WO1991018663A1 - Method of removing nitrogen oxides from combustion exhaust gas - Google Patents

Method of removing nitrogen oxides from combustion exhaust gas Download PDF

Info

Publication number
WO1991018663A1
WO1991018663A1 PCT/JP1990/000684 JP9000684W WO9118663A1 WO 1991018663 A1 WO1991018663 A1 WO 1991018663A1 JP 9000684 W JP9000684 W JP 9000684W WO 9118663 A1 WO9118663 A1 WO 9118663A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
combustion
nitrogen oxides
urea
solution
Prior art date
Application number
PCT/JP1990/000684
Other languages
French (fr)
Japanese (ja)
Inventor
Hirohisa Saito
Etsuo Abe
Original Assignee
Fuel Tech Japan Limited
Sanritz Automation Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuel Tech Japan Limited, Sanritz Automation Co., Ltd. filed Critical Fuel Tech Japan Limited
Priority to PCT/JP1990/000684 priority Critical patent/WO1991018663A1/en
Publication of WO1991018663A1 publication Critical patent/WO1991018663A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides

Definitions

  • the present invention relates to a method for removing nitrogen oxides in combustion exhaust gas for reducing and removing nitrogen oxides generated in exhaust gas of a combustion device by spraying an aqueous urine solution, and more particularly to a method for removing nitrogen oxides in combustion exhaust gas.
  • the present invention relates to a method for removing nitrogen oxides in combustion exhaust gas that can effectively remove nitrogen oxides even in a low region.
  • Japanese Unexamined Patent Publication (Kokai) No. 63-502 086 states that nitrogen oxides and urea can be reduced by spraying an aqueous urea solution into exhaust gas at a temperature of 2000 ° F (about 114 ° C) or higher. Reacts with each other to decompose into nitrogen gas, carbon dioxide gas and water.
  • the removal efficiency of nitrogen oxides in a region where the exhaust temperature is high (hereinafter, referred to as a denitration rate) is achieved by a relatively simple operation of spraying an aqueous urea solution into the exhaust without using a catalyst or the like. ) Can be easily improved. At that time, the smaller the diameter of the liquid droplets to be sprayed, the higher the denitration rate in the region where the exhaust temperature is low.
  • the denitration rate when the urea aqueous solution is sprayed into the exhaust gas as described above is affected not only by the exhaust gas temperature but also by the residual oxygen (O 2 ) concentration. It has been found that the denitration rate decreases as the oxygen concentration increases. It is well known that the nitrogen oxide concentration increases as the residual oxygen concentration increases. Therefore, even if the exhaust gas temperature is high, even if the residual oxygen concentration becomes relatively high for some reason, the desired denitration rate cannot be achieved in the same manner as described above. 'In this case as well, if the spray amount of the urea aqueous solution is increased, there is a problem of residual ammonia, so the spray amount cannot be increased unnecessarily.
  • the present invention provides a method for removing nitrogen oxides from combustion exhaust gas, which can achieve a desired denitration rate and easily control the operation even in a region where the exhaust temperature of a flint burning apparatus is low or the residual oxygen concentration is high. It is intended to provide.
  • an aqueous urea solution whose hydrogen ion concentration is adjusted according to the combustion state is sprayed into the combustion chamber or the exhaust passage of the baking apparatus.
  • the temperature is particularly low (650. C.) without increasing the residual ammonium concentration in the exhaust gas.
  • the injector is provided at each of a plurality of different positions in the combustion chamber or the exhaust passage from upstream to downstream of the exhaust gas, and the hydrogen ion concentration is adjusted according to the state of the exhaust gas at each position.
  • a urea aqueous solution is sprayed from each injector.
  • FIG. 1 and 2 are schematic piping diagrams showing a configuration of a boiler device according to a first embodiment to which the present invention is applied.
  • 3 to 6 are flow charts showing the operation of the nitrogen oxide removing device of the boiler device to which the present invention is applied.
  • FIG. 7 is a graph showing the relationship between the exhaust gas temperature and the boiler load and the denitration rate in the first embodiment.
  • FIG. 8 is a graph showing the relationship between the exhaust gas temperature and the boiler load in the first embodiment and the residual ammonia gas concentration in the exhaust gas.
  • FIG. 9 is a schematic piping diagram showing a configuration of a thermoelectric supply device according to a second embodiment to which the present invention is applied.
  • a tank for storing a sufficient amount of the urea aqueous solution a tank for storing a solution for adjusting the pH of the urea aqueous solution, a mixing tank for mixing these solutions, and a tank for mixing the respective solutions.
  • An injector for spraying the mixed solution toward the combustion chamber or exhaust passage of the combustion device, and the combustion state or exhaust state such as the temperature, oxygen concentration, nitrogen oxide concentration, and ammonia concentration in the load and exhaust of the combustion device It is desirable to use a denitration apparatus which has a sensor for detecting the amount of water and a control means for mixing the above solutions in an appropriate amount at an optimum ratio based on data given from each sensor and controlling the amount of spray from the injector.
  • the aqueous urea solution in the storage tank may be, for example, a relatively high-concentration aqueous urea solution containing 40% by weight of urea.
  • An organic acid may be used as a solution for adjusting the pH of the aqueous urine solution.
  • carboxylic acid such as carboxylic acid of an aromatic compound represented by benzoic acid, and fatty acid represented by acetic acid are preferable.
  • a carboxylic acid having a group (one COOH group) is preferably used, and more preferably an oxyacid represented by citric acid and lactic acid.
  • FIG. 1 shows a configuration of a first embodiment of a nitrogen oxide removing apparatus for a heavy oil fired boiler to which the present invention is applied.
  • a burner 2 is formed inside the boiler 1 and a wrench 3 is open.
  • water to be heated inside is passed downstream of the combustion and baking chamber 2.
  • Pipes (not shown) are provided.
  • a storage tank 4 for storing an aqueous urea solution (pH 9.9) containing 40% by weight of urea at an arbitrary position away from the boiler 1 and adjusting the pH by adding the aqueous urea solution to the aqueous urea solution
  • a storage tank 5 for storing a citric acid solution for performing a pumping operation.
  • a lower end of each of the tanks 4 and 5 has a first pump 10 and 11 therein via pipes 6 and 7. Connected to the pump modules 8 and 9.
  • the pump modules 8 and 9 are connected in parallel to the three mixing modules 14 to 16 via pipes 12 and 13.
  • the pipes 12 and 13 are connected to return pipes 17 and 18 for returning excess liquid to the tanks 4 and 5, respectively.
  • citrate can be reduced.
  • each of the mixing modules 14 to 16 has a similar structure, only the mixing module 16 will be described with reference to FIG.
  • a mixing tank 2 which may have a capacity of 3, is provided inside the mixing module 16.
  • the branch pipes 12a and 13a of the pipes 12 and 13 are opened at the upper part through the solenoid valves 21 and 22.
  • the branch pipe 23 a of the plant water supply pipe 23 also opens to the upper part of the mixing tank 20 via the solenoid valve 24.
  • the tubes 1 2a, 1 3a and 23 Filters 79 to 81 are provided at the entrance to the single module 16.
  • the plant water supply pipe 23 is connected via a solenoid valve 25 to the suction side of a second pump 26 composed of a gear pump.
  • the discharge side of the second pump 26 is connected to each of the injectors 3 provided at a position slightly downstream of the combustion chamber 2 via a pipe 3 1 check valve 32 and a branch pipe 3 la, 31 b, 31 c. 3 to 35 are connected in parallel with each other.
  • a pipe 28 that substantially descends from the bottom of the mixing tank 20 has a check valve 29. Connected through.
  • the solenoid valve 25 when the solenoid valve 25 is opened, the plant water supply pipe 23 communicates with the second pump 26, and the check valve 29 is closed by the water pressure. Therefore, by turning on / off the solenoid valve 25, one of the plant water supply pipe 23 and the mixing tank 20 is selectively communicated with the second pump 26, and each of the pumps is connected. The solution mixed in the water or the mixing tank can be selectively supplied to the injectors 33 to 35.
  • a branch pipe 36a of a plant air supply pipe 36 is also connected to these injectors 33 to 35 via a pressure regulating valve 37, a solenoid valve 38, and a check valve 39, and actually, Is ejected from each of the injectors 33 to 35 together with the water or the mixed liquid layer.
  • Each injector 33 to 35 is connected to flint chamber 2 (or It is guided so that it can come and go freely. Air cylinders 40 to 42 are attached to these injectors 33 to 35, and a pressure adjusting valve 43 is supplied from a plant supply pipe 36 to supply a predetermined pressure into the cylinder.
  • the branch pipes 36 b and 36 c are connected to each other via the switching valve 44. By controlling the switching valve 44, each of the injectors 33 to 35 is protruded into the combustion chamber 2 when used, and is immersed in the boiler wall when not used.
  • One end of a branch pipe 36 d is connected to the middle of the branch pipe 36 b of the brand air supply pipe 36, and the other is a mixing tank 2 via a flow control valve 45 and a check valve 46. It is open inside 0. The liquid in the mixing tank 20 is agitated by the air ejected from the branch pipe 36d.
  • Two injectors 50 and 51 are connected to the mixing module 14 instead of three. Otherwise, the structure and configuration of each of the mixing modules 14 and 15 are the same as those of the mixing module 16, and the structure and configuration of each of the indicators 47 to 51 connected to these mixing modules. Are the same as the injectors 33 to 35, and the description thereof is omitted.
  • each of the storage tanks 4 and 5 has a temperature sensor 52 and 53 and a level sensor 54 and 5 for detecting that the temperature and the amount of the stored liquid are within a predetermined range. 5 powers are provided, and the main control It is electrically connected to the mouth (hereinafter referred to as MC) 56.
  • the storage tank 4 is also provided with a pH sensor 64 for measuring the pH of the aqueous urea solution, and is connected to the MC 56.
  • the MC 56 is electrically connected to a control device (not shown) attached to each of the pump modules 8 and 9 to detect, control, and control the discharge pressure and the like of each of the pumps 10 and 11. .
  • the MC 56 detects and transmits a fuel flow rate as a load of the boiler 1 and a flow rate sensor 57, and a nitrogen oxide ( ⁇ ⁇ ⁇ ), ammonia ( ⁇ ⁇ 3 ), Measures the temperature inside boiler 1 at each concentration sensor 58 for measuring the concentration of carbon oxide (CO), oxygen ( 09 ), etc., and at the position near each injector 33-35, 47-51
  • the MC 56 is a host having an external storage device such as a main unit, a display device, a hard disk, and an input device such as a printer device and a keyboard so that an operator can make various settings and observe the operation status.
  • a computer hereinafter abbreviated as HC
  • MXC mixing controller
  • the MX C 63 has a flow sensor 65-67 attached to each of the pipes 12a, 13a and 23a, and similarly each of the pipes 12a and 13a. , 23a Pressure sensor attached to 68 to 70, the flow sensor 71 attached to the pipe 23, the pressure sensor 72 attached to the pipe 31, the pressure sensor 73 attached to the pipe 36a, and the pipe 31 Connected to the flow sensors 74 to 76 attached to the branch pipes 31a, 31b, 31c branching to the injectors 33 to 35, and the level switch 77 attached to the pipe 28, The flow and pressure of each pipe are monitored.
  • the MXC 63 is equipped with solenoid valves 21, 22, 24, 2, provided on pipes 12 a, 13 a, 23 a, 23, 36 a, 36, 36 b, 36 c. 5, 38, and switching valve 44 are connected to these for opening / closing and switching control, respectively. Further, the MXC 63 is connected to the pump 26 via a pump driver 78 to control the pump. Since the structure of the MXCs 61 and 62 is the same as that of the MXC 63, the detailed description is omitted.
  • Fig. 3 is a flowchart showing the operation procedure of HC60.
  • step S2 it is determined in step S2 whether or not the screen of the display device of the HC 60 needs to be changed, and if not, step S4 is performed. If it is necessary to change, the process proceeds to step S4 with only the fixed display portion of the screen displayed in step S3. Then, in step S4, it is determined whether or not the data to be displayed already exists in the HC 60, and if so, the process proceeds to step S6. If there is no data to be displayed, the process proceeds to step S5. After receiving the display data by the process of step S33 in the flowchart (FIG. 4) of the MC 56, the process proceeds to step S6.
  • step S6 the display data stored in the HC 60 or the display data received from the MC 56 in step S5 is made to correspond to the fixed display portion as a variable display portion on the display device screen. To display. Then, proceed to step S7, enter the operation mode of each MXC 61 to 63, the flow rate information of various liquid materials (during manual operation), etc., and in step S8 the operation table used by MC 56. It is determined whether or not it is necessary to change the value. If no change is required, the process proceeds to step S10. If the value is to be changed, the table to be changed to MC35 is transmitted in step S9, and then the step S Go to 10.
