WO1992002858A1 - Verfahren zur herstellung von mikrostrukturen mit beispielsweise unterschiedlicher strukturhöhe - Google Patents

Verfahren zur herstellung von mikrostrukturen mit beispielsweise unterschiedlicher strukturhöhe Download PDF

Info

Publication number
WO1992002858A1
WO1992002858A1 PCT/DE1991/000602 DE9100602W WO9202858A1 WO 1992002858 A1 WO1992002858 A1 WO 1992002858A1 DE 9100602 W DE9100602 W DE 9100602W WO 9202858 A1 WO9202858 A1 WO 9202858A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
microstructures
resist material
plastic
resist
Prior art date
Application number
PCT/DE1991/000602
Other languages
English (en)
French (fr)
Inventor
Bernd Kowanz
Peter Bley
Walter Bacher
Michael Harmening
Jürgen Mohr
Original Assignee
Kernforschungszentrum Karlsruhe Gmbh
Bürkert Gmbh & Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe Gmbh, Bürkert Gmbh & Co. filed Critical Kernforschungszentrum Karlsruhe Gmbh
Priority to EP91912995A priority Critical patent/EP0542768B1/de
Priority to DE59108773T priority patent/DE59108773D1/de
Publication of WO1992002858A1 publication Critical patent/WO1992002858A1/de

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2037Exposure with X-ray radiation or corpuscular radiation, through a mask with a pattern opaque to that radiation
    • G03F7/2039X-ray radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/167X-ray
    • Y10S430/168X-ray exposure process

