WO1992009439A1 - Ink-receiving transparent recording elements - Google Patents

Ink-receiving transparent recording elements Download PDF

Info

Publication number
WO1992009439A1
WO1992009439A1 PCT/US1991/008744 US9108744W WO9209439A1 WO 1992009439 A1 WO1992009439 A1 WO 1992009439A1 US 9108744 W US9108744 W US 9108744W WO 9209439 A1 WO9209439 A1 WO 9209439A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
receptive layer
weight
percent
polyester
Prior art date
Application number
PCT/US1991/008744
Other languages
French (fr)
Inventor
William Andrew Light
Original Assignee
Eastman Kodak Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Company filed Critical Eastman Kodak Company
Priority to EP92901679A priority Critical patent/EP0513329B1/en
Priority to DE69108543T priority patent/DE69108543T2/en
Publication of WO1992009439A1 publication Critical patent/WO1992009439A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/529Macromolecular coatings characterised by the use of fluorine- or silicon-containing organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/914Transfer or decalcomania
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24893Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • This invention relates to transparent image-recording elements that contain ink-receptive layers that can be imaged by the application of liquid ink dots. More particularly, this invention relates to transparent image-recording elements that can be imaged by the application of liquid ink dots having ink-receptive layers of enhanced smoothness.
  • Transparent image-recording elements are primarily intended for viewing by transmitted light, for example, observing a projected image from an overhead projector.
  • the viewable image is obtained by applying liquid ink dots to an ink-receptive layer using equipment such as ink jet printers involving either monochrome or multicolor recording.
  • the layer should exhibit the ability to absorb high concentrations of ink so that the applied liquid ink does not run, i.e., there is no "ink run off”; a short ink-drying time, and a minimum of haze.
  • the ink-receptive layers of the prior art have been
  • U.S. Patent No. 4,741,969 issued May 3, 1988, describes a transparent image-recording element having an ink-receptive layer formed from a mixture of a photopolymerizable, double-bonded anionic synthetic resin and another polymer such as a homo- or copolymer of N-vinyl pyrrolidone. The mixture is cured to provide the ink-receptive layer.
  • viewable image is the size and nature of the ink dots that form it. In general, a larger dot size
  • a known method of increasing dot size involves applying liquid ink dots to a transparent image-receiving sheet, for example, HP PaintJet FilmT (commercially available from Hewlett Packard Company, Palo Alto, California) using an ink jet printer.
  • the sheet is dried for a short time, for example, 5 minutes, and inserted into a transparent plastic sleeve which protects the sheet and controls development of the dots.
  • the result is achieved in a simple and expedient manner by varying the
  • transparent image-recording elements which are adapted for use in printing processes where liquid ink dots are applied to an ink-receptive layer in which the ink dot size can be easily controlled.
  • a transparent image-recording element adapted for use in a printing process in which liquid ink dots are applied to an ink-receptive layer, such as an ink jet printing process, which not only possesses all of the benefits and advantages of the transparent image-recording elements disclosed and described in the aforementioned U.S. Patent No. 4,903,041, including the ability of the ink-receptive layer to control ink dot size and to provide high quality projection viewable images but, in addition, one in which the ink-receptive layer exhibits an enhanced or improved smoothness.
  • the present invention provides such a transparent image-recording element.
  • the invention also provides a printing process in which liquid ink dots are applied to the ink-receptive layer of the aforementioned element.
  • a transparent image-recording element that comprises a support and an ink-receptive layer in which the element is adapted for use in a printing process where liquid ink dots are applied to the inkreceptive layer wherein the ink-receptive layer is capable of controlling ink dot size and the surface of which exhibits improved or enhanced smoothness.
  • the ink-receptive layers in the novel transparent image-recording elements of this invention preferably comprise (i) from about 15 to 50 percent by weight of a vinyl pyrrolidone polymer, (ii) from about 50 to about 85 percent by weight of a polyester, namely, a poly(cyclohexylenedimethylene-co-xylylene terephthalate-co-malonate-co-sodioiminobis(sulfonylbenzoate)), (iii) from about 1 to about 4 percent by weight of a homopolymer or a copolymer of an alkylene oxide containing from 2 to 6 carbon atoms, (iv) from about 1 to about 4 percent by weight of a polyvinyl alcohol, (v) from about 0.2 to about 1.2 percent by weight of a fluorocarbon surfactant of the formula CF 3 (CF 2 ) m CH 2 CH 2 O(CH 2 CH 2 O) n R wherein m is an integer of 2 through 10,
  • particulate material in a weight ratio of about
  • a most preferred ink-receptive layer comprises a vinyl pyrrolidone polymer, a polyester, a homopolymer or copolymer of an alkylene oxide
  • a transparent image-recording element is made available which is adapted for use in a printing process where liquid ink dots are applied to an ink-receptive layer in which the ink-receptive layer not only is capable of controlling ink dot size but, in addition, possesses an ink-receiving surface of
  • the present invention is based upon the discovery that the addition to an ink-receptive layer that can be imaged by the application of liquid ink dots containing a highly hydrophilic, highly water- soluble polymer, such as polyvinyl pyrrolidone, and a polyester, specifically a poly(cyclohexylened- imethylene-co-xylylene terephthalate-co-malonate- co- sodioiminobis (sulfonylbenzoate)), used to control ink dot size, of another hydrophilic, but less water- soluble polymer, such as a polyvinyl alcohol, a homopolymer or a copolymer of an alkylene oxide containing from 2 to 6 carbon atoms in the alkylene hydrocarbon group, certain fluorocarbon surfactants and certain inert particles produces a transparent image- recording element adapted for use in a printing process where liquid ink dots are applied to an ink-receptive layer that exhibits not only an ability to easily control
  • the enhanced smoothness exhibited by the ink-receiving surfaces of the novel transparent image-recording elements of the present invention also is an indication that the ink-receptive layers of the invention possess improved slipperiness, improved anti-blocking
  • the ink-receptive layer in the novel transparent image-recording elements of this invention contains a vinyl pyrrolidone polymer.
  • a vinyl pyrrolidone polymer Such polymers and their use in ink-receptive layers of the type disclosed herein are well known to those skilled in the art and include homopolymers of vinyl pyrrolidone, as well as copolymers thereof with other polymerizable monomers.
  • Useful materials include polyvinyl
  • the polymers have viscosity average molecular weights (M v ) in the range of about 10,000 to 1,000,000, often about 300,000 to 850,000. Such polymers are typically soluble in aqueous media and can be conveniently coated from such media.
  • M v viscosity average molecular weights
  • the concentration of the vinyl pyrrolidone polymer in the ink-receptive layer is subject to some variation. It is used in sufficient concentration to absorb or mordant the printing ink in the layer.
  • a useful concentration is generally in the range of about 15 to about 50 percent by weight based on the total dry weight of the layer although concentrations somewhat in excess of about 50 weight percent and concentrations somewhat below about 15 weight percent may be used in the practice of the present invention.
  • polyesters in the elements of this invention are poly(cyclohexylenedimethylene- co- xylylene terephthalate-co-malonate-co-sodioimino- bis(sulfonylbenzoates)).
  • a specific polyester useful in the practice of this invention is poly(1,4-cyclohexanedimethylene-co-p-xylylene (40/60) terephthalate- co-malonate-co-3,3'-sodioiminobis (sulfonylbenzoate) (45/40/15).
  • the numbers immediately following the monomers refer to mole ratios of the respective diol and acid components.
  • Useful polyesters are known in the prior art and procedures for their preparation are described, for example, in U.S. Patent No. 3,546,180, issued December 8, 1970, the disclosure of which is hereby incorporated herein by reference. The
  • polyesters are linear condensation products formed from two diols, i.e., cyclohexanedimethanol and xylylene glycol and three diacids, i.e., terephthalic acid, malonic acid, and sodioiminobis (sulfonyl benzoic acid) and/or their ester-forming equivalents.
  • diols i.e., cyclohexanedimethanol and xylylene glycol
  • three diacids i.e., terephthalic acid, malonic acid, and sodioiminobis (sulfonyl benzoic acid) and/or their ester-forming equivalents.
  • polyesters are dispersible in water or aqueous media and can be readily coated from such media.
  • such polyesters have an inherent viscosity of at least 0.1, often about 0.1 to 0.7 measured in a 50/50 parts, by weight, solution of phenol/chlorobenzene at 25°C and at a concentration of about 0.25 g of polymer in 1 deciliter of solvent.
  • the polyesters are in the form of dispersed particles within a mixture of the vinyl pyrrolidone polymer, the polyvinyl alcohol, the polymerized alkylene oxide monomer(s) and the fluorocarbon surfactant components of the present invention.
  • the particles of polyester generally have a diameter of up to about 1 micrometer, often about 0.001 to 0.1 and typically 0.01 to 0.08 micrometer.
  • the size of the polyester particles in a layer is, of course, compatible with the transparency requirements for a given situation.
  • the concentration of the polyester in the ink-receptive layer also is subject to variation. A useful concentration is generally in the range of from about 50 to about 85 percent by weight based on the total dry weight of the layer. In general, concentrations of polyester
  • hydrophilic polyvinyl alcohol component of the ink-receptive layer compositions of the present invention must be soluble in water at elevated
  • Room temperature is the