  • each mixing module 30 to 32 corresponds to the pH of the urea aqueous solution in the storage tank 4, the temperature near each injector, and the load (fuel flow rate) of the boiler 1.
  • This is a sample for determining the ratio and concentration of each liquid agent to be mixed and the injection amount of each mixed solution in each injection.
  • the concentration of the urea aqueous solution and i> H are adjusted for each mixing module, and the mixed solution is sprayed according to the exhaust state at the position where each injector is arranged.
  • steps S10 and S11 if it is time to collect data from each MXC 61 to 63 and each sensor and switch and receive the data edited by MC 56, perform communication processing.
  • steps S12 and S13 if the operator requests a report output such as the amount of each liquid used, the report is output from the printer and the process returns to step S2. Then, the processing of steps S2 to S13 is repeated.
  • FIG. 4 is a flowchart showing the operation procedure of the MC 56.
  • the MC 56 can display the same information as that of the HC 60 and can input each data.
  • step S21 the process proceeds to step S22, in which the time synchronization with the HC 60 when the system is started, various programs, data, tables, etc. are stored in the HC 60 and Z or each MXC. 6 Determine whether it is necessary to receive from 1 to 63, that is, at the time of system startup, or whether there is any change in various programs, data, tables, etc. already stored in the MC 56. If it is not necessary, the process proceeds to step S24.
  • step S23 the data is received and edited from the HC 60 or each of the MXCs 61 to 63 in step S23, and the process proceeds to step S24.
  • step S24 and step S25 the furnace information and the current data of each of the MXCs 61 to 63 are received.
  • step S26 it is determined whether or not to stop the operation of the nitrogen oxide removing device. Proceed to step S27 if it is to be operated.
  • step S27 it is determined whether the operator has set the operation mode to manual or automatic with the HC 60. If the operation mode is manual, the flow information is determined from the key input information in step S29. create. If it is auto, the flow rate is calculated from the current load and the operation table received in step S24 in step S28, and flow rate information is created in step S29. Then, proceeding to step S30, it is determined whether or not the flow rate information created in step S29 has changed from the previous time, and if there is a change, the flow rate information is sent to MXC 61 in step S31. Is transmitted, and if there is no change, the process proceeds to step S32 without transmitting.
  • step S32 it is determined whether or not there has been a data request from the HC 60. If there is a request, the current data is transmitted in step S33, and the process returns to step S22. Then, the processing of steps S22 to S33 is repeated.
  • Fig. 5 and Fig. 6 are flowcharts showing the operation procedure of each MXC61-40.
  • Each MXC has a main body having a communication function with the MC 56, and when a display device is connected, information on the connected MXC can be displayed.
  • step S# it is determined whether or not there is data to be received in step S #. If so, the analysis processing is performed after receiving the data in step S43. Then, in step S44, this cycle If this is not the first time, collect the detection results of boiler 1 load, exhaust temperature, ammonia concentration, nitrogen oxide concentration, oxygen concentration, carbon monoxide concentration, flow rate of each pipe, pressure, etc. And memorize it.
  • step S45 the flow rate of each liquid material is adjusted by controlling the pumps 10 and 11 in the pump modules 8 and 9 based on the flow rate information received from the MC 56. Adjust the mixing ratio of each solution in each mixing tank in each of the mixing modules 14 to 16. Then, proceeding to step S46, it is determined whether or not to perform pulse control described later. If pulse control is to be performed, step S47 (subroutine shown in FIG. 6) is performed. If pulse control is not to be performed, Go to step S48.
  • step S48 the supply amount L1 to each of the injectors 33 to 35 at the unit time t is set, and in step S49, the solenoid valve 25 of the plant water supply pipe 23 is closed. ( Figure 2). Then, if there is a liquid in the mixing tank 20, it flows into the pipe 23 via the pipe 28 and is supplied to the pump 26. At about the same time, in step S50, the solenoid valves 21, 22, and 24 of the pipes 12a, 13a, and 23a are opened, and each solution is continuously replenished to the mixing tank 20.
  • step S52 Continuous mixing tank for unit time t at 1 Only continuous from 20 side And supply the mixed solution to the injector. Then, in step S52, the solenoid valves 21, 22, and 24 are closed to stop the supply of the solution, and in step S53, the current data of each sensor is transmitted to the MC 56, and step S53 is performed. 4 Return to 2.
  • step S46 if it is determined in step S46 that pulse control is to be performed, the flow advances to step S47 to perform the subroutine shown in FIG. That is, first, in step S61, the injection amount L2 in one cycle is set, and in step S'62, it is determined whether or not the pulse control routine is the first time. If not, the process proceeds to step S64, and if it is the first time, it is determined in step S63 whether or not the level switch 77 of the mixed ink 20 is on. If it is off, that is, if liquid remains inside, step S63 is repeated until the mixing tank 20 is empty and the level switch 77 is turned on. Proceed to 4. If the level switch 77 is not turned on for a predetermined time, an error process such as displaying on the display of the HC 60 is performed. In step S64, the cycle clock T is reset, and the process proceeds to step S65.
  • step S65 the supply amount L3 of the brand water to each injector is calculated from the above-described amount L2 of the supplied injector and the concentration of the mixed solution in the mixing tank 20, and the flow proceeds to step S66. Open solenoid valve 25 of plant water supply pipe 23. Then, the check valve 29 of the pipe 28 closes due to the pressure of the plant water, and the mixing tank 2 The bottom of 0 is closed. At approximately the same time as Step S66, in Step S67, the liquid tank 20 is replenished with each liquid material calculated from the set supply amounts L2 and L3.
  • step S68 it is determined whether or not the cycle clock T has reached a predetermined time t1, which may be, for example, 10 seconds, and if not, repeat step S68 if t1 has not been reached.
  • a predetermined time t1 which may be, for example, 10 seconds
  • step S69 it is determined from each flow sensor 71, 74-76 whether or not the supply amount L3 calculated in step S64 has been reached, and if not, an error has occurred in step S70.
  • the process returns to step S42 of FIG. 5, and if it is L3, the process proceeds to step S71.
  • step S71 the solenoid valves 21, 22, 24 are closed to stop the supply of the liquid materials, and the process proceeds to step S72.
  • step S72 the mixture in the mixing tank 20 is supplied to the pump 26 by closing the solenoid valve 25. Then, proceeding to step S73, it is determined whether or not the cycle clock T has reached a predetermined time t2, and if it has not reached t2, the step S73 is repeated. Proceed to 4.
  • step S74 it is determined whether or not the level switch 77 is turned on. If the switch is turned on, the process returns to step S42 in FIG. 5; if the switch is turned off, error processing is performed. Return to S42. Then, it is determined whether or not the control contents have been changed in the processing in steps S42 and S46. The determination is made, and the processing from step S48 to step S52 or step S61 to step S74 is repeated again according to the content.
  • the force (MC) for confirming whether or not the control information from the MC 56 for each of the MXCs 61 to 63 changes every cycle (steps S61 to S74).
  • step S42 multitask processing is actually performed, and it is always checked whether there is a change in the control information. If there is a change, every half cycle (step S61 to step S68 and step S68) Tl, t2, L2, L3, etc. may be changed from S69 to S74).
  • the on-off valves, switching valves, pumps, etc. are controlled by feedback control according to the combustion state of the boiler 1 by the sensors 57 to 59 and the like by the HC 60, MC 56, and MX C 61 to 63.
  • the urea aqueous solution concentration and pH are appropriately controlled so that the nitrogen oxide concentration, ammonia concentration and the like fall within predetermined ranges.
  • each control can be manually set by remote control at the HC 60 or the MC 56, and the control status can be output from the HC 60 or the MC 56.
  • L 0, L 1, and L 2 indicate the installation positions of the injectors 33 to 35, the injectors 49 to 51, and the injectors 47, 48.
  • 33 to 35 (L 0) are provided near the burner 4 and spray a urea aqueous solution or the like toward the middle of the flame, and the injectors 49 to 51 are provided in the combustion chamber 2.
  • Urea solution is sprayed from the front end of the flame to the exhaust passage, and the injectors 47 and 48 are installed upstream of the exhaust passage. And sprays urea aqueous solution and the like toward the exhaust gas in the exhaust passage.
  • the base NO x in Table 1 is the nitrogen oxide concentration when no aqueous urea solution is sprayed, and the NSR is the mole of urea used relative to the mole of base NO x in the present invention. It is the number X 2 (the number of amino groups) (for example, when 1 mole of urea is 2 moles of N 0 X, NSR is 4).
  • Fig. 7 is a graph showing the relationship between the exhaust gas temperature and the denitration rate.
  • the solid lines A, C and E show the results when the urea aqueous solution (U) whose pH was not adjusted was sprayed, and the solid lines B, D and F show the values of p. This is the case where the urea aqueous solution (U + C) adjusted to H is sprayed.
  • the exhaust gas in the high temperature range was used.
  • the denitration rate is affected by the residual oxygen concentration other than the exhaust gas temperature, but the urea aqueous solution whose pH is adjusted is used.
  • the denitration rate in this case is no longer affected by the residual oxygen concentration. This means that even when the temperature is high, if the residual oxygen concentration is high for some reason, a desired denitration rate can be easily obtained by using an aqueous urea solution whose pH has been adjusted.
  • the pH of the urea aqueous solution is optimized.
  • the denitration rate can be improved over the entire exhaust temperature range.
  • Figure 8 is a graph showing the relationship between the exhaust gas temperature and the ammonia gas concentration.
  • the solid lines G, I, and K show the solid lines H, J when the urea aqueous solution (U) whose pH was not adjusted was sprayed.
  • L shows the case where the urea aqueous solution (U + C) whose pH was adjusted was sprayed.
  • the urea aqueous solution whose pH has been adjusted is used especially at low load from low to medium temperature range.
  • the concentration of ammonia gas is extremely low as compared with the case where an aqueous urea solution whose pH is not adjusted is used (solid lines G and H).
  • the denitration rate is remarkably improved by adjusting the pH at a low load and a medium load from a low temperature range to a medium temperature range of the exhaust gas temperature, and ammonia gas is generated. Can be suppressed. This not only reduces the amount of chemicals such as urea used to obtain the desired denitration rate, but also reduces operating costs and increases the amount of other harmful components in the exhaust gas. This means that exhaust gas purification is promoted.
  • the mixed liquid flowing through tubes 28, 31, 31, 31a, 31b, 31c, etc. is frozen in winter etc. It is possible to simplify the structure of the nitrogen oxide removing apparatus by eliminating the necessity of separately providing a heater and a heat retaining structure. Also, it is mentioned that deterioration of the ink can be prevented by softening water as a solvent of the urea aqueous solution with citric acid.
  • FIG. 7 is a schematic configuration diagram showing a second embodiment to which the present invention is applied.
  • the method for removing nitrogen oxides from the combustion exhaust gas is applied to a known thermoelectric supply device (cogeneration).
  • a gas turbine 91 is used as a combustion engine.
  • An output shaft 92 of the gas turbine 91 is connected to a generator 94 via a reduction gear 93.
  • an exhaust passage 95 of the gas turbine 91 is connected to an exhaust boiler 97 via a reheating device 96.
  • the exhaust gas passing through the exhaust boiler 97 is discharged from a chimney 99 via a pipe 98.
  • water is supplied to the exhaust boiler 97 from the tank 101 via the pump 102 and the pipe 103, and the water is heat-exchanged to form steam, and the pipe 10 Being used by various organizations via 4 0
  • the nitrogen oxide removing device 105 to which the present invention is applied is provided in a portion of the pipe 95 between the reheating device 96 and the exhaust boiler 97, and the nitrogen oxide removing device 105 is provided inside the pipe.
  • An injector similar to that of the first embodiment appears and disappears.
  • the nitrogen oxide removing device, the removing method, and the control method are the same as in the first embodiment.
  • the exhaust gas is heated to, for example, 850 or more by the reheating device 96, and thus the nitrogen oxide removing device 10 to which the present invention is applied is used. 5 makes it possible to remove nitrogen oxides ing. Needless to say, the same effect can be obtained by using other engines such as a diesel engine and a gasoline engine as the combustion engine.
  • the method for removing nitrogen oxides from combustion exhaust gas according to the present invention is useful as an exhaust treatment device for a heavy oil fired boiler, other various boilers, a heat transfer supply diesel engine, and a gas turbine. .