Definitions

  • the invention relates to a method for producing microstructures with different structural heights according to the preamble of the first claim.
  • Such a method is known from DE-PS 36 23 637.
  • a layer of a positive resist material is partially irradiated with X-ray light, an X-ray mask being used which, in addition to a structured absorber layer which largely completely absorbs synchrotron radiation, carries at least one further structured absorber layer which Synchrotron radiation is preferably only absorbed in part of the spectrum.
  • a polymer with a sharp lower limit dose is used as the positive resist material.
  • the resist In the areas that are not shadowed by the structured absorber layer, the resist receives a dose during irradiation along its entire thickness that is higher than the lower limit dose of the resist material. In the areas that are shadowed by the structured absorber layer, the resist receives a dose below the limit dose of the resist material along its entire thickness upon irradiation. In the areas shaded by the structured, partially absorbent absorber layer, a dose is deposited during the irradiation only in the upper part of the resist, which is greater than the lower limit dose of the resist material t ; the lower part receives a lower dose.
  • the resist Since the resist is only soluble at those locations which are hit by a dose above the lower limit dose, microstructures with different structural heights are obtained. This method requires a resist that has a precisely defined limit dose. On the other hand, the absorption properties of the X-ray mask must be carefully adjusted to the resist material.
  • DE-PS 34 40 110 describes another method of the type mentioned at the outset for the special case of columnar structures with a thin, longer and a thicker, short section.
  • a resist plate of approximately 0.5 mm thick is partially irradiated through an X-ray mask with high-energy X-ray radiation from a synchrotron in such a way that cylindrical regions with a diameter of approximately 30 ⁇ m are formed at a predetermined grid spacing r, their solubility is greatly increased compared to the unirradiated areas of the resist plate. Then a further, partial irradiation of the resist plate takes place from one side in the same grid r, the penetration depth of the radiation, however, being less than the thickness of the resist plate and the diameter of the irradiated areas being approximately 70 ⁇ m, so that a thicker and shorter cylindrical irradiated area is created.
  • the areas irradiated and made soluble in this way are removed with a liquid developer, for example described in DE-OS 30 39 110. This creates a shape with columnar structures that have a thinner and a thicker section.
  • this method can be applied to the production of microstructures with other lateral contours and also with more than two different structure heights.
  • the invention is based on the object of proposing a method for producing stepped microstructures of the type mentioned at the outset, in which the disadvantages of the known methods are avoided.
  • the method is intended to enable tolerances of the step height in the micrometer range.
  • a high solvent resistance and good mechanical properties of the microstructures are to be achieved.
  • the object is achieved by the measure described in the characterizing part of the first claim.
  • FIGS. 1 to 4 show three different method variants with which the layer of a resist material can be provided with microstructures.
  • FIGS. 5 to 7 show the production of microstructures with different structural heights in some areas.
  • FIGS. 8 to 10 illustrate the possibilities for further processing the microstructures produced by the method according to the invention.
  • the layer of a resist material can be provided with microstructures according to three different process variants.
  • the first variant is illustrated in Figures' 1, 2a, 3a and 4a illustrates darge.
  • the second variant is shown in FIGS. 1, 2b, 3b and 4b.
  • This variant for the production of microstructures on the surface of a resist layer consists in that a further layer 5 with a predetermined thickness of a few micrometers to several hundred micrometers is applied over the entire surface of the resist layer 2.
  • This layer is then structured in the course of an molding process by an embossing process (FIG. 3b) with the aid of an molding tool 6. riert.
  • the volume and thus the thickness of the embossable layer 5 must be adapted to the volume of the nests 6A.
  • the microstructures are removed from the mold by a separating movement of the molding tool 6 and the base plate 1. In this way, a resist layer is obtained, on which microstructures made of plastic with a defined structure height are arranged (FIG. 4b).
  • the second variant is preferably chosen when the layer 5 to be embossed has no resist properties or the resist 2 cannot be structured by embossing.
  • the third variant is shown in FIGS. 1, 2c, 3c and 4c.
  • layer 2 can be structured by embossing and has sufficient resist properties
  • layer 5 according to variant 2 can be dispensed with.
  • the layer: 2 is chosen to be correspondingly thicker and embossed directly with the aid of the Abfcr tool 6 with form nests 6A.
  • a suitable base plate 1 is preferably used.
  • microstructures 2A, 5A, 7A are arranged on a continuous resist layer.
  • This resist layer is preferably connected to a base plate 1.
  • the sample structured by embossing which has the resist material 2 with the microstructures 2A on a base plate 1, is almost irradiated through a mask with perpendicularly incident synchrotron radiation.
  • the mask contains areas S through which the synchrotron radiation is almost completely absorbed.
  • the mask with the radiation-opaque areas 8 is now aligned above the structures 2A in accordance with the desired step shapes.
  • the structures 2A do not consist of resist material, e.g. B. if they were produced according to variant 1, the structures 2A can be shaded by the areas 8.
  • the structures 2A consist of resist material, e.g. B. by manufacturing according to variant 3, the shape of the structures 2A can also be changed by suitable arrangement of the mask regions 8. In this way, the structures produced with an existing embossing tool 6 can also be changed subsequently, which means that a structure that is independent of the adjustment can achieve uniform shape over the entire height of the structure.
  • the parts 9 of the resist material 2 or 2A, which are not shadowed by the mask areas 8, are now irradiated by X-ray or synchrotron radiation (FIG. 6) and thereby chemically changed.
  • These areas 9 can be removed in a suitable solvent.
  • stepped microstructures 10 in plastic the step height of which is precisely defined by the thickness of the layer suitable for resistance (FIG. 7).
  • the height of the structures on the lithographically produced base is predetermined by the depth of the mold cavities in the molding tool.
  • stepped impression tools can also be produced (FIG. 10), with which the steps described can be carried out again.
  • FIG. 10 By overplating the stepped resist structures (FIG. 8), stepped impression tools can also be produced (FIG. 10), with which the steps described can be carried out again.
  • not only two-stage structures are obtained, but n-stage structures after the method according to the invention has been carried out n times.
  • the method according to the invention can be used to produce multiply stepped microstructures with structural heights of several hundred micrometers with lateral dimensions in the micrometer range and step heights from a few micrometers to several hundred micrometers.
  • An essential advantage of the method according to the invention is that the tolerances of the step height are in the micrometer range, and are therefore significantly smaller than those of the known methods.
  • the resist layer is mechanically reinforced by the base plate 1 (FIGS. 1 to 9), so that the various method steps according to the invention can be carried out with greater precision.
  • the base plate is preferably firmly connected to the resist layer.
  • the base plate can also become part of the microstructured body to be produced.
  • the base plate When choosing the base plate, the intended use of the stepped microstructures will be taken into account.
  • a metal ceramic or a semiconductor material can also be used.
  • the base plate can also consist of a plastic.
  • valve plates for the production of microvalves for the production of microvalves, capacitive acceleration sensors, those which are optimized with regard to the space required are also gearwheels or toothed racks with two different gear rims lying one above the other for the production of microgearings.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Mikrostrukturen mit bereichsweise unterschiedlicher Strukturhöhe, bei dem a) eine Schicht eines gegenüber Röntgenstrahlung empfindlichen Positiv-Resistmaterials unter Verwendung einer Maske mit Röntgenstrahlung partiell bestrahlt wird, b) die bestrahlten Bereiche mit Hilfe eines Entwicklers entfernt werden. Ihr liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von gestuften Mikrostrukturen vorzuschlagen, das Toleranzen der Stufenhöhe im Mikrometer-Bereich ermöglicht. Darüber hinaus soll eine hohe Lösungsmittelbeständigkeit und gute mechanische Eigenschaften der Mikrostrukturen erzielt werden. Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß c) die Schicht des Resistmaterials vor Durchführung der Schritte a) und b) auf ihrer der Strahlung zugewandten Seite mit Mikrostrukturen versehen wird.

