucleic acid sequence is present.
  • the first primer is an oligodeoxyribonu- cleotide which has at its 3 ' end a sequence which is sufficiently complementary to the 3' end of the first template.
  • the sequence at the 3' end of the first primer has a particular length and base composition to allow specific and efficient synthesis of the first DNA sequence, under the given conditions of ionic strength and temperature.
  • the first primer may be sufficiently complementary to a region internal to the 3' end of the first template in the first cycle. In subsequent cycles, the 5' end of the first primer would be complementary to the 3' end of the first template. It is contemplated that the first primer may be composed partially or completely of nucleo- tides or nucleotide analogs other than the natural deoxyribonucleotides.
  • the 5' end of the first primer may contain sequences which are not complementary to the first template in the first cycle.
  • the non- complementary sequences may be complementary to a nucleic acid which can be immobilized, or to which can be bound a useful non-nucleic acid component, such as a reporter to facilitate detection.
  • the non-complementary sequences may include a complementary sequence of a promoter and a complementary sequence of a transcription initiation site, which could be used for the synthesis of RNA. This RNA would be complementary to the first, template and could be used as an intermediate in another amplification cycle.
  • the second primer is an oligodeoxyribonu- cleotide which contains at its 3' end a sequence which is sufficiently complementary to the 3' end of the second template.
  • the second primer has a particular length and base composition to allow specific and efficient synthesis of the second and third DNA sequences, under the given conditions of ionic strength and temperature.
  • the second primer contains the antisense sequence of a functional promoter and the antisense sequence of a transcription initiation site. This sequence, when used as a template for synthesis of the third DNA sequence, contains sufficient information to allow specific and efficient binding of a RNA polymerase and initiation of transcription at the desired site.
  • the promoter sequence may be derived from the antisense strand of a functional promoter-.
  • the transcription initiation site may be derived from the 5' terminal sequence of a natural RNA transcript.
  • the 5'-terminal sequence of the second primer is AATTCTAATACGACTCACTATAGGGAG. This sequence contains the antisense sequence of the promoter and the antisense sequence of the transcription initiation site for T7 RNA polymerase.
  • the transcription initiation site and Promoter for another phage RNA polymerase may be used.
  • sequences which are unrelated to the promoter function may be included at the 5' end of the second primer or between the transcription initiation site and the sequence at the 3' end which hybridizes to the second template. It is contem ⁇ plated that the second primer may be composed partially or completely of nucleotides or nucleotide analogs other than natural deoxyribonucleotides.
  • each enzyme or enzyme preparation should be free of deleterious deoxyribonuclease (“DNase”) activities, such as the 5' or 3' exonuclease activities which are often associated with certain DNA polymerases and single-strand or double-strand specific exonuclease or endonucleases.
  • DNase deoxyribonuclease
  • Each enzyme or enzyme preparation should be free of deleterious ribonuclease- (“RNase”) activities, with the exception of the preferred addition of a ribonuclease activity which is specific for hybrids of RNA and DNA (for example, ribonuclease H) .
  • each enzyme should be reasonably active under the common reaction conditions which are used for the other enzymatic processes, and non- enzymatic processes, such as hybridizing oligonu- cleotide primers to the RNA or DNA templates.
  • the DNA-directed RNA polymerase which is used in this invention may be any enzyme capable of binding to a particular DNA sequence called a promoter and specifically initiating in vitro RNA synthesis at a defined initiation site within close proximity to the promoter.
  • the promoter and the initiation site form part of the second primer.
  • the RNA polymerase should be capable of synthesizing several copies of RNA per functional copy of template in a reasonable amount of time.
  • the bacteriophage T7 RNA polymerase is used.
  • other bacteriophage RNA polymerases such as phage T3, phage XII, Salmonella phage sp6, or Pseudomonas phage gh-1 may be used.
  • RNA-directed RNA polymerase in another embodiment, other prokaryotic or eukaryotic DNA-directed RNA polymerase may be used. It should be understood that if alternative RNA polymerases are used, then the necessary changes to the promoter and initiation sequences of the second primer should be made according to the template specificity of the particular RNA polymerase.
  • RNA-directed DNA polymerase which is used in this invention may be any enzyme capable of synthesizing DNA from an oligodeoxyribonucleotide primer and a RNA template.
  • this enzyme may contain activities for DNA-directed DNA poly ⁇ merase and RNase H.
  • the avian myoblastosis viral polymerase (“AMV reverse transcriptase") is used.
  • the RNA- directed DNA polymerase could be from another retrovirus, such as Maloney murine leukemia virus. Alternatively, other eukaryotic RNA-directed DNA polymerases could be used.
  • the DNA-directed DNA polymerase which is used in this invention may be any enzyme capable of synthesizing DNA from an oligodeoxyribonucleotide primer and a DNA template. This enzyme should not contain either 5'- or 3'- exonuclease activities, which are associated with many types of DNA polymerase. In the preferred embodiment, the AMV reverse transcriptase is used. However, other DNA- directed DNA polymerases which naturally lack the 5'- or 3.- exonuclease activities could be used. These could include certain eukaryotic DNA polymerases, such as, DNA polymerase or B those DNA polymerases which could be isolated from a mammalian tissue, such as calf thymus.
  • DNA poly- merase could be made useful by removing the unde ⁇ sirable exonuclease activities either by alteration of the DNA polymerase gene followed by expression of the altered polymerase in a suitable host cell, or by chemical modification of the DNA polymerase protein.
  • Altered versions of DNA polymerase could be made from the Klenow fragment of E. coli DNA polymerase I or the bacteriophage T7 DNA polymerase. It should be understood that such alternative DNA-directed DNA polymerase activities are added to supplement the activity contributed by the RNA-directed DNA polymerase, since in the preferred embodiment, both RNA-directed and DNA-directed DNA polymerase activities are supplied by the same enzyme.
  • the RNase H which could be used in this invention may be any enzyme capable of hydrolyzing a RNA which is annealed to a complementary DNA. This enzyme should not be capable of hydrolyzing single or double-stranded RNA or any DNA.
  • the E. coli RNase H is used.
  • other RNase H enzymes could be used, such as calf thy us RNase H. Since RNase H is an intrinsic activity of AMV reverse transcriptase, the E. coli RNase H will be supplemented in the preferred embodiment by the RNase H of AMV reverse trans ⁇ criptase. Alternatively, any other enzyme capable of separating the second template from the first template could be used.
  • the above-mentioned enzymes and primers are mixed together in a reaction vessel which contains the necessary buffers and cofactors for both DNA and RNA synthesis.
  • the ionic conditions and reaction temperature should be compatible with specific hybridization of the primers to the DNA and RNA templates as is known to those skilled in the art.
  • the reaction mixture should be free of such agents which would interfere with the amplification process, specifically substances which could greatly inhibit the activity of the enzymes, interfere with the hybridizing of primers and templates, or degrade non-productively the nucleic acid intermediates and products.
  • a labeled precursor may be added to the reaction mixture. Amplification is determined by quantitative or qualitative analysis of labeled products, which can be separated from the labeled precursor by using methods known in the art.
  • a labeled precursor may be a ribonucleoside tripho- sphate for detecting RNA synthesis, or a deoxynu- cleoside triphosphate or an oligonucleotide primer for detecting DNA synthesis.
  • the type of label may be a radioisotope or a useful chemical group, such as biotin, a chromophobe, a fluorophore, or a hapten which could bind to an antibody, or possibly a protein or an enzyme.
  • the labeled products may be separated from the labeled precursors on the basis of solubility, charge, or size.
  • the labeled DNA or RNA may be hybridized to a nucleic acid which contains a complementary sequence and which can be immobilized.
  • the products of the amplification process may be bound to an immobilized support, hybridized to a nucleic acid probe containing a complementary sequence, and separated from the unhybridized nucleic acid probe which remains in solution.
  • the products, DNA or RNA may be bound directly to a solid support by any stable interaction, such as hydrophobic, electrostatic, or covalent interaction.
  • the Products may contain certain chemical groups, for example, biotin, which may be incorporated into the products during the amplification process to allow binding to an immobilized protein, for example, avidin or streptavidin.
  • the products may be hybridized to a nucleic acid which contains a complementary sequence and which can be immobilized.
  • the nucleic acid probe would contain a complementary sequence which forms a sufficiently stable inter ⁇ action with a product of the amplification process to allow binding under the conditions of hybridization and sustained binding under the conditions used for removal of the unhybridized nucleic acid probe.
  • the complementary sequence would be derived from that part of the specific nucleic acid sequence which is between the sequences of the first primer and the second primer.
  • the nucleic acid probe may be a single-stranded DNA or RNA, or a double-stranded DNA or RNA which can be made single-stranded, or an oligonucleotide which can be composed of deoxyribonucleotides and/or ribonu- cleotides.
  • the nucleic acid probe may contain a chemical group which could covalently bind to a product DNA or RNA under the appropriate conditions.
  • the nucleic acid probe may be labeled with a radioisotope or a useful chemical group, such as biotin, a chromophobe, a fluorophore, or a hapten which could bind to an antibody.
  • the nucleic acid probe could be conjugated to a protein or enzyme, for example, a phosphatase or a peroxidase.
  • the nucleic acid probe may contain sequences which would allow in vitro repli ⁇ cation of the probe.
  • the products of the amplification process may be analyzed by methods which are typically used for nucleic acids that have been enriched by molecular cloning techniques.
  • the synthesis of a specific DNA sequence may be detected by digestion of the synthesized DNA with a restriction endonuclease, followed by electrophoretic separation and detection using methods known in the art.
  • the sequence of amplified RNA may be determined by DNA synthesis using a RNA-directed DNA Polymerase, the first primer, and dideoxynucleoside triphosphates (Stoflet et al., 1988).
  • the sequence of the amplified third template may be determined by RNA synthesis using the DNA-directed RNA polymerase used in the amplification process, and 3'-deoxyribonucleotide triphosphates (Axelrod & Kramer, 1985) .
  • the amplified RNA may encode a polypeptide which could be translated, in vitro. The polypeptide product of the in vitro translation could be analyzed by using an antibody.
  • a sample suspected of containing or known to contain the specific nucleic acid sequence is added to the reaction mixture in the form of a template nucleic acid which is capable -of homogeneous and continuous amplification and may be any intermediate in the cycle set forth in Figure 1.
  • the template nucleic acid may be a single-stranded RNA which contains at its 5' end a sequence which is sufficiently homologous to that which is at the 3' end of the second primer, and contains a sequence which is sufficiently complementary to the first • primer.
  • a template nucleic acid of this form would function as a first template in the amplification process.
  • the template nucleic acid may be a single-stranded DNA which contains at its 3.
  • a template nucleic acid of this form would function as a second template in the amplification process.
  • the template nucleic acid may be-a double-stranded DNA, one strand of which contains at its 5' end the entire sequence of the second primer and contains a sequence which is sufficiently complementary to the first primer.
  • the double-stranded DNA functions as a third template in the amplification process.
  • a template nucleic acid which could function as a first template could be a naturally occurring RNA or a RNA fragment which could be generated from a larger RNA molecule by using site specific hydrolysis methods known in the art (Shibahara et al., 1987).
  • a template nucleic acid which could function as a second template could be generated from a double-stranded DNA by digestion with a restriction endonuclease which has a site immediately flanking the sequence which is sufficiently complementary to the 3' end of the second primer. The resulting double-stranded DNA fragments could then be made single-stranded by using chemical or thermal denaturation methods.
  • a template nucleic acid which could function as a second template could be generated from a single-stranded DNA or RNA to which has been hybridized an oligonucleotide which is capable of blocking DNA synthesis. This blocking oligonucleotide may contain a chemical group, which could covalently bind to the template, under the appropriate conditions.
  • DNA synthesis from this blocked template using the first primer could result in a synthesized DNA with the same 3' end as the second template.
  • the original template is RNA
  • the resulting DNA-RNA hybrid may be used directly as a template nucleic acid.
  • the original template is DNA, then the resulting . copy of the second template could then be separated from the original template by using chemical or thermal denaturation methods.
  • a template nucleic acid which could function as a third template could be generated from a single-stranded DNA or RNA by DNA synthesis from the DNA or RNA template using the second primer.
  • the resulting synthesized DNA could then be separated from the original template by using chemical or thermal denaturation methods.
  • a RNA template could be hydrolyzed by using chemical or enzymatic methods.
  • the resulting single- stranded DNA has the sequence of the second primer covalently attached to its 5' end and contains a sequence which is sufficiently complementary to the first primer.
  • This single-stranded DNA could be converted to a transcriptionally functional double- stranded DNA by hybridizing the first primer to the single-stranded DNA, and by synthesizing a DNA sequence which is covalently attached to the first primer and complementary to the single-stranded DNA.
  • a single-stranded DNA or RNA template could be obtained from a double- stranded DNA, double-stranded RNA or a DNA-RNA hybrid by using chemical, thermal, or possibly enzymatic methods. Then, by using one of the alternative schemes proposed above, the resulting single-stranded DNA or RNA could then be used to generate a template nucleic acid which could function as a first, second or third template.
  • an alternative scheme involving the first primer and one strand of nucleic acid, and another alternative scheme involving the second primer and the other (complementary) strand of the nucleic acid may be used concurrently to generate template nucleic acids.
  • DMSO at final concentrations in the range between 0% and 30% and BSA at final concentrations in the range of from 5 lg/ml to 2500 lg/ml are useful for enhancing the sensitivity and reproducibility of the amplification process.
  • a BSA concentration of the range from 50 lg/ml to 500 lg/ml and a DMSO concentration in the range from 15% to 25% are used.
  • a BSA concentration of the range from 100 lg/ml to 300 lg/ml and a DMSO concentration in the range from 15% to 25% are used.
  • DMSO and BSA in the amplification reaction medium provides enhanced sensitivity and reproducibility over the use of the reaction medium without DMSO and BSA, however the reaction medium alone is sufficient for the detection and isolation of targeted nucleic acid sequences.
  • the use of DMSO and BSA in the reaction medium is suitable for increasing the amplification level at least 10 fold over that of the reaction medium alone.
  • the amplification using DMSO and BSA according to the presently claimed invention is increased by at least 100 fold.
  • the amplification using DMSO and BSA according to the presently claimed invention is increased by at least 1000 fold.
  • the amplification using DMSO and BSA according to the presently claimed invention is increased by at least 10,000 fold.
  • the amplification using DMSO and BSA according to the presently claimed invention is increased by at least 10 6 fold. In another preferred embodiment the amplification using DMSO and BSA according to the presently claimed invention is increased by at least 10 7 fold. In another preferred embodiment the amplification using DMSO and BSA according to the presently claimed invention is increased by at least 10 8 fold.
  • SPCs specific enhancement chemicals
  • Oligonucleotides were synthesized using an Applied Biosystems 380A DNA synthesizer. Columns, phosphoramidites, and reagents used for oligonu- cleotide synthesis were obtained from Applied Biosystems, Inc. through Technical Marketing Associates. Oligonucleotides were purified by polyacrylamide gel electrophoresis followed by DEAE cellulose chromatography. The radioisotope [-32p] UTP (800 Ci/mmol) was from Amersham. Enzymes for digesting and ligating DNA were purchased from New England Biolabs, and used according to the supplier's recommendations. Preparations containing the large fragment of DNA polymerase 1 (Klenow) were also purchased from New England Biolabs.
  • RNasin and T7 RNA polymerase from Promega Biotec were purchased through Bio/Can Scientific Inc. Reverse transcriptase and RNase H were obtained from Pharmacia. The supplier for proteinase K was Boehringer Mannheim Canada. E. coli strain HB101 (ATCC 33694) was used for all transformations. The plasmid pUC19 (Norrander et al. , 1983) was purchased from Bethesda Research Laboratories.
  • E. coli transformants were grown on YT medium (Miller, 1972) containing 50 lg/ml ampicillin. Plasmid DNA was purified by a rapid boiling method (Holmes and Quigley, 1981) . DNA fragments and vectors used for all constructions were separated by electrophoresis on low melting point agarose, and purified from the molten agarose by phenol extraction and ethanol precipitation (Maniatis et al., 1982). Plasmid DNA was sequenced using a modification (Hattori et al., 1985) of the dideoxy method (Sanger et al., 1977). Reactions were run using the -20 universal primer (New England Biolabs) .
  • Example 1 Design and Synthesis of Oligonucleotides For a Gag Test System
  • a synthetic DNA sequence ( Figure 2A) was designed to include an EcoRI site, a T7 phage promoter, a sequence required for initiation of transcription by T7 RNA polymerase and a 19 bp hybridization region (hybridization region 1) .
  • the 47 b antisense strand oligonucleotide (T7H1.GAG) involved in the cloning of these elements also serves as the first primer.
  • Hybridization region 2 lies 53 bp away from hybridization region 1 and is 20 bp in length.
  • the primer made to this region is a 20 b oligonucleotide duplicate of the sense strand and is not used for cloning.
  • the sequence spanning and including the hybridization regions is a 92 bp segment of the gag portion of the HTLV-III genome, the causative agent of AIDS. This particular gene segment was chosen because the primers were predicted to hybridize efficiently and because the distance between the two hybridization regions was relatively short. In addition, a Xbal site was placed at the end of the sequence for cloning ease.
  • the gag test sequence test sequence also contains Sphl and Pstl sites which can aid in the screening of recombinants. A total of four oligonucleotides were used in the cloning of this fragment.
  • Nl.GAG used in the construction of both the gag test and the gag2 test sequence, completes the antisense strand and is used only in the cloning process.
  • T74.PRO is the sense strand component of the T7 promoter.
  • N2.GAG was used in the construction of both test fragments, and has also been used as an intermediate (second template) in two steps of the amplification cycle. The entire cloned gag test fragment can also represent an intermediate of the amplification cycle (third template) .
  • the gag test. DNA could be transcribed by T7 RNA polymerase to produce a RNA fragment (first template) useful as an amplification intermediate involved in three of the steps.
  • T7H1.GAG and H2.GAG serve as primers in the test system.
  • gag2 test synthetic DNA fragment ( Figure 2B) does not contain the T7 promoter, but the remainder of the sequence is identical to the gag test sequence and therefore, both Nl.GAG and N2.GAG were involved in its construction.
  • the oligonu ⁇ cleotide required to complete the antisense strand is called HI.GAG.
  • the gag2 test fragment can be used as a template for testing amplification, using a DNA restriction fragment as template nucleic acid.
  • the oligonucleotides T74.PRO and Nl.GAG (2 mg each) were phosphorylated separately in 20 ml reactions containing 70 mM Tris-HCl (PH 7.6), 10 mM MgCl 2 , 5 mM DTT, 0.5 mM ATP and 5 units T4 polynucleotide kinase, at 37°C for 30 min.
  • Phosphorylated T74.PRO and Nl.GAG (10 ml of each) were mixed with 1 mg each of unphosphorylated T7H1.GAG and N2.GAG, and 3 ml 100 mM Tris-HCl (PH7.8) - 500 mM NaCl, in a final volume of 29 ml for the gag test assembly.
  • the gag2 test mixture contained 10 ml phosphorylated Nl.GAG, 1 mg each of unphosphorylated HI.GAG and N2.GAG, and 1.8 ml 100 mM Tris-HCl (PH 7.8) - 500 mM NaCl, in a final volume of 18 11.
  • the oligonucleotide mixtures were hybridized separately by placing them at 90%C for 10 min followed by slow cooling to room temperature for 10 to 16 h 60 ml reactions containing 50 mM Tris-HCl (pH 7.8), 10 mM MgCl 2 , 20 mM DTT, ImM ATP and 50 lg/ml BSA were used to ligate the hybridized oligonucleotides together. 400 units T4 DNA ligase was added to the gag test reaction and it was incubated at 15%C for 2h while the gag2 test reaction was incubated for 14 to 16 h with 200 units T4 DNA ligase.
  • the isolated and purified synthetic DNA segments were mixed with plasmid pUC19 which had been linearized by digestion at restriction enzyme sites within the polylinker region.
  • T4 DNA ligase was used to ligate the gag test sequence into the EcoRI- Xbal fragment of pUC19, while the gag2 test sequence was ligated to the Smal-Xbal fragment.
  • Plasmid DNA from transformants obtained after these reactions were used to transform E. coli were screened by restriction analysis, and the final plasmids (PGAG.TEST and pGAG2.TEST) were determined to be correct by sequence analysis.
  • the reaction mixtures (25 ml) which were used to amplify RNA transcribed from the gag test oligonucleotides contained 50 mM Tris-HCl (PH 8.45), 6 mM MgCl 2 , 40 mM KC1, 10 mM dithiothreitol, 0.5 mM NTP (ATP, CTP, GTP, UTP) , 1 mM dNTP (dATP, dCTP, dGTP dTTP) , 20 units RNasin, 10 units T7 RNA polymerase, 10 units reverse transcriptase, 0.4 units RNase H, and 10 mCi [-32p] UTP.
  • Two of the reactions contained 0.5 ng (0.015 pmoles) N2.GAG while the other two reactions contained no template.
  • the primers T7H1.GAG and H2.GAG were each added at final concentrations of 3.4 mM or 0.34 mM to reactions- containing either N2.GAG or no template.
  • the reactions were incubated at 42 C for 2 h. Total synthesis of RNA was monitored by determining the incorporation of TCA insoluble cpm at 30 min. intervals.
  • the effect of the primer concentration on template- dependent RNA synthesis is shown in Table 1. Aliquots of each reaction, containing equal amounts of synthesized RNA, were analyzed by PAGE and autoradiography ( Figure 3, lanes 1-4 numbered the same as the reactions) .
  • Table 1 RNA amplification from N2.GAG after 2 h. Concentration of Template RNA Synthesized Reaction each primer (mM) (ng) (mg)
  • reaction 2 resulted in the greatest incorporation of isotope, the no template control, reaction 2, was also high (73% of reaction 1) and produced a very similar electrophoretic profile. It would therefore appear that in the presence of high primer concentrations, a RNA transcript of identical size to that expected in amplification is produced in the absence of any template. Results using samples with a 10-fold decrease in primer concentration were dramatically different. The amount of RNA produced in reaction 3 was 2.6 times that of reaction 4, but while virtually all of the transcript was found in a single band of the expected size in reaction 3, no fragments greater than 60 to 70 b were found in reaction 4. Primer concentration therefore plays a significant role in the accuracy and efficiency of RNA amplification.
  • RNA transcript used to represent the size of fragment expected to be generated by the amplification system (lane 0 of Figure 3) was prepared by transcription from the test plasmid.
  • pGAG.TEST was linearized by digestion with Xbal, proteinase K treated (Maniatis et al., 1982), phenol extracted and ethanol precipitated.
  • T7 RNA polymerase was then used according to the supplier's recommendations to transcribe 0.5 mg of the resulting fragment in a 25 ml reaction mixture containing 10 mCi [ -32p] UTP.
  • Example 4 Effect of Template Concentration on RNA
  • the standard 50 ml reaction mixture used to amplify RNA transcribed from the gag test oligonu- cleotides contained 0.34 mM T7H1.GAG, 0.34 mM
  • KC1 10 mM DTT, 0.5 mM NTP, 1 mM dNTP, 40 units
  • RNasin 20 units T7 RNA polymerase, 20 units reverse transcriptase, 0.8 units RNase H and 10 - 20 mCi [- 32p] UTP.
  • the reactions contained amounts of template (N2.GAG) varying from 1 ng to 1 fg.
  • One reaction contained no template.
  • the reactions were incubated at 42%C for 3h, during which total synthesis of RNA was monitored by determining the incorporation of TCA insoluble cpm at 30 min intervals. As indicated in Table 2, total RNA synthesis was higher than the no template control for all template concentrations tested. Although the total synthesis of RNA generally decreased with decreasing template concentration, this decrease in synthesis was not quantitative. Thus, the degree of amplification of RNA per starting template generally increased with decreasing template concentration. Amplification of 8 x 108 fold was achieved by synthesis of 0.8 mg RNA from 1 fg of N2.GAG template. One fg of the 102-b N2.GAG oligonucleotide represents approximately 2 x
  • RNA which was synthesized after a reaction time of 3h was analyzed by PAGE, for each template concentration ( Figure 4 lanes 1-8, numbered the same as the reactions) .
  • a major band representing a RNA of about 100 b was present in all reactions except the ones containing 1 fg template and no template.
  • the reaction containing 1 fg template did not have much of this 100 b product at 3 h but the overall RNA synthesis was higher than and qualitatively different from the no template reaction.
  • N2.GAG template varying from 1 pg to 0.1 fg were performed following the teaching of example 4, except the radio labeled UTP was omitted.
  • the reactions were incubated at 42%C for 3 h. Aliquots were removed from each reaction at 30 min intervals and applied to a nylon membrane (Amersham) . The nucleic acids that were contained in these reaction aliquots were fixed by exposure to ultraviolet light.
  • the membrane was prehybridized at 50 C for- 1 h in prehybridization buffer consisting of a final concentration of 50% v/v formamide, 5 X SSC and 5 X Denhardt's solution (Maniatis et al, 1982; Southern et al, 1975) at a volume equivalent to 5 mis of solution per 100 cm2 and hybridized with a radio labeled probe with a specific activity of 106 cpm/ml of hybridization solution.
  • Hybridization was performed at 50°C for 16 h in 50% formamide, 5 X SSC and 5 X Denhardt's solution (Maniatis et al, 1982; Southern et aJL , 1975) .
  • the radio labeled probe was the synthetic o l igonuc leot ide 5'GATCTGGGATAGAGTACATCCA 3' which had been labeled at the 5' end using T4 polynucleotide kinase and (- 32p) ATP.
  • the membrane was washed at 50°C in a series of 2, 3 min. washes consisting of 2 X SSC, 0.1% v/v SDS and 0.2 X SSC, 0.1% v/v SDS (Southern et al, 1975; Maniatis et al, 1982; Szostak et al, 1979) .
  • Figure 5 shows the results of the hybridi ⁇ zation analysis performed on the amplification reactions, containing various amounts of N2.GAG template, which were sampled at different times of incubation.
  • Each column of Figure 5 represents a different time point (1, 30 min; 2, 60 min; 3, 90 min; 4, 120 min; 5, 150 min; 6, 180 min) and each row represents a different amount of added N2.
  • GAG template (1, Ipg; 2, 100 fg; 3, 10 fg; 4, 1 fg; 5, 0.1 fg; 6, no template).
  • Amplification of nucleic acids which hybridized to the labeled probe were observed for rows 1-3 (1 pg - 10 fg) , however the hybridization to specific nucleic acids in rows 4 - 5 (1 fg, 0.1 fg) was not higher than row 6 (no template) .
  • the apparent non-specific binding of labeled probe in row 6 seems to be related to DNA or RNA synthesis since the hybridization signal increases with increasing time.
  • the plasmid pGAG2.TEST was digested with Mspl, treated with proteinase K, purified by phenol extraction and ethanol precipitation, and denatured by boiling for 5 min. Amplification reactions were performed and analyzed following the teaching of Example 4, except the Mspl digested pGAG2.TEST was used as a template instead of the N2.GAG oligonucleotide. The amounts of plasmid added to each reaction varied from 55 ng to 5.5 pg, and no template. To simulate additional DNA which would be present in an actual sample, alternate reactions contained 1 ng of calf thy us DNA which had been similarly digested, purified and denatured.
  • RNA synthesis was determined by TCA precipitation and PAGE analysis. As indicated in Table 3, total RNA synthesis was higher than the no template controls for all template concentrations tested. The degree of amplification was calculated based on RNA synthesis from the actual template which was 1.8% of the total plasmid DNA.
  • RNA which was synthesized after a reaction time of 3h was analyzed by PAGE ( Figure 6, lanes 1-6, 11 and 12, numbered the same as the reactions) .
  • the major band representing a RNA of about 100 b was present in reactions (lanes) 1-6 but aosent in the no template reactions (lanes 11 and 12) .
  • the RNA in lane 0 was a standard, which was prepared following the teaching of Example 3. There was no apparent qualitative difference in the synthesized RNA either with (lanes 2, 4 and 6) or without (lanes 1, 3, and 5) the additional of 1 lg of Mspl-digested calf thymus DNA.
  • Example 7 Use of RNA Fragment as Template
  • the plasmid pGAG.TEST is digested with Xbal, treated with proteinase K, and purified by phenol extraction and ethanol precipitation.
  • RNA of a sequence complementary to N2.GAG is transcribed from the linearized pGAG.TEST plasmid using T7 RNA polymerase.
  • the resulting RNA is purified by digestion with DNase (ProMega BioTec, Madison, I) , followed by phenol extraction and ethanol precipitation.
  • the purified RNA is used as a template for amplification reactions following the teaching of Example 5. Amounts of RNA are added to each reaction and vary from 55 ng to 5.5 pg, and no template. After a 3 h incubation at 42 C, the synthesis of specific RNA is determined by hybridization to labeled oligonucleotide probe, following the teaching of Example 5.
  • Two primers are used for amplifying RNA sequences which are complementary to a part of JL. coli 16S ribosomal RNA (rRNA) .
  • rRNA ribosomal RNA
  • T7HIRIB3.PR2 (AATTCTAATACGACTCACTATAGGGAGTA-
  • TTACCGCGGCTGCTG contains the antisense strand of the T7 promoter and initiation site, and a sequence which is complementary to 16S rRNA.
  • the other RIB8.PR (AATACCTTTGCTCATTGACG) is complementary to the DNA synthesized by using T7H1RIB3.PR2 as a primer and 16S rRNA as a template.
  • a third synthetic oligonucleotideRIB5.PR (AGAAGCACCGGCTAAC) which allows detection of amplification is complementary to the RNA products of the amplification reaction, which are in turn complementary to the original rRNA template.
  • Reaction mixtures (25 ml) contain 50 mM Tris- HCl (PH 8.45), 6 mM MgCl 2 , 40 mM KC1, 10 mM DTT, 0.5 mM NTP, 1 mM dNTP, 20 units RNasin, 10 units T7 RNA polymerase, 10 units AMV reverse transcriptase, 0.4 units RNase H, 0.34 lm T7H1RIB3.PR2, and 0.34 lm RIB8.PR.
  • Amounts of E_j_ coli rRNA varying from 50 ng to 50 fg are added to the reactions.
  • One reaction contains no added rRNA.
  • the reactions are incubated at 42% for 3 h, during which aliquots are removed at 30, 60, 120, and 180 minutes.
  • the reaction aliquots are quenched, fixed to a nylon membrane, and hybridized to the 32p 5'-end labeled RIB5.PR probe, following the teaching of Example 5.
  • Two primers are used for amplifying RNA sequences which are homologous to a part of E_j_ coli 16S rRNA.
  • TACTCACCCGTCCGCC is complementary to 16S rRNA.
  • T7H1RIB5.PR AATTCTAATACGACTCACTATAGGGA-
  • GAAATTGAAGAGTTTGATCAT is complementary to the 3' end of the DNA synthesized by using RIB12.PR as a primer and 16S rRNA as a template.
  • a third synthetic oligonucleotide RIB11.PR (GTTCGACTTGCATGTGTTAGGCCTGCCGCCAGCGTTCAATCTGAGCC) which allows detection of amplification is complementary to both the RNA products of the amplification and the original rRNA template.
  • the amplification reactions for rRNA and detection of the synthesized RNA are performed following the teaching of Example 8, except that T7H1RIB5.PR and RIB12.PR are used as primers (in place of T7H1RIB3.PR2 and RIB8.PR) and RIB11.PR is used as an oligonucleotide probe (in place of RIB5.PR) .
  • Example 10 Specific Enhancement of Nucleic Acid Amplification Using Dimethylsulfoxide (DMSO) and Bovine Serum Albumin (BSA) .
  • DMSO Dimethylsulfoxide
  • BSA Bovine Serum Albumin
  • the nucleic acid amplification process was used with the following bacterial strains, plasmids and RNA template were used.
  • a pGEM-3-pol plasmid and an pUC-pol plasmid each containing a 1450 base pair restriction fragment from HIV 1 (strain HxB2) were constructed from a BamHlEcoRl subclone obtained as a gift from Dr. R. Gallo (NCI, NIH, Bethesda, Maryland) .
  • This restriction fragment contains a portion of the HIV1 gag gene and the majority of the HIV l pol gene.
  • E. coli strain HB101 was transformed with either the pGEM-3-pol plasmid on the pUC-pol plasmid. Plasmid DNA was prepared by methods described in Maniatis et al. MOLECULAR CLONING - A LABORATORY MANUAL p. 86 Cold Spring Harbor Laboratory.
  • RNA template the pGEM-3-pol plasmid was linearized with EcoRl, extracted with phenol-chloroform, and precipitated in ethanol. EcoRl cuts uniquely at the end of the inserted pol DNA.
  • Purified DNA was transcribed using SP6 RNA polymerase (a suitable RNA polymerase is available from Promega, Madison, WI) according to the method of Melton et al. Nucleic Acids Res 12:7035 (1984). 5 units of RNase-free DNase I (a suitable DNase I is also available from Promega, Madison, WI) was added and the mixture incubated at 37#C for 15 minutes. The RNA product was extracted with phenol-chloroform and precipitated with ethanol. The yield of RNA was determined spectrophotometrically.