Abstract

A method of removing nitrogen oxides formed in an exhaust gas of a combustion apparatus and reducing the residual ammonia concentration, which comprises spraying an aqueous urea solution having controlled hydrogen ion concentration into a combustion chamber or an exhaust passage of the combustion apparatus in accordance with the combustion state of the apparatus. The nitrogen oxides can be removed appropriately in the combustion state of a relatively low temperature by controlling the hydrogen ion concentration of the aqueous urea solution and the quantity of the generated residual ammonia can be minimized.

Description

明 細 書  Specification
燃焼排気中の窒素酸化物除去方法 技術分野  Method for removing nitrogen oxides from combustion exhaust
本発明は、 燃焼装置の排気中に生じる窒素酸化物を、 尿 素水溶液を噴霧することにより還元して除去するための燃 焼排気中の窒素酸化物除去方法に関し、 より詳細には排気 温度の低い領域でも効果的に窒素酸化物を除去し得る燃焼 排気中の窒素酸化物除去方法に関する。  The present invention relates to a method for removing nitrogen oxides in combustion exhaust gas for reducing and removing nitrogen oxides generated in exhaust gas of a combustion device by spraying an aqueous urine solution, and more particularly to a method for removing nitrogen oxides in combustion exhaust gas. The present invention relates to a method for removing nitrogen oxides in combustion exhaust gas that can effectively remove nitrogen oxides even in a low region.
背景技術 Background art
従来から燃焼装置に於ける排気中の窒素酸化物 (N O x ) の濃度を可及的に低減する方法が種々提案されている。 特 表昭 6 3 - 5 0 2 0 8 6号公報には、 2 0 0 0 °F (約 1 1 4 3 °C ) 以上の排気中に尿素水溶液を噴霧することにより 窒素酸化物と尿素とを反応させて窒素ガス、 炭酸ガス及び 水に分解する方法が示されている。 この方法によれば、 触 媒等を用いずに尿素水溶液を排気中に噴霧すると云う比較 的簡単な作業のみで排気温度の高い領域に於ける窒素酸化 物の除去効率 (以下、 脱硝率と記す) を容易に向上するこ とができる。 その際、 噴霧する液粒の径が小さい程、 排気 温度の低い領域での脱硝率が高く なる。  Conventionally, various methods have been proposed for reducing the concentration of nitrogen oxides (NOx) in exhaust gas in a combustion device as much as possible. Japanese Unexamined Patent Publication (Kokai) No. 63-502 086 states that nitrogen oxides and urea can be reduced by spraying an aqueous urea solution into exhaust gas at a temperature of 2000 ° F (about 114 ° C) or higher. Reacts with each other to decompose into nitrogen gas, carbon dioxide gas and water. According to this method, the removal efficiency of nitrogen oxides in a region where the exhaust temperature is high (hereinafter, referred to as a denitration rate) is achieved by a relatively simple operation of spraying an aqueous urea solution into the exhaust without using a catalyst or the like. ) Can be easily improved. At that time, the smaller the diameter of the liquid droplets to be sprayed, the higher the denitration rate in the region where the exhaust temperature is low.
しかしながら、 上記方法では噴霧する液粒の径を小さく (例えば 5 0 m以下) しても排気温度が上記温度より も 低い領域では所望の脱硝率を達成することができなかった。 そこで低温領域でも所望の脱硝率を達成するために尿素水 溶液の噴霧量を増加することが考えられるが、 噴霧量を增 加すると脱硝後の排気中に有害なァンモニァが大量に残留 する問題がある。 However, in the above method, even if the diameter of the liquid particles to be sprayed is small (for example, 50 m or less), a desired denitration rate cannot be achieved in a region where the exhaust gas temperature is lower than the above temperature. Therefore, in order to achieve a desired denitration rate even in a low temperature range, urea water It is conceivable to increase the spray amount of the solution. However, if the spray amount is increased, there is a problem that a large amount of harmful ammonia remains in the exhaust gas after denitration.
—方、 本発明者らの知見によれば、 上記したような尿素 水溶液を排気中に噴霧する場合の脱硝率は排気温度以外に 残留酸素 (0 2 ) 濃度の影響も受け、 排気中の残留酸素濃 度が高く なると脱硝率が低く なることが判っている。 また、 残留酸素濃度が高く なると窒素酸化物濃度が高く なること は良く知られている。 従って、 排気温度が高くても何らか の理由により残留酸素濃度が比較的高く なつた場合にも上 記同様に所望の脱硝率を達成することができなかった。 'こ の場合も尿素水溶液の噴霧量を増加すると残留ァンモニァ の問題があることからむやみに噴霧量を増加することがで きない。 On the other hand, according to the knowledge of the present inventors, the denitration rate when the urea aqueous solution is sprayed into the exhaust gas as described above is affected not only by the exhaust gas temperature but also by the residual oxygen (O 2 ) concentration. It has been found that the denitration rate decreases as the oxygen concentration increases. It is well known that the nitrogen oxide concentration increases as the residual oxygen concentration increases. Therefore, even if the exhaust gas temperature is high, even if the residual oxygen concentration becomes relatively high for some reason, the desired denitration rate cannot be achieved in the same manner as described above. 'In this case as well, if the spray amount of the urea aqueous solution is increased, there is a problem of residual ammonia, so the spray amount cannot be increased unnecessarily.
本発明は、 特に燧焼装置の排気温度が低い領域または残 留酸素濃度が高い場合でも所望の脱硝率を達成し得ると共 にその運転制御が容易な燃焼排気中の窒素酸化物除去方法 を提供することを目的としている。  The present invention provides a method for removing nitrogen oxides from combustion exhaust gas, which can achieve a desired denitration rate and easily control the operation even in a region where the exhaust temperature of a flint burning apparatus is low or the residual oxygen concentration is high. It is intended to provide.
発明の開示  Disclosure of the invention
本発明では、 焼装置の燃焼室若しく は排気通路内に、 燃焼状態に応じて水素ィォン濃度が調整された尿素水溶液 を噴霧するようにしている。 この とによつて排気中の残 留ァンモニァ濃度を高めることなく特に低温 (6 5 0。C〜 In the present invention, an aqueous urea solution whose hydrogen ion concentration is adjusted according to the combustion state is sprayed into the combustion chamber or the exhaust passage of the baking apparatus. As a result, the temperature is particularly low (650. C.) without increasing the residual ammonium concentration in the exhaust gas.
1 1 0 crc程度) 時の脱硝率を向上させることができ、 か つ残留酸素濃度の影響を受けることもない。 このとき尿素 水溶液の水素ィォン濃度を下げるのにクェン酸に代表され る力ルボン酸を用いると良い。 (About 110 crc) It is not affected by the residual oxygen concentration. At this time, to reduce the hydrogen concentration of the aqueous urea solution, it is preferable to use carboxylic acid such as citric acid.
また本発明では、 燃焼室若しく は排気通路の排気上流側 から下流側にかけて異なる複数の位置に各々ィ ンジヱクタ を設け、 各位置に於ける排気の状態に応じて水素ィォン濃 度が調整された尿素水溶液を各ィ ンジェクタから噴霧する ようにしている。 このことによって、 排気の状態に応じて 段階的に窒素酸化物濃度を低減することができ、 一層脱硝 率を向上することができる。  Further, in the present invention, the injector is provided at each of a plurality of different positions in the combustion chamber or the exhaust passage from upstream to downstream of the exhaust gas, and the hydrogen ion concentration is adjusted according to the state of the exhaust gas at each position. A urea aqueous solution is sprayed from each injector. Thus, the nitrogen oxide concentration can be reduced stepwise according to the state of the exhaust gas, and the denitration rate can be further improved.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図及び第 2図は本発明が適用された第 1の実施例に 於けるボイラ装置の構成を示す模式的な配管図である。  1 and 2 are schematic piping diagrams showing a configuration of a boiler device according to a first embodiment to which the present invention is applied.
第 3図〜第 6図は本発明が適用されたボイラ装置の窒素 酸化物除去装置の作動要領を示すフローチヤ一 トである。  3 to 6 are flow charts showing the operation of the nitrogen oxide removing device of the boiler device to which the present invention is applied.
第 7図は第 1の実施例に於ける排気温度及びボイラ負荷 と、 脱硝率との関係を示すグラフである。  FIG. 7 is a graph showing the relationship between the exhaust gas temperature and the boiler load and the denitration rate in the first embodiment.
第 8図は第 1の実施例に於ける排気温度及びボイラ負荷 と、 排気中の残留アンモニアガス濃度との関係を示すグラ フである。  FIG. 8 is a graph showing the relationship between the exhaust gas temperature and the boiler load in the first embodiment and the residual ammonia gas concentration in the exhaust gas.
第 9図は本発明が適用された第 2の実施例に於ける熱電 供給装置の構成を示す模式的配管図である。  FIG. 9 is a schematic piping diagram showing a configuration of a thermoelectric supply device according to a second embodiment to which the present invention is applied.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明を好適に実施するには、 使用される燃焼装置に応 じて充分な量の尿素水溶液を貯留するタ ンクと、 この尿素 水溶液の P Hを調整するための溶液を貯留するタ ンクと、 これら各溶液を混合するための混合タ ンクと、 混合タンク 内の混合溶液を燃焼装置の燃焼室または排気通路に向けて 噴霧するためのイ ンジェクタと、 燃焼装置の負荷や排気中 の温度、 酸素濃度、 窒素酸化物濃度、 アンモニア濃度等の 燃焼状態または排気の状態を検知するセンサと、 各センサ から与えられるデータに基づき上記各溶液を最適な割合で 適量混合すると共にィ ンジヱクタからの噴霧量を制御する 制御手段とを有する脱硝装置を用いることが望ま しい。 The preferred practice of the present invention depends on the combustion equipment used. A tank for storing a sufficient amount of the urea aqueous solution, a tank for storing a solution for adjusting the pH of the urea aqueous solution, a mixing tank for mixing these solutions, and a tank for mixing the respective solutions. An injector for spraying the mixed solution toward the combustion chamber or exhaust passage of the combustion device, and the combustion state or exhaust state such as the temperature, oxygen concentration, nitrogen oxide concentration, and ammonia concentration in the load and exhaust of the combustion device It is desirable to use a denitration apparatus which has a sensor for detecting the amount of water and a control means for mixing the above solutions in an appropriate amount at an optimum ratio based on data given from each sensor and controlling the amount of spray from the injector.
こ こで、 貯留タンク内の尿素水溶液は例えば尿素を 4 0 w%含む比較的高濃度の尿素水溶液であって良い。 また、 尿 素水溶液の p Hを調整するための溶液には有機酸を用いる と良く 、 なかでも例えば安息香酸に代表される芳香族化合 物のカルボン酸、 酢酸に代表される脂肪酸等、 カルボキシ ル基 (一 C O O H基) を有するカルボン酸を用いると良く、 更に望ま しく はクェン酸、 乳酸に代表されるォキシ酸であ ると良い。  Here, the aqueous urea solution in the storage tank may be, for example, a relatively high-concentration aqueous urea solution containing 40% by weight of urea. An organic acid may be used as a solution for adjusting the pH of the aqueous urine solution. Among them, for example, carboxylic acid such as carboxylic acid of an aromatic compound represented by benzoic acid, and fatty acid represented by acetic acid are preferable. A carboxylic acid having a group (one COOH group) is preferably used, and more preferably an oxyacid represented by citric acid and lactic acid.