Description

Verfahren zur Herstellung von MikroStrukturen mit beispiels¬ weise unterschiedlicher Strukturhöhe.
Die Erfindung betrifft ein Verfahren zur Herstellung von Mi- krostrukturen mit bereichsweise unterschiedlicher Strukturhöhe gemäß dem Oberbegriff des ersten Patentanspruchs.
Ein solches Verfahren ist aus der DE-PS 36 23 637 bekannt. Bei diesem Verfahren wird eine Schicht eines Positiv-Resistmateri- als mit Röntgenlicht partiell bestrahlt, wobei eine Röntgen- maske verwendet wird, die zusätzlich zu einer strukturierten Absorberschicht, die Synchrotronstrahlung weitgehend vollstän¬ dig absorbiert, mindestens eine weitere strukturierte Absor¬ berschicht trägt, die Synchrotronstrahlung bevorzugt nur in einem Teil des Spektrums absorbiert.
Als Positiv-Resistmaterial wird ein Polymer mit scharfer un¬ terer Grenzdosis verwendet.
In den Bereichen, die nicht durch die strukturierte Absorber¬ schicht abgeschattet werden, erhält der Resist bei der Be¬ strahlung entlang seiner gesamten Dicke eine Dosis, die höher ist als die untere Grenzdosis des Reεistmaterials. In den Be¬ reichen, die durch die strukturierte Absorberschicht abge¬ schattet werden, erhält der Resist bei der Bestrahlung entlang seiner ganzen Dicke eine Dosis unterhalb der Grenzdosis des Resist aterials. In den Bereichen, die durch die struktu¬ rierte, teilweise absorbierende Absorberschicht abgeschattet werden, wird bei der Bestrahlung nur im oberen Teil des Re- sists eine Dosis abgelagert, die größer als die untere Grenz¬ dosis des Resistmaterials t ist; der untere Teil erhält eine ge¬ ringere Dosis.
Da der Resist nur an den Stellen löslich wird, die von einer Dosis oberhalb der unteren Grenzdosis getroffen sind, werden MikroStrukturen mit bereichsweise unterschiedlicher Struktur¬ höhe erhalten. Dieses Verfahren erfordert einen Resist, der eine genau def ¬ nierte Grenzdosis aufweist. Zum anderen müssen die Abεorberei- genschaften der Röntgenmaske sorgfältig auf das Resistmaterial eingestellt werden.
Die DE-PS 34 40 110 beschreibt ein anderes Verfahren der ein¬ gangs genannten Art für den speziellen Fall säulenförmiger Strukturen mit einem dünnen, längeren und einem dickeren, kur¬ zen Abschnitt.
Dabei wird eine Resistplatte von ca. 0,5 mm Dicke über eine Röntgenmaske mit energiereicher Röntgenstrahlung eines Syn¬ chrotrons partiell durchstrahlt in der Weise, daß zylindrische Bereiche mit einem Durchmesser von ca. 30 μ in einem vorgege¬ ben Rasterabstand r entstehen, deren Löεlichkeit gegenüber den unbestrahlten Bereichen der Resistplatte stark erhöht ist. So¬ dann erfolgt eine weitere, partielle Bestrahlung der Resist¬ platte von einer Seite her im selben Raster r, wobei die Ein¬ dringtiefe der Strahlung jedoch geringer ist als die Reεist- plattenstärke und der Durchmesser der bestrahlten Bereiche ca. 70 μm beträgt, so daß ein dickerer und kürzerer zylindrischer bestrahlter Bereich entsteht. Die derart bestrahlten und lös¬ lich gemachten Bereiche werden mit einem beispielsweise in der De-OS 30 39 110 beschriebenen flüssigen Entwickler entfernt. Dadurch entsteht eine Form mit säulenförmigen Strukturen, die einen dünneren und einen dickeren Abschnitt aufweisen.
Dieses Verfahren läßt sich prinzipiell auf die Herstellung von MikroStrukturen mit anderen lateralen Konturen und auch mit mehr als zwei unterschiedlichen Strukturhöhen übertragen.
Ein grundsätzliches Problem bei den beiden genannten Verfahren besteht darin, daß bei den derzeit bekannten Resistsystemen bei Dosisablagerungen unterhalb der Grenzdosis zwar beim Ent¬ wickeln kein Abtrag mehr erfolgt, die mechanischen Eigenschaf- ten und die Losungsmittelbestandigkeit dieser Bereiche jedoch deutlich schlechter sind. Die Höhe der Strukturen läßt sich nicht mit ausreichender Genauigkeit vorgeben, weil die Schwächung der Strahlung und damit die abgelagerte Dosis mit zunehmender Eindringtiefe nur schwer vorherbestimmbar ist.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von gestuften Mikrostrukturen der eingangs genann¬ ten Art vorzuschlagen, bei dem die Nachteile der bekannten Verfahren vermieden werden. Das Verfahren soll Toleranzen der Stufenhöhe im Mikrometer-Bereich ermöglichen. Darüber hinaus soll eine hohe Losungsmittelbestandigkeit und gute mechanische Eigenschaften der Mikrostrukturen erzielt werden.
Die Aufgabe wird erfindungsgemäß durch die im Kennzeichen des ersten Patentanspruchs beschriebene Maßnahme gelöst.
Die Unteransprüche geben vorteilhafte Ausführungsformen und Weiterbildungen des erfindungsgemäßen Verfahrens an.