Abstract

This invention relates to an improved process for amplifying a specific nucleic acid sequence. The process involves synthesizing single-stranded RNA, single-stranded DNA and double-stranded DNA. The single-stranded RNA is a first template for a first primer, the single-stranded DNA is a second template for a second primer, and the double stranded DNA is a third template for synthesis of a plurality of copies of the first template. A sequence of the first primer or the second primer is complementary to a sequence of the specific nucleic acid and a sequence of the first primer or the second primer is homologous to a sequence of the specific nucleic acid. The amplification process may be used to increase the quantity of a specific nucleic acid sequence to allow detection, or to increase the purity of a specific nucleic acid sequence as a substitute for conventional cloning methodology.

Description

ENHANCED NUCLEIC ACID AMPLIFICATION PROCESS
Field of the Invention This invention relates to an enhanced process for amplifying a specific nucleic acid sequence.
Background of the Invention
The detection of a specific nucleic acid sequence present in a sample by probing the sample with a complementary sequence of nucleic acids is a known diagnostic technique. Nucleic acids are highly specific in binding to complementary nucleic acids and are thus useful to determine whether a specific nucleic acid is present in a sample. One must know the sequence of the specific nucleic acid to be detected and then construct a probe having a complementary nucleic acid sequence to the specific nucleic acid sequence.
In this application, the phrase "specific nucleic acid sequence" means a single stranded or double stranded nucleic acid which one wishes to amplify; "sample" means a mixture containing nucleic acids; "sufficiently complementary" means that two nucleic acids, a primer and a template, are capable of specific interaction which allows efficient, primer-dependent and template-directed synthesis of DNA, under given conditions of ionic strength and temperature. "DMSO" means dimethyl sulfoxide of sufficient purity to be used in molecular genetic reactions without any ill-effects on substrates or enzymes used; other functionally equivalent alkyl sulfoxides may also be used instead of DMSO. "BSA" means bovine serum albumin of a quality suitable for use in molecular biologic reactions and, in this regard, should be free from any DNases, DNA nicking activity, RNases and proteases. Other functionally equivalent and equally suitable "carrier" proteins may be used in place of BSA.
Since nucleic acid probes are highly specific, it is preferable in some situations to probe the nucleic acid sequence itself rather than the protein produced by the nucleic acid sequence. As a particular example, a diagnostic method based solely on protein detection would be unreliable for determining the presence of infectious Particles of hepatitis B virus, due to the presence of significant levels of non-infectious antigen particles which lack the DNA genome. In another example, the various subtypes of human papilloma virus found in either pre-cancerous or benign cervical tumors can be distinguished only by the use of nucleic acid probe hybridization. Also, the specific genetic makeup of an AIDS virus makes it certain that an assay based on the presence of an AIDS virus specific nucleic acid sequence would be superior as a diagnostic. The greatest difficulty and limitation with applying existing nucleic acid probe technology, is the copy number problem. In a virus or cell, for example, there is usually a single copy of a particular gene. This one copy may give rise to many copies of gene product, either RNA or protein. For this reason, diagnostic techniques have often involved probing the protein, since the specific sequence of nucleic acid to be detected may give rise to many thousand copies of protein.
The naturally-occurring high number of ribosomal RNA, up to 100,000 copies per cell, has been used by GenProbe to facilitate diagnosis of certain bacterial pathogens, such as Legionella and Mycoplasma, using nucleic acid probes. However, this strategy cannot be used with non-cellular pathogens, such as viruses, or with probed nucleic acid sequences with low copy numbers. Copy number is a particular problem with the development of a nucleic acid probe method for the detection of AIDS virus, where the integrated provirus may be present in less than one of ten thousand peripheral blood lymphocytes. Thus, if the particular nucleic acid sequence suspected to be present in a sample could be amplified, the copy number problem could be circumvented and probe assays could be more readily used.
In a normal biological sample, containing only a few cells, and consequently only a few copies of a particular gene, it is necessary to utilize an amplification process in order to overcome the copy number problem. One method to amplify is to 'grow out' the sample, that is, to arrange conditions so that the living biological material present in the sample can replicate itself. Replication could increase the quantity of nucleic acid sequences to detectable levels. In the food industry, for example, in order to test processed food for the food-poisoning bacteria Salmonella, food samples must be incubated for a number of days to increase the quantity of nucleic acid copy numbers. In clinical samples, pathogens must also be allowed to increase their number by growing out over some considerable time.
United States Patent No. 4,683,195 issued on July 28, 1987 to Cetus Corporation and United States Patent No. 4,683,202 issued on July 28, 1987 to Cetus Corporation are each directed to a process for amplifying a target nucleic acid sequence contained in a sample. United States Patent No. 4,683,195 relates to a process in which a sample suspected of containing a target DNA sequence is treated with oligonucleotide primers such that a primer extension product is synthesized which in turn serves as a template, resulting in amplification of the target a DNA sequence. The primer extension product is separated from the template in the preferred embodiment using heat denaturation. Similarly, United States Patent No. 4,683,202 relates to a process for amplifying a target DNA sequence having two separate complementary strands. The process includes treating the strands with primers to synthesize extension products, separating the primer extension products from the templates, and in turn using the primer extension products as templates. Both of the above United States patents require either manual or mechanical participation and multi-step operations by the user in the amplifica¬ tion process and are restricted to amplifying DNA only. The steps involved in these patents require the user to heat the sample, cool the sample, add appropriate enzymes and then repeat the steps. The temperature changes cause the enzymes to loose their activity. Hence, the user is required to repeatedly supplement the amplification mixture with aliquotε of appropriate enzymes during the amplification process. In addition, in United States Patents Nos. 4,683,195 and 4,683,202 each cycle of the amplifi¬ cation process takes place by the synthesis from a first template, of a second template, the second template in turn is used to synthesize the first, template. This procedure is repeated, thus, each cycle of the amplification process is based on the synthesis of one product from one substrate. Notwithstanding the amplification processes disclosed in the prior art, a need exists for improvements to the amplification process. It would be preferable if the amplification process required less participation and fewer manipulations by the user and not be restricted to DNA. Further, it would be advantageous if the amplification took place at a relatively constant ambient temperature so that the activity of the enzymes involved in the process would not be affected. It would be more expedient if a template could be used to generate more than one product from one substrate in each cycle of the amplification process. Summary of the Invention
This invention relates to an amplification process of single stranded RNA (ssRNA) , single- stranded DNA (ssDNA) or double-stranded DNA (dsDNA) which is expedient and requires less participation and fewer manipulations by the user of the process than conventional amplification processes. The amplification takes place at a relatively constant ambient temperature. In addition, each cycle of the process generates a plurality of copies of product from one antisense RNA template. The amplification process of this invention may be used to increase the quantity of a specific nucleic acid thus circum¬ venting the copy number problem. Hence, probe assays may be more readily used. The amplification process could also be used to increase the purity of a specific nucleic acid sequence as a substitute for conventional cloning methodology.
According to one aspect of the invention, a process for amplifying a specific nucleic . acid sequence is used. The process involves the synthesis of single-stranded RNA, single-stranded DNA, and double stranded DNA. The single stranded antisense RNA is a first template for a second primer. The single stranded DNA is a second template for a first primer. The double stranded DNA is a third template for the synthesis of a plurality of copies of the first template. A sequence of the first or the second primer is sufficiently complementary to a sequence of the specific nucleic acid sequence and a sequence of the first or the second primer is sufficiently homologous to a sequence of the specific nucleic acid sequence. A second primer binds to the 3 ' end of the first RNA template and generates the second DNA template. A 3 ' end of the first primer hybridizes to the 3 ' end of the second DNA template. The second template is removed from the first template and is used to generate a complementary DNA strand. The resulting duplex DNA serves as a third template for synthesizing a plurality of first templates which in turn repeat the above-described cycle.
According to another aspect of the invention, a process for amplifying a specific nucleic acid sequence is used. The process involves:
(a) hybridizing a first primer to a first template. The first primer has a DNA sequence which is sufficiently complementary to a RNA sequence of the first template;
(b) synthesizing a first DNA .sequence covalently attached to the first primer and complementary to the RNA sequence of the first template. The first DNA sequence and the first primer comprise a second template;
(c) separating the first template from the second template to allow hybridization of a second primer;
(d) hybridizing the second primer to the second template. The second primer has a DNA sequence which is sufficiently complementary to a DNA sequence of the second template. The second primer also has a complementary sequence of a promoter and a complementary sequence of a transcription initiation site for a RNA polymerase; (e) synthesizing a second DNA sequence covalently attached to the second primer and complementary to the DNA sequence of the second template and synthesizing a third DNA sequence covalently attached to the second template and complementary to the DNA sequence of the second primer. The second and third DNA sequences, the second primer and the second template comprise a third template; (f) synthesizing a plurality of copies of the
RNA sequence of the first template from the third template.
Alternatively the amplification process according to the present invention involves the following steps. Step (A) provides a single reaction medium containing a first oligodeoxynucleotide primer, the first primer comprising a sequence that is a functional promoter; a second oligodeoxynucleotide primer, the second primer comprising a 5' end segment complementary to a functional promotor; an RNA-directed DNA polymerase; a DNA-directed DNA polymerase; a DNA-directed RNA polymerase; a ribonuclease that removes RNA of. an RNA/DNA hybrid without hydrolyzing single- or double- stranded RNA or DNA; ribonucleoside and deoxyribonucleoside triphosphates; and at least one of DMSO or BSA. Step (B) provides for adding to the reaction medium one or more of the following (i) a single-stranded RNA molecule comprising (a.) a sense RNA sequence that hybridizes at its 3 ' -end to a portion of the 3' end of the second primer; or (b) an anti-sense RNA sequence that is hybridized at its 3' end by the first primer, (ii) a single-stranded DNA molecule comprising (a) ' a second-primer binding DNA sequence that hybridizes at its 3 ' end to the 3 ' end of the second primer; or (b) a promotor- complementary DNA sequence that comprises a 5'-end sequence complementary to a functional promoter; or (c) a first-primer binding DNA sequence that is hybridized at its 5' end by the first primer, (iii) a denatured double-stranded DNA molecule comprising an a plifiable segment and a functional promoter, the functional promotor being adjacent to the segment and oriented to control transcription of the segment. Step (C) provides for establishing conditions such that at least one of the group consisting of a portion of the RNA molecule, the single-stranded DNA molecule and the double-stranded DNA molecule is used as a template for generating one or more copies of the anti-sense RNA sequence and wherein the anti- sense RNA sequence initiates a cycle in the reaction medium comprising the steps of: (i)hybridizing the first primer to a region at the 3' end of the anti- sense RNA sequence; (ii) forming an RNA/DNA hybrid by action of the RNA-directed DNA polymerase, the RNA/DNA hybrid comprising a first DNA segment covalently attached to the 3' end of the first primer to form a second DNA segment, the first DNA segment being complementary to at least a portion of the anti-sense RNA sequence; (iii) releasing the second DNA segment from the RNA/DNA hybrid by action of the ribonuclease on at least some portion of the anti- sense RNA sequence; (iv) hybridizing the 3' end of the second DNA segment with the 3' end of the second primer to form a duplex that is acted upon by the DNA-directed DNA polymerase to produce (a) a third DNA segment which is covalently attached to the 3' end of the second primer and which is complementary to the first DNA segment, and (b) a fourth DNA segment comprising the third DNA segment and the first primer, and (c) a fifth DNA segment which is covalently attached to the 3' end of the second DNA segment and which is complementary to the non- duplexed 5' end of the second primer, and (d) a sixth DNA segment comprising the second DNA segment and the fifth DNA segment; and (v) producing (a) a plurality of RNA sequences corresponding to the anti-sense RNA sequence by action of the RNA polymerase on the duplex and (b) a plurality of DNA sequences corresponding to the fourth DNA segment and to the sixth DNA segment.
A sequence of the first or the second primer is sufficiently complementary to a sequence of the specific nucleic acid sequence and a sequence of the first or the second primer is sufficiently homologous to a sequence of the specific nucleic acid sequence. A 3' end of the first primer is oriented towards a 3' end of the second primer on complementary strands.
In a further alternative of the invention, the second primer of DNA has a sequence at its 3' end which is sufficiently complementary to the DNA sequence of the second template. The second primer has at its 5' end a complementary sequence of a promoter and a complementary sequence of a transcription initiation site for a RNA polymerase. In a further alternative of the invention, the third DNA sequence covalently attached to the second template is complementary to the DNA sequence at the 5' end of the second primer. In another alternative of the invention, a process for amplifying a specific nucleic acid sequence is used. The process involves combining a first primer, a second primer, ribonuclease H, a RNA- directed DNA polymerase, a DNA-directed DNA poly¬ merase, a RNA polymerase, ribonucleoside tripho- sphates and deoxyribonucleotide triphosphates with -a sample. The first primer of DNA has a sequence which is sufficiently complementary to a first template of RNA. The second primer of DNA has a sequence which is sufficiently complementary to a second template of DNA, and a complementary sequence of a promoter and a complementary sequence of a transcription initiation site which are recognized as substrate by the RNA polymerase. A sequence of the first primer or the second primer is sufficiently complementary to a sequence of the specific nucleic acid sequence and a sequence of the first primer or the second primer is sufficiently homologous to a sequence of the specific nucleic acid. A 3' end of the first primer is oriented towards a 3' end of the second primer on complementary strands.
In a further alternative of the invention, a process for amplifying a specific nucleic acid sequence is used. The process involves adding a first primer, a second primer, avian myoblastosis viral polymerase, E. coli ribonuclease H, bacteriophage T7 RNA polymerase, ribonucleoside triphosphates and deoxyribonucleotide triphosphates to a sample. The first primer of DNA has a sequence which is sufficiently complementary to a first template of RNA. The second primer of DNA has a sequence which is sufficiently complementary to a second template of DNA, and a complementary sequence of a promoter and a complementary sequence of a tran¬ scription initiation site which are recognized as substrate by T7 RNA polymerase. A sequence of the first primer or the second primer is sufficiently complementary to a sequence of the specific nucleic acid sequence and a sequence of the first primer or the second primer is sufficiently homologous to a sequence of the specific nucleic acid sequence. A 3' end of the first primer is oriented towards a 3' end of the second primer on complementary strands.
Another aspect of the present invention provides for a kit for amplifying nucleic acid molecules, comprising an assemblage of (a) a receptacle containing a solution of a first oligonucleotide primer, (b) a receptacle containing a solution of a second oligonucleotide primer, (c) a receptacle containing a solution of a ribonuclease that hydrolyses RNA of an RNA/DNA hybrid without attacking single- or double-stranded RNA or DNA, (d) a receptacle containing a solution of an RNA- directed DNA polymerase, (e) a receptacle containing a solution of a DNA-directed RNA polymerase, (f) a receptacle containing a solution of a DNA directed DNA polymerase, (g) a receptacle containing a solution of ribonucleoside triphosphates, (h) a receptacle containing a solution of deoxyribonucleotide triphosphates, (i) a receptacle containing a solution of DMSO, and (j) a receptacle containing a solution of BSA.
According to another aspect of the present invention, a nucleic acid amplification process is provided wherein the DMSO is provided at a concentration in the in the range from 0-30% and the BSA is provided at a concentration in the range of 5- 2500 lg/ l. Alternatively, the DMSO is provided at a concentration in the in the range from 0%-30% and the BSA is provided at a concentration in the range of 50-500 lg/ml. Additionally, the DMSO is provided at a concentration in the in the range from 15-25% and the BSA is provided at a concentration in the range of 50-500 lg/ml. According to another aspect of the present invention, the amplification with DMSO and BSA is increased over the amplification without added DMSO or BSA at least 10 fold. In another aspect, the amplification is increased over the amplification without added DMSO or BSA at least 1000 fold. In still another aspect of the present invention, the amplification is increased over the amplification without added DMSO or BSA at least 104 fold. In another aspect of the present invention, the amplification is increased over the amplification without added DMSO or BSA at least 106 fold. In still another aspect of the present invention, the amplification is increased over the amplification without added DMSO or BSA at least 108 fold.
Brief Description of the Drawings In drawings which illustrate embodiments of the invention,
Figure la is a general illustration of the nucleic acid amplification process;
Figure lb is an example of the nucleic acid amplification process starting with a sense (+) RNA molecule.
Figure lc is an example of the nucleic acid amplification process starting with a dsDNA that has been cut with a restriction endonuclease and then denatured.
Figure Id is an example of the nucleic acid amplification process starting with a dsDNA that has been denatured.
Figure 2 shows the synthetic oligonucleotides DNA sequences which are used for testing the amplification process: Figure 2A, the gag test sequence; Figure 2B, the gag2 test sequence; Figure 3 is an autoradiogram of PAGE analysis of amplification reactions using different primer concentrations;
Figure 4 is an autoradiogram of PAGE analysis of amplification reactions using different template concentrations;
Figure 5 is an autoradiogram of Dot-blot hybridization on amplification reactions;
Figure 6 is an autoradiogram of PAGE analysis of amplification reaction using restriction fragments as template.
Figure 7 is an ethidium bromide stained agarose gel for a titration of amplification reactions with no HIV target sequence (no template) using 0-20% DMSO showing effect on non-specific products (NSPs) .
Figure 8 is an ethidium bromide stained agarose gel of amplification reactions with no template (nt) and 104 copies of template using 0% (-) and 15% (+) DMSO showing elimination of NSPs.
Figure 9 is an autoradiogram of a slot-blet hybridization analysis of amplification reactions using 0% (-) and 15% (+) DMSO with no template (nt) and 103 and 104 template copies, showing increased reproducibility and sensitivity.
Figure 10A is an ethidium bromide stained agarose gel of amplification reactions with no template (nt) and 104 copies of template using 501g/ml BSA, 0% DMSO and 0% BSA, 15% DMSO and 50 lg/ml BSA, 15% DMSO and 100 lg/ml BSA, and 15% DMSO showing increased sensitivity of the combination of BSA and DMSO for detection of amplified template.
Figure 10B is an autoradiogram of a slot-blot hybridization analysis of amplification reactions with no template (nt) and 104 copies of template using 501g/ml BSA, 0% DMSO and 0% BSA, 15% DMSO and 50 lg/ml BSA, 15% DMSO and 100 lg/ml BSA, and 15% DMSO showing increased sensitivity of the combination of BSA and DMSO for detection of amplified template, and for increased reproducibility using DMSO alone.
Figure 11 is an autoradiogram of a slot-blot hybridization analysis of amplification reactions with no template (nt) and 103 and 104 copies of template using 15% DMSO alone and 15% DMSO and 100 lg/ml BSA showing increased sensitivity of the combination of BSA and DMSO for detection of amplified template, and for increased reproducibility using DMSO alone.
Detailed Description of the Preferred Embodiments This invention relates to a process for amplifying a specific nucleic acid sequence. The amplification involves the alternate synthesis of DNA and RNA and is generally and specifically illustrated in Figures la-Id. In this process, single-stranded antisense (-) RNA is converted to single-stranded DNA which in turn is converted to dsDNA and becomes a functional template for the synthesis of a plurality of copies of the original single-stranded RNA. A first primer and a second primer are used in the amplification process. A sequence of the first primer or the second primer is sufficiently comple¬ mentary to a sequence of the specific nucleic acid sequence and a sequence of the first or the second primer is sufficiently homologous to a sequence of the specific nucleic acid sequence. In some instances, both the first primer and second primer are sufficiently complementary and sufficiently homologous to a sequence of the specific nucleic acid sequence, for example, if the specific nucleic acid sequence is double stranded DNA.
The (-) RNA is converted to single-stranded DNA by hybridizing an oligonucleotide primer (the first primer) to 3' end of the RNA (the first template) and synthesizing a complementary strand of DNA from the first primer (the first DNA sequence) by using a RNA-directed DNA polymerase. The resulting single-stranded DNA (the second template) is separated from the first template by, for example, hydrolysis of the first template by using a ribonuclease which is specific for RNA-DNA hybrids (for example, ribonuclease H) . The second template is converted to a form which is capable of RNA synthesis by hybridizing a synthetic oligonucleotide (the second primer) , which contains at its 3' end a sequence which is sufficiently complementary to the 3' end of the second template and toward its 5' end a sequence containing a complementary strand of a promoter and antisense sequence of a transcription initiation site, and by synthesizing a second DNA sequence covalently attached to the 3' end of the second primer using the second template as a template and synthesizing a third DNA sequence covalently attached to the 3' end of the second template using the second primer as a template, using DNA-directed DNA polymerase. The resulting functional derivative of the second template, which is a third template, is used for the synthesis of a plurality of copies of RNA, the first template, by using a RNA polymerase which is specific for the promoter and transcription initiation site defined by the second primer. Each newly synthesized first template can be converted to further copies of the second template and the third template by repeating the cycle. In addition, repetition of the cycle does not require participation or manipulation by the user.
The amplification process commences with the addition of a suitable template nucleic acid to the appropriate enzymes, primers, and cofactors under the appropriate reaction conditions. This template nucleic acid is in a form which is capable of homo¬ genous and continuous amplification and can function as an intermediate in the cycle set forth in Figure la. The amplification process involves the net consumption of precursors (primers, ribonucleoside triphosphates and deoxyribonucleotide triphosphates) and the net accumulation of products (RNA and DNA) . The processes of RNA and DNA synthesis will proceed asynchronously until sufficient levels of nucleic acids have been synthesized to allow detection. The amplification process may be monitored by, for example, the synthesis of a labeled product from a labeled precursor.
It is contemplated that amplification may involve another process either in addition to or in place of the one generally illustrated in Figure la. Also possible are certain counter-productive enzymatic reactions which occur at permissibly low rates. Included among the possible non-productive side reactions is the synthesis of RNA and/or DNA in the absence of an added template nucleic acid. Such RNA and/or DNA products can be discriminated from desired products by determining whether a particular sequence which would be found only between the two priming sites of the specific nucleic acid sequence is present. The first primer is an oligodeoxyribonu- cleotide which has at its 3 ' end a sequence which is sufficiently complementary to the 3' end of the first template. The sequence at the 3' end of the first primer has a particular length and base composition to allow specific and efficient synthesis of the first DNA sequence, under the given conditions of ionic strength and temperature. The first primer may be sufficiently complementary to a region internal to the 3' end of the first template in the first cycle. In subsequent cycles, the 5' end of the first primer would be complementary to the 3' end of the first template. It is contemplated that the first primer may be composed partially or completely of nucleo- tides or nucleotide analogs other than the natural deoxyribonucleotides. The 5' end of the first primer may contain sequences which are not complementary to the first template in the first cycle. The non- complementary sequences may be complementary to a nucleic acid which can be immobilized, or to which can be bound a useful non-nucleic acid component, such as a reporter to facilitate detection. Alternatively, the non-complementary sequences may include a complementary sequence of a promoter and a complementary sequence of a transcription initiation site, which could be used for the synthesis of RNA. This RNA would be complementary to the first, template and could be used as an intermediate in another amplification cycle.
The second primer is an oligodeoxyribonu- cleotide which contains at its 3' end a sequence which is sufficiently complementary to the 3' end of the second template. The second primer has a particular length and base composition to allow specific and efficient synthesis of the second and third DNA sequences, under the given conditions of ionic strength and temperature. In addition, the second primer contains the antisense sequence of a functional promoter and the antisense sequence of a transcription initiation site. This sequence, when used as a template for synthesis of the third DNA sequence, contains sufficient information to allow specific and efficient binding of a RNA polymerase and initiation of transcription at the desired site. The promoter sequence may be derived from the antisense strand of a functional promoter-. The transcription initiation site may be derived from the 5' terminal sequence of a natural RNA transcript. In a preferred embodiment, the 5'-terminal sequence of the second primer is AATTCTAATACGACTCACTATAGGGAG. This sequence contains the antisense sequence of the promoter and the antisense sequence of the transcription initiation site for T7 RNA polymerase. Alternatively, the transcription initiation site and Promoter for another phage RNA polymerase may be used. In addition, sequences which are unrelated to the promoter function may be included at the 5' end of the second primer or between the transcription initiation site and the sequence at the 3' end which hybridizes to the second template. It is contem¬ plated that the second primer may be composed partially or completely of nucleotides or nucleotide analogs other than natural deoxyribonucleotides.
All of the enzymes used- in this invention should meet certain practical specifications. Each enzyme or enzyme preparation should be free of deleterious deoxyribonuclease ("DNase") activities, such as the 5' or 3' exonuclease activities which are often associated with certain DNA polymerases and single-strand or double-strand specific exonuclease or endonucleases. Each enzyme or enzyme preparation should be free of deleterious ribonuclease- ("RNase") activities, with the exception of the preferred addition of a ribonuclease activity which is specific for hybrids of RNA and DNA (for example, ribonuclease H) . In addition, each enzyme should be reasonably active under the common reaction conditions which are used for the other enzymatic processes, and non- enzymatic processes, such as hybridizing oligonu- cleotide primers to the RNA or DNA templates.
The DNA-directed RNA polymerase which is used in this invention may be any enzyme capable of binding to a particular DNA sequence called a promoter and specifically initiating in vitro RNA synthesis at a defined initiation site within close proximity to the promoter. The promoter and the initiation site form part of the second primer. In addition the RNA polymerase should be capable of synthesizing several copies of RNA per functional copy of template in a reasonable amount of time. In the preferred embodiment, the bacteriophage T7 RNA polymerase is used. In addition other bacteriophage RNA polymerases, such as phage T3, phage XII, Salmonella phage sp6, or Pseudomonas phage gh-1 may be used. In another embodiment, other prokaryotic or eukaryotic DNA-directed RNA polymerase ma be used. It should be understood that if alternative RNA polymerases are used, then the necessary changes to the promoter and initiation sequences of the second primer should be made according to the template specificity of the particular RNA polymerase.
The RNA-directed DNA polymerase which is used in this invention may be any enzyme capable of synthesizing DNA from an oligodeoxyribonucleotide primer and a RNA template. In addition this enzyme may contain activities for DNA-directed DNA poly¬ merase and RNase H. In the preferred embodiment, the avian myoblastosis viral polymerase ("AMV reverse transcriptase") is used. In addition, the RNA- directed DNA polymerase could be from another retrovirus, such as Maloney murine leukemia virus. Alternatively, other eukaryotic RNA-directed DNA polymerases could be used.
The DNA-directed DNA polymerase which is used in this invention may be any enzyme capable of synthesizing DNA from an oligodeoxyribonucleotide primer and a DNA template. This enzyme should not contain either 5'- or 3'- exonuclease activities, which are associated with many types of DNA polymerase. In the preferred embodiment, the AMV reverse transcriptase is used. However, other DNA- directed DNA polymerases which naturally lack the 5'- or 3.- exonuclease activities could be used. These could include certain eukaryotic DNA polymerases, such as, DNA polymerase or B those DNA polymerases which could be isolated from a mammalian tissue, such as calf thymus. An otherwise unsuitable DNA poly- merase could be made useful by removing the unde¬ sirable exonuclease activities either by alteration of the DNA polymerase gene followed by expression of the altered polymerase in a suitable host cell, or by chemical modification of the DNA polymerase protein. Altered versions of DNA polymerase could be made from the Klenow fragment of E. coli DNA polymerase I or the bacteriophage T7 DNA polymerase. It should be understood that such alternative DNA-directed DNA polymerase activities are added to supplement the activity contributed by the RNA-directed DNA polymerase, since in the preferred embodiment, both RNA-directed and DNA-directed DNA polymerase activities are supplied by the same enzyme. The RNase H which could be used in this invention may be any enzyme capable of hydrolyzing a RNA which is annealed to a complementary DNA. This enzyme should not be capable of hydrolyzing single or double-stranded RNA or any DNA. In the preferred embodiment, the E. coli RNase H is used. In addition, other RNase H enzymes could be used, such as calf thy us RNase H. Since RNase H is an intrinsic activity of AMV reverse transcriptase, the E. coli RNase H will be supplemented in the preferred embodiment by the RNase H of AMV reverse trans¬ criptase. Alternatively, any other enzyme capable of separating the second template from the first template could be used. The above-mentioned enzymes and primers are mixed together in a reaction vessel which contains the necessary buffers and cofactors for both DNA and RNA synthesis. In addition, the ionic conditions and reaction temperature should be compatible with specific hybridization of the primers to the DNA and RNA templates as is known to those skilled in the art. The reaction mixture should be free of such agents which would interfere with the amplification process, specifically substances which could greatly inhibit the activity of the enzymes, interfere with the hybridizing of primers and templates, or degrade non-productively the nucleic acid intermediates and products.
The description of possible detection schemes may be useful to the application of the amplification process. It should be understood that schemes which may be used for detecting the nucleic acids which are synthesized in the amplification process are not limited to those described herein, and it is contemplated that other methods may be used.
In one embodiment, a labeled precursor may be added to the reaction mixture. Amplification is determined by quantitative or qualitative analysis of labeled products, which can be separated from the labeled precursor by using methods known in the art. A labeled precursor may be a ribonucleoside tripho- sphate for detecting RNA synthesis, or a deoxynu- cleoside triphosphate or an oligonucleotide primer for detecting DNA synthesis. The type of label may be a radioisotope or a useful chemical group, such as biotin, a chromophobe, a fluorophore, or a hapten which could bind to an antibody, or possibly a protein or an enzyme. The labeled products may be separated from the labeled precursors on the basis of solubility, charge, or size. In addition, the labeled DNA or RNA may be hybridized to a nucleic acid which contains a complementary sequence and which can be immobilized.
In another embodiment, the products of the amplification process may be bound to an immobilized support, hybridized to a nucleic acid probe containing a complementary sequence, and separated from the unhybridized nucleic acid probe which remains in solution. The products, DNA or RNA, may be bound directly to a solid support by any stable interaction, such as hydrophobic, electrostatic, or covalent interaction. In addition, the Products may contain certain chemical groups, for example, biotin, which may be incorporated into the products during the amplification process to allow binding to an immobilized protein, for example, avidin or streptavidin. In addition, the products may be hybridized to a nucleic acid which contains a complementary sequence and which can be immobilized. The nucleic acid probe would contain a complementary sequence which forms a sufficiently stable inter¬ action with a product of the amplification process to allow binding under the conditions of hybridization and sustained binding under the conditions used for removal of the unhybridized nucleic acid probe. In the preferred embodiment the complementary sequence would be derived from that part of the specific nucleic acid sequence which is between the sequences of the first primer and the second primer. The nucleic acid probe may be a single-stranded DNA or RNA, or a double-stranded DNA or RNA which can be made single-stranded, or an oligonucleotide which can be composed of deoxyribonucleotides and/or ribonu- cleotides. In addition, the nucleic acid probe may contain a chemical group which could covalently bind to a product DNA or RNA under the appropriate conditions. The nucleic acid probe may be labeled with a radioisotope or a useful chemical group, such as biotin, a chromophobe, a fluorophore, or a hapten which could bind to an antibody. In addition, the nucleic acid probe could be conjugated to a protein or enzyme, for example, a phosphatase or a peroxidase. In addition, the nucleic acid probe may contain sequences which would allow in vitro repli¬ cation of the probe. It is contemplated that the products of the amplification process may be analyzed by methods which are typically used for nucleic acids that have been enriched by molecular cloning techniques. In one alternative, the synthesis of a specific DNA sequence may be detected by digestion of the synthesized DNA with a restriction endonuclease, followed by electrophoretic separation and detection using methods known in the art. In another alternative, the sequence of amplified RNA may be determined by DNA synthesis using a RNA-directed DNA Polymerase, the first primer, and dideoxynucleoside triphosphates (Stoflet et al., 1988). In another alternative, the sequence of the amplified third template may be determined by RNA synthesis using the DNA-directed RNA polymerase used in the amplification process, and 3'-deoxyribonucleotide triphosphates (Axelrod & Kramer, 1985) . In another alternative, the amplified RNA may encode a polypeptide which could be translated, in vitro. The polypeptide product of the in vitro translation could be analyzed by using an antibody.
A sample suspected of containing or known to contain the specific nucleic acid sequence is added to the reaction mixture in the form of a template nucleic acid which is capable -of homogeneous and continuous amplification and may be any intermediate in the cycle set forth in Figure 1. In particular, the template nucleic acid may be a single-stranded RNA which contains at its 5' end a sequence which is sufficiently homologous to that which is at the 3' end of the second primer, and contains a sequence which is sufficiently complementary to the first primer. A template nucleic acid of this form would function as a first template in the amplification process. Alternatively, the template nucleic acid may be a single-stranded DNA which contains at its 3. end a sequence which is sufficiently complementary to at least the 3' end of the second primer, and contains a sequence which is sufficiently homologous to that which is at the 3' end of the first primer. A template nucleic acid of this form would function as a second template in the amplification process. Alternatively, the template nucleic acid may be-a double-stranded DNA, one strand of which contains at its 5' end the entire sequence of the second primer and contains a sequence which is sufficiently complementary to the first primer. The double-stranded DNA functions as a third template in the amplification process.
Although the preparation of a template nucleic acid is not part of the amplification process, the description of possible schemes for generating template nucleic acids may be useful to the application of the amplification process. .It should be understood that the schemes which may be used for obtaining the template nucleic acid are not limited to the alternatives which are described herein, and it is contemplated that other methods may be used.
In one alternative, a template nucleic acid which could function as a first template could be a naturally occurring RNA or a RNA fragment which could be generated from a larger RNA molecule by using site specific hydrolysis methods known in the art (Shibahara et al., 1987).
In another alternative, a template nucleic acid which could function as a second template could be generated from a double-stranded DNA by digestion with a restriction endonuclease which has a site immediately flanking the sequence which is sufficiently complementary to the 3' end of the second primer. The resulting double-stranded DNA fragments could then be made single-stranded by using chemical or thermal denaturation methods. In another alternative, a template nucleic acid which could function as a second template could be generated from a single-stranded DNA or RNA to which has been hybridized an oligonucleotide which is capable of blocking DNA synthesis. This blocking oligonucleotide may contain a chemical group, which could covalently bind to the template, under the appropriate conditions. DNA synthesis from this blocked template using the first primer could result in a synthesized DNA with the same 3' end as the second template. If the original template is RNA, then the resulting DNA-RNA hybrid may be used directly as a template nucleic acid. If the original template is DNA, then the resulting . copy of the second template could then be separated from the original template by using chemical or thermal denaturation methods.
In another alternative, a template nucleic acid which could function as a third template could be generated from a single-stranded DNA or RNA by DNA synthesis from the DNA or RNA template using the second primer. The resulting synthesized DNA could then be separated from the original template by using chemical or thermal denaturation methods. In addition, a RNA template could be hydrolyzed by using chemical or enzymatic methods. The resulting single- stranded DNA has the sequence of the second primer covalently attached to its 5' end and contains a sequence which is sufficiently complementary to the first primer. This single-stranded DNA could be converted to a transcriptionally functional double- stranded DNA by hybridizing the first primer to the single-stranded DNA, and by synthesizing a DNA sequence which is covalently attached to the first primer and complementary to the single-stranded DNA. In a further alternative, a single-stranded DNA or RNA template could be obtained from a double- stranded DNA, double-stranded RNA or a DNA-RNA hybrid by using chemical, thermal, or possibly enzymatic methods. Then, by using one of the alternative schemes proposed above, the resulting single-stranded DNA or RNA could then be used to generate a template nucleic acid which could function as a first, second or third template. In addition, an alternative scheme involving the first primer and one strand of nucleic acid, and another alternative scheme involving the second primer and the other (complementary) strand of the nucleic acid may be used concurrently to generate template nucleic acids.
It has been discovered, unexpectedly, that the addition of both DMSO and BSA to the reaction medium significantly increases the sensitivity and reproducibility of the above-described amplification process. Target copy numbers in the range from 1 to 106 are detectable and isolateable using the presently claimed invention. DMSO at final concentrations in the range between 0% and 30% and BSA at final concentrations in the range of from 5 lg/ml to 2500 lg/ml are useful for enhancing the sensitivity and reproducibility of the amplification process. In a preferred embodiment, a BSA concentration of the range from 50 lg/ml to 500 lg/ml and a DMSO concentration in the range from 15% to 25% are used. In another preferred embodiment, a BSA concentration of the range from 100 lg/ml to 300 lg/ml and a DMSO concentration in the range from 15% to 25% are used.
The use of DMSO and BSA in the amplification reaction medium provides enhanced sensitivity and reproducibility over the use of the reaction medium without DMSO and BSA, however the reaction medium alone is sufficient for the detection and isolation of targeted nucleic acid sequences. The use of DMSO and BSA in the reaction medium is suitable for increasing the amplification level at least 10 fold over that of the reaction medium alone. In a preferred embodiment the amplification using DMSO and BSA according to the presently claimed invention is increased by at least 100 fold. In another preferred embodiment the amplification using DMSO and BSA according to the presently claimed invention is increased by at least 1000 fold. In still another preferred embodiment the amplification using DMSO and BSA according to the presently claimed invention is increased by at least 10,000 fold. In another preferred embodiment the amplification using DMSO and BSA according to the presently claimed invention is increased by at least 106 fold. In another preferred embodiment the amplification using DMSO and BSA according to the presently claimed invention is increased by at least 107 fold. In another preferred embodiment the amplification using DMSO and BSA according to the presently claimed invention is increased by at least 108 fold. Alternatively, the use of other specific enhancement chemicals (SPCs) besides DMSO and BSA could be used according to the present invention that confer increases in amplification level over that of the reaction medium without SPCs.
It has also been discovered, unexpectedly, that the addition of DMSO in the range of 2 to 2-0 percent to the reaction medium of the presently claimed amplification process has improved the reproducibility of the process, as demonstrated, for example, in Figure 3. The use of DMSO alone, however, is also shown to decrease the amplification level starting between 15% and 20% DMSO in the reaction medium.
MATERIALS AND METHODS Materials
Oligonucleotides were synthesized using an Applied Biosystems 380A DNA synthesizer. Columns, phosphoramidites, and reagents used for oligonu- cleotide synthesis were obtained from Applied Biosystems, Inc. through Technical Marketing Associates. Oligonucleotides were purified by polyacrylamide gel electrophoresis followed by DEAE cellulose chromatography. The radioisotope [-32p] UTP (800 Ci/mmol) was from Amersham. Enzymes for digesting and ligating DNA were purchased from New England Biolabs, and used according to the supplier's recommendations. Preparations containing the large fragment of DNA polymerase 1 (Klenow) were also purchased from New England Biolabs. RNasin and T7 RNA polymerase from Promega Biotec were purchased through Bio/Can Scientific Inc. Reverse transcriptase and RNase H were obtained from Pharmacia. The supplier for proteinase K was Boehringer Mannheim Canada. E. coli strain HB101 (ATCC 33694) was used for all transformations. The plasmid pUC19 (Norrander et al. , 1983) was purchased from Bethesda Research Laboratories.
Isolation of DNA and sequencing E. coli transformants were grown on YT medium (Miller, 1972) containing 50 lg/ml ampicillin. Plasmid DNA was purified by a rapid boiling method (Holmes and Quigley, 1981) . DNA fragments and vectors used for all constructions were separated by electrophoresis on low melting point agarose, and purified from the molten agarose by phenol extraction and ethanol precipitation (Maniatis et al., 1982). Plasmid DNA was sequenced using a modification (Hattori et al., 1985) of the dideoxy method (Sanger et al., 1977). Reactions were run using the -20 universal primer (New England Biolabs) .
TCA precipitation
Aliquots (5ml) of amplification reactions were quenched in 20ml 10 mM EDTA and placed on ice until all time point samples had been collected. The quenched samples were then applied to glass filter discs, and immediately dropped into ice-cold 5% trichloroacetic acid ("TCA") - 1% sodium pyropho- sphate for 10 in with occasional mixing. Two 5 min
washes with ice-cold 5% TCA were followed by two additional washes with 95% ethanol and lyophilization to dryness. Radioactivity was determined in a liquid scintillation counter. Polyacrylamide gel electrophoresis
Samples (1 to 6 ml) were mixed with 4-5 ml formamide dye (90% deionized formamide, 10 mM TrisHCl
(PH 8.0), 1 mM EDTA, xylene cyanol and bromophenol blue) , and applied to a pre-run 12-cm- long 7% denaturing polyacrylamide gel. Gels were run at 350 volts until the bromophenol blue dye had reached the bottom. In some cases the gels were fixed and dried prior to autoradiography. Fixing involved a 15 min wash in 10% methanol- 7% acetic acid. The profiles of the RNA products separated by this procedure were visualized by autoradiography at room temperature.
Example 1: Design and Synthesis of Oligonucleotides For a Gag Test System A synthetic DNA sequence (Figure 2A) was designed to include an EcoRI site, a T7 phage promoter, a sequence required for initiation of transcription by T7 RNA polymerase and a 19 bp hybridization region (hybridization region 1) . The 47 b antisense strand oligonucleotide (T7H1.GAG) involved in the cloning of these elements also serves as the first primer. Hybridization region 2 lies 53 bp away from hybridization region 1 and is 20 bp in length. The primer made to this region (H2.GAG) is a 20 b oligonucleotide duplicate of the sense strand and is not used for cloning. The sequence spanning and including the hybridization regions is a 92 bp segment of the gag portion of the HTLV-III genome, the causative agent of AIDS. This particular gene segment was chosen because the primers were predicted to hybridize efficiently and because the distance between the two hybridization regions was relatively short. In addition, a Xbal site was placed at the end of the sequence for cloning ease. The gag test sequence test sequence also contains Sphl and Pstl sites which can aid in the screening of recombinants. A total of four oligonucleotides were used in the cloning of this fragment. Nl.GAG, used in the construction of both the gag test and the gag2 test sequence, completes the antisense strand and is used only in the cloning process. Similarly, T74.PRO is the sense strand component of the T7 promoter. N2.GAG however, was used in the construction of both test fragments, and has also been used as an intermediate (second template) in two steps of the amplification cycle. The entire cloned gag test fragment can also represent an intermediate of the amplification cycle (third template) . Once cloned into an appropriate vector the gag test. DNA could be transcribed by T7 RNA polymerase to produce a RNA fragment (first template) useful as an amplification intermediate involved in three of the steps. In addition, T7H1.GAG and H2.GAG serve as primers in the test system.
The gag2 test synthetic DNA fragment (Figure 2B) does not contain the T7 promoter, but the remainder of the sequence is identical to the gag test sequence and therefore, both Nl.GAG and N2.GAG were involved in its construction. The oligonu¬ cleotide required to complete the antisense strand is called HI.GAG. Once cloned, the gag2 test fragment can be used as a template for testing amplification, using a DNA restriction fragment as template nucleic acid. Example 2: Construction of the Gag Test Plasmids
The oligonucleotides T74.PRO and Nl.GAG (2 mg each) , were phosphorylated separately in 20 ml reactions containing 70 mM Tris-HCl (PH 7.6), 10 mM MgCl2, 5 mM DTT, 0.5 mM ATP and 5 units T4 polynucleotide kinase, at 37°C for 30 min. Phosphorylated T74.PRO and Nl.GAG (10 ml of each) were mixed with 1 mg each of unphosphorylated T7H1.GAG and N2.GAG, and 3 ml 100 mM Tris-HCl (PH7.8) - 500 mM NaCl, in a final volume of 29 ml for the gag test assembly. The gag2 test mixture contained 10 ml phosphorylated Nl.GAG, 1 mg each of unphosphorylated HI.GAG and N2.GAG, and 1.8 ml 100 mM Tris-HCl (PH 7.8) - 500 mM NaCl, in a final volume of 18 11. The oligonucleotide mixtures were hybridized separately by placing them at 90%C for 10 min followed by slow cooling to room temperature for 10 to 16 h 60 ml reactions containing 50 mM Tris-HCl (pH 7.8), 10 mM MgCl2, 20 mM DTT, ImM ATP and 50 lg/ml BSA were used to ligate the hybridized oligonucleotides together. 400 units T4 DNA ligase was added to the gag test reaction and it was incubated at 15%C for 2h while the gag2 test reaction was incubated for 14 to 16 h with 200 units T4 DNA ligase. The isolated and purified synthetic DNA segments were mixed with plasmid pUC19 which had been linearized by digestion at restriction enzyme sites within the polylinker region. T4 DNA ligase was used to ligate the gag test sequence into the EcoRI- Xbal fragment of pUC19, while the gag2 test sequence was ligated to the Smal-Xbal fragment. Plasmid DNA from transformants obtained after these reactions were used to transform E. coli were screened by restriction analysis, and the final plasmids (PGAG.TEST and pGAG2.TEST) were determined to be correct by sequence analysis.
Example 3: Effect of Primer Concentration on RNA Amplification
The reaction mixtures (25 ml) which were used to amplify RNA transcribed from the gag test oligonucleotides contained 50 mM Tris-HCl (PH 8.45), 6 mM MgCl2, 40 mM KC1, 10 mM dithiothreitol, 0.5 mM NTP (ATP, CTP, GTP, UTP) , 1 mM dNTP (dATP, dCTP, dGTP dTTP) , 20 units RNasin, 10 units T7 RNA polymerase, 10 units reverse transcriptase, 0.4 units RNase H, and 10 mCi [-32p] UTP. Two of the reactions contained 0.5 ng (0.015 pmoles) N2.GAG while the other two reactions contained no template. The primers T7H1.GAG and H2.GAG were each added at final concentrations of 3.4 mM or 0.34 mM to reactions- containing either N2.GAG or no template. The reactions were incubated at 42 C for 2 h. Total synthesis of RNA was monitored by determining the incorporation of TCA insoluble cpm at 30 min. intervals. The effect of the primer concentration on template- dependent RNA synthesis is shown in Table 1. Aliquots of each reaction, containing equal amounts of synthesized RNA, were analyzed by PAGE and autoradiography (Figure 3, lanes 1-4 numbered the same as the reactions) .
Table 1: RNA amplification from N2.GAG after 2 h. Concentration of Template RNA Synthesized Reaction each primer (mM) (ng) (mg)
3.4 0.5 2.8 2 3 . 4 - 2 . 1
3 0. 34 0 . 5 1. 8
4 0 . 34 - 0 . 7
It was found that while reaction 1 resulted in the greatest incorporation of isotope, the no template control, reaction 2, was also high (73% of reaction 1) and produced a very similar electrophoretic profile. It would therefore appear that in the presence of high primer concentrations, a RNA transcript of identical size to that expected in amplification is produced in the absence of any template. Results using samples with a 10-fold decrease in primer concentration were dramatically different. The amount of RNA produced in reaction 3 was 2.6 times that of reaction 4, but while virtually all of the transcript was found in a single band of the expected size in reaction 3, no fragments greater than 60 to 70 b were found in reaction 4. Primer concentration therefore plays a significant role in the accuracy and efficiency of RNA amplification.
A control RNA transcript used to represent the size of fragment expected to be generated by the amplification system (lane 0 of Figure 3) was prepared by transcription from the test plasmid. pGAG.TEST was linearized by digestion with Xbal, proteinase K treated (Maniatis et al., 1982), phenol extracted and ethanol precipitated. T7 RNA polymerase was then used according to the supplier's recommendations to transcribe 0.5 mg of the resulting fragment in a 25 ml reaction mixture containing 10 mCi [ -32p] UTP. Example 4: Effect of Template Concentration on RNA
Amplification
The standard 50 ml reaction mixture used to amplify RNA transcribed from the gag test oligonu- cleotides contained 0.34 mM T7H1.GAG, 0.34 mM
H2.GAG, 50 mM Tris-HCl (PH 8.45), 6 mM MgCl2, 40 mM
KC1, 10 mM DTT, 0.5 mM NTP, 1 mM dNTP, 40 units
RNasin, 20 units T7 RNA polymerase, 20 units reverse transcriptase, 0.8 units RNase H and 10 - 20 mCi [- 32p] UTP. The reactions contained amounts of template (N2.GAG) varying from 1 ng to 1 fg. One reaction contained no template. The reactions were incubated at 42%C for 3h, during which total synthesis of RNA was monitored by determining the incorporation of TCA insoluble cpm at 30 min intervals. As indicated in Table 2, total RNA synthesis was higher than the no template control for all template concentrations tested. Although the total synthesis of RNA generally decreased with decreasing template concentration, this decrease in synthesis was not quantitative. Thus, the degree of amplification of RNA per starting template generally increased with decreasing template concentration. Amplification of 8 x 108 fold was achieved by synthesis of 0.8 mg RNA from 1 fg of N2.GAG template. One fg of the 102-b N2.GAG oligonucleotide represents approximately 2 x 104 molecules.
Table 2: RNA amplification from N2.GAG after 3h. RNA
Synthesized Fold Reaction Template (mg. amplification
Figure imgf000041_0001
The RNA which was synthesized after a reaction time of 3h was analyzed by PAGE, for each template concentration (Figure 4 lanes 1-8, numbered the same as the reactions) . A major band representing a RNA of about 100 b was present in all reactions except the ones containing 1 fg template and no template. The reaction containing 1 fg template did not have much of this 100 b product at 3 h but the overall RNA synthesis was higher than and qualitatively different from the no template reaction.
Example 5: Hybridization Analysis of RNA Products
Amplification reactions containing amounts of
N2.GAG template varying from 1 pg to 0.1 fg were performed following the teaching of example 4, except the radio labeled UTP was omitted. The reactions were incubated at 42%C for 3 h. Aliquots were removed from each reaction at 30 min intervals and applied to a nylon membrane (Amersham) . The nucleic acids that were contained in these reaction aliquots were fixed by exposure to ultraviolet light. The membrane was prehybridized at 50 C for- 1 h in prehybridization buffer consisting of a final concentration of 50% v/v formamide, 5 X SSC and 5 X Denhardt's solution (Maniatis et al, 1982; Southern et al, 1975) at a volume equivalent to 5 mis of solution per 100 cm2 and hybridized with a radio labeled probe with a specific activity of 106 cpm/ml of hybridization solution. Hybridization was performed at 50°C for 16 h in 50% formamide, 5 X SSC and 5 X Denhardt's solution (Maniatis et al, 1982; Southern et aJL , 1975) . The radio labeled probe was the synthetic o l igonuc leot ide 5'GATCTGGGATAGAGTACATCCA 3' which had been labeled at the 5' end using T4 polynucleotide kinase and (- 32p) ATP. After the membrane was washed at 50°C in a series of 2, 3 min. washes consisting of 2 X SSC, 0.1% v/v SDS and 0.2 X SSC, 0.1% v/v SDS (Southern et al, 1975; Maniatis et al, 1982; Szostak et al, 1979) .
Figure 5 shows the results of the hybridi¬ zation analysis performed on the amplification reactions, containing various amounts of N2.GAG template, which were sampled at different times of incubation.
Each column of Figure 5 represents a different time point (1, 30 min; 2, 60 min; 3, 90 min; 4, 120 min; 5, 150 min; 6, 180 min) and each row represents a different amount of added N2.GAG template (1, Ipg; 2, 100 fg; 3, 10 fg; 4, 1 fg; 5, 0.1 fg; 6, no template). Amplification of nucleic acids which hybridized to the labeled probe were observed for rows 1-3 (1 pg - 10 fg) , however the hybridization to specific nucleic acids in rows 4 - 5 (1 fg, 0.1 fg) was not higher than row 6 (no template) . The apparent non-specific binding of labeled probe in row 6 seems to be related to DNA or RNA synthesis since the hybridization signal increases with increasing time.
Example 6: Use of DNA Restriction Fragment as Template.
The plasmid pGAG2.TEST was digested with Mspl, treated with proteinase K, purified by phenol extraction and ethanol precipitation, and denatured by boiling for 5 min. Amplification reactions were performed and analyzed following the teaching of Example 4, except the Mspl digested pGAG2.TEST was used as a template instead of the N2.GAG oligonucleotide. The amounts of plasmid added to each reaction varied from 55 ng to 5.5 pg, and no template. To simulate additional DNA which would be present in an actual sample, alternate reactions contained 1 ng of calf thy us DNA which had been similarly digested, purified and denatured. After a 3 h incubation at 42°C, the synthesis of RNA was determined by TCA precipitation and PAGE analysis. As indicated in Table 3, total RNA synthesis was higher than the no template controls for all template concentrations tested. The degree of amplification was calculated based on RNA synthesis from the actual template which was 1.8% of the total plasmid DNA.
The total RNA synthesis (degree of amplification) from a particular initial level template concentration was consistently lower for the restriction fragment (Table 3) as compared to that for the synthetic oligonucleotide template (Table 2) . This could be due to competition with the complementary strand of the restriction fragment template under the conditions used.
Table 3: RNA Amplification From Mspl-Digested pGAG2.TEST RNA Fold
Reaction Template* Synthesized** amplification**
1 55.0 ng [ 1 ng] 3.65 3.7 x 103
2 (4.05) (4.1 X 103)
3 5.5 ng [100 pg] 3.54 3.5 X 104 4 (3.16) (3.2 X 104)
5 550.0 pg [ 10 pg] 2.29 2.3 x 105
6 (2.79) (2.8 X 105)
7 55.0 pg [ 1 pg] 2.62 2.6 x 106
8 (0.67) (0.7 X 106) 9 5.5 pg [100 fg] 1.37 1.4 X 107
10 (2.26) (2.3 X 107)
11 1.25
12 (0.08)
* Numbers in brackets indicate equivalent amounts of N2.GAG.
** Numbers in parentheses indicate RNA synthesis in presences of 1 mg Mspl-digested calf thymus DNA.
The RNA which was synthesized after a reaction time of 3h was analyzed by PAGE (Figure 6, lanes 1-6, 11 and 12, numbered the same as the reactions) . The major band representing a RNA of about 100 b was present in reactions (lanes) 1-6 but aosent in the no template reactions (lanes 11 and 12) . The RNA in lane 0 was a standard, which was prepared following the teaching of Example 3. There was no apparent qualitative difference in the synthesized RNA either with (lanes 2, 4 and 6) or without (lanes 1, 3, and 5) the additional of 1 lg of Mspl-digested calf thymus DNA.
Example 7: Use of RNA Fragment as Template The plasmid pGAG.TEST is digested with Xbal, treated with proteinase K, and purified by phenol extraction and ethanol precipitation. RNA of a sequence complementary to N2.GAG is transcribed from the linearized pGAG.TEST plasmid using T7 RNA polymerase. The resulting RNA is purified by digestion with DNase (ProMega BioTec, Madison, I) , followed by phenol extraction and ethanol precipitation. The purified RNA is used as a template for amplification reactions following the teaching of Example 5. Amounts of RNA are added to each reaction and vary from 55 ng to 5.5 pg, and no template. After a 3 h incubation at 42 C, the synthesis of specific RNA is determined by hybridization to labeled oligonucleotide probe, following the teaching of Example 5.
Example 8: Use of Ribosomal RNA as a Template
Amplification of Internal Sequences
Two primers are used for amplifying RNA sequences which are complementary to a part of JL. coli 16S ribosomal RNA (rRNA) . One of these primers
T7HIRIB3.PR2 (AATTCTAATACGACTCACTATAGGGAGTA-
TTACCGCGGCTGCTG) contains the antisense strand of the T7 promoter and initiation site, and a sequence which is complementary to 16S rRNA. The other RIB8.PR (AATACCTTTGCTCATTGACG) is complementary to the DNA synthesized by using T7H1RIB3.PR2 as a primer and 16S rRNA as a template. A third synthetic oligonucleotideRIB5.PR (AGAAGCACCGGCTAAC) which allows detection of amplification is complementary to the RNA products of the amplification reaction, which are in turn complementary to the original rRNA template.
Reaction mixtures (25 ml) contain 50 mM Tris- HCl (PH 8.45), 6 mM MgCl2, 40 mM KC1, 10 mM DTT, 0.5 mM NTP, 1 mM dNTP, 20 units RNasin, 10 units T7 RNA polymerase, 10 units AMV reverse transcriptase, 0.4 units RNase H, 0.34 lm T7H1RIB3.PR2, and 0.34 lm RIB8.PR.
Amounts of E_j_ coli rRNA varying from 50 ng to 50 fg are added to the reactions. One reaction contains no added rRNA. The reactions are incubated at 42% for 3 h, during which aliquots are removed at 30, 60, 120, and 180 minutes. The reaction aliquots are quenched, fixed to a nylon membrane, and hybridized to the 32p 5'-end labeled RIB5.PR probe, following the teaching of Example 5.
Example 9: Use of Ribosomal RNA as a Template Amplification of 5'-Terminal Sequences
Two primers are used for amplifying RNA sequences which are homologous to a part of E_j_ coli 16S rRNA. One of these primers RIB12.PR
(TTACTCACCCGTCCGCC) is complementary to 16S rRNA.
The other T7H1RIB5.PR (AATTCTAATACGACTCACTATAGGGA-
GAAATTGAAGAGTTTGATCAT) is complementary to the 3' end of the DNA synthesized by using RIB12.PR as a primer and 16S rRNA as a template. A third synthetic oligonucleotide RIB11.PR (GTTCGACTTGCATGTGTTAGGCCTGCCGCCAGCGTTCAATCTGAGCC) which allows detection of amplification is complementary to both the RNA products of the amplification and the original rRNA template. The amplification reactions for rRNA and detection of the synthesized RNA are performed following the teaching of Example 8, except that T7H1RIB5.PR and RIB12.PR are used as primers (in place of T7H1RIB3.PR2 and RIB8.PR) and RIB11.PR is used as an oligonucleotide probe (in place of RIB5.PR) .
Although preferred embodiments of the invention have been described in detail, it will be understood by those skilled in the art that varia¬ tions may be made thereto without departing from either the spirit of the invention or the scope of the appended claims.
Example 10: Specific Enhancement of Nucleic Acid Amplification Using Dimethylsulfoxide (DMSO) and Bovine Serum Albumin (BSA) . The nucleic acid amplification process, as exemplified in the above examples, was used with the following bacterial strains, plasmids and RNA template were used. A pGEM-3-pol plasmid and an pUC-pol plasmid each containing a 1450 base pair restriction fragment from HIV 1 (strain HxB2) were constructed from a BamHlEcoRl subclone obtained as a gift from Dr. R. Gallo (NCI, NIH, Bethesda, Maryland) . This restriction fragment contains a portion of the HIV1 gag gene and the majority of the HIV l pol gene. E. coli strain HB101 was transformed with either the pGEM-3-pol plasmid on the pUC-pol plasmid. Plasmid DNA was prepared by methods described in Maniatis et al. MOLECULAR CLONING - A LABORATORY MANUAL p. 86 Cold Spring Harbor Laboratory.
To obtain pol-RNA template, the pGEM-3-pol plasmid was linearized with EcoRl, extracted with phenol-chloroform, and precipitated in ethanol. EcoRl cuts uniquely at the end of the inserted pol DNA. Purified DNA was transcribed using SP6 RNA polymerase (a suitable RNA polymerase is available from Promega, Madison, WI) according to the method of Melton et al. Nucleic Acids Res 12:7035 (1984). 5 units of RNase-free DNase I (a suitable DNase I is also available from Promega, Madison, WI) was added and the mixture incubated at 37#C for 15 minutes. The RNA product was extracted with phenol-chloroform and precipitated with ethanol. The yield of RNA was determined spectrophotometrically.
The inclusion of DMSO a final concentration of between 0% and 20% to the reaction mixture used for amplification, as shown in Figure 7, and resulted in a decrease of non-specific products (NSP) from the non-productive side reactions. Figure 8 shows that to types of NSPs designated PI:PI and P1:P2 were eliminated from the non-target sequence containing samples with the use of 15% DMSO in the reaction medium.
The presence of DMSO in the reaction medium at 15% had the further effect of improving reproducibility of sample run through the claimed amplification process as demonstrated in the slot- blot shown in Figure 9. 103 and 104 copies of a target sequence were used and the DMSO (indicated by "+") improved the reproducibility as shown by the 5 bands in each lane, but also the sensitivity as shown by comparison of the "+" and "-" lanes under 103 copies of target sequence.
When DMSO and BSA (a suitable BSA is available from Boehringer Mannheim, Indianapolis, IN, as special quality for molecular biology) were both used in the reaction medium, the sensitivity and reproducibility were significantly increased, as exemplified in Figures 10A and 10B, which show an increase in amplification of 104 copies of a target sequence and both and increase in sensitivity and reproducibility, respectively. Concentrations of 50 lg/ml and 100 lg/ml BSA were used with a final concentration of DMSO of 15%. An increase in amplification of at least 100 fold was obtained over the reaction medium without DMSO and BSA, and higher increases were suggested up to 108 fold and detection and isolation of as low as a single copy of target were also suggested by the results. The amplification of both RNA and DNA relative to the presence and absence of DMSO and BSA and to relative to copy number of a target sequence is shown in the slot-blot autoradiogram depicted in Figure 11. Both RNA and DNA were amplified with increase sensitivity and reproducibility using DMSO and BSA in the reaction mixture.