以下に本発明をより詳細に説述するために添付の図面に 従って第 1及び第 2の実施例についてこれを説明する。  Hereinafter, in order to explain the present invention in more detail, first and second embodiments will be described with reference to the accompanying drawings.
第 1図は本発明が適用された重油焚きボイラ用の窒素酸 化物除去装置の第 1の実施例の構成を示す。 ボイラ 1の内 部に郭成された燃焼窒 2にはパーナ 3が開口している。 ま た、 燃、焼室 2の下流側には、 内部に加熱せんとする水を通 すための図示されないパイプが配設されている。 このよう なボイラ 1 と離間する任意の位置には、 尿素を 4 0 w%含む 尿素水溶液 (p H 9. 9 ) を貯留する貯留タ ンク 4と、 この尿素水溶液に添加して p Hを調整するためのクェン酸 溶液を貯留する貯留タ ンク 5とが設けられ、 各タ ンク 4、 5の下端部は、 管 6、 7を介して内部に第 1のポンプ 1 0、 1 1を有するポ ンプモジュール 8、 9に接続されている。 また、 各ポンプモジュール 8、 9は、 管 1 2、 1 3を介し て 3つの ミ キシングモジュール 14〜 1 6に並列に接続さ れている。 尚、 管 1 2、 1 3には余剰液剤を各タ ンク 4、 5に戻すための戻し管 1 7、 1 8が接続されている。 特に 貯留タンク 4内の尿素水溶液を管 6、 1 2、 1 7を介して 循環させることによりその p Hが下がることが本発明者ら の実験により判っており、 従って後記する p H調整に用い るクェン酸の使用量を減らすことが可能となつている。 FIG. 1 shows a configuration of a first embodiment of a nitrogen oxide removing apparatus for a heavy oil fired boiler to which the present invention is applied. A burner 2 is formed inside the boiler 1 and a wrench 3 is open. In addition, water to be heated inside is passed downstream of the combustion and baking chamber 2. Pipes (not shown) are provided. A storage tank 4 for storing an aqueous urea solution (pH 9.9) containing 40% by weight of urea at an arbitrary position away from the boiler 1 and adjusting the pH by adding the aqueous urea solution to the aqueous urea solution And a storage tank 5 for storing a citric acid solution for performing a pumping operation. A lower end of each of the tanks 4 and 5 has a first pump 10 and 11 therein via pipes 6 and 7. Connected to the pump modules 8 and 9. The pump modules 8 and 9 are connected in parallel to the three mixing modules 14 to 16 via pipes 12 and 13. The pipes 12 and 13 are connected to return pipes 17 and 18 for returning excess liquid to the tanks 4 and 5, respectively. In particular, it has been found from experiments by the present inventors that the pH of the aqueous urea solution in the storage tank 4 is lowered by circulating the aqueous urea solution through the pipes 6, 12, and 17, and therefore, it is used for pH adjustment described later. Citrate can be reduced.
各ミキシングモジュール 14〜 1 6は同様の構造を有し ているので、 ミ キシングモジュール 1 6についてのみ第 2 図を参照して説明する。 ミキシングモジュール 1 6の内部 には、 例えば容量が 3 であつて良い混合タ ンク 2◦が設 けられている。 そして、 各管 1 2、 1 3の分岐管 1 2 a、 1 3 aが電磁弁 2 1、 22を介してその上部に開口してい る。 また、 第 1図に合せて示すょぅにプラン ト水供耠管 2 3の分岐管 23 a も電磁弁 24を介して混合タ ンク 20の 上部に開口している。 尚、 管 1 2 a、 1 3 a、 2 3のミキ シングモジュール 1 6への入口部分にはフ ィ ルタ 7 9〜 8 1が設けられている。 Since each of the mixing modules 14 to 16 has a similar structure, only the mixing module 16 will be described with reference to FIG. Inside the mixing module 16, for example, a mixing tank 2, which may have a capacity of 3, is provided. The branch pipes 12a and 13a of the pipes 12 and 13 are opened at the upper part through the solenoid valves 21 and 22. As shown in FIG. 1, the branch pipe 23 a of the plant water supply pipe 23 also opens to the upper part of the mixing tank 20 via the solenoid valve 24. The tubes 1 2a, 1 3a and 23 Filters 79 to 81 are provided at the entrance to the single module 16.
プラ ン ト水供袷管 2 3は電磁弁 2 5を介してギヤポンプ からなる第 2のポンプ 2 6の吸入側に接続されている。 第 2のポンプ 2 6の吐出側は管 3 1逆止弁 3 2及び分岐管 3 l a、 3 1 b、 3 1 cを介して燃焼室 2のやや下流側位置 に設けられた各ィ ンジヱクタ 3 3〜 3 5に各々互いに並列 に接続されている。 一方、 プラン ト水供铪管 2 3の電磁弁 2 5と第 2のポンプ 2 6との間の部分には、 混合タンク 2 0の底面から略垂下する管 2 8が逆止弁 2 9を介して接続 されている。  The plant water supply pipe 23 is connected via a solenoid valve 25 to the suction side of a second pump 26 composed of a gear pump. The discharge side of the second pump 26 is connected to each of the injectors 3 provided at a position slightly downstream of the combustion chamber 2 via a pipe 3 1 check valve 32 and a branch pipe 3 la, 31 b, 31 c. 3 to 35 are connected in parallel with each other. On the other hand, in the portion of the plant water supply pipe 23 between the solenoid valve 25 and the second pump 26, a pipe 28 that substantially descends from the bottom of the mixing tank 20 has a check valve 29. Connected through.
こ こで、 電磁弁 2 5を開く とプラ ン ト水供給管 2 3が第 2のポンプ 2 6に連通し、 その水圧により逆止弁 2 9が閉 じることになる。 従って、 電磁弁 2 5をオン/オフするこ とにより第 2のポンプ 2 6にプラ ン ト水供铪管 2 3及び混 合タ ンク 2 0のいずれか一方を選択的に連通させて各ィ ン ジェクタ 3 3〜 3 5に水若しく は混合夕ンク内で混合され た溶液を選択的に供給することができるようになつている。 これらイ ンジェクタ 3 3〜 3 5にはプラン トエアの供給管 3 6の分岐管 3 6 a も圧力調整弁 3 7、 電磁弁 3 8及び逆 止弁 3 9を介して接続されており、 実際には上記水若しく は混合液瘌 ϋァと共に各ィ ンジェク'タ 3 3〜 3 5から噴 射するようになつている。  Here, when the solenoid valve 25 is opened, the plant water supply pipe 23 communicates with the second pump 26, and the check valve 29 is closed by the water pressure. Therefore, by turning on / off the solenoid valve 25, one of the plant water supply pipe 23 and the mixing tank 20 is selectively communicated with the second pump 26, and each of the pumps is connected. The solution mixed in the water or the mixing tank can be selectively supplied to the injectors 33 to 35. A branch pipe 36a of a plant air supply pipe 36 is also connected to these injectors 33 to 35 via a pressure regulating valve 37, a solenoid valve 38, and a check valve 39, and actually, Is ejected from each of the injectors 33 to 35 together with the water or the mixed liquid layer.
各イ ンジェクタ 3 3〜 3 5は、 燧焼室 2 (または排気通 一 l 一 路) に向けて出没自在にガイ ドされている。 これらイ ンジ ェクタ 3 3〜 3 5には、 エアシリ ンダ 4 0〜 4 2が付設さ れ、 該シリ ンダ内に所定の気圧を供給するべく プラ ン トェ ァ供給管 3 6から圧力調整弁 4 3、 切換弁 4 4を介して各 々分岐管 3 6 b、 3 6 cが接続されている。 この切換弁 4 4を制御することにより、 各イ ンジェクタ 3 3〜 3 5を使 用する時には燃焼室 2に突出させ、 未使用時にはボイラ壁 内に没入させるようにしている。 Each injector 33 to 35 is connected to flint chamber 2 (or It is guided so that it can come and go freely. Air cylinders 40 to 42 are attached to these injectors 33 to 35, and a pressure adjusting valve 43 is supplied from a plant supply pipe 36 to supply a predetermined pressure into the cylinder. The branch pipes 36 b and 36 c are connected to each other via the switching valve 44. By controlling the switching valve 44, each of the injectors 33 to 35 is protruded into the combustion chamber 2 when used, and is immersed in the boiler wall when not used.
ブラン トエア供給管 3 6の分岐管 3 6 b中間部には更に 分岐管 3 6 dの一方が接続され、 その他方は、 流量調整弁 4 5及び逆止弁 4 6を介して混合タ ンク 2 0の内部に開口 している。 この分岐管 3 6 dから噴出するエアにより混合 タンク 2 0内の液剤が攪拌されるようになつている。  One end of a branch pipe 36 d is connected to the middle of the branch pipe 36 b of the brand air supply pipe 36, and the other is a mixing tank 2 via a flow control valve 45 and a check valve 46. It is open inside 0. The liquid in the mixing tank 20 is agitated by the air ejected from the branch pipe 36d.
ミ キシングモジュール 1 4には 3つでなく 2つのィ ンジ ェクタ 5 0、 5 1が接続されている。 そのこ と以外、 各ミ キシングモジュール 1 4、 1 5の構造、 構成はミキシング モジュール 1 6と同様であり、 かつこれら ミキシングモジ ユールに接続された各ィ ンジヱクタ 4 7〜 5 1の構造、 構 成はイ ンジェクタ 3 3〜 3 5と同様であるのでその説明を 省略する。  Two injectors 50 and 51 are connected to the mixing module 14 instead of three. Otherwise, the structure and configuration of each of the mixing modules 14 and 15 are the same as those of the mixing module 16, and the structure and configuration of each of the indicators 47 to 51 connected to these mixing modules. Are the same as the injectors 33 to 35, and the description thereof is omitted.
一方、 第 1図に示すように各貯留タンク 4、 5には貯留 する液剤の'温度及び貯留量が所定の範囲であることを検知 する温度センサ 5 2、 5 3及びレベルセンサ 5 4、 5 5力《 設けられ、 当該窒素酸化物除去装置の制御用メ イ ンコ ン ト 口一ラ (以下 MCと記す) 56に電気的に接続されている。 また、 貯留タンク 4には尿素水溶液の p Hを測定するため の p Hセンサ 64も設けられ、 M C 56に接続されている。 On the other hand, as shown in FIG. 1, each of the storage tanks 4 and 5 has a temperature sensor 52 and 53 and a level sensor 54 and 5 for detecting that the temperature and the amount of the stored liquid are within a predetermined range. 5 powers are provided, and the main control It is electrically connected to the mouth (hereinafter referred to as MC) 56. The storage tank 4 is also provided with a pH sensor 64 for measuring the pH of the aqueous urea solution, and is connected to the MC 56.
MC 56は各ポンプ 1 0、 1 1の吐出圧等を検知し、 力、 つ制御するべく 、 各ポンプモジュール 8、 9に付設された 制御機器 (図示せず) に電気的に接続されている。 また、 M C 56はボイラ 1の負荷と して燃料流量を検知送信する 流量セ ンサ 57と、 排気通路 2の最下流側位置に窒素酸化 物 (Ν Οχ ) 、 アンモニア (Ν Η3 ) 、 一酸化炭素 (C O) 、 酸素 (09 ) 等の濃度を計測するための各濃度センサ 5 8と、 各イ ンジェクタ 33〜 3 5、 47〜 5 1の近傍位置 にてボイラ 1内の温度を計測する 3つの温度センサ 59と に接続されている。 更に、 M C 56は操作者が各種設定を 行ったり、 稼働状況を観察するべく本体、 ディ スプレイ装 置、 ハー ドディ スク等の外部記憶装置、 プリ ンタ装置及び キーボー ド等の入力装置を有するホス トコンピュータ (以 下、 H Cと記す) 60と、 各ミキシングモジュール 14〜 1 6の状態を検知し、 かつポンプ、 各電磁弁等を制御する ベく付設されたミキシングコン トローラ (以下、 MX Cと 記す) 6 1〜 63に公知のネッ トワーク システムを介して 接続されている。 The MC 56 is electrically connected to a control device (not shown) attached to each of the pump modules 8 and 9 to detect, control, and control the discharge pressure and the like of each of the pumps 10 and 11. . In addition, the MC 56 detects and transmits a fuel flow rate as a load of the boiler 1 and a flow rate sensor 57, and a nitrogen oxide (Ν Ο χ ), ammonia (Ν Η 3 ), Measures the temperature inside boiler 1 at each concentration sensor 58 for measuring the concentration of carbon oxide (CO), oxygen ( 09 ), etc., and at the position near each injector 33-35, 47-51 The three temperature sensors 59 and are connected. Further, the MC 56 is a host having an external storage device such as a main unit, a display device, a hard disk, and an input device such as a printer device and a keyboard so that an operator can make various settings and observe the operation status. A computer (hereinafter abbreviated as HC) 60 and a mixing controller (hereinafter abbreviated as MXC) provided to detect the state of each mixing module 14 to 16 and to control a pump, each solenoid valve, and the like. 6) 1 to 63 are connected via a known network system.