  • composition of polyvinyl alcohol does appear to be broadly critical. If essentially fully hydrolyzed types are used, the polyvinyl alcohol should have a number average molecular weight below about 60,000 to obtain a transparent coating.
  • hydrolyzed polyvinyl alcohols having number average molecular weights of approximately 40,000 are
  • compositions of the present invention Polyvinyl alcohols that are less than fully hydrolyzed, and thus have a greater percentage of acetate substitution, can be of a higher molecular weight.
  • Polyvinyl alcohols that are less than fully hydrolyzed, and thus have a greater percentage of acetate substitution can be of a higher molecular weight.
  • a useful concentration of the polyvinyl alcohol in the ink-receptive layer is generally in the range of about 1 to about 4 percent by weight based on the total dry weight of the layer.
  • concentrations of polyvinyl alcohol somewhat in excess of about 4 weight percent and somewhat below about 1 weight percent can be used in the practice of the present invention, concentrations significantly in excess of about 4 weight percent should be avoided as they tend to cause the layer or film to lose
  • the polymerized alkylene oxide components of the ink-receptive layer compositions of the present invention constitute nonionic surface active polymers including homopolymers and copolymers of an alkylene oxide in which alkylene refers to divalent hydrocarbon groups having 2 to 6 carbon atoms such as ethylene, propylene, butylene and the like.
  • alkylene refers to divalent hydrocarbon groups having 2 to 6 carbon atoms such as ethylene, propylene, butylene and the like.
  • the commercial forms of the alkylene oxides are employed.
  • the commercial form of propylene oxide is 1,2-propylene oxide and not the 1,3-form.
  • the above- mentioned alkylene oxides can be polymerized or
  • mixtures thereof can be copolymerized by well-known methods such as by heating the oxide in the presence of an appropriate catalyst such as a mixture of aluminum hydride and a metal acetylacetone as taught in U.S. Patent No. 3,375,207, issued March 26, 1968, to form stereospecific long-chain compounds characterized by high molecular weights of from about 100,000 to
  • fluorocarbon surfactant and the inert particulate components of the invention are believed to play a role in imparting an enhanced smoothness to the ink-receiving surfaces of the ink-receptive layers of the recording elements of the invention. That is, all three components together are believed to contribute towards the achievement of an ink-receptive layer of enhanced smoothness.
  • polymerized alkylene oxides having weight average molecular weights both above 5,000,000 and below 100,000 can be used in the practice of the present invention, caution should be exercised in selecting a polymerized alkylene oxide or mixture of polymerized alkylene oxides the molecular weights of which are so far below 100,000 that ink-drying time is undesirably prolonged.
  • a useful concentration of the polymerized alkylene oxide component in the ink-receptive layer is generally in the range of about 1 to about 4 percent by weight based on the total dry weight of the layer, although concentrations somewhat in excess of about 4 weight percent and somewhat below about 1 weight percent can be used in the practice of the present invention without adversely affecting the smoothness of the ink-receptive layer.
  • the fluorocarbon surfactant component of the ink-receptive layer compositions of the present invention is incorporated into the layer to contribute in part to providing an ink-receiving surface having enhanced smoothness and to improve the dispersion properties of the layer to facilitate the application or coating of the layer onto the support.
  • the fluorocarbon surfactants employed in the ink-receptive layer compositions of the present invention are those fluorocarbon surfactants having the structure:
  • R is hydrogen or alkyl of 1 through 10 carbon atoms.
  • Especially preferred fluorocarbon surfactants are those having the formula:
  • fluorocarbon surfactants are perfluoroalkyl ethoxylates of the formula:
  • the concentration of the fluorocarbon surfactant component in the ink-receptive layer typically is in the range of about 0.2 to about 1.2 percent by weight based on the total dry weight of the layer. Although concentrations somewhat in excess of about 1.2 weight percent may be used in the practice of the present invention, amounts greatly exceeding about 1.2 weight percent are to be avoided since there is a gradual tendency for concentrations progressively exceeding about 1.2 weight percent to cause "image drawback" where ink dots on the ink-receptive layer tend to be dense in the center and ligter around the edges.
  • the ink-receptive layer also includes inert particulate material. Such materials also are believed to aid in enhancing the smoothness characteristics of the ink-receptive surfaces of the image-recording elements of the invention, particularly after they have been printed on without adversely affecting the
  • Suitable particulate material includes inorganic inert particles such as chalk, heavy calcium carbonate, calcium
  • scricite zeolite, talc, synthetic aluminum silicate, synthetic calcium silicate, diatomaceous earth,
  • anhydrous silic acid fine powder aluminum hydroxide, barite, precipitated barium sulfate, natural gypsum, gypsum, calcium sulfite and organic inert particles such as polymeric beads including polymethyl
  • methacrylate beads copoly(methyl methacrylate-divinylbenzene) beads polystyrene beads and
  • the composition and particle size of the inert particulate material is selected so as not to impair the transparent nature of the image-receiving element.
  • inert material having an average particle size not exceeding about 25, and preferably less than 12, for example, 3-12 microns are used in the practice of the present invention.
  • the particle size is not less than about 25 microns, the resulting surface of the ink-receptive layer exhibits increased roughness due to the coarse projections of the particles.
  • the particle size is less than about 3.0 microns, it is necessary to use a large amount of inert particles to aid in achieving the desired smoothness of the ink-receptive layer surface.
  • the ink-receptive layer will contain from about 0.5 to 1.5 percent by weight, and preferably from about 0.8 to 1.2 percent by weight, based on the total dry weight of the layer, of the inert particulate material. Concentrations in amounts in excess of about 1.5 weight percent and less than about 0.5 weight percent may used in the practice of the present
  • the image-recording elements of this invention comprise a support for the ink-receptive layer.
  • supports are known and commonly employed in the art. They include, for example, those supports used in the manufacture of photographic films including cellulose esters such as cellulose triacetate, cellulose acetate propionate or cellulose acetate butyrate, polyesters such as
  • poly(ethylene terephthalate), polyamides poly(ethylene terephthalate), polyamides
  • polyester film supports and especially poly(ethylene
  • terephthalate terephthalate
  • a subbing layer is advantageously employed to improve the bonding of the ink-receptive layer to the support.
  • Useful subbing compositions for this purpose are well known in the photographic art and include, for example, polymers of vinylidene chloride such as vinylene
  • the ink-receptive layers are coated from aqueous dispersions comprising the vinyl pyrrolidone polymer, the polyvinyl alcohol, the polymerized
  • alkaline oxide monomer (s) alkaline oxide monomer (s), and the fluorocarbon
  • the dispersion can be prepared by admixing the
  • polyester and the inert particulate material in an aqueous medium containing the fluorocarbon surfactant and heating the aqueous dispersion thus formed to about 88°C for about 2 to 6 hours, preferably about 4 hours, then adding an aqueous solution of the vinyl
  • pyrrolidone polymer and an aqueous solution of the polyalkylene oxide to the aqueous polyester-containing dispersion while the aqueous polyester-containing dispersion is still hot or, alternatively, after it has been cooled to room temperature.
  • an aqueous solution of the polyvinyl alcohol component formed by dissolving a suitable solid polyvinyl alcohol in an aqueous medium while heating and stirring at a
  • a dispersion can be prepared by admixing the polyester in an aqueous medium containing the fluorocarbon
  • Such dispersions are coated as a thin layer on the support and dried.
  • the dispersion can be coated on the support by any of a number of suitable procedures including immersion or dip coating, roll coating, reverse roll coating, air knife coating, doctor blade coating and bead coating.
  • the thickness of the ink-receptive layer can be varied widely.
  • the thickness of an ink-receptive layer imaged by liquid ink dots in an ink jet recording method is typically in the range of about 4.0 to about 25 microns, and often in the range of about 8.0 to about 16 microns, dry thickness.
  • the transparent image-recording elements of this invention are employed in printing processes where liquid ink dots are applied to the ink-receptive layer of the element.
  • a typical process is an ink-jet printing process which involves a method of forming type characters on a paper by ejecting ink droplets from a print head from one or more nozzles.
  • Several schemes are utilized to control the deposition of the ink droplets on the image-recording element to form the desired ink dot pattern.
  • one method comprises deflecting electrically charged ink droplets by electrostatic means.
  • Another method comprises the ejection of single droplets under the control of a piezoelectric device.
  • Such methods are well known in the prior art and are described in a number of patents including, for example, U.S. Pat. Nos. 4,636,805 and 4,578,285.
  • the inks used to image the transparent image-recording elements of this invention are well known for this purpose.
  • liquid compositions comprising a solvent or carrier liquid, dyes or pigments, humectants, organic solvents, detergents, thickeners, preservatives, and the like.
  • the solvent or carrier liquid can be
  • the dyes used in such compositions are typically water-soluble direct or acid type dyes.
  • Such liquid ink compositions have been extensively described in the prior art including, for example, U.S. Pat. Nos.