Claims

What Is Claimed Is:
1. A process for amplifying a nucleic acid sequence, at a relatively constant temperature and without serial addition of reagents, comprising the steps of:
(A) providing a single reaction medium containing a first oligodeoxynucleotide primer that hybridizes to a 3'-end of an RNA first template and a second oligodeoxynucleotide primer that hybridizes to a 3'-end of a DNA second template, said second primer containing an antisense sequence of a functional promoter; an RNA-directed DNA polymerase; a DNA-directed DNA polymerase; a DNA-directed RNA polymerase; a ribonuclease that hydrolyzes RNA of an RNA-DNA hybrid without hydrolyzing single- or double-stranded RNA or DNA; and ribonucleoside and deoxyribonucleoside triphosphates; and at least one of an alkylated sulfoxide and a suitable carrier protein,
(B) adding to said reaction medium one or more of the following molecules:
(i) a single-stranded RNA molecule; (ii) a single-stranded DNA molecule comprising
(a) a primary DNA sequence that hybridizes at its 3'-end to said first primer, wherein the 5'- end of said primary DNA contains the sequence of said second primer; or
(b) a second template that hybridizes at its 3'-end to the 3'-end of said second primer, wherein said second contains the sequence of said first primer;
(iii) a double-stranded DNA comprising a duplex of
(a) the sequence of said second template and, covalently attached to the 3'-end thereof, a sense sequence of a functional promoter; and
(b) a DNA sequence which contains at its 5'-end the sequence of said second primer; (iv) an RNA-DNA hybrid molecule comprising a duplex of
(a) said RNA sequence and said primary DNA sequence; or
(b) said first template and said second template,
(C) generating a first template from any of the molecules specified in paragraph (B) above using one or more of the ingredients contained in said medium, the 5'-end of said first template containing the 3'-end sequence of said second primer, whereby said first template initiates in said medium a cycle comprising the steps of:
(i) hybridizing said first primer to said first template; (ii) forming an RNA-DNA hybrid by action of said RNA-directed DNA polymerase, said RNA-DNA hybrid comprising a first DNA sequence covalently attached to the 3'-end of said first primer to form a second template; (iii) hydrolyzing RNA of said RNA-DNA hybrid with said ribonuclease such that said second primer can bind to said second template; (iv) hybridizing said second template to said second primer; (v) forming a third template by action of said DNA-directed DNA polymerase, said template comprising a double-stranded, functional promoter and
(a) said second primer,
(b) a second DNA sequence- covalently attached to the 3'-end of said second primer, said second DNA sequence being complementary to at least a portion of said second template,
(c) said second template, and
(d) a third DNA sequence that is covalently attached to the 3'-end of said second template, said third DNA sequence being complementary to the 5'-end of said second primer, then
(vi) producing a plurality of first templates by action of said RNA polymerase on said third template, and thereafter
(D) detecting any one from the group consisting of said first template, said second template, said third template and said RNA-DNA hybrid. 2. A process according to Claim 1, wherein step (D) comprises monitoring the concentration of said plurality of first templates.
3. A process as set forth in Claim 1, wherein said alkyl sulfoxide is DMSO and wherein said suitable carrier protein is BSA.
4. A process according to Claim 1, wherein said alkyl sulfoxide is provided at a concentration in the range from 0-30% and said suitable carrier protein is provided at a concentration in the range of 5-2500 lg/ml.
5. A process according to Claim 1, wherein said alkyl sulfoxide is provided at a concentration in the range from 0-30% and said suitable carrier protein is provided at a concentration in the range of 50-500 lg/ml.
. 6. A process according to Claim 1, wherein said alkyl sulfoxide is provided at a concentration in the range from 15-25% and said suitable carrier protein is provided at a concentration in the range of 50-500 lg/ml.
7. A process according to Claim 1, wherein the amount of said alkyl sulfoxide and said suitable carrier protein is sufficient to increase said amplification over said amplification without added alkyl sulfoxide or suitable carrier protein at least 10 fold. 8. A process according to Claim 1, wherein the amount of said alkyl sulfoxide and said suitable carrier protein is sufficient to increase said amplification over said amplification without added alkyl sulfoxide or suitable carrier protein at least 100 fold.
9. A process according to Claim 1, wherein the amount of said alkyl sulfoxide and said suitable carrier protein is sufficient to increase said amplification over said amplification without added alkyl sulfoxide or suitable carrier protein at least 1000 fold.
10. A process according to Claim 1, wherein the amount of said alkyl sulfoxide and said suitable carrier protein is sufficient to increase said amplification over said amplification without added alkyl sulfoxide or suitable carrier protein at least 104 fold.
11. A process according to Claim 1, wherein the amount of said alkyl sulfoxide and said suitable carrier protein is sufficient to increase said amplification over said amplification without added alkyl sulfoxide or suitable carrier protein at least 10s fold.
12. A process according to Claim l,. wherein the amount of said alkyl sulfoxide and said suitable carrier protein is sufficient to increase said amplification over said amplification without added alkyl sulfoxide or suitable carrier protein at least
106 fold.
13. A process according to Claim 1, wherein the amount of said alkyl sulfoxide and said suitable carrier protein is sufficient to increase said amplification over said amplification without added alkyl sulfoxide or suitable carrier protein at least
107 fold.
14. A process according to Claim 1, wherein said amplification is increased over said amplification without added alkyl sulfoxide or suitable carrier protein at least 108 fold.
15. A process as set forth in Claim 1, wherein said ribonuclease comprises Eεcherichia coli ribonuclease H and ribonuclease H of avian myoblastosis viral polymerase.
16. A process as set forth in Claim 1, wherein said ribonuclease is calf thymus ribonuclease H.
17. A process as set forth in Claim 1, wherein said first or said second oligonucleotide primer is bound reversibly to an immobilized support.
18. A process as set forth in Claim 1, wherein said DNA-directed RNA polymerase is a bacteriophage RNA polymerase and wherein further said antisense sequence of a functional promoter binds said bacteriophage RNA polymerase.
19. A process as set forth in Claim 18, wherein said DNA-directed RNA polymerase is T7 RNA polymerase and wherein further said antisense sequence of a functional promoter binds said T7 RNA polymerase.
20. A process as set forth in Claim 19, wherein said antisense sequence of a functional promoter comprises the nucleotide sequence
AATTCTAATACGACTCACTATAGGGAG.
21. A process as set forth in Claim 18, wherein said DNA-directed RNA polymerase is phage T3 polymerase and wherein further said antisense sequence of a functional promoter binds said phage T3 polymerase.
22. A process as set forth in Claim 18, wherein said DNA-directed RNA polymerase is phage ll polymerase and wherein further said antisense sequence of a functional promoter binds said phage φll polymerase.
23. A process as set forth in Claim 18, wherein said DNA-directed RNA polymerase is Salmonella phage sp6 polymerase and wherein further said antisense sequence of a functional promoter binds said phage sp6 polymerase. 24. A process as set forth in Claim 18, wherein said DNA-directed RNA polymerase is Pseudomonas phage gh-1 polymerase and wherein further said antisense sequence of a functional promoter binds said phage gh-1 polymerase.
25. A process as set forth in Claim 1 , wherein said RNA-directed DNA polymerase is a retroviral reverse transcriptase.
26. A process as set forth in Claim 25, wherein said retroviral reverse transcriptase is an avian myoblastosis viral polymerase.
27. A process as set forth in Claim 25, wherein said retroviral reverse transcriptase is a Moloney murine leukemia viral polymerase.
28. A process as set forth in Claim 1, wherein all DNA polymerases in said reaction medium lack exonuclease or endonuclease activity.
29. A process as set forth in Claim .1, wherein said DNA-directed DNA polymerase is an avian myoblastosis viral polymerase.
30. A process as set forth in Claim 1, further comprising detecting the presence of the nucleic acid sequence to be amplified by a comparison between an amount of amplification of a first sample suspected to contain the nucleic acid sequence to be amplified and an amount of amplification of a second sample in which the nucleic acid sequence to be amplified is not present.
31. A process as set forth in Claim 1, further comprising detecting the presence of the nucleic acid sequence to be amplified with a probe.
32. A process as set forth in Claim 1, further comprising detecting the presence of the nucleic acid sequence to be amplified using restriction endonucleases and electrophoretic separation.
33. A process as set forth in Claim 30, further comprising detecting the presence of the nucleic acid sequence to be amplified using restriction endonucleases and electrophoretic separation.
36. A process as set forth in Claim 30, further comprising detecting the presence of the nucleic acid sequence to be amplified with a probe.
37. The specific nucleic acid sequence amplified by the process set forth in Claim 1.
38. A process according to Claim 1, wherein step (B) comprises adding said single-stranded RNA molecule to said reaction medium.
39. A process according to Claim 1, wherein step (B) comprises adding said single-stranded DNA molecule to said reaction medium. 40. A process according to Claim 1, wherein step (B) comprises adding a double-stranded DNA molecule to said reaction medium.
<____,
41. A process according to Claim 1, wherein step (D) comprises monitoring the concentration of said second template.
42. A process according to Claim 1, wherein step (D) comprises monitoring the concentration of said third template.
43. A process according to Claim 1, wherein step (D) comprises monitoring the concentration of said RNA-DNA hybrid.
43. A process according to Claim 1, wherein step (D) comprises maintaining said conditions for a period of time between 30 minutes and 4 hours.
. 44. A process according to Claim 1, wherein an RNA polymerase recognizes said antisense. sequence of a functional promoter such that transcription is initiated.
45. A process according to Claim 1, wherein said DNA-directed DNA polymerase is DNA polymerase α or β.
46. A process according to Claim 1, wherein said DNA-directed DNA polymerase is calf thymus DNA polymerase. 47. A process according to Claim 1, wherein said DNA-directed DNA polymerase is a DNA polymerase lacking exonuclease activity.
48. A process according to Claim 1, further comprising the steps of ligating the amplified nucleic acid sequence into a cloning vector and then cloning said nucleic acid sequence or expressing the product encoded by said nucleic acid sequence in an expression system.
49. A kit for amplifying nucleic acid molecules, comprising an assemblage of
(a) a receptacle containing a solution of a first oligonucleotide primer,
(b) a receptacle containing a solution of a second oligonucleotide primer,
(c) a receptacle containing a solution of a ribonuclease that hydrolyses RNA of an RNA/DNA hybrid without attacking single- or double-stranded RNA or DNA,
(d) a receptacle containing a solution of an RNA-directed DNA polymerase,
(e) a receptacle containing a solution of a DNA-directed RNA polymerase,
(f) a receptacle containing a solution of a DNA-directed DNA polymerase,
(g) a receptacle containing a solution of ribonucleoside triphosphates,
(h) a receptacle containing a solution of deoxyribonucleotide triphosphates, (i) a receptacle containing a solution of alkyl sulfoxide, and (j) a receptacle containing a solution of a suitable carrier protein.
PCT/US1990/004733 1989-08-23 1990-08-23 Enhanced nucleic acid amplification process WO1991002818A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU63365/90A AU647411B2 (en) 1989-08-23 1990-08-23 Enhanced nucleic acid amplification process
EP90913353A EP0487628B1 (en) 1989-08-23 1990-08-23 Enhanced nucleic acid amplification process
DE69030955T DE69030955T2 (en) 1989-08-23 1990-08-23 NUCLEIC ACID REINFORCEMENT
KR1019910700408A KR960005737B1 (en) 1989-08-23 1990-08-23 Enhanced nucleic acid amplification process
FI920766A FI100192B (en) 1989-08-23 1992-02-21 An improved method for amplifying nucleic acids and the reaction medium used therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US397,681 1989-08-23
US07/397,681 US5130238A (en) 1988-06-24 1989-08-23 Enhanced nucleic acid amplification process

Publications (1)

Publication Number Publication Date
WO1991002818A1 true WO1991002818A1 (en) 1991-03-07

Family

ID=23572204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1990/004733 WO1991002818A1 (en) 1989-08-23 1990-08-23 Enhanced nucleic acid amplification process

Country Status (13)

Country Link
US (1) US5130238A (en)
EP (1) EP0487628B1 (en)
JP (1) JP2648802B2 (en)
KR (1) KR960005737B1 (en)
AT (1) ATE154644T1 (en)
AU (1) AU647411B2 (en)
CA (1) CA2065003C (en)
DE (1) DE69030955T2 (en)
DK (1) DK0487628T3 (en)
ES (1) ES2104611T3 (en)
FI (1) FI100192B (en)
NZ (1) NZ235009A (en)
WO (1) WO1991002818A1 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587266A1 (en) * 1992-05-06 1994-03-16 Gen-Probe Incorporated Nucleic acid sequence amplification method, composition and kit
EP0673436A1 (en) * 1992-07-17 1995-09-27 Aprogenex, Inc. Enhancement of probe signal in nucleic acid-mediated in-situ hybridization studies
WO1996002668A1 (en) * 1994-07-15 1996-02-01 Azco Nobel N.V. Use of rna polymerase to improve nucleic acid amplification process
EP0713922A1 (en) 1994-10-28 1996-05-29 BIO MERIEUX, Société anonyme Oligonucleotide usable as a primer in a method of amplification based on a replication with strand displacement
WO1996017079A1 (en) * 1994-11-28 1996-06-06 Akzo Nobel N.V. Terminal repeat amplification method
US5612200A (en) * 1992-06-24 1997-03-18 Gen-Probe Incorporated Method and kit for destroying ability of nucleic acid to be amplified
US5705365A (en) * 1995-06-07 1998-01-06 Gen-Probe Incorporated Kits for determining pre-amplification levels of a nucleic acid target sequence from post-amplification levels of product
US5710029A (en) * 1995-06-07 1998-01-20 Gen-Probe Incorporated Methods for determining pre-amplification levels of a nucleic acid target sequence from post-amplification levels of product
US5744308A (en) * 1994-09-26 1998-04-28 Bio Merieux Chimera oligonucleotide and its utilization for obtaining transcripts of a nucleic acid
US5891681A (en) * 1993-12-22 1999-04-06 Bio Merieux Modified promoter for RNA polymerase, its preparation and its applications
US6087133A (en) * 1994-03-16 2000-07-11 Gen-Probe Incorporated Isothermal strand displacement nucleic acid amplification
US6294338B1 (en) 1999-07-23 2001-09-25 Gen-Probe Incorporated Polynucleotide amplification method
FR2863275A1 (en) * 2003-12-09 2005-06-10 Biomerieux Sa Method for diagnosis and prognosis of breast cancer, also for monitoring treatment, comprises quantitative amplification of sequences that encode hormone receptors
WO2005096693A2 (en) 2004-04-06 2005-10-20 Biomerieux Cancer prognosis and/or diagnosis method
WO2006122354A1 (en) 2005-05-17 2006-11-23 Ozgene Pty Ltd Sequential cloning system
EP1788389A1 (en) 2005-11-18 2007-05-23 Universitat De Girona A method for specific detection of Legionella pneumophila
WO2007060366A1 (en) 2005-11-25 2007-05-31 bioMérieux Oligonucleotides, use thereof, detecting method and kit for diagnosing the presence of h5 and n1 genes of the influenza a virus
US7338805B2 (en) 2001-05-04 2008-03-04 Bio Merieux Labeling reagents, methods for synthesizing such reagents and methods for detecting biological molecules
EP2071034A1 (en) 2007-12-12 2009-06-17 bioMérieux Method for treating a solution in order to destroy any ribonucleic acid after amplification
US7550264B2 (en) 2005-06-10 2009-06-23 Datascope Investment Corporation Methods and kits for sense RNA synthesis
US7622249B2 (en) 2003-06-03 2009-11-24 Biomerieux Method for diagnosing and/or predicting of a septic syndrome
US7659059B2 (en) 2003-07-10 2010-02-09 Biomerieux Method for detecting and/or identifying bacteria of the genus Staphylococcus
US7691635B2 (en) 2004-03-26 2010-04-06 Biomerieux Labeling reagents, methods for the synthesis of such reagents and methods for the detection of biological molecules
EP2172563A1 (en) 2008-09-24 2010-04-07 bioMérieux S.A. Method for lowering the dependency towards sequence variation of a nucleic acid target in a diagnostic hybridization assay
WO2010076546A1 (en) 2009-01-05 2010-07-08 Biomerieux Method for amplifying and/or detecting nucleic acids, kits and uses of said method
WO2011033231A1 (en) 2009-09-18 2011-03-24 Biomerieux Simplified device for nucleic acid amplification and method for using same
EP2336356A1 (en) 2005-01-31 2011-06-22 bioMérieux Method for prognosis of a septic syndrome
US8236506B2 (en) 2006-09-28 2012-08-07 Biomerieux Method for the in vitro diagnosis of bronchopulmonary carcinoma by detection of major alternative transcripts of the KLK8 gene encoding kallikrein 8 and use thereof for prognosticating survival
US8309695B2 (en) 2007-06-11 2012-11-13 Biomerieux Marking reagents bearing diazo and nitro functions, methods for the synthesis of such reagents and methods for detecting biological molecules
US8614062B1 (en) 2009-07-24 2013-12-24 University Of South Florida RNA-based system and method to differentiate seafood
US8637322B2 (en) 2005-06-01 2014-01-28 Biomerieux Method for labeling or treating a biological sample containing biological molecules of interest, in particular nucleic acids
WO2014055746A1 (en) 2012-10-04 2014-04-10 The Board Of Trustees Of The Leland Stanford Junior University Methods and reagents for detection, quantitation, and serotyping of dengue viruses
WO2014187308A2 (en) 2013-05-21 2014-11-27 生物梅里埃股份公司 Colorectal cancer prognosis agent kit
US9110079B2 (en) 2010-09-29 2015-08-18 Biomerieux Method and kit for establishing an in vitro prognosis on a patient exhibiting SIRS
US9266902B2 (en) 2008-07-29 2016-02-23 Biomerieux Labelling reagents having a pyridine nucleus bearing a diazomethyl function, process for synthesis of such reagents and processes for detection of biological molecules
US9422598B2 (en) 2010-06-04 2016-08-23 Biomerieux Method and kit for the prognosis of colorectal cancer
US9592250B2 (en) 2002-02-01 2017-03-14 Life Technologies Corporation Double-stranded oligonucleotides
US9689041B2 (en) 2011-03-25 2017-06-27 Biomerieux Method and kit for determining in vitro the probability for an individual to suffer from colorectal cancer
US9777275B2 (en) 2002-02-01 2017-10-03 Life Technologies Corporation Oligonucleotide compositions with enhanced efficiency
WO2018202864A1 (en) 2017-05-05 2018-11-08 bioMérieux Method for detecting an immune cellular response
WO2019202251A1 (en) 2018-04-16 2019-10-24 bioMérieux Assessment of the risk of complication in a patient suspected of having an infection, having a sofa score lower than two
US10563254B2 (en) 2007-01-23 2020-02-18 Cambridge Enterprise Limited Nucleic acid amplification and testing