第 2図に示すように、 例えば MX C 63は、 各管 1 2 a、 1 3 a . 23 aに付設された流量センサ 6 5〜 67と、 同 じ く各管 1 2 a、 1 3 a , 23 aに付設された圧力センサ 68〜 7 0と、 管 2 3に付設された流量センサ 7 1 と、 管 3 1に付設された圧力センサ 7 2と、 管 36 aに付設され た圧力センサ 7 3と、 管 3 1から各イ ンジヱクタ 33〜 3 5に分岐する各分岐管 3 1 a、 3 1 b、 3 1 cに付設され た流量センサ 74〜 76と、 管 28に付設された レベルス イ ッチ 77とに接続され、 各管の流量及び圧力等を監視し ている。 また、 MX C 63は、 各管 1 2 a、 1 3 a、 23 a、 23、 36 a、 3 6、 3 6 b、 36 cに設けられた電 磁弁 2 1、 2 2、 24、 2 5、 38、 切換弁 44を各々開 閉、 切換制御するべく これらに接続されている。 更に、 M X C 63はポンプ 26に、 該ポンプを制御するべく ポンプ ドライバ 78を介して接続されている。 尚、 MX C 6 1、 62についてもその構造は MX C 63と同様であるので詳 細な説明を省略する。 As shown in FIG. 2, for example, the MX C 63 has a flow sensor 65-67 attached to each of the pipes 12a, 13a and 23a, and similarly each of the pipes 12a and 13a. , 23a Pressure sensor attached to 68 to 70, the flow sensor 71 attached to the pipe 23, the pressure sensor 72 attached to the pipe 31, the pressure sensor 73 attached to the pipe 36a, and the pipe 31 Connected to the flow sensors 74 to 76 attached to the branch pipes 31a, 31b, 31c branching to the injectors 33 to 35, and the level switch 77 attached to the pipe 28, The flow and pressure of each pipe are monitored. In addition, the MXC 63 is equipped with solenoid valves 21, 22, 24, 2, provided on pipes 12 a, 13 a, 23 a, 23, 36 a, 36, 36 b, 36 c. 5, 38, and switching valve 44 are connected to these for opening / closing and switching control, respectively. Further, the MXC 63 is connected to the pump 26 via a pump driver 78 to control the pump. Since the structure of the MXCs 61 and 62 is the same as that of the MXC 63, the detailed description is omitted.
次に H C 60、 M C 56及び各 MX C 6 1〜 63の作動 要領を第 3図〜第 6図のフ口一チヤ一 トに基づき詳細に説 明する。  Next, the operation of the HC 60, the MC 56, and the MX Cs 61 to 63 will be described in detail with reference to the flowcharts of FIGS. 3 to 6.
第 3図は H C 60の作動要領を示すフローチャー トであ る。 まず、 ステップ S 1にてイニシャライズ処理を行った 後、 ステップ S 2にて当該 H C 60のディ スプレイ装置の 画面を変更する必要があるか否かを判別し、 変更する必要 がなければステップ S 4に進み、 変更する必要があればス テツプ S 3にて画面の固定表示部分のみ表示した状態でス テツプ S 4に進む。 そして、 ステップ S 4にて表示するべきデータが既に当 該 H C 6 0にあるか否かを判別し、 あればステップ S 6に 進み、 表示するべきデータがなかった場合、 ステップ S 5 にて後記する M C 5 6のフローチャー ト (第 4図) に於け るステップ S 3 3の処理により表示データを受信した後、 ステップ S 6に進む。 ステップ S 6では、 当該 H C 6 0 に 記憶された表示データ或いはステップ S 5にて M C 5 6力、 ら受信した表示データをディ スプレイ装置画面に可変表示 部分と して上記固定表示部分に対応させて表示する。 そ し て、 ステップ S 7 に進み、 各 M X C 6 1〜 6 3の運転モー ド、 各種液剤の流量情報 (マニュアル運転時) 等を入力し、 ステップ S 8にて M C 5 6にて用いる作動テーブルを変更 する必要があるか否かを判別し、 変更する必要がなければ ステップ S 1 0に進み、 変更する必要があればステップ S 9にて M C 3 5に変更するテーブルを送信した後ステップ S 1 0に進む。 こ こで、 上記動作テーブルは貯留タ ンク 4 内の尿素水溶液の p H、 各イ ンジェクタの近傍温度及びボ イラ 1の負荷 (燃料流量) に対応して各ミキシングモジュ ール 3 0〜 3 2にて混合する各液剤の割合及び濃度と、 各 イ ンジェク夕に於ける各混合溶液の噴射量とを各々決定す るためのテ一プルである。 このテーブルにより各ミキシン グモジュール毎に尿素水溶液の濃度及び i> Hを篛整して各 イ ンジェク夕の配設位置に於ける排気の状態に応じた混合 溶液を噴霧するようになる。 ステッ プ S 1 0、 S 1 1にて各 M X C 6 1〜 63及び各 センサ、 スィ ッチから収集し、 かつ M C 56で編集された データを受信する時刻であれば通信処理を行った後、 ステ ップ S 1 2、 S 1 3にて、 操作者から各液剤の使用量等の レポ一 トの出力要求があればレポ一 トをプリ ンタ装置から 出力しステップ S 2に戻る。 そして上記ステップ S 2〜 S 1 3の処理を繰返すこととなる。 Fig. 3 is a flowchart showing the operation procedure of HC60. First, after performing the initialization processing in step S1, it is determined in step S2 whether or not the screen of the display device of the HC 60 needs to be changed, and if not, step S4 is performed. If it is necessary to change, the process proceeds to step S4 with only the fixed display portion of the screen displayed in step S3. Then, in step S4, it is determined whether or not the data to be displayed already exists in the HC 60, and if so, the process proceeds to step S6. If there is no data to be displayed, the process proceeds to step S5. After receiving the display data by the process of step S33 in the flowchart (FIG. 4) of the MC 56, the process proceeds to step S6. In step S6, the display data stored in the HC 60 or the display data received from the MC 56 in step S5 is made to correspond to the fixed display portion as a variable display portion on the display device screen. To display. Then, proceed to step S7, enter the operation mode of each MXC 61 to 63, the flow rate information of various liquid materials (during manual operation), etc., and in step S8 the operation table used by MC 56. It is determined whether or not it is necessary to change the value. If no change is required, the process proceeds to step S10. If the value is to be changed, the table to be changed to MC35 is transmitted in step S9, and then the step S Go to 10. Here, the above operation table shows that each mixing module 30 to 32 corresponds to the pH of the urea aqueous solution in the storage tank 4, the temperature near each injector, and the load (fuel flow rate) of the boiler 1. This is a sample for determining the ratio and concentration of each liquid agent to be mixed and the injection amount of each mixed solution in each injection. With this table, the concentration of the urea aqueous solution and i> H are adjusted for each mixing module, and the mixed solution is sprayed according to the exhaust state at the position where each injector is arranged. In steps S10 and S11, if it is time to collect data from each MXC 61 to 63 and each sensor and switch and receive the data edited by MC 56, perform communication processing. In steps S12 and S13, if the operator requests a report output such as the amount of each liquid used, the report is output from the printer and the process returns to step S2. Then, the processing of steps S2 to S13 is repeated.
第 4図は M C 56の作動要領を示すフローチャー トであ る。 尚、 M C 56はディ スプレイ装置、 入力装置等を接続 すると H C 6 0と同様な情報を表示し得ると共に各デ一夕 等を入力し得るようになつている。 まず、 ステップ S 2 1 にてイニシャ ライズ処理後、 ステップ S 22に進み、 シス テム起動時の H C 6 0との時刻合せや各種プログラム、 デ —夕、 テーブル等を H C 60及び Zまたは各 MX C 6 1〜 63から受信する必要があるか否か、 即ちシステム起動時 であるか、 または既に M C 56内に保存された各種プログ ラム、 データ、 テーブル等に変更があるか否かを判別し、 受信する必要がなければステップ S 24に進み、 必要があ ればステップ S 23にて H C 60若しく は各 M X C 6 1〜 63からデータの受信、 編集等を行い、 ステップ S 24に 進む。 該ステップ S 24及びステツプ S 2 5では炉情報及 び各 MX C 6 1〜63の現在のデータを受信する。 そして、 ステップ S 26では当該窒素酸化物除去装置の運転を休止 するか否かを判別し、 休止する場合にはステップ S 32に 進み、 稼働する場合にはステップ S 27に進む。 FIG. 4 is a flowchart showing the operation procedure of the MC 56. When the display device, the input device, and the like are connected, the MC 56 can display the same information as that of the HC 60 and can input each data. First, after the initialization process in step S21, the process proceeds to step S22, in which the time synchronization with the HC 60 when the system is started, various programs, data, tables, etc. are stored in the HC 60 and Z or each MXC. 6 Determine whether it is necessary to receive from 1 to 63, that is, at the time of system startup, or whether there is any change in various programs, data, tables, etc. already stored in the MC 56. If it is not necessary, the process proceeds to step S24. If necessary, the data is received and edited from the HC 60 or each of the MXCs 61 to 63 in step S23, and the process proceeds to step S24. In step S24 and step S25, the furnace information and the current data of each of the MXCs 61 to 63 are received. Then, in step S26, it is determined whether or not to stop the operation of the nitrogen oxide removing device. Proceed to step S27 if it is to be operated.
ステップ S 27では、 操作者が運転モー ドを H C 60に てマ二ユアルに設定したかォ一 卜に設定したかを判別し、 マニュアルであればステップ S 29にてキー入力情報から 流量情報を作成する。 また、 オー トであればステップ S 2 8にて、 ステップ S 24で受信した現在負荷及び作動テー ブルから流量計算を行いステツプ S 2 9にて流量情報を作 成する。 そして、 ステップ S 3 0に進みステップ S 29に て作成した流量情報が前回に比較して変化があるか否を判 別し変化があればステップ S 3 1にて MX C 6 1に流量情 報を送信し、 変化がなければ送信せずにステツプ S 32に ½む。  In step S27, it is determined whether the operator has set the operation mode to manual or automatic with the HC 60. If the operation mode is manual, the flow information is determined from the key input information in step S29. create. If it is auto, the flow rate is calculated from the current load and the operation table received in step S24 in step S28, and flow rate information is created in step S29. Then, proceeding to step S30, it is determined whether or not the flow rate information created in step S29 has changed from the previous time, and if there is a change, the flow rate information is sent to MXC 61 in step S31. Is transmitted, and if there is no change, the process proceeds to step S32 without transmitting.
ステップ S 32では H C 6 0からデータの要求があった か否を判別し、 要求があればステップ S 33にて現在の各 データを送信しステップ S 2 2に戻る。 そして上記ステツ プ S 22〜ステップ S 3 3の処理を繰返すこととなる。  In step S32, it is determined whether or not there has been a data request from the HC 60. If there is a request, the current data is transmitted in step S33, and the process returns to step S22. Then, the processing of steps S22 to S33 is repeated.