Das erfindungsgemäße Verfahren wird beispielhaft anhand der Figuren 1 bis 10 beschrieben.
Die Figuren 1 bis 4 zeigen drei verschiedene Verfahrensvarian¬ ten, mit denen die Schicht eines Resistmaterials mit Mi¬ krostrukturen versehen werden kann.
Die Figuren 5 bis 7 zeigen die Herstellung von Mikrostrukturen mit bereichsweise unterschiedlicher Strukturhöhe.
Die Figur 8 bis 10 illustrieren die Möglichkeiten der Weiter¬ verarbeitung der nach dem erfindungsgemäßen Verfahren herge¬ stellten Mikrostrukturen. Wie erwähnt, kann die Schicht eines Resistmaterials nach drei verschiedenen Verfahrensvarianten mit Mikrostrukturen versehe werden.
Die erste Variante ist in den Figuren' 1, 2a, 3a und 4a darge¬ stellt.
Auf die Resistschicht 2, die mit einer Grundplatte 1 verbunden ist, wird mit Hilfe eines Mikroabformwerkzeugs 3 eine Kunst- .stoffmikroStruktur im Reaktions- oder Spritzguß abgeformt. Im Abformprozeß werden hierzu die Formnester 3A des Abformwerk- zeugs mit Reaktionsharz- oder Formmasse befüllt. Der befüllte Formeinsatz wird anschließend entsprechend Fig. 3a auf die Re¬ sistschicht aufgepreßt. Im Verlauf der Prozeßführung,' d. h. während der Aushärtung oder.der Verfestigung des Kunststoffes, wird eine haftfeste Verbindung zwischen dem Kunststoff der Mi¬ krostrukturen und der Resistschicht aufgebaut. Durch eine Trennbewegung von Abformwerkzeug und Grundplatte werden die Mikrostrukturen entformt. Man erhält so eine Resistschicht, auf der Mikrostrukturen aus Kunststoff mit definierter Struk¬ turhöhe angeordnet sind (Fig. 4a) . Da sichergestellt werden kann, daß die Abformmasse 7 der Mikrostrukturen nicht in die Verbindungsebene zwischen Resist und Kunststoff eindringt, muß der strukturierte Kunststoff 7a nicht notwendigerweise Resisteigenschaften besitzen.
Die zweite Variante ist in den Figuren 1, 2b, 3b und 4b darge¬ stellt.
Dieεe Variante zur Herstellung von Mikrostrukturen auf der Oberfläche einer Resistschicht besteht darin, daß auf die Re¬ sistschicht 2 eine weitere Schicht 5 mit einer fest vorgegebe¬ nen Dicke von einigen Mikrometern bis mehrere hundert Mikrome¬ ter ganzflächig aufgebracht wird. Diese Schicht wird an¬ schließend im Verlauf eines Abfor prozesses durch ein Präge¬ verfahren (Fig. 3b) mit Hilfe eines Abformwerkzeugε 6 struktu- riert. Das Volumen und damit die Dicke der prägbaren Schicht 5 muß hierbei an das Volumen der For nester 6A angepaßt sein. Nach dem Verfestigen des Kunεtstoffs werden die Mikrostruktu¬ ren durch eine Trennbewegung von Abformwerkzeug 6 und Grund¬ platte 1 entformt. Man erhält auf diese Weise eine Resist¬ schicht, auf der Mikrostrukturen aus Kunststoff mit definier¬ ter Strukturhöhe angeordnet sind (Fig. 4b) .
Die zweite Variante wird vorzugsweise dann gewählt, wenn die zu prägende Schicht 5 keine Resisteigenschaften aufweist oder der Resiεt 2 durch Prägen nicht strukturiert werden kann.
Die dritte Variante ist in den Figuren 1, 2c, 3c und 4c darge¬ stellt.
Kann die Schicht 2 durch Prägen strukturiert werden und ver¬ fügt sie über ausreichende Resisteigenschaften, so kann auf die Schicht 5 nach Variante 2 verzichtet werden.
In diesem Fall wird die Schicht: 2 entsprechend dicker gewählt und direkt mit Hilfe des Abfcr werkzeugs 6 mit Formnestern 6A geprägt.
Vorzugsweise wird eine geeignete Grundplatte 1 verwendet.
Die Herstellung der Mikrostrukturen auf dem Resist durch Prä¬ gen (Variante 2 und 3) hat gegenüber dem Reaktions- oder Spritzgußverfahren nach Variante 1 den Vorteil, daß dabei gleichzeitig je nach Notwendigkeit zusätzlich eine elektrisch leitfähige Deckschicht auf den Stirnflächen der Mikrostruktu¬ ren angebracht werden kann. Die Einzelheiten dieses besonders vorteilhaften Prageverfahrens können der Patentanmeldung P 40 10 669.1 entnommen werden. Eine solche leitfähige Deckschicht verbessert insbesondere das Abformergebnis bei einer nachfolgenden galvanischen Metallab- scheidung.
Nach Entformen des Abform- oder Prägewerkzeugs liegt nach al¬ len drei Verfahrensvarianten eine Probe vor, bei der Mi¬ krostrukturen 2A, 5A, 7A auf einer durchgehenden Resistschicht angeordnet sind. Diese Resistschicht ist dabei vorzugsweise mit einer Grundplatte 1 verbunden.
Das Verfahren zur Herstellung der Mikrostrukturen mit be- reichsweise unterschiedlicher Strukturhöhe wird anhand der nach Variante 3 erhaltenen, geprägten Resistschicht entspre¬ chend Fig. 4c erläutert.
Gemäß Fig. 5 wird die durch Prägen strukturierte Probe, die auf einer Grundplatte 1 das Resistmaterial 2 mit den Mi¬ krostrukturen 2A aufweist, durch eine Maske mit senkrecht ein¬ fallender Synchrotronstrahlung nahezu bestrahlt. Die Maske enthält Bereiche S , durch die die Synchrotronstrahlung nahezu völlig absorbiert wird.
Die Maske mit den strahlenundurchläsεigen Bereichen 8 wird nunmehr oberhalb der Strukturen 2A entsprechend den gewünsch¬ ten Stufenformen ausgerichtet.
Bestehen die Strukturen 2A nicht aus Resistmaterial, z. B. wenn sie nach Variante 1 hergestellt wurden, können die Struk¬ turen 2A durch die Bereiche 8 abgeschattet werden.
Beεtehen die Strukturen 2A jedoch aus Resiεtmaterial z. B. durch Herstellung nach Variante 3 , kann durch geeignete Anord¬ nung der Maskenbereiche 8 auch die Form der Strukturen 2A ver¬ ändert werden. Auf diese Weise können auch nachträglich noch die mit einem vorhandenen Prägewerkzeug 6 erzeugten Strukturen verändert werden, womit sich eine von der Justierung unabhän- gige gleichmäßige Form über die gesamte Strukturhöhe erzielen läßt.
Die Teile 9 des Resistmaterials 2 bzw. 2A, die nicht durch die Maskenbereiche 8 abgeschattet werden, werden nun von Röntgen- oder Synchrotronstrahlung durchstrahlt (Fig. 6) und dabei strahlenchemisch verändert.
Diese Bereiche 9 können in einem geeigneten Lösungsmittel ent¬ fernt werden. Nach diesem Prozeßschritt liegen somit gestufte Mikrostrukturen 10 in Kunststoff vor, deren Stufenhöhe genau durch die Dicke der resisttauglichen Schicht definiert iεt (Fig. 7) . Die Höhe der Strukturen auf dem lithographiεch er¬ zeugten Sockel wird durch die Tiefe der Formnester im Abfor - werkzeug vorgegeben.
Wird die so erzeugte KunststoffStruktur z. B. galvanisch mit Metall 11 gefüllt (Fig. 8) und die Resiststruktur nach dem Galvanikschritt weggelöst, ergibt sich eine stufenförmige Me¬ tallstruktur (Fig. 9) . Verbleiben die erzeugten Metallstruktu- ren auf der Grundplatte, so lassen sich nach dem erfindungsge- mäßen Verfahren überhängende oder aber auch Strukturen in Brückenform herstellen.
Durch Übergalvanisieren der gestuften Resiststrukturen (Fig. 8) können darüber hinaus gestufte Abformwerkzeuge gefertigt werden (Fig. 10) , mit denen die beschriebenen Schritte erneut durchgeführt werden können. Man erhält dann nicht nur zweistu¬ fige, sondern nach n-maligem Durchführen des erfindungsgemäßen Verfahrens n-stufige Strukturen.
Die technischen Einzelheiten der Verfahrensschritte Röntgen¬ lithographie und Abformung können den beiden KfK-Berichten Nr. 3995 "Herstellung von Mikrostrukturen und großem Aspektver¬ hältnis und großer Strukturhöhe mit Synchrotronstrahlung, Gal¬ vanoformung und Kunststoffabformung (LIGA-Verfahren) von E.' W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Münchmeyer, Kern¬ forschungszentrum Karlsruhe, November 1985 sowie Nr. 4267 "Un¬ tersuchungen zur Herstellung von galvanisierbaren Mikrostruk¬ turen mit extremer Strukturhöhe durch Abformen mit Kunststoff im Reaktionsgießverfahren", KernforschungsZentrum Karlsruhe, Mai 1987, entnommen werden.
Mit dem erfindungsgemäßen Verfahren lassen sich mehrfach ge¬ stufte Mikrostrukturen mit Strukturhöhen von mehreren hundert Mikrometern bei lateralen Abmessungen im Mikrometerbereich und Stufenhöhen von wenigen Mikrometern bis mehrere hundert Mikro¬ meter erzeugen. Ein wesentlicher Vorzug des erfindungsgemäßen Verfahrenε ist, daß die Toleranzen der Stufenhöhe im Mikrometerbereich liegen, somit wesentlich kleiner sind als die der bekannten Verfahren.
Durch die Grundplatte 1 (Fig. 1 bis 9) wird die Resistschicht im Bedarfsfall mechanisch verstärkt, so daß die verschiedenen erfindungsgemäßen Verfahrensschritte mit größerer Präzision durchgeführt werden können. Nach der Fertigstellung der mikrostrukturierten Körper wird sie in diesem Fall abgetrennt. Vorzugsweise ist die Grundplatte mit der Resistschicht fest verbunden. Die Grundplatte kann jedoch auch Teil der herzu¬ stellenden mikrostrukturierten Körper werden.
Bei der Wahl der Grundplatte wird man den vorgesehenen Verwen¬ dungszweck der gestuften Mikrostrukturen berücksichtigen. Außer einem Metall kommen auch die Materialien Keramik oder ein Halbleitermaterial in Frage. Die Grundplatte kann jedoch auch aus einem Kunststoff bestehen.
Beispiele für bevorzugte Anwendungsgebiete der erfindungsgemäß hergestellten Mikrostrukturen sind Ventilplatten zur Herstel¬ lung von Mikroventilen, kapazitive Beschleunigungssensoren, die bezüglich des Platzbedarfs optimiert εind εowie Zahnräder oder Zahnstangen mit zwei unterschiedlichen, übereinander lie¬ genden Zahnkränzen für die Herstellung von Mikrogetrieben.

Claims

Patentansprüche:
1. Verfahren zur Herstellung von Mikrostrukturen mit bereichs¬ weise unterschiedlicher Strukturhöhe, bei dem a) eine Schicht eines gegenüber Röntgenstrahlung empfindli¬ chen Positiv-Resiεtmaterialε unter Verwendung einer Maεke mit Röntgenstrahlung partiell bestrahlt wird, b) die bestrahlten Bereiche mit Hilfe eines Entwicklers entfernt werden, dadurch gekennzeichnet, daß c) die Schicht des Resistmaterials vor Durchführung der Schritte a) und b) auf ihrer der Strahlung zugewandten Seite mit Mikrostrukturen versehen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Mikrostrukturen auf der Schicht des Resistmaterials erzeugt werden durch a) Auffüllen der Räume zwischen den Mikrostrukturen eines mikrostrukturierten Abformwerkzeugs mit einem fließfähi¬ gen, härtbaren Kunststoff, b) Aufpressen des auf diese Weise befüllten Abformwerkzeugs auf die Schicht des Resistmaterialε, εo daß der Kunεt- εtoff zwiεchen den Mikrostrukturen des Abformwerkzeugs mit der Schicht des Resistmaterials in Kontakt kommt, c) Aushärten deε Kunεtstoffs im Abformwerkzeug unter Her¬ stellung einer festen Verbindung zwischen dem Kunststoff und der Schicht des'Resistmaterials, d) Trennung des Abformwerkzeugs vom mikrostrukturierten Kunststoff und der Schicht des Resistmaterials.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Mikrostrukturen auf der Schicht des Resistmaterials erzeugt werden durch a) Herstellen einer festen Verbindung von einer Schicht eines prägbaren Kunstεtoffε mit der Schicht des Resist¬ materials b) Prägen der Schicht des Kunststoffs mit Hilfe eines Mi¬ krostrukturen aufweisenden Abformwerkzeugs in der Weise, daß mindestens ein Teil der Mikrostruktur-Stirnflächen des Abformwerkzeugs die Schicht des Resistmaterials freilegt, c) Trennung des Abformwerkzeugs von der mikrostrukturierten Schicht des Kunstεtoffε und der Schicht des Resistmate¬ rials.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Mikrostrukturen auf der Schicht des Resistmaterials erzeugt werden durch a) Herstellen einer dicken, prägbaren Schicht des Resist¬ materials, deren Dicke mindestens der Summe aus Höhe der Schicht des Resistmaterials und maximalen Höhe der hier¬ auf herzustellenden Mikrostrukturen entspricht, b) Prägen der dicken Schicht des Resistmaterials mit Hilfe eines Mikrostrukturen aufweisenden Abformwerkzeugs in der Weise, daß mindeεtenε ein Teil der Mikroεtruktur- Stirnflachen soweit in die dicke Schicht eindringen, daß über diesem Teil der Mikrostruktur-Stirnflächen die Schichtdicke des Resiεtmaterials erhalten wird, c) Trennung des Abformwerkzeugs von der mikrostrukturierten dicken Schicht des Resistmaterials.
5. 'Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekenn¬ zeichnet, daß die Schicht des Resistmaterials auf der nicht mit Mikrostrukturen zu versehenden oder versehenen Seite mit einer Grundplatte verbunden wird. 6.' Verfahren nach Anspruch 5, dadurch gekennzeichnet, ddie Grundplatte aus Metall oder Keramik oder Halbleitermaterial oder Kunstεtoff beεteht.
PCT/DE1991/000602 1990-07-31 1991-07-25 Verfahren zur herstellung von mikrostrukturen mit beispielsweise unterschiedlicher strukturhöhe WO1992002858A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP91912995A EP0542768B1 (de) 1990-07-31 1991-07-25 Verfahren zur herstellung von mikrostrukturen mit beispielsweise unterschiedlicher strukturhöhe
DE59108773T DE59108773D1 (de) 1990-07-31 1991-07-25 Verfahren zur herstellung von mikrostrukturen mit beispielsweise unterschiedlicher strukturhöhe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4024275A DE4024275A1 (de) 1990-07-31 1990-07-31 Verfahren zur herstellung von mikrostrukturen mit bereichsweise unterschiedlicher strukturhoehe
DEP4024275.7 1990-07-31

Publications (1)

Publication Number Publication Date
WO1992002858A1 true WO1992002858A1 (de) 1992-02-20

Family

ID=6411372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1991/000602 WO1992002858A1 (de) 1990-07-31 1991-07-25 Verfahren zur herstellung von mikrostrukturen mit beispielsweise unterschiedlicher strukturhöhe

Country Status (7)

Country Link
US (1) US5260175A (de)
EP (1) EP0542768B1 (de)
JP (1) JP3210010B2 (de)
AT (1) ATE155257T1 (de)
DE (2) DE4024275A1 (de)
DK (1) DK0542768T3 (de)
WO (1) WO1992002858A1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4200397C1 (de) * 1992-01-10 1993-03-04 Imm Institut Fuer Mikrotechnik Gmbh, 6500 Mainz, De
DE4200396C1 (de) * 1992-01-10 1993-02-04 Imm Institut Fuer Mikrotechnik Gmbh, 6500 Mainz, De
US5529681A (en) * 1993-03-30 1996-06-25 Microparts Gesellschaft Fur Mikrostrukturtechnik Mbh Stepped mould inserts, high-precision stepped microstructure bodies, and methods of producing the same
US6360424B1 (en) 1994-06-06 2002-03-26 Case Western Reserve University Method of making micromotors with utilitarian features
US5705318A (en) * 1994-06-06 1998-01-06 Case Western Reserve University Micromotors and methods of fabrication
US6029337A (en) * 1994-06-06 2000-02-29 Case Western Reserve University Methods of fabricating micromotors with utilitarian features
DE4434009A1 (de) * 1994-09-23 1996-03-28 Karlsruhe Forschzent Verfahren zur Herstellung gestufter Mikrostrukturen
US5788468A (en) * 1994-11-03 1998-08-04 Memstek Products, Llc Microfabricated fluidic devices
US5730924A (en) * 1994-12-28 1998-03-24 Sumitomo Heavy Industries, Ltd. Micromachining of polytetrafluoroethylene using radiation
GB9509487D0 (en) 1995-05-10 1995-07-05 Ici Plc Micro relief element & preparation thereof
US6115634A (en) * 1997-04-30 2000-09-05 Medtronic, Inc. Implantable medical device and method of manufacture
JP3360282B2 (ja) * 1997-06-19 2002-12-24 住友重機械工業株式会社 微細構造体の製造方法
US6379773B1 (en) * 1998-06-16 2002-04-30 Sumitomo Heavy Industries, Ltd. Micro structure and its manufacture method
US6048649A (en) * 1998-04-30 2000-04-11 International Business Machines Corporation Programmed defect mask with defects smaller than 0.1 μm
WO2000013916A1 (en) * 1998-09-08 2000-03-16 Commonwealth Scientific And Industrial Research Organisation Three-dimensional microstructure
US6174136B1 (en) 1998-10-13 2001-01-16 Liquid Metronics Incorporated Pump control and method of operating same
US6280147B1 (en) 1998-10-13 2001-08-28 Liquid Metronics Incorporated Apparatus for adjusting the stroke length of a pump element
CA2375197A1 (en) * 1999-06-08 2000-12-14 Biomicro Systems, Inc. Laser ablation of doped fluorocarbon materials and applications thereof
US6272275B1 (en) 1999-06-25 2001-08-07 Corning Incorporated Print-molding for process for planar waveguides
US6264432B1 (en) 1999-09-01 2001-07-24 Liquid Metronics Incorporated Method and apparatus for controlling a pump
US6858253B2 (en) 2001-05-31 2005-02-22 3M Innovative Properties Company Method of making dimensionally stable composite article
DE10134692A1 (de) * 2001-07-05 2003-01-16 Micro Resist Technology Gmbh Herstellung und Anwendung von optischen Formkörpern mit nanostrukturierter Oberfläche
DE10161493C5 (de) * 2001-12-14 2008-09-18 Micromotion Gmbh Getriebe nach dem Spannungswellen-Prinzip mit Hohlwellen
US6743368B2 (en) * 2002-01-31 2004-06-01 Hewlett-Packard Development Company, L.P. Nano-size imprinting stamp using spacer technique
EP1494965B1 (de) * 2002-04-15 2017-09-06 Schott AG Verfahren zur herstellung eines erzeugnisses mit einer strukturierten oberfläche
KR100476317B1 (ko) * 2002-10-24 2005-03-16 한국전자통신연구원 광결합 소자 및 그 제작 방법, 광결합 소자 제작을 위한마스터 및 그 제작 방법
US7470544B2 (en) * 2005-05-26 2008-12-30 Hewlett-Packard Development Company, L.P. Sensor array using sail

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349621A (en) * 1981-04-13 1982-09-14 General Electric Company Process for X-ray microlithography using thin film eutectic masks
WO1989001632A1 (en) * 1987-08-14 1989-02-23 Kernforschungszentrum Karlsruhe Gmbh Process for manufacturing microsensors with integrated signal processing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3039110A1 (de) * 1980-10-16 1982-05-13 Siemens AG, 1000 Berlin und 8000 München Verfahren fuer die spannungsfreie entwicklung von bestrahlten polymethylmetacrylatschichten
DE3133350A1 (de) * 1981-08-22 1983-03-10 Philips Patentverwaltung Gmbh, 2000 Hamburg "verfahren zur herstellung von maskierungsschichten auf einer zu strukturierenden flaeche eines festkoerpers"
GB2152223B (en) * 1983-11-28 1987-01-14 Fusion Semiconductor Systems Process for imaging resist materials
US4703559A (en) * 1984-11-02 1987-11-03 Kernforschungszentrum Karlsruhe Gmbh Method for producing connecting elements for electrically joining microelectronic components
US4845014A (en) * 1985-10-21 1989-07-04 Rca Corporation Method of forming a channel
DE3623637A1 (de) * 1986-07-12 1988-01-21 Kernforschungsz Karlsruhe Verfahren zur herstellung von mikrostrukturen unterschiedlicher strukturhoehe mittels roentgentiefenlithographie
JPS63185022A (ja) * 1987-01-27 1988-07-30 Fujitsu Ltd パタ−ン形成方法
DE4010669C1 (de) * 1990-04-03 1991-04-11 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349621A (en) * 1981-04-13 1982-09-14 General Electric Company Process for X-ray microlithography using thin film eutectic masks
WO1989001632A1 (en) * 1987-08-14 1989-02-23 Kernforschungszentrum Karlsruhe Gmbh Process for manufacturing microsensors with integrated signal processing

Also Published As

Publication number Publication date
US5260175A (en) 1993-11-09
EP0542768B1 (de) 1997-07-09
DE59108773D1 (de) 1997-08-14
EP0542768A1 (de) 1993-05-26
JPH06501343A (ja) 1994-02-10
ATE155257T1 (de) 1997-07-15
DK0542768T3 (da) 1997-08-11
DE4024275A1 (de) 1992-02-06
JP3210010B2 (ja) 2001-09-17
DE4024275C2 (de) 1992-06-11

Similar Documents

Publication Publication Date Title
EP0542768B1 (de) Verfahren zur herstellung von mikrostrukturen mit beispielsweise unterschiedlicher strukturhöhe
EP0547371B1 (de) Verfahren zum Herstellen gestufter Formeinsätze
DE10241424B4 (de) Streustrahlenraster oder Kollimator sowie Verfahren zur Herstellung
EP0478956B1 (de) Mikromechanisches Element
DE4232373A1 (de) Verfahren zum Auftragen strukturierter Schichten
EP1298678A2 (de) Verfahren zur Herstellung eines Streustrahlenrasters oder Kollimators
DE2933570B2 (de) Verfahren zum Herstellen von Trenndüsenelementen
DE3909449A1 (de) Verfahren zur herstellung von leuchtschirmen, verstaerkungs- oder speicherfolien fuer die roentgendiagnostik
EP0618502B1 (de) Verfahren zum Herstellen gestufter Formeinsätze, gestufte Formeinsätze und damit abgeformte gestufte Mikrostrukturkörper hoher Präzision
EP0978006B1 (de) Verfahren und form zur herstellung miniaturisierter formenkörper
DE19524099A1 (de) Verfahren zur Herstellung von Formeinsätzen
DE3623637A1 (de) Verfahren zur herstellung von mikrostrukturen unterschiedlicher strukturhoehe mittels roentgentiefenlithographie
DE4200397C1 (de)
DE3408848A1 (de) Verfahren zur herstellung von vielkanalplatten
DE3631804C2 (de)
DE3440109A1 (de) Verfahren zur herstellung verformbarer vielfach-verbindungen fuer den elektrischen anschluss mikroelektronischer bauelemente und nach diesem verfahren hergestellte vielfachverbindungen
DE4243860C2 (de) Mikrominiaturisierte, elektrostatische Pumpe und Verfahren zu deren Herstellung
EP0720756B1 (de) Verfahren zur herstellung von mikrostrukturkörpern
EP0104684A2 (de) Maske für die Mustererzeugung in Lackschichten mittels Röntgenstrahllithographie und Verfahren zu ihrer Herstellung
DE4200396C1 (de)
EP3720678B1 (de) Verfahren zum herstellen eines strahlleitrasters sowie nach dem verfahren hergestelltes strahlleitraster
DE102022210085A1 (de) Verfahren zur Herstellung eines Bauteils für ein medizinisches Bildgebungsgerät
DE19753948C2 (de) Verfahren zur Herstellung eines metallischen Mikrostrukturkörpers durch galvanische Abscheidung
DE10261558B4 (de) Verfahren und Vorrichtung zum Herstellen eines diffraktiven optischen Bauteils
DE102019208888A1 (de) Verfahren zur Herstellung eines Streustrahlkollimators, Streustrahlkollimator und Röntgengerät mit Streustrahlkollimator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991912995

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991912995

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991912995

Country of ref document: EP