Families Citing this family (806)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE72468B1 (en) * 1987-07-31 1997-04-09 Univ Leland Stanford Junior Selective amplification of target polynucleotide sequences
US6090591A (en) * 1987-07-31 2000-07-18 The Board Of Trustees Of The Leland Stanford Junior University Selective amplification of target polynucleotide sequences
US5622820A (en) * 1988-03-10 1997-04-22 City Of Hope Method for amplification and detection of RNA and DNA sequences
US7009041B1 (en) 1989-07-11 2006-03-07 Gen-Probe Incorporated Oligonucleotides for nucleic acid amplification and for the detection of Mycobacterium tuberculosis
CA2020958C (en) * 1989-07-11 2005-01-11 Daniel L. Kacian Nucleic acid sequence amplification methods
US5545522A (en) * 1989-09-22 1996-08-13 Van Gelder; Russell N. Process for amplifying a target polynucleotide sequence using a single primer-promoter complex
US7049102B1 (en) 1989-09-22 2006-05-23 Board Of Trustees Of Leland Stanford University Multi-gene expression profile
US5194370A (en) * 1990-05-16 1993-03-16 Life Technologies, Inc. Promoter ligation activated transcription amplification of nucleic acid sequences
GB9024005D0 (en) * 1990-11-05 1990-12-19 British Bio Technology Process for amplifying nucleic acid
WO1992018521A1 (en) * 1991-04-10 1992-10-29 Life Technologies, Inc. Method for amplifying and altering an rna sequence
US5981179A (en) * 1991-11-14 1999-11-09 Digene Diagnostics, Inc. Continuous amplification reaction
WO1994002642A1 (en) * 1992-07-17 1994-02-03 Aprogenex, Inc. Background-reducing compounds for probe-mediated in-situ fluorimetric assays
US5502177A (en) * 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US6890712B1 (en) * 1993-09-22 2005-05-10 Bioveris Corporation Cycling DNA/RNA amplification electrochemiluminescent probe assay
GB2284209A (en) * 1993-11-25 1995-05-31 Ole Buchardt Nucleic acid analogue-induced transcription of RNA from a double-stranded DNA template
WO1995015399A1 (en) 1993-12-01 1995-06-08 Toyo Boseki Kabushiki Kaisha Method of amplifying and detecting target nucleic acid sequence by using thermostable enzymes
US6071699A (en) 1996-06-07 2000-06-06 California Institute Of Technology Nucleic acid mediated electron transfer
US20110097791A1 (en) * 1999-04-16 2011-04-28 Engelhardt Dean L Novel process, construct and conjugate for producing multiple nucleic acid copies
CA2140081C (en) 1994-01-13 2008-04-01 Dean L. Engelhardt Process, construct and conjugate for producing multiple nucleic acid copies
US6986985B1 (en) 1994-01-13 2006-01-17 Enzo Life Sciences, Inc. Process for producing multiple nucleic acid copies in vivo using a protein-nucleic acid construct
US20050123926A1 (en) * 1994-01-13 2005-06-09 Enzo Diagnostics, Inc., In vitro process for producing multiple nucleic acid copies
US5500341A (en) 1994-09-19 1996-03-19 Becton, Dickinson And Company Species-specific detection of Mycobacterium kansasii
MX9703187A (en) 1994-11-02 1998-02-28 Trophix Pharm Inc Peripheral nervous system specific sodium channels, dna encoding therefor, crystallization, x-ray diffraction, computer molecular modeling, rational drug design, drug screening, and methods of making and using thereof.
US5606043A (en) * 1994-11-03 1997-02-25 The Regents Of The University Of California Methods for the diagnosis of glaucoma
US5789169A (en) * 1994-11-03 1998-08-04 Regents Of The University Of California Methods for the diagnosis of glaucoma
US5849879A (en) * 1994-11-03 1998-12-15 The Regents Of The University Of California Methods for the diagnosis of glaucoma
IL114615A0 (en) 1995-07-16 1995-11-27 Yeda Res & Dev Modulators of the function of fas receptors and other proteins
CA2139070C (en) * 1994-12-23 2010-03-30 Burton W. Blais Method for enhancing detection ability of nucleic acid assays employing polymerase chain reaction
US5925518A (en) * 1995-05-19 1999-07-20 Akzo Nobel N.V. Nucleic acid primers for amplification of a mycobacteria RNA template
JPH11509100A (en) * 1995-07-13 1999-08-17 イムノロジカル アソシエーツ オブ デンバー Self-contained device that integrates nucleic acid extraction, amplification and detection
US5854033A (en) 1995-11-21 1998-12-29 Yale University Rolling circle replication reporter systems
JP3974941B2 (en) 1995-11-21 2007-09-12 イェール ユニバーシティ Amplification and detection of single molecule segments
US6048688A (en) * 1996-11-12 2000-04-11 Kimberly-Clark Corporation Method for detection of Pseudomonas aeruginosa using polymerase chain reaction
EP0914462A4 (en) * 1996-03-18 2002-05-22 Molecular Biology Resources Target nucleic acid sequence amplification
US5712127A (en) 1996-04-29 1998-01-27 Genescape Inc. Subtractive amplification
US5876992A (en) * 1996-07-03 1999-03-02 Molecular Biology Resources, Inc. Method and formulation for stabilization of enzymes
US6096273A (en) * 1996-11-05 2000-08-01 Clinical Micro Sensors Electrodes linked via conductive oligomers to nucleic acids
US7381525B1 (en) * 1997-03-07 2008-06-03 Clinical Micro Sensors, Inc. AC/DC voltage apparatus for detection of nucleic acids
US7014992B1 (en) 1996-11-05 2006-03-21 Clinical Micro Sensors, Inc. Conductive oligomers attached to electrodes and nucleoside analogs
US6025133A (en) * 1996-12-30 2000-02-15 Gen-Probe Incorporated Promoter-sequestered oligonucleoside and method of use
US6171788B1 (en) 1997-01-28 2001-01-09 The Regents Of The University Of California Methods for the diagnosis, prognosis and treatment of glaucoma and related disorders
US7138511B1 (en) 1997-01-28 2006-11-21 The Regents Of The University Of California Nucleic acids, kits and methods for the diagnosis, prognosis and treatment of glaucoma and related disorders
US6475724B1 (en) 1997-01-28 2002-11-05 The Regents Of The University Of California Nucleic acids, kits, and methods for the diagnosis, prognosis and treatment of glaucoma and related disorders
US6534273B2 (en) 1997-05-02 2003-03-18 Gen-Probe Incorporated Two-step hybridization and capture of a polynucleotide
EP0975807B1 (en) * 1997-05-02 2006-09-27 Gen-Probe Incorporated Two-step hybridization and capture of a polynucleotide
US6200762B1 (en) 1997-08-01 2001-03-13 Aurora Biosciences Corporation Photon reducing agents and compositions for fluorescence assays
US6221612B1 (en) * 1997-08-01 2001-04-24 Aurora Biosciences Corporation Photon reducing agents for use in fluorescence assays
US6214563B1 (en) 1997-08-01 2001-04-10 Aurora Biosciences Corporation Photon reducing agents for reducing undesired light emission in assays
ATE343642T1 (en) * 1998-01-23 2006-11-15 Biomerieux Bv EF-TU MRNA AS A MARKER FOR VIABLE BACTERIA
CA2319170A1 (en) * 1998-01-27 1999-07-29 Clinical Micro Sensors, Inc. Amplification of nucleic acids with electronic detection
US6686150B1 (en) * 1998-01-27 2004-02-03 Clinical Micro Sensors, Inc. Amplification of nucleic acids with electronic detection
US7087148B1 (en) 1998-06-23 2006-08-08 Clinical Micro Sensors, Inc. Binding acceleration techniques for the detection of analytes
US20050244954A1 (en) * 1998-06-23 2005-11-03 Blackburn Gary F Binding acceleration techniques for the detection of analytes
JP4438110B2 (en) * 1998-07-01 2010-03-24 東ソー株式会社 Quantification method of target nucleic acid
US6908770B1 (en) 1998-07-16 2005-06-21 Board Of Regents, The University Of Texas System Fluid based analysis of multiple analytes by a sensor array
WO2000004193A1 (en) 1998-07-20 2000-01-27 Yale University Method for detecting nucleic acids using target-mediated ligation of bipartite primers
CA2342837A1 (en) 1998-09-15 2000-03-23 Yale University Artificial long terminal repeat vectors
EP1114184A2 (en) * 1998-09-15 2001-07-11 Yale University Molecular cloning using rolling circle amplification
MXPA01005267A (en) * 1998-11-27 2002-04-24 Synaptics Uk Ltd Position sensor.
WO2000062036A1 (en) * 1999-04-12 2000-10-19 Nanogen/Becton Dickinson Partnership Amplification and separation of nucleic acid sequences using strand displacement amplification and bioelectronic microchip technology
US6238868B1 (en) * 1999-04-12 2001-05-29 Nanogen/Becton Dickinson Partnership Multiplex amplification and separation of nucleic acid sequences using ligation-dependant strand displacement amplification and bioelectronic chip technology
US6531302B1 (en) * 1999-04-12 2003-03-11 Nanogen/Becton Dickinson Partnership Anchored strand displacement amplification on an electronically addressable microchip
US6326173B1 (en) * 1999-04-12 2001-12-04 Nanogen/Becton Dickinson Partnership Electronically mediated nucleic acid amplification in NASBA
ATE413467T1 (en) 1999-04-20 2008-11-15 Illumina Inc DETECTION OF NUCLEIC ACID REACTIONS ON BEAD ARRAYS
US20060275782A1 (en) 1999-04-20 2006-12-07 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
US20030207295A1 (en) * 1999-04-20 2003-11-06 Kevin Gunderson Detection of nucleic acid reactions on bead arrays
US8481268B2 (en) 1999-05-21 2013-07-09 Illumina, Inc. Use of microfluidic systems in the detection of target analytes using microsphere arrays
US8080380B2 (en) * 1999-05-21 2011-12-20 Illumina, Inc. Use of microfluidic systems in the detection of target analytes using microsphere arrays
US6132997A (en) * 1999-05-28 2000-10-17 Agilent Technologies Method for linear mRNA amplification
US6589779B1 (en) 1999-07-16 2003-07-08 Board Of Regents, The University Of Texas System General signaling protocol for chemical receptors in immobilized matrices
US7022517B1 (en) 1999-07-16 2006-04-04 Board Of Regents, The University Of Texas System Method and apparatus for the delivery of samples to a chemical sensor array
ATE417127T1 (en) 1999-07-26 2008-12-15 Clinical Micro Sensors Inc NUKELIC ACID SEQUENCE DETERMINATION USING ELECTRONIC DETECTION
US6251639B1 (en) 1999-09-13 2001-06-26 Nugen Technologies, Inc. Methods and compositions for linear isothermal amplification of polynucleotide sequences, using a RNA-DNA composite primer
US6692918B2 (en) 1999-09-13 2004-02-17 Nugen Technologies, Inc. Methods and compositions for linear isothermal amplification of polynucleotide sequences
US20090074729A2 (en) * 1999-11-05 2009-03-19 Donald Kleinsek Augmentation and repair of spincter defects with cells including fibroblasts
JP2003517858A (en) * 1999-11-05 2003-06-03 ジェリジーン メディカル コーポレーション Augmentation and repair of age-related soft tissue defects
US6875619B2 (en) 1999-11-12 2005-04-05 Motorola, Inc. Microfluidic devices comprising biochannels
US6361958B1 (en) * 1999-11-12 2002-03-26 Motorola, Inc. Biochannel assay for hybridization with biomaterial
US6794138B1 (en) * 1999-12-16 2004-09-21 Affymetrix, Inc. Methods of small sample amplification
US6489114B2 (en) 1999-12-17 2002-12-03 Bio Merieux Process for labeling a ribonucleic acid, and labeled RNA fragments which are obtained thereby
US6902891B2 (en) 1999-12-17 2005-06-07 Bio Merieux Process for labeling a nucleic acid
DE60135092D1 (en) 2000-01-31 2008-09-11 Univ Texas PORTABLE DEVICE WITH A SENSOR ARRAY ARRANGEMENT
US20050214825A1 (en) * 2000-02-07 2005-09-29 John Stuelpnagel Multiplex sample analysis on universal arrays
US7582420B2 (en) 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions
US7955794B2 (en) 2000-09-21 2011-06-07 Illumina, Inc. Multiplex nucleic acid reactions
US8076063B2 (en) 2000-02-07 2011-12-13 Illumina, Inc. Multiplexed methylation detection methods
US7087414B2 (en) 2000-06-06 2006-08-08 Applera Corporation Methods and devices for multiplexing amplification reactions
US6605451B1 (en) 2000-06-06 2003-08-12 Xtrana, Inc. Methods and devices for multiplexing amplification reactions
EP2351853A1 (en) 2000-06-06 2011-08-03 Life Technologies Corporation Method and devices for multiplexing amplification reactions
US6602400B1 (en) 2000-06-15 2003-08-05 Motorola, Inc. Method for enhanced bio-conjugation events
US20060166227A1 (en) * 2000-06-20 2006-07-27 Stephen Kingsmore Protein expression profiling
US7846733B2 (en) 2000-06-26 2010-12-07 Nugen Technologies, Inc. Methods and compositions for transcription-based nucleic acid amplification
JP2004513617A (en) * 2000-06-26 2004-05-13 ニューゲン テクノロジーズ, インコーポレイテッド Methods and compositions for transcription-based nucleic acid amplification
AU2001271722B2 (en) 2000-06-30 2006-04-13 Qiagen, Gmbh Signal amplification with lollipop probes
AU2001278517A1 (en) * 2000-08-03 2002-02-18 F. Hoffman-La Roche Ag Nucleic acid binding compounds containing pyrazolo(3,4-d)pyrimidine analogues of purin-2,6-diamine and their uses
UA81743C2 (en) 2000-08-07 2008-02-11 Центокор, Инк. HUMAN MONOCLONAL ANTIBODY WHICH SPECIFICALLY BINDS TUMOR NECROSIS FACTOR ALFA (TNFα), PHARMACEUTICAL MIXTURE CONTAINING THEREOF, AND METHOD FOR TREATING ARTHRITIS
US7288390B2 (en) 2000-08-07 2007-10-30 Centocor, Inc. Anti-dual integrin antibodies, compositions, methods and uses
US6902734B2 (en) 2000-08-07 2005-06-07 Centocor, Inc. Anti-IL-12 antibodies and compositions thereof
DE60040874D1 (en) 2000-09-01 2009-01-02 Gen Probe Inc AMPLIFYING HIV-1 SEQUENCES FOR THE DETECTION OF VEN
US6558929B2 (en) * 2000-09-15 2003-05-06 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forshung E.V. PCR reaction mixture for fluorescence-based gene expression and gene mutation analyses
ES2300375T3 (en) 2000-10-23 2008-06-16 Gen-Probe Incorporated COMPOSITIONS AND METHODS FOR THE DETECTION OF HUMAN IMMUNODEFICIENCY VIRUS 2 (HIV-2).
US6858412B2 (en) * 2000-10-24 2005-02-22 The Board Of Trustees Of The Leland Stanford Junior University Direct multiplex characterization of genomic DNA
AU2002225876A1 (en) * 2000-11-10 2002-05-21 Sratagene Methods for preparation of a nucleic acid for analysis
EP1366191A2 (en) 2000-12-11 2003-12-03 Alexion Pharmaceuticals, Inc. Nested oligonucleotides containing hairpin for nucleic acid amplification
CA2430329A1 (en) * 2000-12-13 2002-06-20 Nugen Technologies, Inc. Methods and compositions for generation of multiple copies of nucleic acid sequences and methods of detection thereof
US6794141B2 (en) * 2000-12-22 2004-09-21 Arcturus Bioscience, Inc. Nucleic acid amplification
EP1373874A4 (en) * 2001-01-31 2004-03-31 Univ Texas Method and apparatus for the confinement of materials in a micromachined chemical sensor array
ATE361996T1 (en) 2001-03-09 2007-06-15 Nugen Technologies Inc METHODS AND COMPOSITIONS FOR DUPLICATION OF RNA SEQUENCES
US6573051B2 (en) * 2001-03-09 2003-06-03 Molecular Staging, Inc. Open circle probes with intramolecular stem structures
CA2439074A1 (en) * 2001-03-09 2002-09-19 Nugen Technologies, Inc. Methods and compositions for amplification of rna sequences
US20030092157A1 (en) * 2001-03-16 2003-05-15 Hayden Michael R. Compositions, screening systems and methods for modulating HDL cholesterol and triglyceride levels
US20050009101A1 (en) * 2001-05-17 2005-01-13 Motorola, Inc. Microfluidic devices comprising biochannels
US8137911B2 (en) * 2001-05-22 2012-03-20 Cellscript, Inc. Preparation and use of single-stranded transcription substrates for synthesis of transcription products corresponding to target sequences
US7838270B2 (en) * 2001-05-22 2010-11-23 The University Of Chicago Target-dependent transcription using deletion mutants of N4 RNA polymerase
US20050003356A1 (en) * 2001-05-25 2005-01-06 Hayden Michael R. Diagnostic methods for cardiovascular disease, low hdl-cholesterol levels, and high triglyceride levels
MXPA03012075A (en) * 2001-06-22 2005-07-01 Marshfield Clinic Methods and oligonucleotides for the detection of $i(salmonella) sp., $i(e. coli) o157:h7, and $i(listeria monocytogenes ).
US9261460B2 (en) 2002-03-12 2016-02-16 Enzo Life Sciences, Inc. Real-time nucleic acid detection processes and compositions
EP2246438B1 (en) 2001-07-12 2019-11-27 Illumina, Inc. Multiplex nucleic acid reactions
US20030027196A1 (en) * 2001-08-02 2003-02-06 Barnes Wayne M. Magnesium precipitate methods for magnesium dependent enzymes
TWI335938B (en) * 2001-08-15 2011-01-11 Rna replication and amplification
US20120077196A9 (en) * 2001-09-03 2012-03-29 Guido Krupp Universal method for selective amplification of mRNAs
DE10143106C1 (en) * 2001-09-03 2002-10-10 Artus Ges Fuer Molekularbiolog Amplifying RNA, useful e.g. for analysis on a microarray, comprises conversion to double-stranded cDNA, strand separation and transcription
WO2003025202A2 (en) * 2001-09-19 2003-03-27 Alexion Pharmaceuticals, Inc. Engineered templates and their use in single primer amplification
US7414111B2 (en) * 2001-09-19 2008-08-19 Alexion Pharmaceuticals, Inc. Engineered templates and their use in single primer amplification
US7045319B2 (en) * 2001-10-30 2006-05-16 Ribomed Biotechnologies, Inc. Molecular detection systems utilizing reiterative oligonucleotide synthesis
US20040054162A1 (en) * 2001-10-30 2004-03-18 Hanna Michelle M. Molecular detection systems utilizing reiterative oligonucleotide synthesis
US20030175947A1 (en) * 2001-11-05 2003-09-18 Liu Robin Hui Enhanced mixing in microfluidic devices
US20030119000A1 (en) * 2001-11-05 2003-06-26 Jon Polansky Methods to screen and treat individuals with glaucoma or the propensity to develop glaucoma
NZ533223A (en) 2001-11-14 2007-04-27 Centocor Inc Anti-il-6 antibodies, compositions, methods and uses
AU2002358110A1 (en) * 2001-12-10 2003-07-09 Novartis Ag Methods of treating psychosis and schizophrenia based on a polymorphism in the ctf gene
JP4148900B2 (en) 2002-01-08 2008-09-10 エフ.ホフマン−ラ ロシュ アーゲー Use of silica materials in amplification reactions
WO2003064679A2 (en) * 2002-01-30 2003-08-07 Id Biomedical Corporation Methods for detecting vancomycin-resistant microorganisms and compositions therefor
US7553619B2 (en) 2002-02-08 2009-06-30 Qiagen Gmbh Detection method using dissociated rolling circle amplification
WO2003070935A1 (en) 2002-02-20 2003-08-28 Sysmex Corporation PRIMERS FOR NUCLEIC ACID AMPLIFICATION IN DETECTING HOUSEKEEPING GENE mRNA AND TEST METHOD USING THESE PRIMERS
ATE405676T1 (en) * 2002-03-11 2008-09-15 Nugen Technologies Inc METHOD FOR GENERATING DOUBLE STRANDED DNA WITH A 3' SINGLE STRAND PORTION AND USES OF THESE COMPLEXES FOR RECOMBINATION
US9353405B2 (en) 2002-03-12 2016-05-31 Enzo Life Sciences, Inc. Optimized real time nucleic acid detection processes
US7166478B2 (en) * 2002-03-12 2007-01-23 Enzo Life Sciences, Inc., C/O Enzo Biochem, Inc. Labeling reagents and labeled targets, target labeling processes and other processes for using same in nucleic acid determinations and analyses
CA2477670A1 (en) * 2002-03-15 2003-09-25 Arcturus Bioscience, Inc. Improved nucleic acid amplification
US20040241723A1 (en) * 2002-03-18 2004-12-02 Marquess Foley Leigh Shaw Systems and methods for improving protein and milk production of dairy herds
US7498171B2 (en) 2002-04-12 2009-03-03 Anthrogenesis Corporation Modulation of stem and progenitor cell differentiation, assays, and uses thereof
AU2003228711C1 (en) 2002-04-26 2010-01-07 Board Of Regents, The University Of Texas System Method and system for the detection of cardiac risk factors
EP1573056A4 (en) * 2002-05-17 2007-11-28 Nugen Technologies Inc Methods for fragmentation, labeling and immobilization of nucleic acids
US20030219754A1 (en) * 2002-05-23 2003-11-27 Oleksy Jerome E. Fluorescence polarization detection of nucleic acids
ATE519861T1 (en) 2002-06-14 2011-08-15 Gen Probe Inc COMPOSITIONS FOR DETECTING HEPATITIS B VIRUS
US20040009574A1 (en) * 2002-07-09 2004-01-15 Nanibhushan Dattagupta Compositions and methods for detecting streptococcus agalactiae capsular polysaccharide synthesis genes
US20040009482A1 (en) * 2002-07-09 2004-01-15 Nanibhushan Dattagupta Compositions and methods for detecting streptococcus agalactiae surface immunogenic protein genes
US20040009483A1 (en) * 2002-07-12 2004-01-15 Ilsley Diane D. Method of linear mRNA amplification using total RNA
US20060073475A1 (en) * 2002-08-09 2006-04-06 Nanibhushan Dattagupta Compositions and methods for detecting pathogenic bacteria expressing chaperonin proteins
AU2003236461B2 (en) * 2002-08-29 2009-05-28 Epigenomics Ag Improved method for bisulfite treatment
DE10240868A1 (en) * 2002-09-04 2004-03-18 Artus Gesellschaft für molekularbiologische Diagnostik und Entwicklung mbH Improved procedures for the synthesis of nucleic acids
CA2501946C (en) 2002-10-16 2014-12-23 Gen-Probe Incorporated Compositions and methods for detecting west nile virus
AU2003297557B2 (en) * 2002-11-21 2009-02-26 Cellscript, Inc. Methods for using primers that encode one strand of a double-stranded promoter
US20040101844A1 (en) * 2002-11-21 2004-05-27 Amorese Douglas A. Methods and compositions for producing linearly amplified amounts of (+) strand RNA
US7597936B2 (en) * 2002-11-26 2009-10-06 University Of Utah Research Foundation Method of producing a pigmented composite microporous material
EP1576351A4 (en) * 2002-11-26 2010-06-23 Univ Utah Res Found Microporous materials, methods, and articles for localizing and quantifying analytes
EP2031070B1 (en) 2002-12-04 2013-07-17 Life Technologies Corporation Multiplex amplification of polynucleotides
US7560231B2 (en) * 2002-12-20 2009-07-14 Roche Molecular Systems, Inc. Mannitol and glucitol derivatives
US7955795B2 (en) * 2003-06-06 2011-06-07 Qiagen Gmbh Method of whole genome amplification with reduced artifact production
US9487823B2 (en) 2002-12-20 2016-11-08 Qiagen Gmbh Nucleic acid amplification
US6977153B2 (en) * 2002-12-31 2005-12-20 Qiagen Gmbh Rolling circle amplification of RNA
US6852494B2 (en) * 2003-01-10 2005-02-08 Linden Technologies, Inc. Nucleic acid amplification
WO2004083806A2 (en) 2003-01-22 2004-09-30 University Of South Florida Autonomous genosensor apparatus and methods for use
US7413855B2 (en) * 2003-01-29 2008-08-19 Roche Molecular Systems, Inc. Method for bisulfite treatment
US6943768B2 (en) 2003-02-21 2005-09-13 Xtellus Inc. Thermal control system for liquid crystal cell
EP1606419A1 (en) 2003-03-18 2005-12-21 Quantum Genetics Ireland Limited Systems and methods for improving protein and milk production of dairy herds
WO2004085670A2 (en) * 2003-03-24 2004-10-07 Perkinelmer Las, Inc. Polarization detection
US8043834B2 (en) 2003-03-31 2011-10-25 Qiagen Gmbh Universal reagents for rolling circle amplification and methods of use
CA2463719A1 (en) * 2003-04-05 2004-10-05 F. Hoffmann-La Roche Ag Nucleotide analogs with six membered rings
CA2521084A1 (en) 2003-04-14 2004-10-28 Nugen Technologies, Inc. Global amplification using a randomly primed composite primer
JP5117719B2 (en) 2003-04-18 2013-01-16 ベクトン・ディキンソン・アンド・カンパニー Immune amplification
JP2006524988A (en) * 2003-05-09 2006-11-09 キャピタルバイオ コーポレーション Methods and compositions for detecting SARS virus
US9708410B2 (en) 2003-05-30 2017-07-18 Janssen Biotech, Inc. Anti-tissue factor antibodies and compositions
US20040248102A1 (en) * 2003-06-03 2004-12-09 Diane Ilsley-Tyree Methods and compositions for performing template dependent nucleic acid primer extension reactions that produce a reduced complexity product
JP2007525963A (en) 2003-06-20 2007-09-13 イルミナ インコーポレイテッド Methods and compositions for whole genome amplification and genotyping
US20040259100A1 (en) * 2003-06-20 2004-12-23 Illumina, Inc. Methods and compositions for whole genome amplification and genotyping
US20050181394A1 (en) * 2003-06-20 2005-08-18 Illumina, Inc. Methods and compositions for whole genome amplification and genotyping
CN100494399C (en) * 2003-06-30 2009-06-03 清华大学 Genotype typing method based on DNA chip and use thereof
US20060057766A1 (en) * 2003-07-08 2006-03-16 Quanxi Jia Method for preparation of semiconductive films
CA2534382C (en) 2003-08-04 2018-12-11 The Hospital For Sick Children Epm2b gene mutations associated with lafora's disease
US20050059035A1 (en) * 2003-09-09 2005-03-17 Quest Diagnostics Incorporated Methods and compositions for the amplification of mutations in the diagnosis of cystic fibrosis
CA2538222A1 (en) * 2003-09-12 2005-03-24 Stephen Bryant Liggett Methods for risk assessment, survival prediction and treatment of heart failure and other conditions based on adrenergic receptor polymorphisms
KR100571817B1 (en) * 2003-09-19 2006-04-17 삼성전자주식회사 A method for detecting a target nucleic acid by using a detection probe capable of hybridizing with a tag sequence
CA2482097C (en) * 2003-10-13 2012-02-21 F. Hoffmann-La Roche Ag Methods for isolating nucleic acids
KR20070012779A (en) * 2003-10-29 2007-01-29 리보메드 바이오테그놀로지스 인코포레이티드 Compositions, methods and detection technologies for reiterative oligonucleotide synthesis
EP2308887A3 (en) 2003-11-12 2011-07-13 Bayer HealthCare LLC Oligonucleotides and methods for detection of west nile virus
JP4435174B2 (en) 2003-12-02 2010-03-17 エフ.ホフマン−ラ ロシュ アーゲー Improved method of bisulfite treatment.
AU2004303886B2 (en) 2003-12-19 2009-09-03 Gen-Probe Incorporated Compositions, methods and kits for detecting the nucleic acids of HIV-1 and HIV-2
US20050136411A1 (en) * 2003-12-22 2005-06-23 Collins Patrick J. Methods and compositions for linear mRNA amplification from small RNA samples
US20050147975A1 (en) * 2003-12-24 2005-07-07 Schembri Carol T. Methods and compositions for amplification of genomic DNA
EP1711591A4 (en) 2003-12-29 2010-04-28 Nugen Technologies Inc Methods for analysis of nucleic acid methylation status and methods for fragmentation, labeling and immobilization of nucleic acids
US20050158710A1 (en) * 2004-01-16 2005-07-21 Shirley Tsang Detection of enterovirus nucleic acid
EP2251441B1 (en) * 2004-02-10 2013-05-08 F. Hoffmann-La Roche AG Detection of parvovirus B19
WO2005112544A2 (en) 2004-02-19 2005-12-01 The Governors Of The University Of Alberta Leptin promoter polymorphisms and uses thereof
US8105849B2 (en) 2004-02-27 2012-01-31 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements
US8101431B2 (en) 2004-02-27 2012-01-24 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements and reagent delivery systems
WO2005085475A1 (en) 2004-03-01 2005-09-15 Applera Corporation Methods, compositions and kits for use in polynucleotide amplification
US8338578B1 (en) 2004-03-05 2012-12-25 Quest Diagnostics Investments Incorporated Cystic fibrosis gene mutations
EP1574583A1 (en) * 2004-03-10 2005-09-14 Roche Diagnostics GmbH Methods for isolation of bacteria from biological samples
US7229800B2 (en) 2004-04-16 2007-06-12 Becton, Dickinson And Company Neisseria gonorrhoeae assay
US20060030037A1 (en) 2004-05-28 2006-02-09 Victor Joseph Thermo-controllable high-density chips for multiplex analyses
US8124334B2 (en) * 2004-07-06 2012-02-28 Enzo Biochem, Inc. Selective detection of oncogenic HPV
CA2838428C (en) * 2004-07-13 2015-09-29 Gen-Probe Incorporated Compositions and methods for detection of hepatitis a virus nucleic acid
US7713697B2 (en) * 2004-08-27 2010-05-11 Gen-Probe Incorporated Methods and kits for amplifying DNA
EP2071031B1 (en) * 2004-08-27 2013-10-09 Gen-Probe Incorporated Single-primer nucleic acid amplification methods
EP1632578A1 (en) * 2004-09-03 2006-03-08 Roche Diagnostics GmbH DNA decontamination method
ES2345993T3 (en) 2004-09-14 2010-10-07 The Regents Of The University Of Colorado, A Body Corporate METHOD FOR TREATMENT WITH BUCINDOLOL BASED ON GENETIC ADDRESSING.
CA3113166A1 (en) * 2004-09-30 2006-04-13 Vanda Pharmaceuticals Inc. Methods for the administration of iloperidone
US20100063093A1 (en) * 2007-03-28 2010-03-11 Curt Wolfgang Methods for the administration of iloperidone
EP1794328B1 (en) 2004-09-30 2015-05-27 Gen-Probe Incorporated Assay for detecting and quantifying hiv-1
CA2582661C (en) * 2004-11-09 2015-08-11 Gen-Probe Incorporated Compositions and methods for detecting group a streptococci
EP1825246B1 (en) * 2004-12-17 2015-04-01 Ventana Medical Systems, Inc. Method for a microemulsion-based deparaffinization of a tissue sampe
US7579153B2 (en) 2005-01-25 2009-08-25 Population Genetics Technologies, Ltd. Isothermal DNA amplification
ATE490342T1 (en) * 2005-02-07 2010-12-15 Gen Probe Inc COMPOSITIONS AND METHODS FOR DETECTING GROUP B STREPTOCOCICS
EP2529619B1 (en) 2005-02-17 2015-09-23 Biogen MA Inc. Treating neurological disorders
AU2006214141B2 (en) 2005-02-18 2010-07-15 Gen-Probe Incorporated Sample preparation method incorporating an alkaline shock
EP1874955A4 (en) * 2005-02-28 2009-05-06 Bioquest Inc Methods for performing direct enzymatic reactions involving nucleic acid molecules
WO2006095941A1 (en) 2005-03-05 2006-09-14 Seegene, Inc. Processes using dual specificity oligonucleotide and dual specificity oligonucleotide
EP2365079A1 (en) 2005-03-05 2011-09-14 Seegene, Inc. Processes using dual specificity oligonucleotide and dual specificity oligonucleotide
JP4398886B2 (en) * 2005-03-07 2010-01-13 ソニー株式会社 COMMUNICATION TERMINAL DEVICE, COMMUNICATION SYSTEM, COMMUNICATION METHOD, AND PROGRAM
EP1700922B1 (en) 2005-03-10 2016-08-24 Roche Diagnostics GmbH 3-Substituted 5-Nitroindole derivatives and labeled oligonucleotide probes containing them
US7759469B2 (en) 2005-03-10 2010-07-20 Roche Diagnostics Operations, Inc. Labeling reagent
CA2871777C (en) 2005-03-10 2015-07-28 Matthew J. Hayes System and methods for detecting multiple optical signals
EP1930730B1 (en) 2005-03-10 2019-08-14 Gen-Probe Incorporated Systems and methods to perform assays for detecting or quantifying analytes
JP4658660B2 (en) * 2005-03-30 2011-03-23 株式会社日立ハイテクノロジーズ Nucleic acid detection method
KR20140068234A (en) 2005-03-31 2014-06-05 더 제너럴 하스피탈 코포레이션 Monitoring and modulating hgf/hgfr activity
US20060223071A1 (en) * 2005-04-01 2006-10-05 Wisniewski Michele E Methods, compositions, and kits for detecting nucleic acids in a single vessel
US8309303B2 (en) 2005-04-01 2012-11-13 Qiagen Gmbh Reverse transcription and amplification of RNA with simultaneous degradation of DNA
US20060240442A1 (en) * 2005-04-20 2006-10-26 Vevea Dirk N Methods and oligonucleotides for the detection of Salmonella SP., E coli 0157:H7, and Listeria monocytogenes
PE20061324A1 (en) 2005-04-29 2007-01-15 Centocor Inc ANTI-IL-6 ANTIBODIES, COMPOSITIONS, METHODS AND USES
EP2471805A3 (en) 2005-05-06 2013-01-16 Gen-Probe Incorporated Compositions and assays to specifically detect nucleic acid of influenza virus A or B
KR101381331B1 (en) 2005-05-09 2014-04-04 테라노스, 인코포레이티드 Point-of-care fluidic systems and uses thereof
US8377398B2 (en) 2005-05-31 2013-02-19 The Board Of Regents Of The University Of Texas System Methods and compositions related to determination and use of white blood cell counts
CA2613078A1 (en) * 2005-06-24 2007-01-04 Board Of Regents, The University Of Texas System Systems and methods including self-contained cartridges with detection systems and fluid delivery systems
EP2452694B1 (en) 2005-06-30 2018-11-14 Janssen Biotech, Inc. Anti-IL-23 antibodies, compositions, methods and uses
US7838646B2 (en) 2005-08-18 2010-11-23 Quest Diagnostics Investments Incorporated Cystic fibrosis transmembrane conductance regulator gene mutations
US20070054301A1 (en) * 2005-09-06 2007-03-08 Gen-Probe Incorporated Methods, compositions and kits for isothermal amplification of nucleic acids
CA2621267A1 (en) 2005-09-07 2007-03-15 Nugen Technologies, Inc. Improved nucleic acid amplification procedure
EP1762627A1 (en) 2005-09-09 2007-03-14 Qiagen GmbH Method for the activation of a nucleic acid for performing a polymerase reaction
US9957569B2 (en) * 2005-09-12 2018-05-01 The Regents Of The University Of Michigan Recurrent gene fusions in prostate cancer
EP2612870A1 (en) 2005-09-12 2013-07-10 The Regents of the University of Michigan Recurrent gene fusions in prostate cancer
CA2624324A1 (en) * 2005-10-06 2007-04-19 Lucigen Corporation Thermostable viral polymerases and methods of use
JP2009511086A (en) 2005-10-17 2009-03-19 ジェン−プローブ・インコーポレーテッド Composition and method for detecting Legionella pneumophila nucleic acid
US20100248220A1 (en) 2005-11-07 2010-09-30 Siemens Healthcare Diagnostics Inc. Chlamydia Trachomatis Specific Oligonucleotide Sequences
AU2006315489B2 (en) 2005-11-14 2012-09-06 Gen-Probe Incorporated Parametric calibration method
CN101310183A (en) 2005-11-16 2008-11-19 诺瓦提斯公司 Biomarkers for anti-nogo-a antibody treatment in spinal cord injury
US7981606B2 (en) * 2005-12-21 2011-07-19 Roche Molecular Systems, Inc. Control for nucleic acid testing
PT3219328T (en) 2005-12-29 2020-08-28 Janssen Biotech Inc Human anti-il-23 antibodies, compositions, method and uses
CN101370622B (en) 2006-01-18 2013-07-31 阿戈斯治疗公司 Systems and methods for processing samples in a closed container, and related devices
WO2007087262A2 (en) * 2006-01-23 2007-08-02 Population Genetics Technologies Ltd. Selective genome amplification
JP5254949B2 (en) 2006-03-15 2013-08-07 マイクロニクス, インコーポレイテッド Integrated nucleic acid assay
US11287421B2 (en) 2006-03-24 2022-03-29 Labrador Diagnostics Llc Systems and methods of sample processing and fluid control in a fluidic system
US8741230B2 (en) 2006-03-24 2014-06-03 Theranos, Inc. Systems and methods of sample processing and fluid control in a fluidic system
KR20090028501A (en) 2006-04-07 2009-03-18 지멘스 헬쓰케어 다이아그노스틱스 인크. Neisseria gonorrhoeae specific oligonucleotide sequences
US8007999B2 (en) 2006-05-10 2011-08-30 Theranos, Inc. Real-time detection of influenza virus
CA2651946A1 (en) * 2006-05-12 2007-11-22 Gen-Probe Incorporated Compositions and methods to detect enterococci nucleic acid
CA2653248C (en) 2006-05-25 2017-09-26 Monsanto Technology Llc A method to identify disease resistant quantitative trait loci in soybean and compositions thereof
US7897747B2 (en) * 2006-05-25 2011-03-01 The Board Of Trustees Of The Leland Stanford Junior University Method to produce single stranded DNA of defined length and sequence and DNA probes produced thereby
US11001881B2 (en) 2006-08-24 2021-05-11 California Institute Of Technology Methods for detecting analytes
PL2017356T3 (en) 2006-06-06 2012-03-30 Gen Probe Inc Tagged oliggonucleotides and their use in nucleic acid amplification methods
WO2008005459A2 (en) * 2006-06-30 2008-01-10 Nugen Technologies, Inc. Methods for fragmentation and labeling of nucleic acids
US11525156B2 (en) 2006-07-28 2022-12-13 California Institute Of Technology Multiplex Q-PCR arrays
US8048626B2 (en) 2006-07-28 2011-11-01 California Institute Of Technology Multiplex Q-PCR arrays
CA2658105C (en) 2006-08-01 2016-07-05 Gen-Probe Incorporated Methods of nonspecific target capture of nucleic acids
AU2007284651B2 (en) 2006-08-09 2014-03-20 Institute For Systems Biology Organ-specific proteins and methods of their use
US11560588B2 (en) 2006-08-24 2023-01-24 California Institute Of Technology Multiplex Q-PCR arrays
US20080261216A1 (en) * 2006-09-08 2008-10-23 The Regents Of The University Of Michigan HERV Group II Viruses In Lymphoma And Cancer
US8012744B2 (en) 2006-10-13 2011-09-06 Theranos, Inc. Reducing optical interference in a fluidic device
WO2008058018A2 (en) 2006-11-02 2008-05-15 Mayo Foundation For Medical Education And Research Predicting cancer outcome
US7492312B2 (en) * 2006-11-14 2009-02-17 Fam Adly T Multiplicative mismatched filters for optimum range sidelobe suppression in barker code reception
US20080113391A1 (en) 2006-11-14 2008-05-15 Ian Gibbons Detection and quantification of analytes in bodily fluids
EP1932913B1 (en) 2006-12-11 2013-01-16 Roche Diagnostics GmbH Nucleic acid isolation using polidocanol and derivatives
CA2614069C (en) * 2006-12-11 2016-05-03 F. Hoffmann-La Roche Ag Nucleic acid isolation using polidocanol and derivatives
CA2673017C (en) 2006-12-21 2015-08-04 Gen-Probe Incorporated Methods and compositions for nucleic acid amplification
US7794937B2 (en) * 2006-12-22 2010-09-14 Quest Diagnostics Investments Incorporated Cystic fibrosis transmembrane conductance regulator gene mutations
US8183359B2 (en) * 2007-03-01 2012-05-22 Gen-Probe Incorporated Kits for amplifying DNA
EP1978111B1 (en) 2007-04-02 2013-03-27 Gen-Probe Incorporated Compositions, kits and related methods for the detection and/or monitoring of Pseudomonas aeruginosa
CA2629589C (en) * 2007-04-20 2016-03-29 F.Hoffmann-La Roche Ag Isolation and purification of nucleic acid molecules with a solid phase
US9458451B2 (en) 2007-06-21 2016-10-04 Gen-Probe Incorporated Multi-channel optical measurement instrument
WO2009006438A2 (en) 2007-06-29 2009-01-08 Epicentre Technologies Corporation Copy dna and sense rna
AU2008275304B2 (en) 2007-07-06 2012-07-26 The Regents Of The University Of Michigan Recurrent gene fusions in prostate cancer
JP5433572B2 (en) * 2007-07-06 2014-03-05 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン MIPOL1-ETV1 gene rearrangement
US8158430B1 (en) 2007-08-06 2012-04-17 Theranos, Inc. Systems and methods of fluidic sample processing
EP2183380B1 (en) 2007-08-27 2014-11-26 Life Technologies Corporation Methods and compositions for pcr
CN103323610B (en) 2007-10-02 2016-12-28 赛拉诺斯股份有限公司 Modular point-of-care devices and application thereof
JP5523327B2 (en) 2007-10-12 2014-06-18 レオニックス,インコーポレイテッド Integrated microfluidic device and method
WO2009061640A2 (en) * 2007-11-06 2009-05-14 Siemens Healthcare Diagnostics Inc. Hepatitis b virus (hbv) specific oligonucleotide sequences
ES2686677T3 (en) 2007-12-21 2018-10-19 Biomerieux Sa Methicillin-resistant Staphylococcus aureus detection
CA2715991A1 (en) * 2007-12-26 2009-07-09 Gen-Probe Incorporated Amplification oligomers and methods to detect candida albicans 26s rrna or encoding dna
US8034568B2 (en) * 2008-02-12 2011-10-11 Nugen Technologies, Inc. Isothermal nucleic acid amplification methods and compositions
US20090215050A1 (en) 2008-02-22 2009-08-27 Robert Delmar Jenison Systems and methods for point-of-care amplification and detection of polynucleotides
WO2009117698A2 (en) 2008-03-21 2009-09-24 Nugen Technologies, Inc. Methods of rna amplification in the presence of dna
JP2011518126A (en) * 2008-03-25 2011-06-23 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Methods for treating and screening IKKi inhibitors, and related IKKi diagnostic methods
EP2108699B1 (en) 2008-04-08 2014-06-25 F.Hoffmann-La Roche Ag Analytical processing and detection device
JP5646455B2 (en) 2008-04-21 2014-12-24 ジェン−プロウブ インコーポレイテッド Method for detecting chikungunya virus
JP2009268665A (en) * 2008-05-07 2009-11-19 Canon Inc Inhalation device
EP2806037B1 (en) 2008-05-13 2016-09-21 Gen-Probe Incorporated Inactivatable target capture oligomers for use in the selective hybridization and capture of target nucleic acid sequences
CA2724343A1 (en) 2008-05-15 2009-11-19 Ribomed Biotechnologies, Inc. Methods and reagents for detecting cpg methylation with a methyl cpg binding protein (mbp)
AU2009253675A1 (en) 2008-05-28 2009-12-03 Genomedx Biosciences, Inc. Systems and methods for expression-based discrimination of distinct clinical disease states in prostate cancer
US10407731B2 (en) 2008-05-30 2019-09-10 Mayo Foundation For Medical Education And Research Biomarker panels for predicting prostate cancer outcomes
CA2723917A1 (en) 2008-05-30 2009-12-30 Gen-Probe Incorporated Compositions, kits and related methods for the detection and/or monitoring of salmonella
EP2402462A1 (en) 2008-06-06 2012-01-04 F. Hoffmann-La Roche AG Internally controlled multiplex detection and quantification of microbial nucleic acids
WO2010009060A2 (en) * 2008-07-13 2010-01-21 Ribomed Biotechnologies, Inc. Molecular beacon-based methods for detection of targets using abscription
GB0814570D0 (en) 2008-08-08 2008-09-17 Diagnostics For The Real World Isolation of nucleic acid
CA2733642A1 (en) 2008-08-14 2010-02-18 Cephalon Australia Pty Ltd Anti-il-12/il-23 antibodies
WO2010030461A2 (en) * 2008-09-12 2010-03-18 Promega Corporation Assessing expression of endogenous and exogenous genes
US8383345B2 (en) 2008-09-12 2013-02-26 University Of Washington Sequence tag directed subassembly of short sequencing reads into long sequencing reads
US9090948B2 (en) 2008-09-30 2015-07-28 Abbott Molecular Inc. Primers and probes for detecting human papillomavirus and human beta globin sequences in test samples
EP2177271B8 (en) 2008-10-15 2019-12-18 F. Hoffmann-La Roche AG Magnetic separation system comprising flexible magnetic pins and corresponding method
WO2010096117A2 (en) * 2008-10-29 2010-08-26 Janssen Pharmaceutica Nv Methods of treating psychosis and schizophrenia based on polymorphisms in the erbb4 gene
CA3149920A1 (en) 2008-10-31 2010-05-06 Janssen Biotech, Inc. Fibronectin type iii domain based scaffold compositions, methods and uses
EP2189218A1 (en) 2008-11-12 2010-05-26 F. Hoffmann-Roche AG Multiwell plate lid separation
US10236078B2 (en) 2008-11-17 2019-03-19 Veracyte, Inc. Methods for processing or analyzing a sample of thyroid tissue
US9495515B1 (en) 2009-12-09 2016-11-15 Veracyte, Inc. Algorithms for disease diagnostics
CA2746539A1 (en) 2008-12-30 2010-07-08 Gen-Probe Incorporated Compositions, kits and related methods for the detection and/or monitoring of listeria
JP2012514475A (en) 2009-01-09 2012-06-28 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Reproducible gene fusions in cancer
US8368882B2 (en) 2009-01-30 2013-02-05 Gen-Probe Incorporated Systems and methods for detecting a signal and applying thermal energy to a signal transmission element
AU2010213892B2 (en) 2009-02-12 2014-10-23 Janssen Biotech, Inc. Fibronectin type III domain based scaffold compositions, methods and uses
EP3705486B1 (en) 2009-02-26 2022-11-16 Gen-Probe Incorporated Assay for detection of human parvovirus nucleic acid
US9074258B2 (en) 2009-03-04 2015-07-07 Genomedx Biosciences Inc. Compositions and methods for classifying thyroid nodule disease
CA2755668A1 (en) 2009-03-15 2010-09-23 Ribomed Biotechnologies, Inc. Abscription based molecular detection
US9393564B2 (en) 2009-03-30 2016-07-19 Ibis Biosciences, Inc. Bioagent detection systems, devices, and methods
WO2010126913A1 (en) 2009-04-27 2010-11-04 Gen-Probe Incorporated Methods and kits for use in the selective amplification of target sequences
EP3360978A3 (en) 2009-05-07 2018-09-26 Veracyte, Inc. Methods for diagnosis of thyroid conditions
US9212397B2 (en) 2009-06-23 2015-12-15 Gen-Probe Incorporated Compositions and methods for detecting nucleic acid from mollicutes
EP2449132B1 (en) 2009-07-01 2015-05-13 Gen-Probe Incorporated Methods and compositions for nucleic acid amplification
AU2010276236B2 (en) 2009-07-21 2014-03-20 Gen-Probe Incorporated Methods and compositions for quantitative detection of nucleic acid sequences over an extended dynamic range
US20110059453A1 (en) * 2009-08-23 2011-03-10 Affymetrix, Inc. Poly(A) Tail Length Measurement by PCR
AU2010286368B2 (en) 2009-08-31 2015-09-03 Gen-Probe Incorporated Dengue virus assay
US9512481B2 (en) 2009-09-11 2016-12-06 The Regents Of The University Of Colorado, A Body Corporate Polymorphisms in the PDE3A gene
EP2478120B1 (en) * 2009-09-17 2015-09-02 The Regents Of The University Of Michigan Recurrent gene fusions in prostate cancer
US8862448B2 (en) 2009-10-19 2014-10-14 Theranos, Inc. Integrated health data capture and analysis system
EP3461889A1 (en) 2009-11-19 2019-04-03 Solis Biodyne Compositions for increasing polypeptide stability and activity, and related methods
WO2011071923A2 (en) 2009-12-07 2011-06-16 Illumina, Inc. Multi-sample indexing for multiplex genotyping
US10446272B2 (en) 2009-12-09 2019-10-15 Veracyte, Inc. Methods and compositions for classification of samples
CA2822747A1 (en) 2009-12-23 2011-06-30 Arca Biopharma, Inc. Use of s-(6-nitro-oxi-hexahydro-furo[3,2-b]thioacetate in the treatment of cardiovascular disorders associated with oxide synthase dysfunction
WO2011082325A2 (en) 2009-12-31 2011-07-07 Life Technologies Corporation Sequences of e.coli 055:h7 genome
EP2529026B1 (en) 2010-01-25 2013-11-13 Rd Biosciences Inc. Self-folding amplification of target nucleic acid
CA2786569C (en) 2010-01-29 2019-04-09 Micronics, Inc. Sample-to-answer microfluidic cartridge
EP3604558B1 (en) 2010-02-17 2022-10-12 Gen-Probe Incorporated Compositions and methods to detect atopobium vaginae nucleic acid
EP2552961B1 (en) 2010-03-30 2017-12-20 Janssen Biotech, Inc. Humanized il-25 antibodies
US9371598B2 (en) 2010-04-05 2016-06-21 Prognosys Biosciences, Inc. Spatially encoded biological assays
US10787701B2 (en) 2010-04-05 2020-09-29 Prognosys Biosciences, Inc. Spatially encoded biological assays
US20190300945A1 (en) 2010-04-05 2019-10-03 Prognosys Biosciences, Inc. Spatially Encoded Biological Assays
US9206484B2 (en) 2010-04-21 2015-12-08 Gen-Probe Incorporated Compositions, methods and kits to detect herpes simplex virus nucleic acids
WO2011139714A2 (en) 2010-04-26 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of cysteinyl-trna synthetase
US8961960B2 (en) 2010-04-27 2015-02-24 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of isoleucyl tRNA synthetases
EP2563911B1 (en) 2010-04-28 2021-07-21 aTyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of alanyl trna synthetases
US9034320B2 (en) 2010-04-29 2015-05-19 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of Valyl-tRNA synthetases
AU2011248490B2 (en) 2010-04-29 2016-11-10 Pangu Biopharma Limited Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of Asparaginyl tRNA synthetases
JP5976638B2 (en) 2010-05-03 2016-08-23 エータイアー ファーマ, インコーポレイテッド Innovative discovery of therapeutic, diagnostic and antibody compositions related to protein fragments of arginyl tRNA synthetase
EP2566495B1 (en) 2010-05-03 2017-03-01 aTyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-alpha-trna synthetases
US8981045B2 (en) 2010-05-03 2015-03-17 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of methionyl-tRNA synthetases
US9062302B2 (en) 2010-05-04 2015-06-23 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of p38 multi-tRNA synthetase complex
US10232374B2 (en) 2010-05-05 2019-03-19 Miroculus Inc. Method of processing dried samples using digital microfluidic device
EP2568996B1 (en) 2010-05-14 2017-10-04 aTyr Pharma, Inc. Therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-beta-trna synthetases
KR101176139B1 (en) 2010-05-20 2012-08-22 광주과학기술원 Transgenic Mice Overexpressing HIF-2α as an Animal Model of Arthritis and Uses Thereof
KR101223660B1 (en) 2010-05-20 2013-01-17 광주과학기술원 Pharmaceutical Compositions for Preventing or Treating Arthritis Comprising HIF-2α Inhibitor as an Active Ingredient
AU2011258106B2 (en) 2010-05-27 2017-02-23 Pangu Biopharma Limited Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glutaminyl-tRNA synthetases
CN103118694B (en) 2010-06-01 2016-08-03 Atyr医药公司 The discovery for the treatment of, diagnosis and the antibody compositions relevant to the protein fragments of lysyl-tRNA synzyme
ES2569220T3 (en) 2010-06-22 2016-05-09 F. Hoffmann-La Roche Ag Suspension container for binding particles for the isolation of biological material
EP2588629B1 (en) 2010-06-30 2017-05-17 Gen-Probe Incorporated Method and apparatus for identifying analyte-containing samples using single-read determination of analyte and process control signals
JP5951603B2 (en) 2010-07-07 2016-07-13 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガンThe Regents Of The University Of Michigan Diagnosis and treatment of breast cancer
EP2593569B1 (en) 2010-07-12 2018-01-03 Gen-Probe Incorporated Compositions and assays to detect seasonal h1 influenza a virus nucleic acids
EP2593125B1 (en) 2010-07-12 2017-11-01 aTyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glycyl-trna synthetases
WO2012009711A2 (en) 2010-07-16 2012-01-19 Tocagen Inc. Retrovirus detection
CN107604097A (en) 2010-07-29 2018-01-19 霍夫曼-拉罗奇有限公司 Control nucleic acid for many kinds of parameters
JP6169489B2 (en) 2010-07-29 2017-07-26 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft General sample preparation
WO2012013732A1 (en) 2010-07-29 2012-02-02 F. Hoffmann - La Roche Ag Generic pcr
CN107190056A (en) 2010-07-29 2017-09-22 霍夫曼-拉罗奇有限公司 The qualitative and quantitative detection of microbial nucleic acids
US8822663B2 (en) 2010-08-06 2014-09-02 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US9029506B2 (en) 2010-08-25 2015-05-12 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of tyrosyl-tRNA synthetases
EP2611932A2 (en) 2010-08-30 2013-07-10 Gen-Probe Incorporated Compositions, methods and reaction mixtures for the detection of xenotropic murine leukemia virus-related virus
EP2426222A1 (en) 2010-09-07 2012-03-07 F. Hoffmann-La Roche AG Generic buffer for amplification
NZ608972A (en) 2010-10-01 2015-09-25 Moderna Therapeutics Inc Engineered nucleic acids and methods of use thereof
EP2625297B1 (en) 2010-10-04 2018-10-10 Gen-Probe Prodesse, Inc. Compositions, methods and kits to detect adenovirus nucleic acids
US10233501B2 (en) 2010-10-19 2019-03-19 Northwestern University Biomarkers predictive of predisposition to depression and response to treatment
US20150225792A1 (en) 2014-01-17 2015-08-13 Northwestern University Compositions and methods for identifying depressive disorders
US20150218639A1 (en) 2014-01-17 2015-08-06 Northwestern University Biomarkers predictive of predisposition to depression and response to treatment
US10093981B2 (en) 2010-10-19 2018-10-09 Northwestern University Compositions and methods for identifying depressive disorders
ES2576927T3 (en) 2010-10-22 2016-07-12 T2 Biosystems, Inc. NMR systems and methods for rapid analyte detection
US8563298B2 (en) 2010-10-22 2013-10-22 T2 Biosystems, Inc. NMR systems and methods for the rapid detection of analytes
ES2659543T3 (en) 2010-11-01 2018-03-16 Becton Dickinson And Company Gardnerella vaginalis trial
US9074251B2 (en) 2011-02-10 2015-07-07 Illumina, Inc. Linking sequence reads using paired code tags
EP3336200A1 (en) 2010-11-19 2018-06-20 The Regents Of The University Of Michigan Prostate cancer ncrna and uses thereof
US8945556B2 (en) 2010-11-19 2015-02-03 The Regents Of The University Of Michigan RAF gene fusions
EP2465945A1 (en) 2010-12-17 2012-06-20 F. Hoffmann-La Roche AG Generic matrix for control nucleic acids
WO2012090073A2 (en) 2010-12-30 2012-07-05 The Netherlands Cancer Institute Methods and compositions for predicting chemotherapy sensitivity
CA2822969C (en) 2010-12-31 2018-03-13 Jay M. Short Comprehensive monoclonal antibody generation
CA2823044C (en) 2010-12-31 2022-08-16 Jay M. Short Express humanization of antibodies
CN106323876B (en) 2011-01-21 2020-02-14 西拉诺斯知识产权有限责任公司 System and method for maximizing sample usage
WO2012106546A2 (en) 2011-02-02 2012-08-09 University Of Washington Through Its Center For Commercialization Massively parallel continguity mapping
ES2659763T3 (en) 2011-02-14 2018-03-19 The Regents Of The University Of Michigan Compositions and procedures for the treatment of obesity and related disorders
EP2683833B1 (en) 2011-03-10 2018-09-26 Gen-Probe Incorporated Methods for the selection and optimization of oligonucleotide tag sequences
AU2012236099A1 (en) 2011-03-31 2013-10-03 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
US20140287931A1 (en) 2011-04-04 2014-09-25 Stichting Het Nederlands Kanker Instituut - Antoni Van Leeuwenhoek Ziekenhuis Methods and compositions for predicting resistance to anticancer treatment
WO2012138783A2 (en) 2011-04-04 2012-10-11 Netherlands Cancer Institute Methods and compositions for predicting resistance to anticancer treatment
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
CA2833262C (en) 2011-04-15 2020-08-18 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
KR102007444B1 (en) 2011-04-25 2019-08-06 어드밴스드 바이오사이언스 라보라토리즈, 인코포레이티드 Truncated hiv envelope proteins(env), methods and compositions related thereto
WO2012149034A1 (en) 2011-04-25 2012-11-01 Gen-Probe Incorporated Compositions and methods for detecting bv-associated bacterial nucleic acid
EP2535712A1 (en) 2011-06-15 2012-12-19 F. Hoffmann-La Roche AG Analytical system for the preparation of biological material
US20120322676A1 (en) 2011-06-17 2012-12-20 Life Technologies Corporation Compositions and methods for detection of cronobacter spp. and cronobacter species and strains