第 5図及び第 6図は各 MX C 6 1〜40の作動要領を示 すフローチャー トである。 尚、 各 MX Cは M C 56との通 信機能を具備する本体を有し、 ディ スプレイ装置を接続す ると、 接続された MX Cに関わる情報を表示し得るように なっている。 まず、 ステップ S 4 1にてイニシャライズ処 理後、 ステツプ S ¾にて受信すべきデータがあるか否か を判別し、 ある場合ステップ S 43にてデータを受信後、 解析処理を行う。 そして、 ステップ S 44にてこのサイク ルが初回でないと きには各センサからボイ ラ 1の負荷、 排 気温度、 ア ンモニア濃度、 窒素酸化物濃度、 酸素濃度、 一 酸化炭素濃度、 各管の流量、 圧力等の検知結果を収集し記 憶する。 次に、 ステップ S 4 5に進み、 M C 56から受信 した流量情報から各ポ ンプモジュール 8、 9内のポ ンプ 1 0、 1 1を制御することにより各液剤の流量を調整するよ うに設定し、 各ミ キシングモジュール 14〜 1 6内の各混 合タ ンクでの各溶液の混合する割合を比率を調整する。 そ して、 ステップ S 4 6に進み、 後記するパルス制御を行う か否かを判別し、 パルス制御を行う場合ステツプ S 47 (第 6図に示すサブルーチン) を行い、 パルス制御を行わ ない場合、 ステッ プ S 48に進む。 Fig. 5 and Fig. 6 are flowcharts showing the operation procedure of each MXC61-40. Each MXC has a main body having a communication function with the MC 56, and when a display device is connected, information on the connected MXC can be displayed. First, after the initialization processing in step S41, it is determined whether or not there is data to be received in step S #. If so, the analysis processing is performed after receiving the data in step S43. Then, in step S44, this cycle If this is not the first time, collect the detection results of boiler 1 load, exhaust temperature, ammonia concentration, nitrogen oxide concentration, oxygen concentration, carbon monoxide concentration, flow rate of each pipe, pressure, etc. And memorize it. Next, proceeding to step S45, the flow rate of each liquid material is adjusted by controlling the pumps 10 and 11 in the pump modules 8 and 9 based on the flow rate information received from the MC 56. Adjust the mixing ratio of each solution in each mixing tank in each of the mixing modules 14 to 16. Then, proceeding to step S46, it is determined whether or not to perform pulse control described later. If pulse control is to be performed, step S47 (subroutine shown in FIG. 6) is performed. If pulse control is not to be performed, Go to step S48.
尚、 以下のステップ S 48からステッ プ S 5 3までは、 主に第 2図に示すミ キシングモジュール 1 6について説明 し、 同様の構造を有する ミキシングモジュール 14、 1 5 についての説明を省略する。 ステップ S 48では、 単位時 間 t に於ける各ィ ンジヱクタ 33〜 3 5への供給量 L 1を 設定し、 ステップ S 4 9にてプラ ン ト水供給管 2 3の電磁 弁 2 5を閉じる (第 2図) 。 すると混合タ ンク 20内に液 があれば管 28を介して管 23に流入し、 ポンプ 26に供 辁される。 略同時にステップ S 50にて各管 1 2 a、 1 3 a、 23 aの電磁弁 2 1、 22、 24を開いて混合タ ンク 20に各溶液を連続的に補充し、 該ステップとステップ S 5 1にて単位時間 tだけ混合タ ンク 20側からのみ連続的 に混合溶液をイ ンジヱクタに供給する。 そして、 ステップ S 5 2にて電磁弁 2 1、 2 2、 2 4を閉じて溶液の供給を 停止し、 ステップ S 5 3にて M C 5 6に現在の各センサの データを送信し、 ステップ S 4 2に戻る。 In the following steps S48 to S53, the mixing module 16 shown in FIG. 2 will be mainly described, and the description of the mixing modules 14 and 15 having the same structure will be omitted. In step S48, the supply amount L1 to each of the injectors 33 to 35 at the unit time t is set, and in step S49, the solenoid valve 25 of the plant water supply pipe 23 is closed. (Figure 2). Then, if there is a liquid in the mixing tank 20, it flows into the pipe 23 via the pipe 28 and is supplied to the pump 26. At about the same time, in step S50, the solenoid valves 21, 22, and 24 of the pipes 12a, 13a, and 23a are opened, and each solution is continuously replenished to the mixing tank 20. 5 Continuous mixing tank for unit time t at 1 Only continuous from 20 side And supply the mixed solution to the injector. Then, in step S52, the solenoid valves 21, 22, and 24 are closed to stop the supply of the solution, and in step S53, the current data of each sensor is transmitted to the MC 56, and step S53 is performed. 4 Return to 2.
—方、 ステップ S 4 6にてパルス制御を行う と判別され た場合、 ステップ S 4 7に進み、 第 6図に示すサブルーチ ンを行う。 即ち、 まずステップ S 6 1にて 1サイ クルに於 けるイ ンジェグ夕供給量 L 2を設定し、 ステップ S '6 2に て当該パルス制御ルーチンが初回であるか否かを判别し、 初回でなければステップ S 6 4に進み、 初回であればステ ップ S 6 3にて混合夕 ンク 2 0のレベルスィ ツチ 7 7がォ ンであるか否かを判別する。 そしてオフであれば、 即ち内 部に液剤が残っていれば、 混合タンク 2 0が空になり レべ ルスィ ツチ 7 7がオンになるまで該ステップ S 6 3を繰返 した後、 ステップ S 6 4に進む。 また図示されていない力《、 もし所定時間レベルスィ ツチ 7 7がォンにならなければ H C 6 0のディ スプレイに表示する等のエラー処理を行う。 ステップ S 6 4ではサイ クル時計 Tをリセッ ト し、 ステツ プ S 6 5に進む。  On the other hand, if it is determined in step S46 that pulse control is to be performed, the flow advances to step S47 to perform the subroutine shown in FIG. That is, first, in step S61, the injection amount L2 in one cycle is set, and in step S'62, it is determined whether or not the pulse control routine is the first time. If not, the process proceeds to step S64, and if it is the first time, it is determined in step S63 whether or not the level switch 77 of the mixed ink 20 is on. If it is off, that is, if liquid remains inside, step S63 is repeated until the mixing tank 20 is empty and the level switch 77 is turned on. Proceed to 4. If the level switch 77 is not turned on for a predetermined time, an error process such as displaying on the display of the HC 60 is performed. In step S64, the cycle clock T is reset, and the process proceeds to step S65.
ステップ S 6 5では上記ィ ンジヱクタ供給量 L 2及び混 合タンク 2 0の混合液剤の濃度からブラン ト水の各イ ンジ ェク夕への供耠量 L 3を計算し、 ステップ S 6 6にてブラ ン ト水供铪管 2 3の電磁弁 2 5を開く。 すると、 プラン ト 水の圧力により管 2 8の逆止弁 2 9が閉じ、 混合夕ンク 2 0の底部が閉塞される。 また、 ステップ S 6 6と略同時に ステップ S 6 7にて混合タ ンク 2 0に設定供給量 L 2、 L 3から計算される各液剤を補充する。 In step S65, the supply amount L3 of the brand water to each injector is calculated from the above-described amount L2 of the supplied injector and the concentration of the mixed solution in the mixing tank 20, and the flow proceeds to step S66. Open solenoid valve 25 of plant water supply pipe 23. Then, the check valve 29 of the pipe 28 closes due to the pressure of the plant water, and the mixing tank 2 The bottom of 0 is closed. At approximately the same time as Step S66, in Step S67, the liquid tank 20 is replenished with each liquid material calculated from the set supply amounts L2 and L3.
次に、 ステップ S 6 8にてサイクル時計 Tが例えば 1 0 秒間であつて良い所定時間 t 1 となつたか否かを判別し、 t 1 になっていなければ該ステップ S 6 8を繰返し、 t 1 になったらステップ S 6 9に進む。 該ステップで各流量セ ンサ 7 1、 7 4〜 7 6からステップ S 6 4で計算した供給 量 L 3になつたか否かを判別し、 L 3になっていなければ ステップ S 7 0にてエラー処理を行った後、 第 5図のステ ップ S 4 2に戻り、 L 3になっていればステップ S 7 1 に ¾ 。  Next, in step S68, it is determined whether or not the cycle clock T has reached a predetermined time t1, which may be, for example, 10 seconds, and if not, repeat step S68 if t1 has not been reached. When it reaches 1, the process proceeds to step S69. In this step, it is determined from each flow sensor 71, 74-76 whether or not the supply amount L3 calculated in step S64 has been reached, and if not, an error has occurred in step S70. After performing the processing, the process returns to step S42 of FIG. 5, and if it is L3, the process proceeds to step S71.
ステップ S 7 1では各電磁弁 2 1、 2 2、 2 4を閉じ各 液剤の供铪を停止し、 ステップ S 7 2に進む。 ステップ S 7 2では電磁弁 2 5を閉じることにより混合タ ンク 2 0内 の混合液剤をポンプ 2 6に供給する。 そして、 ステップ S 7 3に進みサイ クル時計 Tが所定時間 t 2となつたか否か を判別し、 t 2になっていなければ該ステップ S 7 3を繰 返し、 t 2になったらステップ S 7 4に進む。  In step S71, the solenoid valves 21, 22, 24 are closed to stop the supply of the liquid materials, and the process proceeds to step S72. In step S72, the mixture in the mixing tank 20 is supplied to the pump 26 by closing the solenoid valve 25. Then, proceeding to step S73, it is determined whether or not the cycle clock T has reached a predetermined time t2, and if it has not reached t2, the step S73 is repeated. Proceed to 4.
ステップ S 7 4ではレベルスィ ツチ 7 7がオンになった か否かを判別しォンであったらそのまま第 5図のステップ S 4 2に戻り、 オフであったらエラー処理を行った後、 ス テツプ S 4 2に戻る。 そして、 ステップ S 4 2力、らステツ プ S 4 6までの処理にて制御内容に変更があつたか否かを 判別しその内容に応じて再度ステップ S 48〜ステップ S 52若しく はステップ S 6 1〜ステップ S 74までの処理 を繰返すこととなる。 尚、 本実施例では 1サイ クル (ステ ップ S 6 1〜ステップ S 74) 毎に各 MX C 6 1〜63に 対する MC 56からの制御情報に変更があるか否かを確認 した力 (ステップ S 4 2) 、 実際にはマルチタスク処理を 行い、 常に制御情報に変更があるか否かを確認し、 変更が あつた場合に半サイ クル毎 (ステップ S 6 1〜ステップ S 68及びステップ S 6 9〜ステッ プ S 74) に t l、 t 2、 L 2、 L 3等を変更しても良い。 In step S74, it is determined whether or not the level switch 77 is turned on. If the switch is turned on, the process returns to step S42 in FIG. 5; if the switch is turned off, error processing is performed. Return to S42. Then, it is determined whether or not the control contents have been changed in the processing in steps S42 and S46. The determination is made, and the processing from step S48 to step S52 or step S61 to step S74 is repeated again according to the content. In this embodiment, the force (MC) for confirming whether or not the control information from the MC 56 for each of the MXCs 61 to 63 changes every cycle (steps S61 to S74). In step S42), multitask processing is actually performed, and it is always checked whether there is a change in the control information. If there is a change, every half cycle (step S61 to step S68 and step S68) Tl, t2, L2, L3, etc. may be changed from S69 to S74).
このようにして、 H C 60、 MC 56、 MX C 6 1〜6 3により各センサ 57〜 59等によりボイラ 1の燃焼状態 に応じて各開閉弁、 切換弁及びポンプ等をフィ 一 ドバッ ク 制御により窒素酸化物濃度、 ァンモニァ濃度等が所定の範 囲となるように尿素水溶液濃度及び p Hを適性制御する。 また、 必要に応じて各制御を H C 60または M C 56にて 遠隔操作によりマニュアル設定し、 その制御状況を H C 6 0または M C 56から出力することもできる。  In this way, the on-off valves, switching valves, pumps, etc. are controlled by feedback control according to the combustion state of the boiler 1 by the sensors 57 to 59 and the like by the HC 60, MC 56, and MX C 61 to 63. The urea aqueous solution concentration and pH are appropriately controlled so that the nitrogen oxide concentration, ammonia concentration and the like fall within predetermined ranges. Also, if necessary, each control can be manually set by remote control at the HC 60 or the MC 56, and the control status can be output from the HC 60 or the MC 56.
実際に上記装置を用いてマニュアル設定により p Hを調 整した尿素水溶液 (U + C) と p Hを調整していない尿素 水溶液 (U) との脱硝率及び残留アンモニア濃度を比較し た結果を後記の第 1表、 第 7図及び第 8図に示す。 ここで、 使用したボイラは、 蒸気量 30 t h. 1 00 %負荷時の 燃料使用量 2400 £ Zh、 その時の排ガス量 26300 7 Actually, the denitration rate and residual ammonia concentration were compared between an aqueous urea solution (U + C) whose pH was adjusted by manual setting and an aqueous urea solution (U) whose pH was not adjusted using the above equipment. These are shown in Table 1 below and in Figs. 7 and 8. The boiler used here has a steam volume of 30 t h. Fuel consumption at 100% load 2400 £ Zh, and exhaust gas volume at that time 26 300 7