Abstract

Transparent image-recording elements that contain ink-receptive layers that can be imaged by the application of liquid ink dots. The ink-receptive layers contain a combination of: (i) a vinyl pyrrolidone; (ii) particles of a polyester, namely a poly(cyclohexylenedimethylene-co-xylylene terephthalate-co-malonate-co-sodioiminobis (sulfonylbenzoate)); (iii) a homopolymer or a copolymer of an alkylene oxide containing from 2 to 6 carbon atoms; (iv) a polyvinyl alcohol; (v) a fluorocarbon surfactant of the formula: CF3(CF2)mCH2CH2O(CH2CH2O)nR where m is an integer of 2 through 10, n is an integer of 1 through 18 and R is hydrogen or alkyl or 1 through 10 carbon atoms; and (vi) inert particles. A printing method which employs the transparent image-recording elements also is described.

Description

INK-RECEIVING TRANSPARENT RECORDING ELEMENTS
Field of the Invention
This invention relates to transparent image-recording elements that contain ink-receptive layers that can be imaged by the application of liquid ink dots. More particularly, this invention relates to transparent image-recording elements that can be imaged by the application of liquid ink dots having ink-receptive layers of enhanced smoothness.
Background
Transparent image-recording elements are primarily intended for viewing by transmitted light, for example, observing a projected image from an overhead projector. In a typical application, the viewable image is obtained by applying liquid ink dots to an ink-receptive layer using equipment such as ink jet printers involving either monochrome or multicolor recording.
It is known that the ink-receptive layers in transparent image-recording elements must meet stringent requirements including, an ability to be readily wetted so there is no "puddling", i.e.,
coalescence of adjacent ink dots that leads to non-uniform densities; an earlier placed dot should be held in place in the layer without "bleeding" into
overlapping and latter placed dots; the layer should exhibit the ability to absorb high concentrations of ink so that the applied liquid ink does not run, i.e., there is no "ink run off"; a short ink-drying time, and a minimum of haze. To meet these requirements, the ink-receptive layers of the prior art have been
prepared from a wide variety of materials. One class of materials that has been described for use in ink-receptive layers of transparent image-recording elements is the class of vinyl pyrrolidone polymers. Typical patents are as follows:
U.S. Patent No. 4,741,969, issued May 3, 1988, describes a transparent image-recording element having an ink-receptive layer formed from a mixture of a photopolymerizable, double-bonded anionic synthetic resin and another polymer such as a homo- or copolymer of N-vinyl pyrrolidone. The mixture is cured to provide the ink-receptive layer.
U.S. Patent No. 4,503,111, issued March 5,
1985, describes a transparent image-recording element for use in ink jet recording and having an ink- receptive layer comprising a mixture of polyvinyl pyrrolidone and a compatible matrix-forming hydrophilic polymer such as gelatin or polyvinyl alcohol.
Unfortunately, transparent image-recording elements that have been described in the prior art and employ vinyl pyrrolidone polymers in ink-receptive layers have generally failed to meet the stringent requirements needed to provide a high quality image and this has significantly restricted their use.
In addition to the requirements already discussed, an important feature of a projection
viewable image is the size and nature of the ink dots that form it. In general, a larger dot size
(consistent with the image resolution required for a given system) provides higher image density and a more saturated color image and improves projection quality. A known method of increasing dot size involves applying liquid ink dots to a transparent image-receiving sheet, for example, HP PaintJet FilmT (commercially available from Hewlett Packard Company, Palo Alto, California) using an ink jet printer. The sheet is dried for a short time, for example, 5 minutes, and inserted into a transparent plastic sleeve which protects the sheet and controls development of the dots. The sleeve
compresses the dots and their size is increased to provide greater image density and color saturation upon projection of the image. Although this method is effective, it would be desirable to achieve appropriate dot size without the inconvenience of handling a separate sleeve.
In recently issued U.S. Patent No.
4,903,041, issued February 20, 1990, there is disclosed a transparent image-recording element adapted for use in a printing process in which liquid ink dots are applied to an ink-receptive layer such as an ink jet printing process where liquid ink dots are applied to an ink-receptive layer that contains a vinyl
pyrrolidone polymer and particles of a polyester, poly (cyclohexylenedimethylene-co-xylylene terephthalate-co-malonate-co-sodioiminobis(sulfonylbenzoate)), dispersed in the vinyl pyrrolidone to control ink dot size and to provide a high quality projection viewable image. The result is achieved in a simple and expedient manner by varying the
concentration of the polyester in the layer as
described therein. Such elements constitute a
significant advancement in the art by providing
transparent image-recording elements which are adapted for use in printing processes where liquid ink dots are applied to an ink-receptive layer in which the ink dot size can be easily controlled. A disadvantage exists, however, with respect to these elements in that the surfaces of the ink-receptive layers on which the liquid ink dots are applied exhibit, after drying, a coarse or roughened texture much like that of very fine sandpaper, so that the surfaces are not smooth or silken to the touch. Although this might not appear at first impression to constitute very much of a problem, it constitutes quite a major problem with respect to potential customer acceptance in that many people who purchase and or work with transparent image-recording elements prefer, if not insist upon, transparent image- recording elements in which the ink-receiving surfaces are smooth or satiny to the touch.
Thus, it would be highly desirable to be able to provide a transparent image-recording element adapted for use in a printing process in which liquid ink dots are applied to an ink-receptive layer, such as an ink jet printing process, which not only possesses all of the benefits and advantages of the transparent image-recording elements disclosed and described in the aforementioned U.S. Patent No. 4,903,041, including the ability of the ink-receptive layer to control ink dot size and to provide high quality projection viewable images but, in addition, one in which the ink-receptive layer exhibits an enhanced or improved smoothness.
The present invention provides such a transparent image-recording element. The invention also provides a printing process in which liquid ink dots are applied to the ink-receptive layer of the aforementioned element.
Summary of the Invention
In accordance with the present invention, there is provided a transparent image-recording element that comprises a support and an ink-receptive layer in which the element is adapted for use in a printing process where liquid ink dots are applied to the inkreceptive layer wherein the ink-receptive layer is capable of controlling ink dot size and the surface of which exhibits improved or enhanced smoothness.
Description of the Preferred Embodiments
The ink-receptive layers in the novel transparent image-recording elements of this invention preferably comprise (i) from about 15 to 50 percent by weight of a vinyl pyrrolidone polymer, (ii) from about 50 to about 85 percent by weight of a polyester, namely, a poly(cyclohexylenedimethylene-co-xylylene terephthalate-co-malonate-co-sodioiminobis(sulfonylbenzoate)), (iii) from about 1 to about 4 percent by weight of a homopolymer or a copolymer of an alkylene oxide containing from 2 to 6 carbon atoms, (iv) from about 1 to about 4 percent by weight of a polyvinyl alcohol, (v) from about 0.2 to about 1.2 percent by weight of a fluorocarbon surfactant of the formula CF3(CF2)mCH2CH2O(CH2CH2O)nR wherein m is an integer of 2 through 10, n is an integer of 1 through 18 and R is hydrogen or alkyl of 1 through 10 carbon atoms and (vi) from about 0.5 to about 1.5 percent by weight of inert particles, all weights being based on the total dry weight of components (i), (ii), (iii), (iv), (v) and (vi). A particularly preferred ink-receptive layer comprises a vinyl pyrrolidone polymer, a polyester, a homopolymer or a copolymer of an alkylene oxide
containing from 2 to 6 carbon atoms, a polyvinyl alcohol, a fluorocarbon surfactant and inert
particulate material in a weight ratio of about
1.0: (1.5-3.5): (0.03-0.14): (0.03-0.14): (0.007-0.045): (0.017-0.05). A most preferred ink-receptive layer comprises a vinyl pyrrolidone polymer, a polyester, a homopolymer or copolymer of an alkylene oxide
containing from 2 to 6 carbon atoms, a polyvinyl alcohol, a fluorocarbon surfactant and inert particles in a weight ratio of 1:2.3:0.07:0.07:0.02:0.017.
In this way, a transparent image-recording element is made available which is adapted for use in a printing process where liquid ink dots are applied to an ink-receptive layer in which the ink-receptive layer not only is capable of controlling ink dot size but, in addition, possesses an ink-receiving surface of
enhanced smoothness.
The present invention is based upon the discovery that the addition to an ink-receptive layer that can be imaged by the application of liquid ink dots containing a highly hydrophilic, highly water- soluble polymer, such as polyvinyl pyrrolidone, and a polyester, specifically a poly(cyclohexylened- imethylene-co-xylylene terephthalate-co-malonate- co- sodioiminobis (sulfonylbenzoate)), used to control ink dot size, of another hydrophilic, but less water- soluble polymer, such as a polyvinyl alcohol, a homopolymer or a copolymer of an alkylene oxide containing from 2 to 6 carbon atoms in the alkylene hydrocarbon group, certain fluorocarbon surfactants and certain inert particles produces a transparent image- recording element adapted for use in a printing process where liquid ink dots are applied to an ink-receptive layer that exhibits not only an ability to easily control ink dot size but, in addition, provides a transparent image-recording element having an ink- receptive layer of improve surface smoothness.
It was not foreseeable that it would be possible to combine the polyvinyl alcohol, the
polymerized alkylene oxide monomer(s), the fluorocarbon surfactant and the particulate material of the
invention into the coatings or ink-receptive layers containing the polyvinyl pyrrolidone and polyester components to produce a transparent image-recording element that could be adapted for use in a printing process where liquid ink dots are applied to an inkreceptive layer where the ink-receptive layer not only was still capable of controlling ink dot size without interference or disruption due to the inclusion of the additional polyvinyl alcohol, polymerized alkylene oxide monomer(s), fluorocarbon surfactant and inert particulate components into the ink-receptive layer but one in which the ink-receiving surface exhibited a smooth, glassy texture so important to customer
acceptance.
In addition, it is deemed or believed that the enhanced smoothness exhibited by the ink-receiving surfaces of the novel transparent image-recording elements of the present invention also is an indication that the ink-receptive layers of the invention possess improved slipperiness, improved anti-blocking
characteristics or properties╌particularly under conditions of high temperature and high humidity, improved resistance to sticking in printing and
improved adhesion or resistance to rub-off of the image produced on the ink-receptive surface.
The ink-receptive layer in the novel transparent image-recording elements of this invention contains a vinyl pyrrolidone polymer. Such polymers and their use in ink-receptive layers of the type disclosed herein are well known to those skilled in the art and include homopolymers of vinyl pyrrolidone, as well as copolymers thereof with other polymerizable monomers. Useful materials include polyvinyl
pyrrolidone, and copolymers of vinyl pyrrolidone with copolymerizable monomers such as vinyl acetate, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, methyl acrylamide, methyl methacrylamide and vinyl chloride. Typically, the polymers have viscosity average molecular weights (Mv) in the range of about 10,000 to 1,000,000, often about 300,000 to 850,000. Such polymers are typically soluble in aqueous media and can be conveniently coated from such media. A wide variety of the vinyl pyrrolidone polymers are
commercially available and/or are disclosed in a number of U.S. Patents including U.S. Patent Nos. 4,741,969; 4,503,111; 4,555,437 and 4,578,285. The concentration of the vinyl pyrrolidone polymer in the ink-receptive layer is subject to some variation. It is used in sufficient concentration to absorb or mordant the printing ink in the layer. A useful concentration is generally in the range of about 15 to about 50 percent by weight based on the total dry weight of the layer although concentrations somewhat in excess of about 50 weight percent and concentrations somewhat below about 15 weight percent may be used in the practice of the present invention.
The polyesters in the elements of this invention are poly(cyclohexylenedimethylene- co- xylylene terephthalate-co-malonate-co-sodioimino- bis(sulfonylbenzoates)). A specific polyester useful in the practice of this invention is poly(1,4-cyclohexanedimethylene-co-p-xylylene (40/60) terephthalate- co-malonate-co-3,3'-sodioiminobis (sulfonylbenzoate) (45/40/15). The numbers immediately following the monomers refer to mole ratios of the respective diol and acid components. Useful polyesters are known in the prior art and procedures for their preparation are described, for example, in U.S. Patent No. 3,546,180, issued December 8, 1970, the disclosure of which is hereby incorporated herein by reference. The
polyesters are linear condensation products formed from two diols, i.e., cyclohexanedimethanol and xylylene glycol and three diacids, i.e., terephthalic acid, malonic acid, and sodioiminobis (sulfonyl benzoic acid) and/or their ester-forming equivalents. Such
polyesters are dispersible in water or aqueous media and can be readily coated from such media. In general, such polyesters have an inherent viscosity of at least 0.1, often about 0.1 to 0.7 measured in a 50/50 parts, by weight, solution of phenol/chlorobenzene at 25°C and at a concentration of about 0.25 g of polymer in 1 deciliter of solvent.
The polyesters, along with the inert particles of the present invention which are discussed in detail below, are in the form of dispersed particles within a mixture of the vinyl pyrrolidone polymer, the polyvinyl alcohol, the polymerized alkylene oxide monomer(s) and the fluorocarbon surfactant components of the present invention. The particles of polyester generally have a diameter of up to about 1 micrometer, often about 0.001 to 0.1 and typically 0.01 to 0.08 micrometer. The size of the polyester particles in a layer is, of course, compatible with the transparency requirements for a given situation. The concentration of the polyester in the ink-receptive layer also is subject to variation. A useful concentration is generally in the range of from about 50 to about 85 percent by weight based on the total dry weight of the layer. In general, concentrations of polyester
significantly in excess of about 85 weight percent should be avoid as they tend to undesirably increase ink-drying time and decrease image resolution due to the tendency of adjacent ink droplets to flow together, while concentrations of polyester which are
significantly less than about 50 weight percent also should be avoided as they tend to adversely affect projection image quality by producing ink dots of such small size that image density is low.
The hydrophilic polyvinyl alcohol component of the ink-receptive layer compositions of the present invention must be soluble in water at elevated
temperature and insoluble, but swellable, by water at room temperature. "Room temperature" is the
temperature range normal in human living and working environments and is generally considered to be between about 15°C and 35°C.
The composition of polyvinyl alcohol does appear to be broadly critical. If essentially fully hydrolyzed types are used, the polyvinyl alcohol should have a number average molecular weight below about 60,000 to obtain a transparent coating. Fully
hydrolyzed polyvinyl alcohols having number average molecular weights of approximately 40,000 are
particularly useful in the ink-receptive layer
compositions of the present invention. Polyvinyl alcohols that are less than fully hydrolyzed, and thus have a greater percentage of acetate substitution, can be of a higher molecular weight. For example,
excellent ink receptivity, drying times and
transparency are obtained with a 98% hydrolyzed polyvinyl alcohol of 60,000 nominal number average molecular weight.
The reason for the broad limitations on the nature of the polyvinyl alcohol lies in the nature of the film which they may produce. The films rapidly lose transparency as the number average molecular weight increases above the 60,000 range for a fully hydrolyzed polyvinyl alcohol.
A useful concentration of the polyvinyl alcohol in the ink-receptive layer is generally in the range of about 1 to about 4 percent by weight based on the total dry weight of the layer. Although
concentrations of polyvinyl alcohol somewhat in excess of about 4 weight percent and somewhat below about 1 weight percent can be used in the practice of the present invention, concentrations significantly in excess of about 4 weight percent should be avoided as they tend to cause the layer or film to lose
transparency and become hazy, while concentrations significantly below about 1 weight percent also should be avoided as they tend to cause increased roughness of the ink-receiving surface of the ink-receptive layer which, of course, circumvents the objective of the present invention.
The polymerized alkylene oxide components of the ink-receptive layer compositions of the present invention constitute nonionic surface active polymers including homopolymers and copolymers of an alkylene oxide in which alkylene refers to divalent hydrocarbon groups having 2 to 6 carbon atoms such as ethylene, propylene, butylene and the like. Generally, the commercial forms of the alkylene oxides are employed. For example, the commercial form of propylene oxide is 1,2-propylene oxide and not the 1,3-form. The above- mentioned alkylene oxides can be polymerized or
mixtures thereof can be copolymerized by well-known methods such as by heating the oxide in the presence of an appropriate catalyst such as a mixture of aluminum hydride and a metal acetylacetone as taught in U.S. Patent No. 3,375,207, issued March 26, 1968, to form stereospecific long-chain compounds characterized by high molecular weights of from about 100,000 to
5,000,000 weight average molecular weight. The
polymerized alkylene oxide components of the ink-receptive layers of the present invention in
combination with the polyvinyl alcohol, the
fluorocarbon surfactant and the inert particulate components of the invention are believed to play a role in imparting an enhanced smoothness to the ink-receiving surfaces of the ink-receptive layers of the recording elements of the invention. That is, all three components together are believed to contribute towards the achievement of an ink-receptive layer of enhanced smoothness. Although polymerized alkylene oxides having weight average molecular weights both above 5,000,000 and below 100,000 can be used in the practice of the present invention, caution should be exercised in selecting a polymerized alkylene oxide or mixture of polymerized alkylene oxides the molecular weights of which are so far below 100,000 that ink-drying time is undesirably prolonged.
A useful concentration of the polymerized alkylene oxide component in the ink-receptive layer is generally in the range of about 1 to about 4 percent by weight based on the total dry weight of the layer, although concentrations somewhat in excess of about 4 weight percent and somewhat below about 1 weight percent can be used in the practice of the present invention without adversely affecting the smoothness of the ink-receptive layer.
The fluorocarbon surfactant component of the ink-receptive layer compositions of the present invention is incorporated into the layer to contribute in part to providing an ink-receiving surface having enhanced smoothness and to improve the dispersion properties of the layer to facilitate the application or coating of the layer onto the support.
The fluorocarbon surfactants employed in the ink-receptive layer compositions of the present invention are those fluorocarbon surfactants having the structure:
CF3(CF2)mCH2CH2O(CH2CH2O)nR
where
m = 2-10;
n = 1-18, and
R is hydrogen or alkyl of 1 through 10 carbon atoms.
Especially preferred fluorocarbon surfactants are those having the formula:
CF3(CF2)mCH2CH2CH2O(CH2CH2O)nR
where
m = 2-10;
n = 5-14, and
R = H.
These surfactants are available commercially from
E. I. du Pont de Nemours and Company as Zonyl*FSN and FC-170C available from the 3M Company. Particularly preferred fluorocarbon surfactants are perfluoroalkyl ethoxylates of the formula:
CF3(CF2)6CH2CH2O(CH2CH2O)13-14H.
The concentration of the fluorocarbon surfactant component in the ink-receptive layer typically is in the range of about 0.2 to about 1.2 percent by weight based on the total dry weight of the layer. Although concentrations somewhat in excess of about 1.2 weight percent may be used in the practice of the present invention, amounts greatly exceeding about 1.2 weight percent are to be avoided since there is a gradual tendency for concentrations progressively exceeding about 1.2 weight percent to cause "image drawback" where ink dots on the ink-receptive layer tend to be dense in the center and ligter around the edges.
The ink-receptive layer also includes inert particulate material. Such materials also are believed to aid in enhancing the smoothness characteristics of the ink-receptive surfaces of the image-recording elements of the invention, particularly after they have been printed on without adversely affecting the
transparent characteristics of the element. Suitable particulate material includes inorganic inert particles such as chalk, heavy calcium carbonate, calcium
carbonate fine, basic magnesium carbonate, dolomite, kaolin, calsined clay, pyrophyllite, bentonite,
scricite, zeolite, talc, synthetic aluminum silicate, synthetic calcium silicate, diatomaceous earth,
anhydrous silic acid fine powder, aluminum hydroxide, barite, precipitated barium sulfate, natural gypsum, gypsum, calcium sulfite and organic inert particles such as polymeric beads including polymethyl
methacrylate beads, copoly(methyl methacrylate-divinylbenzene) beads polystyrene beads and
copoly(vinyltoluene-t-butyl-styrene-methacrylic acid) beads. The composition and particle size of the inert particulate material is selected so as not to impair the transparent nature of the image-receiving element. Typically, inert material having an average particle size not exceeding about 25, and preferably less than 12, for example, 3-12 microns are used in the practice of the present invention. When the particle size is not less than about 25 microns, the resulting surface of the ink-receptive layer exhibits increased roughness due to the coarse projections of the particles. On the other hand, when the particle size is less than about 3.0 microns, it is necessary to use a large amount of inert particles to aid in achieving the desired smoothness of the ink-receptive layer surface.
Generally, the ink-receptive layer will contain from about 0.5 to 1.5 percent by weight, and preferably from about 0.8 to 1.2 percent by weight, based on the total dry weight of the layer, of the inert particulate material. Concentrations in amounts in excess of about 1.5 weight percent and less than about 0.5 weight percent may used in the practice of the present
invention, however, caution should be exercised not to use concentrations significantly greater than about 1.5 weight percent so that the optical characteristics of the element remain unimpaired and hazing of the element does not occur. It is also prudent to exercise caution in using concentrations of particulate materials significantly lower than about 0.5 weight percent so that blocking or sticking of the elements is to each other to other other materials does not occur. SiO2 and copoly(methyl methacrylate-divinylbenzene) are preferred inert particles for use in the present invention.
The image-recording elements of this invention comprise a support for the ink-receptive layer. A wide variety of such supports are known and commonly employed in the art. They include, for example, those supports used in the manufacture of photographic films including cellulose esters such as cellulose triacetate, cellulose acetate propionate or cellulose acetate butyrate, polyesters such as
poly(ethylene terephthalate), polyamides,
polycarbonates, polyimides, polyolefins, poly(vinyl acetals), polyethers and polysulfonamides. Polyester film supports, and especially poly(ethylene
terephthalate) are preferred because of their excellent dimensional stability characteristics. When such a polyester is used as the support material, a subbing layer is advantageously employed to improve the bonding of the ink-receptive layer to the support. Useful subbing compositions for this purpose are well known in the photographic art and include, for example, polymers of vinylidene chloride such as vinylene
chloride/acrylonitrile/acrylic acid terpolymers or vinylidene chloride/methyl acrylate/itaconic acid terpolymers.
The ink-receptive layers are coated from aqueous dispersions comprising the vinyl pyrrolidone polymer, the polyvinyl alcohol, the polymerized
alkaline oxide monomer (s), and the fluorocarbon
surfactant in solution in the aqueous medium having solid particles of the polyester and the inert
particulate material dispersed therein. For example, the dispersion can be prepared by admixing the
polyester and the inert particulate material in an aqueous medium containing the fluorocarbon surfactant and heating the aqueous dispersion thus formed to about 88°C for about 2 to 6 hours, preferably about 4 hours, then adding an aqueous solution of the vinyl
pyrrolidone polymer and an aqueous solution of the polyalkylene oxide to the aqueous polyester-containing dispersion while the aqueous polyester-containing dispersion is still hot or, alternatively, after it has been cooled to room temperature. Next, an aqueous solution of the polyvinyl alcohol component formed by dissolving a suitable solid polyvinyl alcohol in an aqueous medium while heating and stirring at a
temperature, typically about 100°C, and for a time, typically 30 to 90 minutes, sufficient to dissolve the solid polyvinyl alcohol in the aqueous medium is added to the polyester-containing dispersion while the aqueous solution of the polyvinyl alcohol is still hot or, alternatively, after it has been cooled to room temperature. As an alternative mode of preparation, a dispersion can be prepared by admixing the polyester in an aqueous medium containing the fluorocarbon
surfactant and heating the aqueous dispersion thus formed to about 88°C for about 2 to 6 hours, preferably about 4 hours and then adding solid vinyl pyrrolidone polymer and solid polyalkylene oxide to the aqueous polyester-containing dispersion after cooling the aqueous polyester-containing dispersion to room
temperature followed by the addition of an aqueous solution of the polyvinyl alcohol and the inert
particulate material. Such dispersions are coated as a thin layer on the support and dried. The dispersion can be coated on the support by any of a number of suitable procedures including immersion or dip coating, roll coating, reverse roll coating, air knife coating, doctor blade coating and bead coating. The thickness of the ink-receptive layer can be varied widely. The thickness of an ink-receptive layer imaged by liquid ink dots in an ink jet recording method is typically in the range of about 4.0 to about 25 microns, and often in the range of about 8.0 to about 16 microns, dry thickness.
The transparent image-recording elements of this invention are employed in printing processes where liquid ink dots are applied to the ink-receptive layer of the element. A typical process is an ink-jet printing process which involves a method of forming type characters on a paper by ejecting ink droplets from a print head from one or more nozzles. Several schemes are utilized to control the deposition of the ink droplets on the image-recording element to form the desired ink dot pattern. For example, one method comprises deflecting electrically charged ink droplets by electrostatic means. Another method comprises the ejection of single droplets under the control of a piezoelectric device. Such methods are well known in the prior art and are described in a number of patents including, for example, U.S. Pat. Nos. 4,636,805 and 4,578,285. The inks used to image the transparent image-recording elements of this invention are well known for this purpose. The ink compositions used in such printing processes as ink-jet printing are
typically liquid compositions comprising a solvent or carrier liquid, dyes or pigments, humectants, organic solvents, detergents, thickeners, preservatives, and the like. The solvent or carrier liquid can be
predominantly water, although ink in which organic materials such as polyhydric alcohols, are the
predominant carrier or solvent liquid also are used. The dyes used in such compositions are typically water-soluble direct or acid type dyes. Such liquid ink compositions have been extensively described in the prior art including, for example, U.S. Pat. Nos.
4,381,946, issued May 3, 1983; 4,386,961, issued
June 7, 1983; 4,239,543, issued December 16, 1980;
4,176,361, issued November 27, 1979; 4,620,876, issued November 4, 1986; and 4,781,758, issued November 1, 1988.

Claims

Claims :
1. A transparent image-recording element comprising a support and an ink-receptive layer in which the element is adapted for use in a printing process where liquid ink dots are applied to the ink- receptive layer wherein the ink-receptive layer is capable of controlling ink dot size and the surface of which exhibits improved or enhanced smoothness, said ink-receptive layer comprising:
(i) a vinyl pyrrolidone;
(ii) particles of a polyester, a poly(cyclo hexylenedimethylene-co- xylylene terephthalate-co-malonate- co-sodioiminobis(sulfonylbenzoate)); (iii) a homopolymer or a copolymer of an
alkylene oxide containing from 2 to 6 carbon atoms;
(iv) a polyvinyl alcohol;
(v) a fluorocarbon surfactant of the
formula:
Figure imgf000020_0001
wherein m is an integer of 2 through 10, n is an integer of 1 through 18 and R is hydrogen or alkyl of 1 through 10 carbon atoms, and
(vi) inert particles.
2. A transparent image-recording element of claim 1 wherein said polyester and said inert particles are dispersed in a mixture of (i), (iii), (iv) and (v).
3. The element of claim 1 wherein said ink-receptive layer comprises from about 15 to about 50 percent by weight of said polyvinyl pyrrolidone
polymer, from about 50 to 85 percent by weight of said polyester, from about 1 to 4 percent by weight of said homopolymer or copolymer of alkylene oxide, from about 1 to about 4 percent by weight of said polyvinyl alcohol, from about 0.02 to about 1.2 percent by weight of said fluorocarbon surfactant and from about 0.5 to about 1.5 percent by weight of said inert particles, all weights based on the total dry weight of components (i), (ii), (iii), (iv), (v), and (vi).
4. The element of claim 1 wherein said polyester is poly(1,4-cyclohexylenedimethylene-co- p-xylylene (40/60) terephthalate-co-malonate-co- 3,3'-sodioiminobis(sulfonylbenzoate)) (45/40/15).
5. The element of claim 1 wherein said inert particles are particles of SiO2.
6. The element of claim 1 wherein said inert particles are particles of copoly(methyl methacrylate-divinylbenzene).
7. The element of claim 1 wherein said fluorocarbon surfactant is a fluorocarbon surfactant having the formula:
Figure imgf000021_0001
wherein m is an integer of 2 through 10, n is an integer of 5 through 14 and R is hydrogen.
8. The element of claim 1 wherein said fluorocarbon surfactant is a fluorocarbon surfactant having the formula:
Figure imgf000021_0002
9. The element of claim 1 wherein the ink-receptive layer is on a polyester film support.
10. A printing process in which liquid ink dots are applied to an ink-receptive layer of a transparent image-recording element wherein the element is an element of claim 1.
PCT/US1991/008744 1990-12-03 1991-11-25 Ink-receiving transparent recording elements WO1992009439A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP92901679A EP0513329B1 (en) 1990-12-03 1991-11-25 Ink-receiving transparent recording elements
DE69108543T DE69108543T2 (en) 1990-12-03 1991-11-25 INK-JET COLOR RECORDING TRANSPARENT RECORDING ELEMENTS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US625,711 1990-12-03
US07/625,711 US5045864A (en) 1990-12-03 1990-12-03 Ink-receiving transparent recording elements

Publications (1)

Publication Number Publication Date
WO1992009439A1 true WO1992009439A1 (en) 1992-06-11

Family

ID=24507242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1991/008744 WO1992009439A1 (en) 1990-12-03 1991-11-25 Ink-receiving transparent recording elements

Country Status (5)

Country Link
US (1) US5045864A (en)
EP (1) EP0513329B1 (en)
JP (1) JPH05504113A (en)
DE (1) DE69108543T2 (en)
WO (1) WO1992009439A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015455A1 (en) * 1995-10-26 1997-05-01 Minnesota Mining And Manufacturing Company Ink-jet recording sheet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0648611B1 (en) * 1993-10-15 1997-06-11 Agfa-Gevaert N.V. A method for applying an ink receiving layer to any given substrate
AU6975896A (en) * 1995-10-26 1997-05-15 Minnesota Mining And Manufacturing Company Composition for an ink-jet recording sheet
US6394569B1 (en) * 1998-10-29 2002-05-28 Eastman Kodak Company Ink jet printer method of providing an image on a receiver so that the image has reduced graininess
US6406775B1 (en) 1999-07-12 2002-06-18 Brady Worldwide, Inc. Modifiers for outdoor durable ink jet media
US6680108B1 (en) 2000-07-17 2004-01-20 Eastman Kodak Company Image layer comprising intercalated clay particles
US20050037159A1 (en) 2003-08-14 2005-02-17 Kurian Manelal Chirayil Jacob High-resolution high-density positive image producing film using an ink jet printing machine and a method of making such a film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781985A (en) * 1986-06-20 1988-11-01 James River Graphics, Inc. Ink jet transparency with improved ability to maintain edge acuity
US4903041A (en) * 1989-08-14 1990-02-20 Eastman Kodak Company Transparent image-recording elements comprising vinyl pyrrolidone polymers and polyesters

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2234823C3 (en) * 1972-07-15 1984-06-20 Agfa-Gevaert Ag, 5090 Leverkusen Recording material for ink-jet images
JPS5247069A (en) * 1975-10-11 1977-04-14 Toyo Boseki Polyester system films with superior processibilty
US4474859A (en) * 1982-02-05 1984-10-02 Jujo Paper Co., Ltd. Thermal dye-transfer type recording sheet
US4394442A (en) * 1982-03-15 1983-07-19 E. I. Du Pont De Nemours And Company Post-stretch water-dispersible subbing composition for polyester film base
US4503111A (en) * 1983-05-09 1985-03-05 Tektronix, Inc. Hydrophobic substrate with coating receptive to inks
US4525419A (en) * 1983-05-16 1985-06-25 American Hoechst Corporation Copolyester primed plastic film
US4585687A (en) * 1983-05-16 1986-04-29 American Hoechst Corporation Copolyester primed polyester film
GB8324006D0 (en) * 1983-09-07 1983-10-12 Fujisawa Pharmaceutical Co Compound fr-900447
US4636805A (en) * 1984-03-23 1987-01-13 Canon Kabushiki Kaisha Record-bearing member and ink-jet recording method by use thereof
US4664952A (en) * 1984-10-23 1987-05-12 Canon Kabushiki Kaisha Recording medium and recording method utilizing the same
US4547405A (en) * 1984-12-13 1985-10-15 Polaroid Corporation Ink jet transparency
JPH0662001B2 (en) * 1985-01-28 1994-08-17 キヤノン株式会社 Recording material for inkjet
EP0191645A3 (en) * 1985-02-15 1987-11-04 Canon Kabushiki Kaisha Recording medium and recording method by use thereof
GB8509732D0 (en) * 1985-04-16 1985-05-22 Ici Plc Inkable sheet
JPS62138280A (en) * 1985-12-11 1987-06-22 Canon Inc Material to be recorded
US4868581A (en) * 1985-12-20 1989-09-19 Cannon Kabushiki Kaisha Ink-receiving composite polymer material
DE3642847A1 (en) * 1986-12-16 1988-07-07 Hoechst Ag DRAWING MATERIAL
US4903039A (en) * 1989-08-14 1990-02-20 Eastman Kodak Company Transparent image-recording elements
US4903040A (en) * 1989-08-14 1990-02-20 Eastman Kodak Company Transparent image-recording elements comprising vinyl pyrrolidone polymers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781985A (en) * 1986-06-20 1988-11-01 James River Graphics, Inc. Ink jet transparency with improved ability to maintain edge acuity
US4903041A (en) * 1989-08-14 1990-02-20 Eastman Kodak Company Transparent image-recording elements comprising vinyl pyrrolidone polymers and polyesters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015455A1 (en) * 1995-10-26 1997-05-01 Minnesota Mining And Manufacturing Company Ink-jet recording sheet

Also Published As

Publication number Publication date
JPH05504113A (en) 1993-07-01
DE69108543D1 (en) 1995-05-04
EP0513329B1 (en) 1995-03-29
US5045864A (en) 1991-09-03
EP0513329A1 (en) 1992-11-19
DE69108543T2 (en) 1995-11-23

Similar Documents

Publication Publication Date Title
US5084340A (en) Transparent ink jet receiving elements
US5126195A (en) Transparent image-recording elements
US4903041A (en) Transparent image-recording elements comprising vinyl pyrrolidone polymers and polyesters
US5139867A (en) Ink jet recording transparency
US4903039A (en) Transparent image-recording elements
US5126193A (en) Ink jet recording sheet
US5126194A (en) Ink jet transparency
US4903040A (en) Transparent image-recording elements comprising vinyl pyrrolidone polymers
EP0970819B1 (en) Ink-jet recording element containing polymeric mordant
US5084338A (en) Transparent image-recording elements containing ink-receptive layers
EP0380133B1 (en) Recording medium and image forming method making use of it
EP0513329B1 (en) Ink-receiving transparent recording elements
US5147717A (en) Transparent image-recording elements
EP1106378B1 (en) Ink jet recording element
JP2922542B2 (en) Thermal transfer image receiving sheet
EP0924099B1 (en) Dye-donor element comprising subbing layer for use in thermal dye transfer
JPS63252779A (en) Recording material
JPH0329595B2 (en)
JP3112642B2 (en) Inkjet recording sheet
JPH01146785A (en) Ink jet recording sheet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992901679

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992901679

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992901679

Country of ref document: EP