ES2945966T3 (en) 2011-07-15 2023-07-11 Gen Probe Inc Compositions and method for detecting human parvovirus nucleic acid and hepatitis A virus nucleic acid
US8778843B1 (en) 2011-08-03 2014-07-15 Fry Laboratories, L.L.C. Semi-pan-protozoal by quantitative PCR
DK2748332T3 (en) 2011-08-24 2018-07-16 Oxoid Ltd COMPOSITIONS AND METHODS FOR DETECTING MULTIPLE MICROORGANISMS
EP4219741A3 (en) 2011-09-06 2023-08-23 Gen-Probe Incorporated Closed nucleic acid structures
AU2012304520B2 (en) 2011-09-06 2016-06-16 Gen-Probe Incorporated Circularized templates for sequencing
EP3255155B1 (en) 2011-09-08 2019-04-24 Gen-Probe Incorporated Compositions and methods for detecting bv-associated bacterial nucleic acid
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US8840838B2 (en) 2011-09-25 2014-09-23 Theranos, Inc. Centrifuge configurations
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US8475739B2 (en) 2011-09-25 2013-07-02 Theranos, Inc. Systems and methods for fluid handling
US8435738B2 (en) 2011-09-25 2013-05-07 Theranos, Inc. Systems and methods for multi-analysis
US9268915B2 (en) 2011-09-25 2016-02-23 Theranos, Inc. Systems and methods for diagnosis or treatment
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US8380541B1 (en) 2011-09-25 2013-02-19 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US20140170735A1 (en) 2011-09-25 2014-06-19 Elizabeth A. Holmes Systems and methods for multi-analysis
WO2013044097A1 (en) 2011-09-21 2013-03-28 Gen-Probe Incorporated Methods for amplifying nucleic acid using tag-mediated displacement
SG10201602141QA (en) 2011-09-25 2016-04-28 Theranos Inc Systems And Methods For Multi-Analysis
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US9250229B2 (en) 2011-09-25 2016-02-02 Theranos, Inc. Systems and methods for multi-analysis
US9810704B2 (en) 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis
WO2013045505A1 (en) 2011-09-28 2013-04-04 Novartis Ag Biomarkers for raas combination therapy
DE19216461T1 (en) 2011-10-03 2021-10-07 Modernatx, Inc. MODIFIED NUCLEOSIDES, NUCLEOTIDES AND NUCLEIC ACIDS AND USES THEREOF
US9416153B2 (en) 2011-10-11 2016-08-16 Enzo Life Sciences, Inc. Fluorescent dyes
CN104080958A (en) 2011-10-19 2014-10-01 纽亘技术公司 Compositions and methods for directional nucleic acid amplification and sequencing
WO2013064908A1 (en) 2011-11-04 2013-05-10 Oslo Universitetssykehus Hf Methods and biomarkers for analysis of colorectal cancer
AU2012318290B2 (en) 2011-11-04 2015-07-30 Gen-Probe Incorporated Molecular assay reagents and methods
BR112014011491A2 (en) 2011-11-14 2017-05-09 Nestec Sa trials and methods for selecting a treatment regimen for an individual with depression
DE102011120550B4 (en) 2011-12-05 2013-11-07 Gen-Probe Prodesse, Inc. Compositions, methods and kits for the detection of adenovirus nucleic acids
AU2012352153B2 (en) 2011-12-13 2018-07-26 Veracyte, Inc. Cancer diagnostics using non-coding transcripts
WO2013090648A1 (en) 2011-12-16 2013-06-20 modeRNA Therapeutics Modified nucleoside, nucleotide, and nucleic acid compositions
WO2013093629A2 (en) 2011-12-20 2013-06-27 Netherlands Cancer Institute Modular vaccines, methods and compositions related thereto
US20130189679A1 (en) 2011-12-20 2013-07-25 The Regents Of The University Of Michigan Pseudogenes and uses thereof
WO2013096799A1 (en) 2011-12-22 2013-06-27 Ibis Biosciences, Inc. Systems and methods for isolating nucleic acids from cellular samples
US9803188B2 (en) 2011-12-22 2017-10-31 Ibis Biosciences, Inc. Systems and methods for isolating nucleic acids
US9394573B2 (en) 2011-12-23 2016-07-19 Biomerieux S.A. Detection of mecA variant strains of methicillin-resistant Staphylococcus aureus
US9970061B2 (en) 2011-12-27 2018-05-15 Ibis Biosciences, Inc. Bioagent detection oligonucleotides
US9822417B2 (en) 2012-01-09 2017-11-21 Oslo Universitetssykehus Hf Methods and biomarkers for analysis of colorectal cancer
GB2513793B (en) 2012-01-26 2016-11-02 Nugen Tech Inc Compositions and methods for targeted nucleic acid sequence enrichment and high efficiency library generation
CA2864300A1 (en) 2012-02-16 2013-08-22 Atyr Pharma, Inc. Histidyl-trna synthetases for treating autoimmune and inflammatory diseases
WO2013124738A2 (en) 2012-02-21 2013-08-29 Oslo Universitetssykehus Hf Methods and biomarkers for detection and prognosis of cervical cancer
CA2865281C (en) 2012-02-24 2021-11-23 Gen-Probe Prodesse, Inc. Detection of shiga toxin genes in bacteria
AU2013229151A1 (en) 2012-03-06 2014-09-25 Aarhus University Gene signatures associated with efficacy of postmastectomy radiotherapy in breast cancer
MX2014011682A (en) 2012-03-29 2015-01-22 Novartis Ag Pharmaceutical diagnostic.
CA2869033C (en) 2012-03-29 2021-06-01 Becton, Dickinson And Company Nucleic acids for nucleic acid amplification
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
EP2834369B1 (en) 2012-04-02 2018-05-30 Life Technologies Corporation Compositions and methods for detection of mycobacterium avium paratuberculosis
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
AU2013243948A1 (en) 2012-04-02 2014-10-30 Moderna Therapeutics, Inc. Modified polynucleotides for the production of proteins associated with human disease
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
ES2716995T3 (en) 2012-04-03 2019-06-18 Univ Michigan Regents Biomarkers associated with irritable bowel syndrome and Crohn's disease
EP2836846A1 (en) 2012-04-13 2015-02-18 Becton, Dickinson and Company, Inc. Reflex testing of samples using residual materials from a prior test
AU2013205110B2 (en) 2012-04-24 2016-10-13 Gen-Probe Incorporated Compositions, Methods and Kits to Detect Herpes Simplex Virus Nucleic Acids
AU2013205064B2 (en) 2012-06-04 2015-07-30 Gen-Probe Incorporated Compositions and Methods for Amplifying and Characterizing HCV Nucleic Acid
US9012022B2 (en) 2012-06-08 2015-04-21 Illumina, Inc. Polymer coatings
US8895249B2 (en) 2012-06-15 2014-11-25 Illumina, Inc. Kinetic exclusion amplification of nucleic acid libraries
EP2861787B1 (en) 2012-06-18 2017-09-20 Nugen Technologies, Inc. Compositions and methods for negative selection of non-desired nucleic acid sequences
WO2014005076A2 (en) 2012-06-29 2014-01-03 The Regents Of The University Of Michigan Methods and biomarkers for detection of kidney disorders
US20140005061A1 (en) 2012-06-29 2014-01-02 Life Technologies Corporation Compositions and methods for detection of multiple microorganisms
WO2014008312A2 (en) 2012-07-02 2014-01-09 Price Lance B Primers, assays and methods for detecting an e. coli subtype
US20150011396A1 (en) 2012-07-09 2015-01-08 Benjamin G. Schroeder Methods for creating directional bisulfite-converted nucleic acid libraries for next generation sequencing
AU2013205087B2 (en) 2012-07-13 2016-03-03 Gen-Probe Incorporated Method for detecting a minority genotype
WO2014015217A1 (en) 2012-07-19 2014-01-23 Vertex Pharmaceuticals Incorporated Biomarkers for hcv infected patients
US10870099B2 (en) 2012-07-26 2020-12-22 Illumina, Inc. Compositions and methods for the amplification of nucleic acids
WO2014018885A2 (en) 2012-07-27 2014-01-30 Gen-Probe Incorporated Dual reference calibration method and system for quantifying polynucleotides
AU2013202793B2 (en) 2012-07-31 2014-09-18 Gen-Probe Incorporated System, method and apparatus for automated incubation
WO2014028884A2 (en) 2012-08-16 2014-02-20 Genomedx Biosciences, Inc. Cancer diagnostics using biomarkers
WO2014036369A1 (en) 2012-08-30 2014-03-06 Gen-Probe Incorporated Multiphase nucleic acid amplification
MX2015002919A (en) 2012-09-11 2015-08-14 Theranos Inc Information management systems and methods using a biological signature.
AU2013205122B2 (en) 2012-10-11 2016-11-10 Gen-Probe Incorporated Compositions and Methods for Detecting Human Papillomavirus Nucleic Acid
EP2909341A2 (en) 2012-10-18 2015-08-26 Oslo Universitetssykehus HF Biomarkers for cervical cancer
US9181583B2 (en) 2012-10-23 2015-11-10 Illumina, Inc. HLA typing using selective amplification and sequencing
ES2921623T3 (en) 2012-11-26 2022-08-30 Modernatx Inc terminally modified RNA
EP2925886B1 (en) 2012-11-27 2019-04-24 Pontificia Universidad Católica de Chile Compositions and methods for diagnosing thyroid tumors
US9890414B2 (en) 2012-11-28 2018-02-13 Abwiz Bio, Inc Preparation of gene-specific templates for the use in single primer amplification
AU2013205090B2 (en) 2012-12-07 2016-07-28 Gen-Probe Incorporated Compositions and Methods for Detecting Gastrointestinal Pathogen Nucleic Acid
US20150346097A1 (en) 2012-12-21 2015-12-03 Micronics, Inc. Portable fluorescence detection system and microassay cartridge
CN104919191B (en) 2012-12-21 2019-07-09 精密公司 Fluid circuit and relevant manufacturing method
WO2014100743A2 (en) 2012-12-21 2014-06-26 Micronics, Inc. Low elasticity films for microfluidic use
US9683230B2 (en) 2013-01-09 2017-06-20 Illumina Cambridge Limited Sample preparation on a solid support
JP2016509480A (en) 2013-01-24 2016-03-31 カリフォルニア インスティチュート オブ テクノロジー Chromophore-based characterization and detection methods
US10077475B2 (en) 2013-01-24 2018-09-18 California Institute Of Technology FRET-based analytes detection and related methods and systems
CN109813923A (en) 2013-02-18 2019-05-28 赛拉诺斯知识产权有限责任公司 System and method for acquiring and transmitting measurement result
US9512422B2 (en) 2013-02-26 2016-12-06 Illumina, Inc. Gel patterned surfaces
US20140249037A1 (en) 2013-03-04 2014-09-04 Fry Laboratories, LLC Method and kit for characterizing microorganisms
WO2014142850A1 (en) 2013-03-13 2014-09-18 Illumina, Inc. Methods and compositions for nucleic acid sequencing
WO2014160233A1 (en) 2013-03-13 2014-10-02 Abbott Molecular Inc. Systems and methods for isolating nucleic acids
AU2013382089B2 (en) 2013-03-13 2018-05-10 Illumina, Inc. Multilayer fluidic devices and methods for their fabrication
AU2013202805B2 (en) 2013-03-14 2015-07-16 Gen-Probe Incorporated System and method for extending the capabilities of a diagnostic analyzer
EP2971171A4 (en) 2013-03-14 2016-11-02 Abbott Molecular Inc Multiplex methylation-specific amplification systems and methods
US20140274736A1 (en) 2013-03-14 2014-09-18 Abbott Molecular Inc. Minimizing errors using uracil-dna-n-glycosylase
WO2014144495A1 (en) 2013-03-15 2014-09-18 Abvitro, Inc. Single cell bar-coding for antibody discovery
WO2014150910A1 (en) 2013-03-15 2014-09-25 Ibis Biosciences, Inc. Dna sequences to assess contamination in dna sequencing
WO2014144092A1 (en) 2013-03-15 2014-09-18 Nugen Technologies, Inc. Sequential sequencing
WO2014151511A2 (en) 2013-03-15 2014-09-25 Abbott Molecular Inc. Systems and methods for detection of genomic copy number changes
US9976175B2 (en) 2013-03-15 2018-05-22 Gen-Probe Incorporated Calibration method, apparatus and computer program product
US9255265B2 (en) 2013-03-15 2016-02-09 Illumina, Inc. Methods for producing stranded cDNA libraries
JP6615744B2 (en) 2013-03-15 2019-12-04 ベクトン・ディキンソン・アンド・カンパニー Neisseria gonorrhea detection
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
KR101403507B1 (en) 2013-03-21 2014-06-09 주식회사 현일바이오 Methods for Selectively Detecting Mycobacterium tuberculosis complex and Nontuberculous mycobacteria and Kits Using the Same
JP2016517687A (en) 2013-03-27 2016-06-20 サンプル テクノロジーズ,インコーポレイティド Recombinant phage and bacterial detection method
KR101507505B1 (en) 2013-04-18 2015-04-07 사회복지법인 삼성생명공익재단 A Method for Diagnosing Myotonic Dystrophy Type 1
EP2992331A4 (en) 2013-04-30 2017-03-29 Université de Montréal Novel biomarkers for acute myeloid leukemia
WO2014179734A1 (en) 2013-05-02 2014-11-06 The Regents Of The University Of Michigan Deuterated amlexanox
CA2911303C (en) 2013-05-07 2021-02-16 Micronics, Inc. Methods for preparation of nucleic acid-containing samples using clay minerals and alkaline solutions
EP2994543B1 (en) 2013-05-07 2018-08-15 Micronics, Inc. Device for preparation and analysis of nucleic acids
US10386377B2 (en) 2013-05-07 2019-08-20 Micronics, Inc. Microfluidic devices and methods for performing serum separation and blood cross-matching
WO2014183023A1 (en) 2013-05-09 2014-11-13 Trustees Of Boston University Using plexin-a4 as a biomarker and therapeutic target for alzheimer's disease
US20160138013A1 (en) 2013-05-30 2016-05-19 The Regents Of The University Of California Substantially unbiased amplification of genomes
WO2014205221A2 (en) 2013-06-19 2014-12-24 Sample6 Technologies, Inc. Phage-based bacterial detection assay
EP3013983B1 (en) 2013-06-25 2023-02-15 Prognosys Biosciences, Inc. Spatially encoded biological assays using a microfluidic device
PL3017065T3 (en) 2013-07-01 2019-03-29 Illumina, Inc. Catalyst-free surface functionalization and polymer grafting
SG11201600550WA (en) 2013-07-25 2016-02-26 Dch Molecular Diagnostics Inc Methods and compositions for detecting bacterial contamination
US9547006B2 (en) 2013-08-08 2017-01-17 Institut Pasteur Correlation of disease activity with clonal expansions of human papillomavirus 16-specific CD8+ T-cells in patients with severe erosive oral lichen planus
US10053742B2 (en) 2013-08-14 2018-08-21 Gen-Probe Incorporated Compositions and methods for detecting HEV nucleic acid
KR102536833B1 (en) 2013-08-28 2023-05-26 벡톤 디킨슨 앤드 컴퍼니 Massively parallel single cell analysis
US11545241B1 (en) 2013-09-07 2023-01-03 Labrador Diagnostics Llc Systems and methods for analyte testing and data management
EA201690675A1 (en) 2013-10-03 2016-08-31 Модерна Терапьютикс, Инк. POLYNUCLEOTES ENCODING THE RECEPTOR OF LOW DENSITY LIPOPROTEINS
CA2929596C (en) 2013-11-13 2022-07-05 Nugen Technologies, Inc. Compositions and methods for identification of a duplicate sequencing read
WO2015071759A1 (en) 2013-11-15 2015-05-21 Institut Pasteur A molecular marker of plasmodium falciparum artemisinin resistance
AU2014364180B2 (en) 2013-12-09 2021-03-04 Illumina, Inc. Methods and compositions for targeted nucleic acid sequencing
US11286519B2 (en) 2013-12-11 2022-03-29 Accuragen Holdings Limited Methods and compositions for enrichment of amplification products
AU2014362227B2 (en) 2013-12-11 2021-05-13 Accuragen Holdings Limited Compositions and methods for detecting rare sequence variants
US11859246B2 (en) 2013-12-11 2024-01-02 Accuragen Holdings Limited Methods and compositions for enrichment of amplification products
US9909181B2 (en) 2013-12-13 2018-03-06 Northwestern University Biomarkers for post-traumatic stress states
ES2890078T3 (en) 2013-12-20 2022-01-17 Illumina Inc Conservation of genomic connectivity information in fragmented genomic DNA samples
US9677132B2 (en) 2014-01-16 2017-06-13 Illumina, Inc. Polynucleotide modification on solid support
EP3094742A1 (en) 2014-01-16 2016-11-23 Illumina, Inc. Amplicon preparation and sequencing on solid supports
WO2015131107A1 (en) 2014-02-28 2015-09-03 Nugen Technologies, Inc. Reduced representation bisulfite sequencing with diversity adaptors
EP3151733B1 (en) 2014-06-06 2020-04-15 The Regents Of The University Of Michigan Compositions and methods for characterizing and diagnosing periodontal disease
US20150353989A1 (en) 2014-06-09 2015-12-10 Illumina Cambridge Limited Sample preparation for nucleic acid amplification
GB201410420D0 (en) 2014-06-11 2014-07-23 Illumina Cambridge Ltd Methods for estimating cluster numbers
CA3172086A1 (en) 2014-06-13 2015-12-17 Illumina Cambridge Limited Methods and compositions for preparing sequencing libraries
WO2016003814A1 (en) 2014-06-30 2016-01-07 Illumina, Inc. Methods and compositions using one-sided transposition
CN106661600B (en) 2014-07-16 2021-04-06 唐恩生物科技股份有限公司 Isothermal method for amplifying nucleic acid samples
EP3183577B1 (en) 2014-08-21 2020-08-19 Illumina Cambridge Limited Reversible surface functionalization
WO2016040602A1 (en) 2014-09-11 2016-03-17 Epicentre Technologies Corporation Reduced representation bisulfite sequencing using uracil n-glycosylase (ung) and endonuclease iv
ES2727656T3 (en) 2014-09-15 2019-10-17 Abvitro Llc High performance sequencing of nucleotide banks
BR122021026779B1 (en) 2014-10-17 2023-12-19 Illumina Cambridge Limited CONTIGUITY PRESERVING TRANSPOSON
PT3212684T (en) 2014-10-31 2020-02-03 Illumina Cambridge Ltd Novel polymers and dna copolymer coatings
US11559801B2 (en) 2014-11-03 2023-01-24 Tangen Biosciences, Inc. Apparatus and method for cell, spore, or virus capture and disruption
GB201419731D0 (en) 2014-11-05 2014-12-17 Illumina Cambridge Ltd Sequencing from multiple primers to increase data rate and density
EP3215170A4 (en) 2014-11-05 2018-04-25 Veracyte, Inc. Systems and methods of diagnosing idiopathic pulmonary fibrosis on transbronchial biopsies using machine learning and high dimensional transcriptional data
WO2016077426A1 (en) 2014-11-11 2016-05-19 Abbott Molecular Inc. Hybridization probes and methods
EP3242956B1 (en) 2015-01-09 2020-06-17 Gen-Probe Incorporated Methods and compositions for diagnosing bacterial vaginosis
KR101718800B1 (en) 2015-01-21 2017-03-24 주식회사 디알나노 Nanocomplexs for Co-delivering a Drug and siRNA and Uses Thereof
US10208339B2 (en) 2015-02-19 2019-02-19 Takara Bio Usa, Inc. Systems and methods for whole genome amplification
EP3822361A1 (en) 2015-02-20 2021-05-19 Takara Bio USA, Inc. Method for rapid accurate dispensing, visualization and analysis of single cells
US10550438B2 (en) 2015-03-16 2020-02-04 Gen-Probe Incorporated Methods and compositions for detecting bacterial nucleic acid
US9708647B2 (en) 2015-03-23 2017-07-18 Insilixa, Inc. Multiplexed analysis of nucleic acid hybridization thermodynamics using integrated arrays
WO2016156845A1 (en) 2015-03-31 2016-10-06 Illumina Cambridge Limited Surface concatamerization of templates
FI3901281T3 (en) 2015-04-10 2023-01-31 Spatially distinguished, multiplex nucleic acid analysis of biological specimens
WO2016168174A1 (en) 2015-04-13 2016-10-20 The Translational Genomics Research Institute Predicting the occurrence of metastatic cancer using epigenomic biomarkers and non-invasive methodologies
US10125198B2 (en) 2015-04-17 2018-11-13 Distributed Bio, Inc. Method for mass humanization of non-human antibodies
CA3224392A1 (en) 2015-04-24 2016-10-27 Becton, Dickinson And Company Multiplex detection of vulvovaginal candidiasis, trichomoniasis and bacterial vaginosis
DK3294911T3 (en) 2015-05-11 2020-11-16 Illumina Inc Platform for discovery and analysis of therapeutic agents
JP6822974B2 (en) 2015-05-29 2021-01-27 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft How to inactivate microorganisms with citraconic anhydride
CN208562324U (en) 2015-06-05 2019-03-01 米罗库鲁斯公司 Digital microcurrent-controlled (DMF) device of air matrix
CN108026494A (en) 2015-06-05 2018-05-11 米罗库鲁斯公司 Limitation evaporation and the digital microcurrent-controlled apparatus and method of air matrix of surface scale
JP6840391B2 (en) 2015-06-19 2021-03-10 セラ プログノスティックス, インコーポレイテッド A pair of biomarkers for predicting preterm birth
EP3320111B1 (en) 2015-07-06 2021-05-05 Illumina Cambridge Limited Sample preparation for nucleic acid amplification
WO2017007753A1 (en) 2015-07-07 2017-01-12 Illumina, Inc. Selective surface patterning via nanoimrinting
EP3325648B1 (en) 2015-07-17 2023-03-29 Illumina, Inc. Polymer sheets for sequencing applications
EP3124619B1 (en) 2015-07-31 2019-03-06 Menicon Co., Ltd Reagents, method and kit for across and within dog breed glaucoma diagnosis
US9789087B2 (en) 2015-08-03 2017-10-17 Thomas Jefferson University PAR4 inhibitor therapy for patients with PAR4 polymorphism
CN107921432A (en) 2015-09-02 2018-04-17 伊卢米纳剑桥有限公司 Improve the system and method for the droplet manipulation in flow control system
US9499861B1 (en) 2015-09-10 2016-11-22 Insilixa, Inc. Methods and systems for multiplex quantitative nucleic acid amplification
AU2016334233B2 (en) 2015-10-09 2023-01-05 Accuragen Holdings Limited Methods and compositions for enrichment of amplification products
KR101651817B1 (en) 2015-10-28 2016-08-29 대한민국 Primer set for Preparation of NGS library and Method and Kit for making NGS library using the same
CN115927547A (en) 2015-12-03 2023-04-07 安可济控股有限公司 Methods and compositions for forming ligation products
CA3010232A1 (en) 2016-01-04 2017-07-13 Gen-Probe Incorporated Methods and compositions for detecting candida species
CA3011991A1 (en) 2016-01-21 2017-07-27 T2 Biosystems, Inc. Rapid antimicrobial susceptibility testing using high-sensitivity direct detection methods
WO2017132538A1 (en) 2016-01-29 2017-08-03 The Regents Of The University Of Michigan Amlexanox analogs
WO2017155858A1 (en) 2016-03-07 2017-09-14 Insilixa, Inc. Nucleic acid sequence identification using solid-phase cyclic single base extension
CN112892622B (en) 2016-03-28 2022-08-30 亿明达股份有限公司 Multiplanar microarrays
CA3019164A1 (en) 2016-03-29 2017-10-05 Janssen Biotech, Inc. Method of treating psoriasis with increased interval dosing of anti-il12/23 antibody
EP4151751A1 (en) 2016-04-14 2023-03-22 T2 Biosystems, Inc. Methods and systems for amplification in complex samples
US11427866B2 (en) 2016-05-16 2022-08-30 Accuragen Holdings Limited Method of improved sequencing by strand identification
AU2017267653B2 (en) 2016-05-18 2021-05-13 Illumina, Inc. Self assembled patterning using patterned Hydrophobic surfaces
WO2017214511A2 (en) 2016-06-10 2017-12-14 Gen-Probe Incorporated Compositions and methods for detecting zika virus nucleic acid
EP3475446A1 (en) 2016-06-27 2019-05-01 Juno Therapeutics, Inc. Method of identifying peptide epitopes, molecules that bind such epitopes and related uses
MA45491A (en) 2016-06-27 2019-05-01 Juno Therapeutics Inc CMH-E RESTRICTED EPITOPES, BINDING MOLECULES AND RELATED METHODS AND USES
US11091795B2 (en) 2016-07-11 2021-08-17 Arizona Board Of Regents On Behalf Of The University Of Arizona Compositions and methods for diagnosing and treating arrhythmias
MX2019000643A (en) 2016-07-15 2019-06-13 Poseida Therapeutics Inc Chimeric antigen receptors and methods for use.
WO2018014039A1 (en) 2016-07-15 2018-01-18 Poseida Therapeutics, Inc. Chimeric antigen receptors (cars) specific for muc1 and methods for their use
JP7075394B2 (en) 2016-07-21 2022-05-25 タカラ バイオ ユーエスエー, インコーポレイテッド Multi-Z imaging and dispensing using a multi-well device
DK3488002T3 (en) 2016-07-22 2021-06-21 Univ Oregon Health & Science SINGLE CELL WEEKEND LIBRARIES AND COMBINATORY INDEXING METHODS FOR PREPARING IT
CA3033016A1 (en) 2016-08-10 2018-02-15 Institut Pasteur Methods and reagents for detecting piperaquine-resistant plasmodium falciparum malaria
JP6966052B2 (en) 2016-08-15 2021-11-10 アキュラーゲン ホールディングス リミテッド Compositions and Methods for Detecting Rare Sequence Variants
CN109715781A (en) 2016-08-22 2019-05-03 米罗库鲁斯公司 Feedback system for the parallel drop control in digital microcurrent-controlled equipment
US11414708B2 (en) 2016-08-24 2022-08-16 Decipher Biosciences, Inc. Use of genomic signatures to predict responsiveness of patients with prostate cancer to post-operative radiation therapy
CA3037961A1 (en) 2016-09-30 2018-04-05 Janssen Biotech, Inc. Safe and effective method of treating psoriasis with anti-il23 specific antibody
CA3038178A1 (en) 2016-09-30 2018-04-05 The Governing Council Of The University Of Toronto System for identifying and targeting individual cells within a heterogeneous population for selective extraction of cellular content
KR102447083B1 (en) 2016-10-06 2022-09-26 포세이다 테라퓨틱스, 인크. Inducible caspases and methods of use
US10422012B2 (en) 2016-10-10 2019-09-24 Roche Molecular Systems, Inc. Devices comprising bacteriophage PHI6 internal control compositions
EP3529381B1 (en) 2016-10-19 2022-07-06 Gen-Probe Incorporated Compositions and methods for detecting or quantifying hepatitis c virus
US11031099B2 (en) 2016-11-09 2021-06-08 Roche Molecular Systems, Inc. Detection of sequence variants
MX2019005661A (en) 2016-11-16 2019-10-07 Janssen Biotech Inc Method of treating psoriasis with anti-il-23 specific antibody.
EP3541959A1 (en) 2016-11-21 2019-09-25 Gen-Probe Incorporated Compositions and methods for detecting or quantifying hepatitis b virus
WO2018126082A1 (en) 2016-12-28 2018-07-05 Miroculis Inc. Digital microfluidic devices and methods
US10793901B2 (en) 2016-12-28 2020-10-06 Roche Molecular Systems, Inc. Reversibly protected nucleotide reagents with high thermal stability
GB201704754D0 (en) 2017-01-05 2017-05-10 Illumina Inc Kinetic exclusion amplification of nucleic acid libraries
WO2018127786A1 (en) 2017-01-06 2018-07-12 Oslo Universitetssykehus Hf Compositions and methods for determining a treatment course of action
KR101936799B1 (en) 2017-01-09 2019-01-11 주식회사 엠이티라이프사이언스 Pharmaceutical Composition for Treating Oral Precancer and Method for Predicting or Detecting of Oral Precancer or Oral Cancer
US11208697B2 (en) 2017-01-20 2021-12-28 Decipher Biosciences, Inc. Molecular subtyping, prognosis, and treatment of bladder cancer
CN110234351A (en) 2017-01-30 2019-09-13 詹森生物科技公司 For treating the anti-TNF antibodies, composition and method of activity psoriatic arthritis
MX2019009377A (en) 2017-02-07 2019-12-11 Janssen Biotech Inc Anti-tnf antibodies, compositions, and methods for the treatment of active ankylosing spondylitis.
AU2018230784A1 (en) 2017-03-09 2019-10-10 Decipher Biosciences, Inc. Subtyping prostate cancer to predict response to hormone therapy
US11744861B2 (en) 2017-03-13 2023-09-05 Poseida Therapeutics, Inc. Compositions and methods for selective elimination and replacement of hematopoietic stem cells
EP4212635A1 (en) 2017-03-24 2023-07-19 Gen-Probe Incorporated Compositions and methods for detection of rsv a in samples
CA3057325C (en) 2017-03-24 2024-03-12 Gen-Probe Incorporated Cover assembly and related methods of use
EP3601617B3 (en) 2017-03-24 2024-03-20 Gen-Probe Incorporated Compositions and methods for detecting or quantifying parainfluenza virus
US11623219B2 (en) 2017-04-04 2023-04-11 Miroculus Inc. Digital microfluidics apparatuses and methods for manipulating and processing encapsulated droplets
WO2018187013A1 (en) 2017-04-04 2018-10-11 Omniome, Inc. Fluidic apparatus and methods useful for chemical and biological reactions
ES2937929T3 (en) 2017-04-23 2023-04-03 Illumina Inc Compositions and methods to improve sample identification in indexed nucleic acid libraries
CA3059839C (en) 2017-04-23 2023-01-03 Illumina Cambridge Limited Compositions and methods for improving sample identification in indexed nucleic acid libraries
DK3615690T3 (en) 2017-04-23 2021-11-15 Illumina Cambridge Ltd COMPOSITIONS AND METHODS FOR IMPROVING SAMPLE IDENTIFICATION IN INDEXED NUCLEIC ACID LIBRARIES
EP3622087A4 (en) 2017-05-12 2021-06-16 Decipher Biosciences, Inc. Genetic signatures to predict prostate cancer metastasis and identify tumor agressiveness
CA3064205A1 (en) 2017-05-26 2018-11-29 Abvitro Llc High-throughput polynucleotide library sequencing and transcriptome analysis
US10995104B2 (en) 2017-05-30 2021-05-04 Roche Molecular System, Inc. Catalysts for reversing formaldehyde adducts and crosslinks
JP7292217B2 (en) 2017-06-07 2023-06-16 ジーイーエヌ-プローブ・インコーポレーテッド Detection of Babesia species nucleic acid in a sample
EP3635136B1 (en) 2017-06-07 2021-10-20 Oregon Health & Science University Single cell whole genome libraries for methylation sequencing
US20180363044A1 (en) 2017-06-14 2018-12-20 Roche Molecular Systems, Inc. Compositions and methods for improving the thermal stability of nucleic acid amplification reagents
US11217329B1 (en) 2017-06-23 2022-01-04 Veracyte, Inc. Methods and systems for determining biological sample integrity
CN111032209A (en) 2017-07-10 2020-04-17 简·探针公司 Analysis system and method
CN110892258A (en) 2017-07-24 2020-03-17 米罗库鲁斯公司 Digital microfluidic system and method with integrated plasma collection device
WO2019027767A1 (en) 2017-07-31 2019-02-07 Illumina Inc. Sequencing system with multiplexed biological sample aggregation
NZ759924A (en) 2017-08-01 2023-07-28 Illumina Inc Hydrogel beads for nucleotide sequencing
SG11201911869XA (en) 2017-08-01 2020-01-30 Illumina Inc Spatial indexing of genetic material and library preparation using hydrogel beads and flow cells
US11859257B2 (en) 2017-08-11 2024-01-02 Gen-Probe Incorporated Compositions and methods for detecting Staphylococcus aureus
CA3072136A1 (en) 2017-08-15 2019-02-21 Omniome, Inc. Scanning apparatus and methods useful for detection of chemical and biological analytes
AU2018317902A1 (en) 2017-08-18 2020-03-05 Sera Prognostics, Inc. Pregnancy clock proteins for predicting due date and time to birth
CN115582155A (en) 2017-09-01 2023-01-10 米罗库鲁斯公司 Digital microfluidic device and method of use thereof
MA50079A (en) 2017-09-07 2020-07-15 Juno Therapeutics Inc METHODS FOR IDENTIFYING CELLULAR CHARACTERISTICS RELATING TO RESPONSES ASSOCIATED WITH CELL THERAPY
EP3679145A2 (en) 2017-09-08 2020-07-15 Poseida Therapeutics, Inc. Compositions and methods for chimeric ligand receptor (clr)-mediated conditional gene expression
TW201922780A (en) 2017-09-25 2019-06-16 美商健生生物科技公司 Safe and effective method of treating Lupus with anti-IL12/IL23 antibody
US11193166B2 (en) 2017-10-19 2021-12-07 Omniome, Inc. Simultaneous background reduction and complex stabilization in binding assay workflows
US11099202B2 (en) 2017-10-20 2021-08-24 Tecan Genomics, Inc. Reagent delivery system
WO2019086517A1 (en) 2017-10-31 2019-05-09 Roche Diagnostics Gmbh Improved magnetic particles and uses thereof
US11851679B2 (en) 2017-11-01 2023-12-26 Juno Therapeutics, Inc. Method of assessing activity of recombinant antigen receptors
CA3082909C (en) 2017-11-17 2023-07-25 Gen-Probe Incorporated Compositions and methods for detecting c1orf43 nucleic acid
US11078534B2 (en) 2017-11-27 2021-08-03 Roche Molecular Systems, Inc. Photocleavable nucleotide reagents with high stability
US20200318171A1 (en) 2017-12-15 2020-10-08 Gen-Probe Incorporated Compositions and Methods for Detecting Toxigenic Clostridium Difficile
AU2018393110B2 (en) 2017-12-20 2023-04-27 Poseida Therapeutics, Inc. VCAR compositions and methods for use
CA3089078A1 (en) 2018-01-29 2019-08-01 Gen-Probe Incorporated Analytical systems and methods
CA3186025A1 (en) 2018-02-13 2019-08-22 Illumina, Inc. Dna sequencing using hydrogel beads
EP3762015A4 (en) 2018-03-05 2022-04-27 Janssen Biotech, Inc. Methods of treating crohn's disease with anti-il23 specific antibody
MX2020009309A (en) 2018-03-07 2021-01-08 Poseida Therapeutics Inc Cartyrin compositions and methods for use.
US20190292596A1 (en) 2018-03-21 2019-09-26 Roche Molecular Systems, Inc. Modified nucleoside phosphates with high thermal stability
US11203782B2 (en) 2018-03-29 2021-12-21 Accuragen Holdings Limited Compositions and methods comprising asymmetric barcoding
WO2019195225A1 (en) 2018-04-02 2019-10-10 Illumina, Inc. Compositions and methods for making controls for sequence-based genetic testing
WO2019203986A1 (en) 2018-04-19 2019-10-24 Omniome, Inc. Improving accuracy of base calls in nucleic acid sequencing methods
SG11201911961RA (en) 2018-04-20 2020-01-30 Illumina Inc Methods of encapsulating single cells, the encapsulated cells and uses thereof
EP3691635B1 (en) 2018-05-25 2023-07-05 Arca Biopharma, Inc. Methods and compositions involving bucindolol for the treatment of atrial fibrillation
US11384376B2 (en) 2018-05-31 2022-07-12 Roche Molecular Systems, Inc. Reagents and methods for post-synthetic modification of nucleic acids
MX2019015262A (en) 2018-06-04 2023-01-25 Illumina Inc High-throughput single-cell transcriptome libraries and methods of making and of using.
CN112654721A (en) 2018-06-13 2021-04-13 简·探针公司 Compositions and methods for detecting group B streptococcal nucleic acids
WO2020014400A1 (en) 2018-07-10 2020-01-16 Gen-Probe Incorporated Methods and systems for detecting and quantifying nucleic acids
WO2020016838A2 (en) 2018-07-18 2020-01-23 Janssen Biotech, Inc. Sustained response predictors after treatment with anti-il23 specific antibody
EP3830302B1 (en) 2018-08-01 2022-10-05 Gen-Probe Incorporated Compositions and methods for detecting nucleic acids of epstein-barr virus
WO2020033557A1 (en) 2018-08-08 2020-02-13 Gen-Probe Incorporated Compositions, methods and kits for detecting mycoplasma genitalium
US20220074002A1 (en) 2018-08-21 2022-03-10 Gen-Probe Incorporated Compositions and methods for amplifying, detecting or quantifying human cytomegalovirus
AU2019324196A1 (en) 2018-08-24 2021-03-18 Gen-Probe Incorporated Compositions and methods for detecting bacterial nucleic acid and diagnosing bacterial vaginosis
US11519033B2 (en) 2018-08-28 2022-12-06 10X Genomics, Inc. Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample
AU2019335014A1 (en) 2018-09-05 2021-03-25 Poseida Therapeutics, Inc. Allogeneic cell compositions and methods of use
EP3856934A2 (en) 2018-09-27 2021-08-04 Gen-Probe Incorporated COMPOSITIONS AND METHODS FOR DETECTING BORDETELLA PERTUSSIS AND BORDETELLA&#xA;PARAPERTUSSIS NUCLEIC ACID
WO2020086546A1 (en) 2018-10-22 2020-04-30 Gen-Probe Incorporated Compositions and methods for amplifying, detecting or quantifying human polyomavirus bk virus
BR112021005976A2 (en) 2018-10-26 2021-06-29 Illumina, Inc. modulation of polymer microspheres for DNA processing
WO2020101795A1 (en) 2018-11-15 2020-05-22 Omniome, Inc. Electronic detection of nucleic acid structure
US11548941B2 (en) 2018-11-20 2023-01-10 Janssen Biotech, Inc. Safe and effective method of treating psoriasis with anti-IL-23 specific antibody
BR112021006183A2 (en) 2018-11-30 2021-06-29 Illumina, Inc. analysis of multiple analytes using a single assay
CN113166805A (en) 2018-12-04 2021-07-23 欧姆尼欧美公司 Mixed phase fluids for nucleic acid sequencing and other analytical assays
US20200197517A1 (en) 2018-12-18 2020-06-25 Janssen Biotech, Inc. Safe and Effective Method of Treating Lupus with Anti-IL12/IL23 Antibody
DK3899037T3 (en) 2018-12-19 2023-11-06 Illumina Inc METHODS OF IMPROVING POLYNUCLEOTIDE CLUSTER CLONALITY PRIORITY
CN113227348A (en) 2018-12-20 2021-08-06 欧姆尼欧美公司 Temperature control for analysis of nucleic acids and other analytes
TW202030333A (en) 2018-12-20 2020-08-16 美商簡 探針公司 Compositions and methods for detecting plasmodium species nucleic acid
JP2022513507A (en) 2018-12-20 2022-02-08 ポセイダ セラピューティクス,インコーポレイティド Nanotransposon composition and usage
WO2020142347A2 (en) 2018-12-31 2020-07-09 Gen-Probe Incorporated Systems and methods for filling multi-well cartridges with solid reagents
US11649485B2 (en) 2019-01-06 2023-05-16 10X Genomics, Inc. Generating capture probes for spatial analysis
US11926867B2 (en) 2019-01-06 2024-03-12 10X Genomics, Inc. Generating capture probes for spatial analysis
AU2020208828A1 (en) 2019-01-15 2021-08-05 Janssen Biotech, Inc. Anti-TNF antibody compositions and methods for the treatment of juvenile idiopathic arthritis
CA3127748A1 (en) 2019-01-23 2020-07-30 Janssen Biotech, Inc. Anti-tnf antibody compositions for use in methods for the treatment of psoriatic arthritis
CN113613787B (en) 2019-02-20 2023-06-13 加利福尼亚太平洋生物科学股份有限公司 Scanning device and method for detecting chemical and biological analytes
KR20210134598A (en) 2019-03-01 2021-11-10 일루미나, 인코포레이티드 High-throughput single-nuclear and single-cell libraries and methods of making and using same
EP3937780A4 (en) 2019-03-14 2022-12-07 InSilixa, Inc. Methods and systems for time-gated fluorescent-based detection
US20220144934A1 (en) 2019-03-14 2022-05-12 Janssen Biotech, Inc. Methods for Producing Anti-TNF Antibody Compositions
WO2020183269A1 (en) 2019-03-14 2020-09-17 Janssen Biotech, Inc. Manufacturing methods for producing anti-tnf antibody compositions
CN113825765A (en) 2019-03-14 2021-12-21 詹森生物科技公司 Method for producing anti-IL 12/IL23 antibody composition
CA3133388A1 (en) 2019-03-14 2020-09-17 Janssen Biotech, Inc. Methods for producing anti-tnf antibody compositions
EP3942078A1 (en) 2019-03-22 2022-01-26 Gen-Probe Incorporated Compositions and methods for detecting group a streptococcus
CN113646007A (en) 2019-03-29 2021-11-12 希森美康株式会社 Novel artificial nucleic acid, method for producing same, and use thereof
EP3953041A4 (en) 2019-04-08 2023-01-25 Miroculus Inc. Multi-cartridge digital microfluidics apparatuses and methods of use
CA3137749C (en) 2019-05-03 2023-12-05 Gen-Probe Incorporated Receptacle transport system for an analytical system
CA3138241A1 (en) 2019-05-23 2020-11-26 Janssen Biotech, Inc. Method of treating inflammatory bowel disease with a combination therapy of antibodies to il-23 and tnf alpha
JP2022535534A (en) 2019-06-03 2022-08-09 ヤンセン バイオテツク,インコーポレーテツド Anti-TNF Antibodies, Compositions and Methods for Treating Active Ankylosing Spondylitis
MX2021014885A (en) 2019-06-03 2022-04-06 Janssen Biotech Inc Anti-tnf antibody compositions, and methods for the treatment of psoriatic arthritis.
US11644406B2 (en) 2019-06-11 2023-05-09 Pacific Biosciences Of California, Inc. Calibrated focus sensing
AU2020299621A1 (en) 2019-07-03 2022-02-24 Gen-Probe Incorporated Oligonucleotides for use in determining the presence of Trichomonas vaginalis in a sample.
CN113226519A (en) 2019-07-12 2021-08-06 Illumina剑桥有限公司 Preparation of nucleic acid libraries using electrophoresis
US20220154173A1 (en) 2019-07-12 2022-05-19 Iiiumina Cambridge Limited Compositions and Methods for Preparing Nucleic Acid Sequencing Libraries Using CRISPR/CAS9 Immobilized on a Solid Support
US10656368B1 (en) 2019-07-24 2020-05-19 Omniome, Inc. Method and system for biological imaging using a wide field objective lens
US11524298B2 (en) 2019-07-25 2022-12-13 Miroculus Inc. Digital microfluidics devices and methods of use thereof
WO2021028752A1 (en) 2019-08-15 2021-02-18 Janssen Biotech, Inc. Anti-tfn antibodies for treating type i diabetes
US20220298548A1 (en) 2019-08-23 2022-09-22 Gen-Probe Incorporated Compositions, methods and kits for detecting treponema pallidum
CN114761424A (en) 2019-09-05 2022-07-15 波赛达治疗公司 Allogeneic cell compositions and methods of use
AU2020343334A1 (en) 2019-09-05 2022-04-07 Gen-Probe Incorporated Detection of Chlamydia trachomatis nucleic acid variants
TW202124406A (en) 2019-09-10 2021-07-01 美商歐姆尼歐美公司 Reversible modification of nucleotides
EP4055185A1 (en) 2019-11-08 2022-09-14 10X Genomics, Inc. Spatially-tagged analyte capture agents for analyte multiplexing
WO2021092433A2 (en) 2019-11-08 2021-05-14 10X Genomics, Inc. Enhancing specificity of analyte binding
EP4073175A1 (en) 2019-12-09 2022-10-19 F. Hoffmann-La Roche AG Dicationic fluorescent dyes
WO2021119124A1 (en) 2019-12-09 2021-06-17 Gen-Probe Incorporated Quantification of polynucleotide analytes from dried samples
US20220356461A1 (en) 2019-12-19 2022-11-10 Illumina, Inc. High-throughput single-cell libraries and methods of making and of using
CN115135672A (en) 2019-12-20 2022-09-30 波赛达治疗公司 anti-MUC 1 compositions and methods of use
EP4081532A1 (en) 2019-12-23 2022-11-02 Abbott Laboratories Compositions and methods for detecting picobirnavirus
CN114885610A (en) 2019-12-23 2022-08-09 10X基因组学有限公司 Methods for spatial analysis using RNA templated ligation
WO2021138325A1 (en) 2019-12-30 2021-07-08 Abbott Laboratories Compositions and methods for detecting bunyavirus
EP4090768B1 (en) 2020-01-16 2024-03-13 DNAe Diagnostics Limited Compositions, kits and methods for isolating target polynucleotides
US11702693B2 (en) 2020-01-21 2023-07-18 10X Genomics, Inc. Methods for printing cells and generating arrays of barcoded cells
US11732299B2 (en) 2020-01-21 2023-08-22 10X Genomics, Inc. Spatial assays with perturbed cells
US11821035B1 (en) 2020-01-29 2023-11-21 10X Genomics, Inc. Compositions and methods of making gene expression libraries
US11898205B2 (en) 2020-02-03 2024-02-13 10X Genomics, Inc. Increasing capture efficiency of spatial assays
CN115243792A (en) 2020-02-04 2022-10-25 加利福尼亚太平洋生物科学股份有限公司 Flow cell and methods of making and using the same
US11732300B2 (en) 2020-02-05 2023-08-22 10X Genomics, Inc. Increasing efficiency of spatial analysis in a biological sample
US11835462B2 (en) 2020-02-11 2023-12-05 10X Genomics, Inc. Methods and compositions for partitioning a biological sample
US11891654B2 (en) 2020-02-24 2024-02-06 10X Genomics, Inc. Methods of making gene expression libraries
US11926863B1 (en) 2020-02-27 2024-03-12 10X Genomics, Inc. Solid state single cell method for analyzing fixed biological cells
US11768175B1 (en) 2020-03-04 2023-09-26 10X Genomics, Inc. Electrophoretic methods for spatial analysis
JP2023516683A (en) 2020-03-04 2023-04-20 ジェン-プローブ・インコーポレーテッド Compositions and methods for detecting SARS-CoV-2 nucleic acids
JP2023515692A (en) 2020-03-04 2023-04-13 ポセイダ セラピューティクス,インコーポレイティド Compositions and methods for the treatment of metabolic liver injury
WO2021183795A1 (en) 2020-03-11 2021-09-16 Poseida Therapeutics, Inc. Chimeric stimulatory receptors and methods of use in t cell activation and differentiation
CA3176615A1 (en) 2020-03-30 2021-10-07 Illumina, Inc. Methods and compositions for preparing nucleic acid libraries
MX2022012956A (en) 2020-04-14 2023-03-27 Poseida Therapeutics Inc Compositions and methods for use in the treatment of cancer.
EP4242325A3 (en) 2020-04-22 2023-10-04 10X Genomics, Inc. Methods for spatial analysis using targeted rna depletion
CN115698325A (en) 2020-05-07 2023-02-03 盖立复诊断解决方案公司 Methods and compositions for detecting SARS-CoV-2 nucleic acids
AU2021271637A1 (en) 2020-05-12 2022-12-08 Illumina Singapore Pte. Ltd. Generating nucleic acids with modified bases using recombinant terminal deoxynucleotidyl transferase
EP4153775A1 (en) 2020-05-22 2023-03-29 10X Genomics, Inc. Simultaneous spatio-temporal measurement of gene expression and cellular activity
WO2021237087A1 (en) 2020-05-22 2021-11-25 10X Genomics, Inc. Spatial analysis to detect sequence variants
WO2021242834A1 (en) 2020-05-26 2021-12-02 10X Genomics, Inc. Method for resetting an array
AU2021283174A1 (en) 2020-06-02 2023-01-05 10X Genomics, Inc. Nucleic acid library methods
CN116249785A (en) 2020-06-02 2023-06-09 10X基因组学有限公司 Space transcriptomics for antigen-receptor
WO2021246820A1 (en) 2020-06-05 2021-12-09 주식회사 씨젠 Specimen transport kit for detecting respiratory pathogens and methods for detecting respiratory pathogens using same
EP4162074A1 (en) 2020-06-08 2023-04-12 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
WO2021252617A1 (en) 2020-06-09 2021-12-16 Illumina, Inc. Methods for increasing yield of sequencing libraries
WO2021252574A1 (en) 2020-06-10 2021-12-16 Sera Prognostics, Inc. Nucleic acid biomarkers for placental dysfunction
EP4165207A1 (en) 2020-06-10 2023-04-19 10X Genomics, Inc. Methods for determining a location of an analyte in a biological sample
EP4172362A1 (en) 2020-06-25 2023-05-03 10X Genomics, Inc. Spatial analysis of dna methylation
JP2023532231A (en) 2020-06-30 2023-07-27 イルミナ インコーポレイテッド Sequencing by Catalytically Controlled Synthesis to Generate Unblemished DNA
US11761038B1 (en) 2020-07-06 2023-09-19 10X Genomics, Inc. Methods for identifying a location of an RNA in a biological sample
EP4182482A1 (en) 2020-07-17 2023-05-24 Gen-Probe Incorporated Detection of macrolide-resistant mycoplasma genitalium
AU2021320307A1 (en) 2020-08-06 2023-02-16 Illumina Cambridge Limited Preparation of RNA and DNA sequencing libraries using bead-linked transposomes
IL299783A (en) 2020-08-18 2023-03-01 Illumina Inc Sequence-specific targeted transposition and selection and sorting of nucleic acids
WO2022053610A1 (en) 2020-09-11 2022-03-17 Illumina Cambridge Limited Methods of enriching a target sequence from a sequencing library using hairpin adaptors
US11926822B1 (en) 2020-09-23 2024-03-12 10X Genomics, Inc. Three-dimensional spatial analysis
WO2022065413A1 (en) 2020-09-25 2022-03-31 株式会社理研ジェネシス Novel artificial nucleic acid, method for producing same, and use thereof
US20240000969A1 (en) 2020-10-21 2024-01-04 Poseida Therapeutics San Diego Compositions and methods for delivery of nucleic acids
CN116323440A (en) 2020-10-21 2023-06-23 简·探针公司 Fluid container management system
WO2022095921A1 (en) 2020-11-05 2022-05-12 Becton, Dickinson And Company Multiplex detection and typing of vibrio cholerae
WO2022095922A1 (en) 2020-11-05 2022-05-12 Becton, Dickinson And Company Rapid identification and typing of vibrio parahaemolyticus
CA3194255A1 (en) 2020-11-05 2022-05-12 Becton, Dickinson And Company Multiplex detection of bacterial respiratory pathogens
US11827935B1 (en) 2020-11-19 2023-11-28 10X Genomics, Inc. Methods for spatial analysis using rolling circle amplification and detection probes
WO2022140028A1 (en) 2020-12-21 2022-06-30 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
EP4288562A1 (en) 2021-02-04 2023-12-13 Illumina, Inc. Long indexed-linked read generation on transposome bound beads
US20240060090A1 (en) 2021-02-23 2024-02-22 Poseida Therapeutics, Inc. Genetically modified induced pluripotent stem cells and methods of use thereof
JP2024507846A (en) 2021-02-23 2024-02-21 ポセイダ セラピューティクス,インコーポレイティド Compositions and methods for delivery of nucleic acids
WO2022187671A1 (en) 2021-03-04 2022-09-09 Poseida Therapeutics, Inc. Compositions and methods for the treatment of hemophilia
IL305802A (en) 2021-03-12 2023-11-01 Janssen Biotech Inc Safe and effective method of treating psoriatic arthritis with anti-il23 specific antibody
BR112023018400A2 (en) 2021-03-12 2023-12-12 Janssen Biotech Inc METHOD FOR TREATMENT OF PSORIATIC ARTHRITIS PATIENTS WITH INADEQUATE RESPONSE TO TNF THERAPY WITH SPECIFIC ANTI-IL23 ANTIBODY
AU2022238446A1 (en) 2021-03-18 2023-09-07 10X Genomics, Inc. Multiplex capture of gene and protein expression from a biological sample
AU2022245985A1 (en) 2021-03-22 2023-09-21 Illumina Cambridge Limited Methods for improving nucleic acid cluster clonality
BR112023019894A2 (en) 2021-03-29 2023-11-14 Illumina Inc COMPOSITIONS AND METHODS FOR ASSESSING DNA DAMAGE IN A LIBRARY AND NORMALIZING AMPLICON SIZE DISTORTION
IL307195A (en) 2021-03-29 2023-11-01 Illumina Inc Improved methods of library preparation
KR20230161955A (en) 2021-03-30 2023-11-28 일루미나, 인코포레이티드 Improved methods for isothermal complementary DNA and library preparation
AU2022249289A1 (en) 2021-03-31 2023-08-17 Illumina Cambridge Limited Methods of preparing directional tagmentation sequencing libraries using transposon-based technology with unique molecular identifiers for error correction
WO2022241291A1 (en) 2021-05-14 2022-11-17 Gen-Probe Incorporated Compositions and methods for detecting human adenovirus nucleic acid
WO2022265994A1 (en) 2021-06-15 2022-12-22 Illumina, Inc. Hydrogel-free surface functionalization for sequencing
CA3220932A1 (en) 2021-07-01 2023-01-05 Gen-Probe Incorporated Enzyme formulations and reaction mixtures for nucleic acid amplification
AU2022308201A1 (en) 2021-07-09 2024-02-22 Janssen Biotech, Inc. Manufacturing methods for producing anti-tnf antibody compositions
AU2022306144A1 (en) 2021-07-09 2024-02-22 Janssen Biotech, Inc. Manufacturing methods for producing anti-tnf antibody compositions
IL309987A (en) 2021-07-09 2024-03-01 Janssen Biotech Inc Manufacturing methods for producing anti-il12/il23 antibody compositions
WO2023002203A1 (en) 2021-07-21 2023-01-26 Dnae Diagnostics Limited Method and system comprising a cartridge for sequencing target polynucleotides
GB202110485D0 (en) 2021-07-21 2021-09-01 Dnae Diagnostics Ltd Compositions, kits and methods for sequencing target polynucleotides
GB202110479D0 (en) 2021-07-21 2021-09-01 Dnae Diagnostics Ltd Compositions, kits and methods for sequencing target polynucleotides
US20230116852A1 (en) 2021-07-23 2023-04-13 Illumina, Inc. Methods for preparing substrate surface for dna sequencing
AU2022319876A1 (en) 2021-07-27 2024-01-18 Gen-Probe Incorporated Compositions and methods for detecting gastrointestinal pathogens
WO2023021330A1 (en) 2021-08-16 2023-02-23 University Of Oslo Compositions and methods for determining a treatment course of action
WO2023034489A1 (en) 2021-09-01 2023-03-09 10X Genomics, Inc. Methods, compositions, and kits for blocking a capture probe on a spatial array
WO2023060089A2 (en) 2021-10-04 2023-04-13 Poseida Therapeutics, Inc. Transposases and uses thereof
WO2023060088A1 (en) 2021-10-04 2023-04-13 Poseida Therapeutics, Inc. Transposon compositions and methods of use thereof
WO2023069927A1 (en) 2021-10-20 2023-04-27 Illumina, Inc. Methods for capturing library dna for sequencing
WO2023073615A1 (en) 2021-10-29 2023-05-04 Janssen Biotech, Inc. Methods of treating crohn's disease with anti-il23 specific antibody
WO2023084488A1 (en) 2021-11-15 2023-05-19 Janssen Biotech, Inc. Methods of treating crohn's disease with anti-il23 specific antibody
US20230159633A1 (en) 2021-11-23 2023-05-25 Janssen Biotech, Inc. Method of Treating Ulcerative Colitis with Anti-IL23 Specific Antibody
CN113981041A (en) * 2021-11-25 2022-01-28 首都医科大学附属北京安贞医院 Targeted enrichment sequencing reagent and targeted enrichment method
US11772093B2 (en) 2022-01-12 2023-10-03 Miroculus Inc. Methods of mechanical microfluidic manipulation
AU2023208743A1 (en) 2022-01-20 2024-01-04 Illumina, Inc. Methods of detecting methylcytosine and hydroxymethylcytosine by sequencing
WO2023141576A1 (en) 2022-01-21 2023-07-27 Poseida Therapeutics, Inc. Compositions and methods for delivery of nucleic acids
WO2023152568A2 (en) 2022-02-10 2023-08-17 Oslo Universitetssykehus Hf Compositions and methods for characterizing lung cancer
WO2023164573A1 (en) 2022-02-23 2023-08-31 Poseida Therapeutics, Inc. Genetically modified cells and methods of use thereof
WO2023175434A1 (en) 2022-03-15 2023-09-21 Diagenode S.A. Detection of methylation status of a dna sample
WO2023196572A1 (en) 2022-04-07 2023-10-12 Illumina Singapore Pte. Ltd. Altered cytidine deaminases and methods of use
US20230374122A1 (en) 2022-05-18 2023-11-23 Janssen Biotech, Inc. Method for Evaluating and Treating Psoriatic Arthritis with IL23 Antibody
EP4282980A1 (en) 2022-05-23 2023-11-29 Mobidiag Oy Methods for amplifying a nucleic acid
WO2024020360A1 (en) 2022-07-18 2024-01-25 Pairwise Plants Services, Inc. Mustard green plants named 'pwrg-1', 'pwrg-2,' and 'pwsgc'
WO2024054924A1 (en) 2022-09-08 2024-03-14 Gen-Probe Incorporated Method of detecting nucleic acid analytes using dual-specificity primers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0272098A2 (en) * 1986-12-15 1988-06-22 City Of Hope National Medical Center Method for amplification and detection of RNA sequences
WO1988010315A1 (en) * 1987-06-19 1988-12-29 Siska Diagnostics, Inc. Transcription-based nucleic acid amplification/detection systems
EP0303155A2 (en) * 1987-08-13 1989-02-15 MERCK PATENT GmbH Method to identify nucleic-acid sequences
EP0310229A1 (en) * 1987-07-31 1989-04-05 The Board Of Trustees Of The Leland Stanford Junior University Selective amplification of target polynucleotide sequences
EP0373960A2 (en) * 1988-12-16 1990-06-20 Siska Diagnostics, Inc. Self-sustained, sequence replication system
EP0397269A1 (en) * 1989-05-10 1990-11-14 Akzo Nobel N.V. Method for the synthesis of ribonucleic acid (RNA)
WO1991002814A1 (en) * 1988-02-24 1991-03-07 Akzo N.V. Nucleic acid amplification process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982000158A1 (en) * 1980-07-08 1982-01-21 Salk Inst For Biological Studi System for amplification of eukaryotic genes
US4683195A (en) * 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683202A (en) * 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
DK171161B1 (en) * 1985-03-28 1996-07-08 Hoffmann La Roche A method for detecting the presence or absence of at least one specific nucleic acid sequence in a sample or for distinguishing two different nucleic acid sequences in this sample
SE8601784L (en) * 1986-04-18 1987-10-19 Flensburg Carl G A KIT FOR IMPLEMENTING SIGNATURES AND KIT FOR EXTENDING THE KIT

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0272098A2 (en) * 1986-12-15 1988-06-22 City Of Hope National Medical Center Method for amplification and detection of RNA sequences
WO1988010315A1 (en) * 1987-06-19 1988-12-29 Siska Diagnostics, Inc. Transcription-based nucleic acid amplification/detection systems
EP0310229A1 (en) * 1987-07-31 1989-04-05 The Board Of Trustees Of The Leland Stanford Junior University Selective amplification of target polynucleotide sequences
EP0303155A2 (en) * 1987-08-13 1989-02-15 MERCK PATENT GmbH Method to identify nucleic-acid sequences
WO1991002814A1 (en) * 1988-02-24 1991-03-07 Akzo N.V. Nucleic acid amplification process
EP0329822B1 (en) * 1988-02-24 1994-06-08 Cangene Corporation Nucleic acid amplification process
EP0373960A2 (en) * 1988-12-16 1990-06-20 Siska Diagnostics, Inc. Self-sustained, sequence replication system
EP0397269A1 (en) * 1989-05-10 1990-11-14 Akzo Nobel N.V. Method for the synthesis of ribonucleic acid (RNA)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DIALOG INFORMATION SERVICES, File 351, World Patent Index 81-90, Dialog accession no. 88-096821/14, I. YAMASHINA: "Gene, for supplying trombin-like batroxobin enzyme - used for coding polypeptide contg. batroxobin amino acid sequence", JP-A-63 049 084 ,880301, 8814 (Basic) *
Dialog Information Services, File 351, World Patent Index 81-90, Dialog accession no. 88-096821/14, Yamashina I: "Gene, for supplying thrombin-like batroxobin enzyme - used for coding polypeptide contg. batroxobin amino acid sequence", JP 63049084, A, 880301, 8814 (Basic) *
Nucleic Acids Research, Vol. 17, No. 3, 1989 Peter R. Winship: "An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide ", *
NUCLEIC ACIDS RESEARCH, vol. 17, No. 3, 1989, page 1266, P.R. WINSHIP: "An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide" *
PROC. NATL. ACAD. SCI., vol. 87, 1990, pages 1874-1878, US; JOHN C. GUATELLI et al.: "Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication" *
Proc.Natl.Acad.Sci., Vol. 87, 1990 (USA) John C. Guatelli et al: "Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication ", *

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587266A1 (en) * 1992-05-06 1994-03-16 Gen-Probe Incorporated Nucleic acid sequence amplification method, composition and kit
US5888729A (en) * 1992-05-06 1999-03-30 Gen-Probe Incorporated Oligonucleotide probes and methods for detecting Streptococcus pneumoniae
US5554516A (en) * 1992-05-06 1996-09-10 Gen-Probe Incorporated Nucleic acid sequence amplification method, composition and kit
US5612200A (en) * 1992-06-24 1997-03-18 Gen-Probe Incorporated Method and kit for destroying ability of nucleic acid to be amplified
EP0673436A4 (en) * 1992-07-17 2002-04-24 Aprogenex Inc Enhancement of probe signal in nucleic acid-mediated in-situ hybridization studies
EP0673436A1 (en) * 1992-07-17 1995-09-27 Aprogenex, Inc. Enhancement of probe signal in nucleic acid-mediated in-situ hybridization studies
US5891681A (en) * 1993-12-22 1999-04-06 Bio Merieux Modified promoter for RNA polymerase, its preparation and its applications
USRE39007E1 (en) 1994-03-16 2006-03-07 Gen-Probe Incorporated Isothermal strand displacement nucleic acid amplification
USRE38960E1 (en) * 1994-03-16 2006-01-31 Gen-Probe Incorporated Isothermal strand displacement nucleic acid amplification
US6214587B1 (en) 1994-03-16 2001-04-10 Gen-Probe Incorporated Isothermal strand displacement nucleic acid amplification
US6087133A (en) * 1994-03-16 2000-07-11 Gen-Probe Incorporated Isothermal strand displacement nucleic acid amplification
WO1996002668A1 (en) * 1994-07-15 1996-02-01 Azco Nobel N.V. Use of rna polymerase to improve nucleic acid amplification process
US6025134A (en) * 1994-07-15 2000-02-15 Akzo Nobel N.V. Use of RNA polymerase to improve nucleic acid amplification process
US5744308A (en) * 1994-09-26 1998-04-28 Bio Merieux Chimera oligonucleotide and its utilization for obtaining transcripts of a nucleic acid
EP0713922A1 (en) 1994-10-28 1996-05-29 BIO MERIEUX, Société anonyme Oligonucleotide usable as a primer in a method of amplification based on a replication with strand displacement
US5665545A (en) * 1994-11-28 1997-09-09 Akzo Nobel N.V. Terminal repeat amplification method
WO1996017079A1 (en) * 1994-11-28 1996-06-06 Akzo Nobel N.V. Terminal repeat amplification method
US5710029A (en) * 1995-06-07 1998-01-20 Gen-Probe Incorporated Methods for determining pre-amplification levels of a nucleic acid target sequence from post-amplification levels of product
US5705365A (en) * 1995-06-07 1998-01-06 Gen-Probe Incorporated Kits for determining pre-amplification levels of a nucleic acid target sequence from post-amplification levels of product
US6294338B1 (en) 1999-07-23 2001-09-25 Gen-Probe Incorporated Polynucleotide amplification method
US6908735B2 (en) 1999-07-23 2005-06-21 Gen-Probe Incorporated Polynucleotide quantitation method
US7338805B2 (en) 2001-05-04 2008-03-04 Bio Merieux Labeling reagents, methods for synthesizing such reagents and methods for detecting biological molecules
US10036025B2 (en) 2002-02-01 2018-07-31 Life Technologies Corporation Oligonucleotide compositions with enhanced efficiency
US10106793B2 (en) 2002-02-01 2018-10-23 Life Technologies Corporation Double-stranded oligonucleotides
US9796978B1 (en) 2002-02-01 2017-10-24 Life Technologies Corporation Oligonucleotide compositions with enhanced efficiency
US9777275B2 (en) 2002-02-01 2017-10-03 Life Technologies Corporation Oligonucleotide compositions with enhanced efficiency
US9592250B2 (en) 2002-02-01 2017-03-14 Life Technologies Corporation Double-stranded oligonucleotides
US10196640B1 (en) 2002-02-01 2019-02-05 Life Technologies Corporation Oligonucleotide compositions with enhanced efficiency
US10626398B2 (en) 2002-02-01 2020-04-21 Life Technologies Corporation Oligonucleotide compositions with enhanced efficiency
US7622249B2 (en) 2003-06-03 2009-11-24 Biomerieux Method for diagnosing and/or predicting of a septic syndrome
US7659059B2 (en) 2003-07-10 2010-02-09 Biomerieux Method for detecting and/or identifying bacteria of the genus Staphylococcus
FR2863275A1 (en) * 2003-12-09 2005-06-10 Biomerieux Sa Method for diagnosis and prognosis of breast cancer, also for monitoring treatment, comprises quantitative amplification of sequences that encode hormone receptors
WO2005056829A2 (en) * 2003-12-09 2005-06-23 Biomerieux Method for diagnosis/prognosis of breast cancer
WO2005056829A3 (en) * 2003-12-09 2005-11-17 Biomerieux Sa Method for diagnosis/prognosis of breast cancer
US7691635B2 (en) 2004-03-26 2010-04-06 Biomerieux Labeling reagents, methods for the synthesis of such reagents and methods for the detection of biological molecules
WO2005096693A2 (en) 2004-04-06 2005-10-20 Biomerieux Cancer prognosis and/or diagnosis method
EP2336356A1 (en) 2005-01-31 2011-06-22 bioMérieux Method for prognosis of a septic syndrome
WO2006122354A1 (en) 2005-05-17 2006-11-23 Ozgene Pty Ltd Sequential cloning system
US8637322B2 (en) 2005-06-01 2014-01-28 Biomerieux Method for labeling or treating a biological sample containing biological molecules of interest, in particular nucleic acids
US8097418B2 (en) 2005-06-10 2012-01-17 Genisphere, Llc Methods and kits for sense RNA synthesis
US7550264B2 (en) 2005-06-10 2009-06-23 Datascope Investment Corporation Methods and kits for sense RNA synthesis
US9752172B2 (en) 2005-06-10 2017-09-05 Genisphere, Llc Methods and kits for sense RNA synthesis
EP1788389A1 (en) 2005-11-18 2007-05-23 Universitat De Girona A method for specific detection of Legionella pneumophila
US8168387B2 (en) 2005-11-25 2012-05-01 Biomerieux Oligonucleotides, use thereof, detecting method and kit for diagnosing the presence of H5 and N1 genes of the Influenza A virus
WO2007060366A1 (en) 2005-11-25 2007-05-31 bioMérieux Oligonucleotides, use thereof, detecting method and kit for diagnosing the presence of h5 and n1 genes of the influenza a virus
US8716458B2 (en) 2006-09-28 2014-05-06 Biomerieux NT5 and NT6 alternative transcripts of the KLK8 gene encoding kallikrein 8
US8236506B2 (en) 2006-09-28 2012-08-07 Biomerieux Method for the in vitro diagnosis of bronchopulmonary carcinoma by detection of major alternative transcripts of the KLK8 gene encoding kallikrein 8 and use thereof for prognosticating survival
US8486632B2 (en) 2006-09-28 2013-07-16 Biomerieux Method for the in vitro diagnosis of bronchopulmonary carcinoma by detection of major alternative transcripts of the KLK8 gene encoding kallikrein 8 and use thereof for prognosticating survival
US11447821B2 (en) 2007-01-23 2022-09-20 Cambridge Enterprise Limited Nucleic acid amplification and testing
US10563254B2 (en) 2007-01-23 2020-02-18 Cambridge Enterprise Limited Nucleic acid amplification and testing
US8309695B2 (en) 2007-06-11 2012-11-13 Biomerieux Marking reagents bearing diazo and nitro functions, methods for the synthesis of such reagents and methods for detecting biological molecules
EP2071034A1 (en) 2007-12-12 2009-06-17 bioMérieux Method for treating a solution in order to destroy any ribonucleic acid after amplification
US9266902B2 (en) 2008-07-29 2016-02-23 Biomerieux Labelling reagents having a pyridine nucleus bearing a diazomethyl function, process for synthesis of such reagents and processes for detection of biological molecules
EP2172563A1 (en) 2008-09-24 2010-04-07 bioMérieux S.A. Method for lowering the dependency towards sequence variation of a nucleic acid target in a diagnostic hybridization assay
WO2010076546A1 (en) 2009-01-05 2010-07-08 Biomerieux Method for amplifying and/or detecting nucleic acids, kits and uses of said method
US8614062B1 (en) 2009-07-24 2013-12-24 University Of South Florida RNA-based system and method to differentiate seafood
WO2011033231A1 (en) 2009-09-18 2011-03-24 Biomerieux Simplified device for nucleic acid amplification and method for using same
US9771621B2 (en) 2010-06-04 2017-09-26 Biomerieux Method and kit for performing a colorectal cancer assay
US9422598B2 (en) 2010-06-04 2016-08-23 Biomerieux Method and kit for the prognosis of colorectal cancer
US9110079B2 (en) 2010-09-29 2015-08-18 Biomerieux Method and kit for establishing an in vitro prognosis on a patient exhibiting SIRS
US9689041B2 (en) 2011-03-25 2017-06-27 Biomerieux Method and kit for determining in vitro the probability for an individual to suffer from colorectal cancer
WO2014055746A1 (en) 2012-10-04 2014-04-10 The Board Of Trustees Of The Leland Stanford Junior University Methods and reagents for detection, quantitation, and serotyping of dengue viruses
WO2014187308A2 (en) 2013-05-21 2014-11-27 生物梅里埃股份公司 Colorectal cancer prognosis agent kit
WO2018202864A1 (en) 2017-05-05 2018-11-08 bioMérieux Method for detecting an immune cellular response
EP4124862A1 (en) 2017-05-05 2023-02-01 bioMérieux Method for detecting immune cellular response
WO2019202251A1 (en) 2018-04-16 2019-10-24 bioMérieux Assessment of the risk of complication in a patient suspected of having an infection, having a sofa score lower than two

Also Published As

Publication number Publication date
KR960005737B1 (en) 1996-05-01
ES2104611T3 (en) 1997-10-16
JPH04507197A (en) 1992-12-17
EP0487628A1 (en) 1992-06-03
AU6336590A (en) 1991-04-03
CA2065003C (en) 1998-09-01
NZ235009A (en) 1992-06-25
EP0487628B1 (en) 1997-06-18
FI920766A0 (en) 1992-02-21
CA2065003A1 (en) 1991-02-24
DE69030955D1 (en) 1997-07-24
DE69030955T2 (en) 1998-01-29
JP2648802B2 (en) 1997-09-03
DK0487628T3 (en) 1998-01-26
US5130238A (en) 1992-07-14
ATE154644T1 (en) 1997-07-15
AU647411B2 (en) 1994-03-24
FI100192B (en) 1997-10-15

Similar Documents

Publication Publication Date Title
EP0487628B1 (en) Enhanced nucleic acid amplification process
US5554517A (en) Nucleic acid amplification process
EP0329822B1 (en) Nucleic acid amplification process
AU711589B2 (en) Terminal repeat amplification method
US5169766A (en) Amplification of nucleic acid molecules
KR100242252B1 (en) Nucleic acid sequence amplification methods
US5466586A (en) Method for the synthesis of ribonucleic acid (RNA)
US5437990A (en) Selective amplification of target polynucleotide sequences
JP3867926B2 (en) Nucleic acid amplification method
WO1997035026A1 (en) Target nucleic acid sequence amplification
EP1032710A1 (en) Transcription based amplification of double stranded dna targets
JPH0767646A (en) Method for amplifying nucleic acid sequence using specific rna sequence contained in sample as template
IE892698A1 (en) Nucleic acid amplification process
CA2223527A1 (en) Linked linear amplification of nucleic acids

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA FI JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 2065003

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 920766

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 1990913353

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990913353

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990913353

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 920766

Country of ref document: FI