N m 3 / h ( d r y ) の重油焚きボイ ラである。 また、 第 1表中 L 0、 L 1及び L 2はイ ンジヱクタ 3 3〜 3 5、 ィ ンジェク タ 4 9〜 5 1及びイ ンジェク タ 4 7、 4 8の設置 位置を示しており、 イ ンジヱクタ 3 3〜 3 5 ( L 0 ) はバ ーナ 4近傍に設けられると共に炎の中間部に向けて尿素水 溶液等を噴霧するようになっており、 イ ンジヱクタ 4 9〜 5 1 は燃焼室 2の排気通路の開口近傍に設けられると共に 炎の先端部から排気通路に至る排気に向けて尿素水溶液等 を噴霧するようになっており、 イ ンジェクタ 4 7、 4 8は 排気通路の上流側に設けられると共に排気通路内の排気に 向けて尿素水溶液等を噴霧するようになつている。 It is a heavy oil fired boiler with N m 3 / h (dry). In Table 1, L 0, L 1, and L 2 indicate the installation positions of the injectors 33 to 35, the injectors 49 to 51, and the injectors 47, 48. 33 to 35 (L 0) are provided near the burner 4 and spray a urea aqueous solution or the like toward the middle of the flame, and the injectors 49 to 51 are provided in the combustion chamber 2. Urea solution is sprayed from the front end of the flame to the exhaust passage, and the injectors 47 and 48 are installed upstream of the exhaust passage. And sprays urea aqueous solution and the like toward the exhaust gas in the exhaust passage.
尚、 第 1表のベース N O x とは尿素水溶液等を噴霧しな い場合の窒素酸化物濃度であり、 N S Rとは、 本発明の場 合、 ベース N O x のモル数に対する使用した尿素のモル数 X 2 (ァ ミ ノ基の数) である (例えば N 0 X 2モルに対し て尿素 1モルの場合は N S Rは 4 ) 。  The base NO x in Table 1 is the nitrogen oxide concentration when no aqueous urea solution is sprayed, and the NSR is the mole of urea used relative to the mole of base NO x in the present invention. It is the number X 2 (the number of amino groups) (for example, when 1 mole of urea is 2 moles of N 0 X, NSR is 4).
第 7図は排気温度と脱硝率との関係を示すグラフであり、 実線 A、 C . Eは p Hを調整していない尿素水溶液 (U ) を噴霧した場合、 実線 B、 D、 Fは p Hを調整した尿素水 溶液 (U + C ) を噴霧した場合である。 このグラフによれ ば、 本実施例に於ては尿素水溶液の p Hを調整したものを 用いた場合、 p Hを調整していない尿素水溶液を用いた場 合に比較して排気の高温域の脱硝率がやや低下しているが (実線 A、 B ) 、 低温域から中温域にかけての脱硝率が著 しく 向上している (実線(:、 D、 E、 F ) 。 また、 第 1表 と併せて見ると、 p Hを調整した尿素水溶液を用いると残 留酸素濃度が高い場合に、 即ち本実施例に於ては低負荷運 転である場合に特に脱硝率が向上する傾向があることがわ 力ヽ 。 Fig. 7 is a graph showing the relationship between the exhaust gas temperature and the denitration rate. The solid lines A, C and E show the results when the urea aqueous solution (U) whose pH was not adjusted was sprayed, and the solid lines B, D and F show the values of p. This is the case where the urea aqueous solution (U + C) adjusted to H is sprayed. According to this graph, in this embodiment, when the urea aqueous solution whose pH was adjusted was used, compared with the case where the urea aqueous solution whose pH was not adjusted was used, the exhaust gas in the high temperature range was used. Although the denitration rate is slightly lower (solid lines A and B), the denitration rate from low to medium temperature range is significant. (Solid lines (:, D, E, F).) In addition to Table 1, when the residual oxygen concentration is high when the pH adjusted urea aqueous solution is In the example, it is clear that the denitration rate tends to be improved particularly in the case of low load operation.
こ こで、 上記したように、 p Hを調整していない尿素水 溶液を用いた場合の脱硝率は排気温度以外に残留酸素濃度 の影響を受けるが、 p Hを調整した尿素水溶液を用いた場 合の脱硝率は残留酸素濃度の影響を受けなく なっている。 これは、 高温時であっても、 何らかの理由により残留酸素 濃度が高い場合に P Hを調整した尿素水溶液を用いること により所望の脱硝率を容易に得ることができることを意味 する。  Here, as described above, when the urea aqueous solution whose pH is not adjusted is used, the denitration rate is affected by the residual oxygen concentration other than the exhaust gas temperature, but the urea aqueous solution whose pH is adjusted is used. The denitration rate in this case is no longer affected by the residual oxygen concentration. This means that even when the temperature is high, if the residual oxygen concentration is high for some reason, a desired denitration rate can be easily obtained by using an aqueous urea solution whose pH has been adjusted.
従って、 例えば本実施例に於ては、 ボイラ運転時に低負 荷運転から徐々に高負荷に移行し、 かつ排気温度も低温か ら徐々に高温に移行する場合に、 尿素水溶液の p Hを最適 に調整すると排気温度全域に亘り脱硝率を向上することが できる。  Therefore, for example, in this embodiment, when the boiler operation gradually shifts from a low load operation to a high load and the exhaust gas temperature gradually shifts from a low temperature to a high temperature, the pH of the urea aqueous solution is optimized. By adjusting to, the denitration rate can be improved over the entire exhaust temperature range.
—方、 第 8図は排気温度とア ンモニアガス濃度との関係 を示すグラフであり、 実線 G、 I、 Kは p Hを調整してい ない尿素水溶液 (U ) を噴霧した場合、 実線 H、 J、 Lは p Hを調整した尿素水溶液 (U + C ) を噴霧した場合であ る。 このグラフに注目すると、 特に低温域から中温域にか けての低負荷時に、 p Hを調整した尿素水溶液を用いた場 9 合、 p Hを調整していない尿素水溶液を用いた場合に比較 してァンモニァガス濃度が極めて低く なっていることがわ かる (実線 G、 H ) 。 Figure 8 is a graph showing the relationship between the exhaust gas temperature and the ammonia gas concentration. The solid lines G, I, and K show the solid lines H, J when the urea aqueous solution (U) whose pH was not adjusted was sprayed. L shows the case where the urea aqueous solution (U + C) whose pH was adjusted was sprayed. Paying attention to this graph, it can be seen that the urea aqueous solution whose pH has been adjusted is used especially at low load from low to medium temperature range. In this case, it can be seen that the concentration of ammonia gas is extremely low as compared with the case where an aqueous urea solution whose pH is not adjusted is used (solid lines G and H).
即ち、 本実施例のボイラに於ては排気温度の低温域から 中温域にかけて低負荷及び中負荷の場合に p Hを調整する こ とによ り脱硝率が著しく 向上し、 かつア ンモニアガスの 発生を抑制することが可能となっている。 これは、 所望の 脱硝率を得るための尿素等の薬品の使用量を少なくするこ とができ、 運転コス トの低減化を図れるばかりでなく 、 排 気中に他の有害成分が増加することも抑制できることから 排気清浄化が促進されることを意味する。  That is, in the boiler of the present embodiment, the denitration rate is remarkably improved by adjusting the pH at a low load and a medium load from a low temperature range to a medium temperature range of the exhaust gas temperature, and ammonia gas is generated. Can be suppressed. This not only reduces the amount of chemicals such as urea used to obtain the desired denitration rate, but also reduces operating costs and increases the amount of other harmful components in the exhaust gas. This means that exhaust gas purification is promoted.
尚、 クェン酸溶液を尿素水溶液に添加することによる副 次的な効果と して、 管 2 8、 3 1、 3 1 a、 3 1 b、 3 1 c等に流れる混合液剤が冬期等に凍結することを防止でき 別途ヒータや保温構造を設ける必要がなく なることにより 当該窒素酸化物除去装置の構造が単純化されることが挙げ られる。 また、 クェン酸が尿素水溶液の溶媒と しての水を 軟水化することによりイ ンジヱク夕の劣化を防止すること ができることが挙げられる。  As a side effect of adding the citric acid solution to the aqueous urea solution, the mixed liquid flowing through tubes 28, 31, 31, 31a, 31b, 31c, etc. is frozen in winter etc. It is possible to simplify the structure of the nitrogen oxide removing apparatus by eliminating the necessity of separately providing a heater and a heat retaining structure. Also, it is mentioned that deterioration of the ink can be prevented by softening water as a solvent of the urea aqueous solution with citric acid.
(以下余白)
Figure imgf000022_0001
(Hereinafter the margin)
Figure imgf000022_0001
一 0 〜 One 0 to
IDd £9981/16 O 第 7図は本発明が適用された第 2の実施例を示す模式的 構成図である。 本実施例は当該燃焼排気中の窒素酸化物除 去方法を公知の熱電供給装置 (コ一ジェネ レー シ ョ ン) に 適用したものである。 この装置構成に於ては燃焼機関と し てガスター ビン 9 1 が用いられている。 このガスター ビン 9 1 の出力軸 9 2は減速ギヤ 9 3を介して発電機 9 4 に接 続されている。 一方、 ガスター ビン 9 1 の排気通路 9 5 は、 追焚装置 9 6を介して排気ボイラ 9 7に接続されている。 尚、 排気ボイラ 9 7を通過した排気は管 9 8を介して煙突 9 9から排出されるようになっている。 また、 排気ボイラ 9 7にはタ ンク 1 0 1からポンプ 1 0 2及び管 1 0 3を介 して水が供給され、 この水が熱交換されるこ とによ り蒸気 となり、 管 1 0 4を介して各種機関に利用されるようにな 0 IDd £ 9981/16 O FIG. 7 is a schematic configuration diagram showing a second embodiment to which the present invention is applied. In the present embodiment, the method for removing nitrogen oxides from the combustion exhaust gas is applied to a known thermoelectric supply device (cogeneration). In this device configuration, a gas turbine 91 is used as a combustion engine. An output shaft 92 of the gas turbine 91 is connected to a generator 94 via a reduction gear 93. On the other hand, an exhaust passage 95 of the gas turbine 91 is connected to an exhaust boiler 97 via a reheating device 96. The exhaust gas passing through the exhaust boiler 97 is discharged from a chimney 99 via a pipe 98. In addition, water is supplied to the exhaust boiler 97 from the tank 101 via the pump 102 and the pipe 103, and the water is heat-exchanged to form steam, and the pipe 10 Being used by various organizations via 4 0
こ こで、 本発明が適用された窒素酸化物除去装置 1 0 5 は追焚装置 9 6と排気ボイラ 9 7 との間の管 9 5の部分に 設けられており、 該管の内部に第 1の実施例と同様なイ ン ジヱクタが出没するようになっている。 この窒素酸化物除 去装置、 除去方法及びその制御方法は第 1の実施例と同様 である。  Here, the nitrogen oxide removing device 105 to which the present invention is applied is provided in a portion of the pipe 95 between the reheating device 96 and the exhaust boiler 97, and the nitrogen oxide removing device 105 is provided inside the pipe. An injector similar to that of the first embodiment appears and disappears. The nitrogen oxide removing device, the removing method, and the control method are the same as in the first embodiment.
本実施例では、 燃焼機関からの排気温度が比較的低く て も追焚装置 9 6により例えば 8 5 0て以上に排気が加熱さ れることから本発明が適用された窒素酸化物除去装置 1 0 5を用いて好適に窒素酸化物を除去することが可能となつ ている。 尚、 実際には燃焼機関として、 ディ ーゼル機関、 ガソ リ ン機関等、 他の機関を用いても同様の効果が得られ ることは云うまでもない。 In this embodiment, even if the temperature of the exhaust gas from the combustion engine is relatively low, the exhaust gas is heated to, for example, 850 or more by the reheating device 96, and thus the nitrogen oxide removing device 10 to which the present invention is applied is used. 5 makes it possible to remove nitrogen oxides ing. Needless to say, the same effect can be obtained by using other engines such as a diesel engine and a gasoline engine as the combustion engine.
産業上の利用可能性 Industrial applicability
以上のように、 本発明に係る燃焼排気中の窒素酸化物除 去方法は、 重油焚きボイラその他各種ボイラ、 熱伝供給装 置ディ ーゼル機関、 及びガスター ビンの排気処理装置と し て有用である。  INDUSTRIAL APPLICABILITY As described above, the method for removing nitrogen oxides from combustion exhaust gas according to the present invention is useful as an exhaust treatment device for a heavy oil fired boiler, other various boilers, a heat transfer supply diesel engine, and a gas turbine. .

Claims

請求の範囲 The scope of the claims
( 1 ) 燃焼装置の排気中に生じる窒素酸化物 (N O x ) を 除去するべく 、 前記燃焼装置の燃焼室若しく は排気通路に 尿素水溶液をィ ンジェクタをもつて噴霧する燃焼排気中の 窒素酸化物除去方法であって、 (1) In order to remove nitrogen oxides (NO x ) generated in the exhaust gas of the combustion device, nitrogen oxides in the combustion exhaust gas are sprayed with an injector into a combustion chamber or an exhaust passage of the combustion device with an injector. An object removal method,
前記燃焼室若しく は前記排気通路に噴霧する尿素水溶液 の水素ィォン濃度を前記燃焼装置の燃焼状態に応じて調整 したことを特徵とする燃焼排気中の窒素酸化物除去方法。 A method for removing nitrogen oxides from combustion exhaust gas, characterized in that a hydrogen ion concentration of an aqueous urea solution sprayed into the combustion chamber or the exhaust passage is adjusted according to a combustion state of the combustion device.
( 2 ) 前記尿素水溶液の水素イオン濃度を調整するのに該 溶液にカルボキシル基を有するカルボン酸を添加すること を特徴とする請求の範囲第 1項に記載の燃焼排気中の窒素 酸化物除去方法。 (2) The method for removing nitrogen oxides from combustion exhaust gas according to claim 1, wherein a carboxylic acid having a carboxyl group is added to the urea aqueous solution to adjust the hydrogen ion concentration of the aqueous urea solution. .
( 3 ) 前記カルボン酸がクェン酸を有することを特徴とす る請求項 2に記載の燃焼排気中の窒素酸化物除去方法。 (3) The method for removing nitrogen oxides from combustion exhaust gas according to claim 2, wherein the carboxylic acid includes citrate.
( 4 ) 前記燃焼装置の燃焼室若しく は排気通路の排気上流 側から下流側にかけて異なる複数の位置に各々ィ ンジヱク 夕を設け、 前記各位置に於ける排気の状態に応じて水素ィ オン濃度が調整された尿素水溶液を前記各ィ ンジュクタか ら噴霧することを特徴とする請求の範囲第 1項に記載の燃 焼排気中の窒素酸化物除去方法。 (4) Indices are provided at a plurality of different positions from the upstream side to the downstream side of the exhaust of the combustion chamber or the exhaust passage of the combustion device, respectively, and the hydrogen ion concentration is determined according to the state of exhaust at each of the positions. 2. The method for removing nitrogen oxides from combustion exhaust gas according to claim 1, wherein the urea aqueous solution having the adjusted pressure is sprayed from each of the injectors.
( 5 ) 前記尿素水溶液の水素イオン濃度を調整するのに該 溶液にカルボキシル基を有する力ルボン酸を添加すること を特徴とする請求の範囲第 4項に記載の燃焼排気中の窒素 酸化物除去方法。 (6) 前記カルボン酸がクェン酸を有することを特徴とす る請求の範囲第 5項に記載の燃焼排気中の窒素酸化物除去 方法。 (5) Removal of nitrogen oxides in combustion exhaust gas according to claim 4, wherein a carboxylic acid having a carboxyl group is added to the urea aqueous solution to adjust a hydrogen ion concentration of the aqueous urea solution. Method. (6) The method for removing nitrogen oxides from combustion exhaust gas according to claim 5, wherein the carboxylic acid has citrate.
PCT/JP1990/000684 1990-05-28 1990-05-28 Method of removing nitrogen oxides from combustion exhaust gas WO1991018663A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1990/000684 WO1991018663A1 (en) 1990-05-28 1990-05-28 Method of removing nitrogen oxides from combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1990/000684 WO1991018663A1 (en) 1990-05-28 1990-05-28 Method of removing nitrogen oxides from combustion exhaust gas

Publications (1)

Publication Number Publication Date
WO1991018663A1 true WO1991018663A1 (en) 1991-12-12

Family

ID=13986538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000684 WO1991018663A1 (en) 1990-05-28 1990-05-28 Method of removing nitrogen oxides from combustion exhaust gas

Country Status (1)

Country Link
WO (1) WO1991018663A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208386A (en) * 1976-03-03 1980-06-17 Electric Power Research Institute, Inc. Urea reduction of NOx in combustion effluents
JPS63502086A (en) * 1985-10-04 1988-08-18 フユ−エル テク,インコ−ポレイテツド Reduction of nitrogen- and carbon-based pollutants using urea solutions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208386A (en) * 1976-03-03 1980-06-17 Electric Power Research Institute, Inc. Urea reduction of NOx in combustion effluents
JPS63502086A (en) * 1985-10-04 1988-08-18 フユ−エル テク,インコ−ポレイテツド Reduction of nitrogen- and carbon-based pollutants using urea solutions

Similar Documents

Publication Publication Date Title
US6834498B2 (en) Diesel aftertreatment systems
US5832722A (en) Method and apparatus for maintaining catalyst efficiency of a NOx trap
NL9201586A (en) METHOD FOR REDUCING NITROGEN OXIDES IN A COMBUSTION APPARATUS PERFORMING CONTINUOUS COMBUSTION AND AN APPARATUS THEREFOR
EP0478481A1 (en) Method for improving the combustion of a burner with air fan and device for carrying out the method
JP2005163794A (en) Control device of engine having trap for nitrogen oxides
CN101153565A (en) Multiple-kind fuel engine fuel injection control device
CN101413418B (en) Exhaust purification apparatus for engine
CN102213131A (en) Exhaust gas purification system abnormality diagnosing device and abnormality diagnosing method, and exhaust gas purification system
CN105074334B (en) Marine boiler and the operation method of marine boiler
CN101657618A (en) The exhaust emission purification control device of internal-combustion engine
US5336081A (en) Device and method for removing nitrogen oxides
CN101725422A (en) Fuel injection control device and method for multi-fuel engine
CN105275550A (en) Reducing agent supplying device
WO1991018663A1 (en) Method of removing nitrogen oxides from combustion exhaust gas
CN102472137A (en) Method for controlling injection amount of fuel of burner and aftertreating device of exhaust gas
US20040098976A1 (en) Diesel aftertreatment systems
JP2711348B2 (en) Nitrogen oxide removing device for combustion device and control method thereof
CN101233305B (en) Exhaust purification system for internal combustion engine
EP1512864B1 (en) Fuel reforming apparatus and method
JP3118524B2 (en) Nitrogen oxide removal apparatus and control method thereof
KR200235760Y1 (en) Catalyst compound injection device to remove soot from diesel engine
JPS61164018A (en) Exhaust gas purifying device of engine
JP2002317622A (en) Black smoke removing system of internal combustion engine provided with two-fluid injection valve
JP2000352306A (en) Catalytic exhaust emission control system for diesel engine
KR102660652B1 (en) Apparatus and method for injecting vaporized urea solution using waste heat of incinerator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE