WO1992020329A1 - Enzyme systems - Google Patents

Enzyme systems Download PDF

Info

Publication number
WO1992020329A1
WO1992020329A1 PCT/US1992/004048 US9204048W WO9220329A1 WO 1992020329 A1 WO1992020329 A1 WO 1992020329A1 US 9204048 W US9204048 W US 9204048W WO 9220329 A1 WO9220329 A1 WO 9220329A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
product
group
agents
mixtures
Prior art date
Application number
PCT/US1992/004048
Other languages
French (fr)
Inventor
Richard C. Fuisz
Original Assignee
Fuisz Technologies Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuisz Technologies Ltd. filed Critical Fuisz Technologies Ltd.
Priority to AU21401/92A priority Critical patent/AU667312C/en
Priority to EP92912612A priority patent/EP0584245B1/en
Priority to JP5500191A priority patent/JPH07500242A/en
Priority to DE69232721T priority patent/DE69232721T2/en
Priority to US08/150,045 priority patent/US5624684A/en
Publication of WO1992020329A1 publication Critical patent/WO1992020329A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D8/00Methods for preparing or baking dough
    • A21D8/02Methods for preparing dough; Treating dough prior to baking
    • A21D8/04Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes
    • A21D8/047Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes with yeasts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • A23C9/1238Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt using specific L. bulgaricus or S. thermophilus microorganisms; using entrapped or encapsulated yoghurt bacteria; Physical or chemical treatment of L. bulgaricus or S. thermophilus cultures; Fermentation only with L. bulgaricus or only with S. thermophilus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/13Fermented milk preparations; Treatment using microorganisms or enzymes using additives
    • A23C9/1307Milk products or derivatives; Fruit or vegetable juices; Sugars, sugar alcohols, sweeteners; Oligosaccharides; Organic acids or salts thereof or acidifying agents; Flavours, dyes or pigments; Inert or aerosol gases; Carbonation methods
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/13Fermented milk preparations; Treatment using microorganisms or enzymes using additives
    • A23C9/137Thickening substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38663Stabilised liquid enzyme compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38672Granulated or coated enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/535Production of labelled immunochemicals with enzyme label or co-enzymes, co-factors, enzyme inhibitors or enzyme substrates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C2220/00Biochemical treatment
    • A23C2220/20Treatment with microorganisms
    • A23C2220/204Use of bacteria which are encapsulated, entrapped or immobilised; Fermentation with these bacteria
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C2260/00Particular aspects or types of dairy products
    • A23C2260/05Concentrated yoghurt products, e.g. labneh, yoghurt cheese, non-dried non-frozen solid or semi-solid yoghurt products other than spreads; Strained yoghurt; Removal of whey from yoghurt
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/681Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of solid materials for removing an oily layer on water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • U.S. Patent No. 3,749,671 discloses a method of preparing enzyme-containing prills for use in laundry detergents.
  • the disclosed prilling method requires the following steps: (a) heating a normally solid translucent material to a temperature sufficient to melt the material but insufficient to destroy the activity of the enzyme; (b) forming a slurry of the melted material and the enzyme; (c) injecting an inert gas into the slurry to form a uniform dispersion with the gas; and (d) forming prills from the resulting slurry.
  • This method has many steps which require energy, equipment, and manual labor.
  • the proteolytic activity was determined by the method entitled “Determination of Proteolytic Activity 5 Using Azocasein as a Substrate”. This method was provided by Novo Nordisk Bioindustrials, Inc. The principle of the method is to allow the proteolytic enzyme to hydrolyze azocasein for 30 minutes at 40°C.

Abstract

Enzyme products are disclosed. The enzyme products include an enzyme-bearing matrix formed by subjecting a feedstock containing enzyme(s) and carrier materials to conditions which alter the physical and/or chemical structure of the carrier. The matrix suspends the enzyme for protection, delivery, dispersion and activation at the desired time and under selected conditions. Methods of producing the enzyme carrying matrix and enhanced enzyme products are also disclosed.

Description

ENZYME SYSTEMS
BACKGROUND OF THE INVENTION
The present application is a Continuation-In-Part of U. S. Patent Application Serial No. 07/702 , 068 filed on May 17 , 1991.
The present invention relates to new enzyme products. In particular, the invention relates to improved enzyme products such as leavening agents, alcohol fermenters, detergent ingredients, degradation agents, diagnostic agents, biore ediation agents, catalases and oxidases.
Enzymes are proteins which catalyze many biological reactions. As a result of their extraordinary catalytic power and specificity, enzymes have been used to speed up processes that would not otherwise occur. Many isolated enzymes are relatively unstable, often gradually lose activity prior to use, and may be easily inhibited by many factors.
Over the years, a number of enzyme products have been developed for a variety of purposes. For example, foods, detergents, cosmetics and pharmaceuticals have all been enhanced by enzymes. Many commercially prepared enzyme-based products, however, have certain drawbacks. As an illustration, detergent enzymes, are usually produced in powdered or liquid form. They are difficult to handle, may cause an irritating dust, may be incompatible with other detergent products, and may deteriorate in the presence of moisture. The activity of enzymes in liquid detergents, which contain high levels of water and surfactants, tends to decrease over time. Frequently, the surfactants inactivate the enzymes. Consequently, there is a need to prepare enzyme products suitable for detergents which are easy to handle, do not cause irritation to users, and can be distributed uniformly in the detergent without reduced activity.
Similarly, it is important to be able to deliver and activate leavening agents and alcohol fermenters at the desired time and location in a biomass. For example, yeast has a tendency to "clump" together in aggregates which resist being dispersed during mixing. This "clumping" occurs with both dry formulations and paste formulations of yeast when added to dough or to a biomass. Thus, it would be beneficial to be able to suspend agents, such as yeast, in a medium for delivery and release as desired. This is especially true when the receiving material is an extensive mass, such as dough in baking and the biomass in fermentation procedures. Other enzyme-bearing products can benefit from enhanced shelf-life. At room temperature enzymes used as indicators in immunoassays frequently experience short shelf-like. Horseradish peroxidase, lipoprotein lipase, glycerol-3-phosphate oxidase are ordinarily stored as freeze-dried powders at -20°C. Commonly-used assays are conducted in the range of 20-30°C. It is thus important to provide a matrix which can improve the shelf life of enzymes used in immunoassays without impairing their activity.
There have been attempts in the past to deal with the problems associated with the use of enzymes. In United States Patent No. 3,095,358, sorbitol is used to stabilize aqueous solutions containing papain, proteases and amylases. This method requires large amounts of stabilizing agent and is, therefore, expensive.
In U.S. Patent No. 3,296,094, partially hydrolyzed and solubilized collagen and glycerol are used to stabilize aqueous solutions of proteolytic enzymes. This method requires large quantities of glycerol and, therefore, adds significantly to the cost of the enzyme solution.
U.S. Patent No. 3,749,671 discloses a method of preparing enzyme-containing prills for use in laundry detergents. The disclosed prilling method requires the following steps: (a) heating a normally solid translucent material to a temperature sufficient to melt the material but insufficient to destroy the activity of the enzyme; (b) forming a slurry of the melted material and the enzyme; (c) injecting an inert gas into the slurry to form a uniform dispersion with the gas; and (d) forming prills from the resulting slurry. This method has many steps which require energy, equipment, and manual labor.
Although the methods discussed above represent efforts to improve enzyme-containing detergent products, the problems associated with the decreases in enzyme activity over time and adequate dispersal have not been solved.
It is, therefore, an object of this invention to provide an enzyme product which disperses or dissolves uniformly in the target liquid while retaining the enzyme activity for prolonged periods of time prior to use.
It is another object of this invention to provide a matrix which facilitates mixing an enzyme with a mass so that the enzyme can be dispersed efficiently throughout the mass. I is yet another object of this invention to provide an enzyme product that exhibits an enhanced shelf life.
Other and further objects of the present invention will become apparent the following description and its scope will be pointed out with the appended claims.
SUMMARY OF THE INVENTION
The present invention includes an enzyme product which contains a matrix formed by subjecting a feedstock containing an enzyme and a carrier material to conditions of temperature and shear sufficient to produce the matrix which suspends the enzyme for storage and use. The carrier material undergoes transformation during processing in which its physical and/or chemical structure is altered.
"Enzyme product" in the present invention means a product which includes one or more enzymes. A nonlimiting list of enzymes which can be suspended in the matrix includes amylases, proteases, invertases, glucose oxidases, pectinases. Upases, lactases, and cellulases. The enzymes make up from about 1% to about 30% by weight of the matrix, with amounts of from about 5% to about 25% being preferred and the amounts are from about 10% to about 20% being most preferred. Carrier materials which can be used for the matrix are saccharides, thermoplastic polymers, biodegradable polymers and water soluble cellulosic materials. The saccharides may be sucrose, lactose, fructose, dextrose, sorbitol, mannitol, maltose and mixtures thereof. The saccharides may also be selected from polydextrins, maltodextrins, and mixtures thereof. Thermoplastic polymers include polypropylene, polystyrene, polyethylene, polyvinylacetate, polyvinylalcohol, poly (methyl methaσrylate) , polyacrylic resins, lactide/glycolide copolymer and mixtures thereof. Biodegradable polymers include poly(cis-isoprene) aliphatic polyesters, polyurethanes and urea- formaldehyde polymers. The cellulosic materials are water soluble and include methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, ethyl cellulose, alkali metal salts of carboxy methyl cellulose and mixtures thereof.
As a result of the present invention, enzymes can be suspended, protected, dispersed and generally engineered for selective delivery at desired sites under selected conditions. Various enzyme products can be provided which disperse or dissolve uniformly in the target liquid, biomass, etc. The enzyme products of this invention can also be designed to retain their activity for long periods of time prior to use. A non- inclusive list of uses for the matrix of the invention includes leavening agents, alcohol fermenters, detergents, digestive aid products, clinical diagnostic agents, bioremediation agents, meat tenderizing products, wound debridement and other therapeutical uses.
For a better understanding of the present invention, reference is made to the following description and its scope will be pointed out in the appended claims.
DETAILED DESCRIPTION OF THE INVENTION In the present invention an enzyme-bearing matrix can be formed by subjecting carrier feedstock and an enzyme to conditions of temperature and shear to form the matrix. This can be accomplished by melt-spinning the enzyme with carrier materials. The matrix is included in various enzyme-based products such as leavening agents, alcohol fermenters, detergents, diagnostic agents, degradation products, petroleum hydrocarbons degraders, digestive aids, therapeutic enzymes, etc.
The spinning process can be carried out with "cotton candy" fabricating-type equipment. The spinning machine used in the present invention can be a cotton candy-type machine, such as the Econo Floss model 3017 manufactured by Gold Medal Products Company of Cincinnati, Ohio. It will be appreciated by those skilled in the art that any apparatus or physical process which provides similar forces and temperature gradient conditions can also be used. For simplicity in disclosing and describing this invention, the term "melt-spinning" will be understood to mean a process which includes a combination of temperature, shear, flow, flow rate, mechanical forces and thermal gradients of the type produced by a cotton candy-type machine.
The apparatus is operated at a temperature and speed which induce flash flow of certain carrier feedstocks without deterioration of the feedstock and enzyme(s) being processed. The resulting matrix is in the form of a floss, fibre, particle, flake, spicule, or other generally non-descript aggregate capable of protectively carrying and delivering an enzyme.
The process for producing the matrix includes introducing a mixture containing an enzyme and a carrier material simultaneously to conditions of elevated temperature and shear created by centrifugally forcing the ingredients through orifices. The extremely short amount of time the ingredients are exposed to the elevated temperature and shear allows the matrix to be formed without adverse effects. The flash flow phenomena occurs when a solid carrier material mixed with an enzyme is subjected to conditions of melt-spin sufficient to provide internal flow. This condition produces the transformation in physical and/or chemical structure without degradation of the material. Internal flow occurs when the infrastructure of the material breaks down sufficiently to permit movement of material at a subparticle level, and probably at a molecular level. At a molecular level, internal flow contemplates the movement of molecules relative to each other.
Internal flow of material is generally associated with melting point or glass transition point. However, it is contemplated that the combined application of heat and external force is sufficient to produce flow at temperatures below the melting or glass transition point for most compositions.
The enzymes dispersed in the matrix are selected from animal-derived, plant-derived and microbially- derived preparations. These enzymes can be used as part of a leavening product, an alcohol fermenter, a detergent, a clinical diagnostic agent or a bioremedient and possibly mixtures thereof. A nonlimiting list includes amylases, proteases, invertases, oxidases, catalases, pectinases, lipases, lactases, cellulases and mixtures thereof. In one aspect of the present invention, the matrix may be formed by mixing the carrier material with degradation enzymes such as cellulases, cutinases, lipases and pectinases and mixtures thereof. Cellulase sources include those originating in the genera Trichoderma, Penicilliu , Aspergillus, Clostridium, etc. Additional cellulases can include commercially available products. Such cellulases are capable of degrading the water insoluble cellulose polymer which is part of the surface membrane of fruits and vegetables.
Cutinase sources include those originating in the genera Pseudomonas, Fusarium, Botrytis, Ulocladium, etc.
Additional cutinases can include commercially available products. Cutinases are capable of degrading water insoluble cutin polymer which may be present as part of the surface membrane of fruits or vegetables.
Lipase sources include those originating in the genera Staphylococcus, Candida, Rhizopus, etc. Additional lipases can include commercially available products. Such lipases are capable of degrading water insoluble glycerol components comprising part of the surface membrane of fruits or vegetables.
Pectinase sources include those originating in the genera Rhizopus, Penicillium, Aspergillus, etc. Additional pectinases can include commercially available products. Such pectinases are capable of degrading the water insoluble pectin components comprising part of the surface membrane of fruits or vegetables.
The enzyme bearing matrix of the invention has many uses. For example, a cellulase matrix may be used to increase the permeability of the surface membrane of fruits and vegetables. The increased water permeability across the surface membrane permits easier delivery of substances such as flavorings, sweeteners, stabilizers and preservatives to the interior of the fruit or vegetable. Additionally, the increased water permeability allows for a more efficient method of dehydration of fruits and vegetables. More importantly, the use of naturally produced degradation enzymes as permeability enhancers replaces the use of chemicals such as methanol, chloroform or alkali metal hydroxides, which, if ingested, pose potential harmful side effects to consumers of fruits and vegetables.
Another important use for the enzyme carrier matrix of this invention is in the preparation of clinical diagnostics products. A nonli iting list of active ingredients found in clinical diagnostic products include ascorbic acid oxidase, α-glycerophosphate oxidase, lactate oxidase, uriase, cholesterol esterase, cholesterol ester hydrolase, creatinine amino hydrolase, lipase, glycerol kinase, and mixtures thereof. The clinical enzyme products contemplated herein are particularly well-suited for use with the matrix of the invention when it is desired to disperse the dry powder enzymes in aqueous liquids. It should be readily apparent to the skilled artisan that all of the active ingredients may also be provided in dry or lyophilized form and reconstituted with water prior to use. Compositions of this type are clearly contemplated by this invention. Clinical diagnostic enzymes carried in the matrix of the invention can also be incorporated into single-layer or multi-layer analytical elements of the types known in the prior art.
In another aspect of this invention, the matrix may oe used to enhance the shelf-life and activity of enzymes used in immunoassays. For example, when horseradish peroxidase was spun with the matrix of the invention, the enzyme exhibited a longer shelf-life, and became more readily active.
Another class of enzyme products according to the invention are improved detergent enzymes. Detergent enzymes are known in the art as enzymes which attack stains or soiled areas of fabrics. Suitable categories of active detergent enzymes found in improved detergents include proteases, lipases, amylases, and mixtures thereof. The preferred detergent enzymes are proteases such as subtilisin and amylases such as those derived from the bacillus species.
The new matrix can be used alone or in combination with other ingredients as a means for dispersing the added ingredients throughout the material. For example, particles, chips, flakes, spicules or combinations thereof can be used to disperse enzymes which are otherwise relatively non-dispersable because of the physical characteristics of such materials. Thus, the matrix of the invention can be used to carry detergent enzymes to be dispersed more easily and uniformly in other materials present in detergent formulations, such as surfactants, builders, whitening agents, bleaching agents and the like.
In certain embodiments the enzymes are present in the host microorganism such as in fungi, bacteria or algae. Examples of host microorganisms include yeasts, bio-remediation materials and the like.
In another aspect of the invention, yeasts may be melt-spun with selected carrier materials to obtain enhanced leavening products. Yeasts are single cell microorganisms containing enzymes which are employed in large scale fermentation processes. The commercial production of fermented beverages, foods, production of vitamins, alcoholic fermentation, antibiotic producing fermentations, all require yeasts or their enzymes to produce products simpler than the starting material. Regardless of the substrate used or the chosen microorganism, industrial fermentations require various nutrients for growth including carbohydrates, nitrogen- containing compounds, growth factors, vitamins and minerals. In most fermentations, these nutritional requirements are met by including, among others, yeast
Figure imgf000016_0001
In the production of alcoholic beverages, cereal grains are the principal raw material. Another important ingredient is malt that is used to produce amylase. Amylases are organic enzymes that change grain starch into maltose. In fermentation, zymase which is produced by yeasts converts the amylase produced maltose into ethyl alcohol and carbon dioxide. Saccharomyces cervisiae is the most common type of yeast used in alcoholic fermentation to generate zymase.
In fermentation processes desired metabolic changes frequently occur in a narrow temperature and pH range. Accordingly, to increase product yields, it is important to deliver yeasts having enzymatic activity in a narrow temperature and pH range. In addition, to optimize product yields, the yeasts must be rapidly and uniformly dispersable in the target liquid. Thus, yeasts suspended in the matrix of the invention are easily dispersable in the nutrient medium and have been found. in some cases, to be more readily active.
In another aspect of this invention, the matrix may be used to enhance the shelf-life and activity of enzymes used in yeasts. For example, when Fleischman's dry yeast was spun with the matrix of the invention, the yeast exhibited a longer shelf-life and became more readily active.
Another significant use for the enzyme carrier matrix of the invention finds application in the biodegradation of petroleum hydrocarbons. Many species of bacteria, fungi and algae have the enzymatic capability to use petroleum hydrocarbons as food. The bacteria genera most frequently isolated as hydrocarbon degraders are Pseudomonas, Acinetobacter, Flavobacterium, Brevibacterium, Corynebacterium, Arthrobacter. The fungus genera include Candida, Cladosporium, Trichosporium and Rhodotorula. These bacteria and fungi are present in the environment. Genetically engineered bacteria which have the enzymatic capability of degrading several groups of hydrocarbons can also be used as petroleum biodegraders.
Using the matrix of the invention, it is possible to disperse rapidly and uniformly these biodegrading agents and their nutrients into an otherwise hydrophobic or immiscible environment. In this manner the microbial cleanup of oil spills occurs more rapidly.
In yet another aspect of this invention, the enzyme carrying matrix may be used in the field of enhanced oil recovery. Microbial products, as well as viable microorganisms, suspended in the matrix may be used as stimulation agents to enhance oil recovery from petroleum reservoirs. For example, a strain of Acinetobacter calcoaceticus produces emulsan, a lipopolysaccharide used to stabilize oil in water emulsions. Xanthomonas campestris is a microbial product producing xanthan, a polysaccharide used as a water flood thickening agent in oil recovery. Both these microbial products become easily miscible in petroleum reservoirs when delivered with the matrix of the invention. The result is enhanced oil recovery.
The ability of microorganisms to use petroleum as food also has detrimental effects. For example, petroleum fuels cannot become contaminated with water or microorganisms during storage. Such contamination poses a serious problem for kerosine based jet aircraft fuels. To diminish this problem, antimicrobials that concentrate at the oil/water interfaces may be used to reduce the rate of microbial contamination of hydrocarbons. Antimicrobial organisms may be delivered at the oil/water interfaces by using the matrix of the invention. 1 The carriers used in the invention can be any material capable of being processed to form a matrix which can protectively suspend the enzyme for storage
5 and/or selective delivery to the site and/or environment for release and activation. Carrier materials contemplated for use may be saccharide based, thermoplastic polymers, biodegradable polymers, and/or 0 . . . water soluble cellulosic material and mixtures thereof.
A non-limiting list of suitable saccharide carriers include sucrose, lactose, fructose, dextrose, sorbitol, 5 mannitol, maltose, synthetically-derived saccharide materials such as polydextrose, and the like and mixtures thereof. Alternative saccharide materials such o as maltodextrins and/or corn syrup solids are also useful. Please note that for purposes of this invention, applicant refers to maltodextrins and corn syrup solids (as defined by the FDA) collectively as 5 maltodextrins.
Suitable thermoplastic polymers can include polypropylene, polystyrene, polyethylene, polyvinyl 0 acetate, polyvinyl alcohol, poly(methacrylate) , polyacrylic resins, lactide/glycolide copolymer and mixtures thereof. Suitable water-soluble cellulosic materials can include methylcellulose, ethylcellulose, 5 hydroxymethyl or ethylcellulose, alkali-metal salts or carboxymethylcelluloses and the like and mixtures thereo .
In a preferred embodiment of this invention, maltodextrin has been selected as possessing unique properties as carrier material for the matrix of the invention. Maltodextrins are composed of water-soluble glucose-based polymers obtained from the reaction of starch with enzymes or acid in the presence of water. The hydrolysis reaction produces a carbohydrate mixture of saccharides having a dextrose equivalence (D.E.) of less than 40. In one embodiment of the invention, the D.E. is between 20 and 40. (These maltodextrin products have been classified by the FDA as corn syrup solids) . In another embodiment, the D.E. is between 10 and 20. The maltodextrins useful in the present invention include some products sold under the trademark MALTRIN® by the Grain Processing Corporation of Muscatine, Iowa or "Dri-Sweet" variety of maltodextrins sold by the Hubinger Company of Keokuk, Iowa. Such products are available as powders, granules or the like.
The enzyme and the maltodextrin can be combined by physically mixing the two ingredients. Ingredients can be combined using a blender or any technique known in the art. The maltodextrin and the enzyme can also be mixed as a dispersion. The dispersion is formed by contacting the combination of ingredients with an aqueous medium. Dispersion allows the combination to be mixed with other materials so that a substantially homogenous mixture of all ingredients is obtained in the final enzyme product.
EXAMPLES
The following examples serve to provide further appreciation of the invention but are not meant in any way to restrict the effective scope of the invention.
EXAMPLE 1
A quantity of Columbo® No Fat Yogurt was placed in cheese-cloth in a refrigerator for 48 hours permitting the major portion of the water in the yogurt to drain out. The drained yogurt was then mixed with 35R corn syrup solids in the ratio of 1:9. This mixture was subjected to melt spinning with an Econo Floss® machine yielding a quantity of flakes which were thereafter maintained unrefrigerated for a period of seven days. At the end of the seven day period, the flakes were added to skim milk in the ratio of 4 teaspoons of flakes to 1 cup of skim milk. This mixture was then placed in a 110°F. environment for 24 hours.
A nice yogurt resulted from which it can be concluded that yogurt can be made in dry form by the subject process which dry form can be stored and subsequently reconstituted.
EXAMPLE 2
This example was carried out using packets of "Fleischman's" dry yeast available in any grocery store. Two packets of the yeast were mixed with 20 grams polypropylene powder obtained from Aldrich Chemical Co., Inc. After mixing, the mixture was spun in the floss machine producing a fibrous floss.
A series of three 1 pint plastic bottles were prepared. Into the first (bottle #1) was placed 10 gm of this floss after first rinsing the floss in tap water. Into the second bottle (bottle #2) was placed an equal weight of the floss but without rinsing. Into the third bottle (bottle #3) was emptied a packet of yeast. To each bottle was added 3 gm sucrose and one-half pint of tap water. Over the neck of each bottle was fastened an elastomeric balloon, and the conditions of the three balloons were observed and noted over a period of 24 hours.
It was observed that gas was evolved causing inflation of the balloons to a greater or lesser extent. Measured on a scale of 1 to 5 with 1 being minimal and 5 being maximal, the following relative balloon inflations were noted. For bottle #1 the inflations were about 3 and 4 after, respectively, 2 and 24 hours. For bottle #2 the corresponding inflations were 2 and 4, while for bottle #3 the corresponding inflations after 2 and 24 hours were 1 and 5.
From the foregoing it was established that the floss modified yeast was active more rapidly than the original unmodified yeast, that rinsing the floss accelerated the release of yeast activity from the floss, and that after 24 hours, whether initially rinsed or not, the floss produced substantially the same amount of total activity. However, the total gas generated due to east activity derived from the floss was not quite as great as that provided by the unmodified yeast.
The yeast provided in the floss material was easily handled and ideal for mixing in a substantial mass, such as a mass of dough in a baking process or a biomass in a formation procedure.
EXAMPLE 3
Ten grams of Dri-Vac Lactic culture obtained from Chris Hansen Laboratories containing Streptococcus thermophilus and Lactobacillus bulgaricus was mixed with 5 grams of corn oil. 85 grams of Maltrin® 365 from Grain Processing Corporation (GPC) were slowly added to the mixture while mixing continued until all ingredients were blended thoroughly. One third of the final mixture was saved as an unspun control and two thirds of the final mixture was processed by flash flow in an Econo Floss® spinner at 135-145°C at 3600 rpm to produce spun flakes.
The following culture samples were prepared:
A. 180 grams of sterilized whole milk with 2.5 grams of the above spun flakes;
B. 180 grams of sterilized whole milk with 2.5 grams of the unspun control mixture; and
C. 180 grams of sterilized whole milk with 0.25 grams of the Dri Vac Lactic culture.
The samples were cultured in a 40°C water bath overnight. Sample A resulted in a smooth, firm and intact mass of yogurt which had a velvety smooth texture when separated into pieces with a spoon. Samples B and C produced a yogurt which had a coarse, porous texture. The mass of samples B and C was not as firm as that of Sample A. The texture of Sample A had much better mouthfeel than Samples B and C.
The addition of a proven amount of culture to the sterilized milk is much easier to obtain with the flakes than with the original lactic culture. Thus, the present invention enables the artisan to prepare a yogurt product more efficiently and with predictable results.
EXAMPLE 4
This example is carried out using packets of Fleischman's active dry-yeast available in grocery stores. The yeast was finely ground in a ceramic mortar and pestle and sieved through 60 and 80 mesh screens. Five grams of the sieved yeast were mixed with 2.5 grams of corn oil. The mixture was then added to 42.5 grams of Maltrin® 365 brand maltodextrin obtained from GPC and mixed until a homogenous yeast mixture was obtained.
The yeast mixture was processed by flash flow at 135-140° at 3600 r.p.m. in an Econo Floss® spinning machine producing yeast bearing flakes.
Two one-pint plastic bottles were prepared. Into the first (bottle #1) was placed 10 grams of yeast- bearing flakes. One gram of the sieved yeast was placed into the second bottle (bottle #2) . To each bottle was added 15 grams sucrose and one-half pint of tap water. Over the neck of each bottle was fastened an elastomeric balloon, the conditions of the three balloons were observed and noted over a period of 24 hours.
Observing the inflation of the balloons, it appears that the bottle with the flakes inflated the balloon to approximately the same extent as the bottle with the sieved yeast. However, the rate of inflation for bottle
#1 was less than that for bottle #2.
The flakes produced in the present example provided a suitable medium for handling and mixing yeast in large masses such as dough for baking or a biomass undergoing fermentation.
EXAMPLE 5
95 gr. of Maltrin® 365 obtained from GPC and 0.1 gram of Horseradish Peroxidose obtained from Genzyme
Diagnostics were mixed thoroughly by geometric dilution. Five grams of mineral oil was then added slowly while mixing until a uniform mixture was obtained.
The enzyme mixture was processed by flash flow at 135-140°C at 3600 r.p.m. on an Econo Floss spinning unit resulting in light pink flakes.
The enzymatic activity of processed and unprocessed enzyme was determined by the method entitled Peroxidase. This method was supplied by Genzyme Diagnostics. The principle of this method is the oxidation of Pyrogallol to Purpurogallin by Peroxidase. Reactivity is determined by time course ultraviolet (UV) spectrophotometry. The reaction rate is determined by the slope between 20 and 30 seconds.
The enzyme in the flakes remained active after the flash flow processing. Samples of the processed and unprocessed enzymes were held at 135°C for one hour and analyzed for activity. The enzyme in the flake retained the same level of activity as before incubation while the unprocessed enzymes had lost about 20% of its activity. Thus, the present invention significantly enhanced the stability of the enzyme.
EXAMPLE 6
A 100 gram mixture of Maltrin® 365 from GPC and 10% w/w of the amylase enzyme Termamyl from Novo Nordisk was obtained by thoroughly mixing in a mortar and pestle assembly. The mixture was processed by flash flow at 3600 rpm and 135-140°C using an Econo Floss® spinning unit. The processed material was stored at 5°C until it was analyzed for enzymatic activity.
Thereafter, a sample of the processed flakes and the unprocessed enzyme were equilibrated in an oven at 100°C to determine stability. After four hours the enzyme in the flakes had retained substantially all its original activity while the unprocessed sample had lost over half of its original activity. The enzymatic activity was determined by the method entitled "Manual Procedure for Determination of Alpha- Amylase Activity in Enzyme Preparations and Detergents". This method was provided by Novo Nordisk Bioindustrials, Inc. The principle of the method is to allow the alpha- amylase to degrade a starch polymer substrate. Phadebas tablets (Phadebas® Amylase Test, supplied by Pharmacia Diagnostics) are used. This material is a cross-linked water insoluble blue colored starch polymer. The tablet also contains bovine serum albumin and a buffer substance. After the tablet is suspended in water, the starch is hydrolysed by the alpha-amylase, giving soluble blue fragments. The absorbance of the resulting blue solution measured at 620 nm (UV spectrophotometry) is a function of the alpha-amylase activity.
Thus, the present invention produced an enzyme- bearing flake which remained active under equilibrated conditions set forth above for a longer period of time than the untreated enzyme.
EXAMPLE 7
A 200 gram mixture of the Maltrin® 365 from GPC and 10% w/w of the protease enzyme Alcalase from Novo Nordisk was obtained by thoroughly mixing in a mortar and pestle assembly. The mixture was processed by flash flow at 3600 rpm and 135-140°C using an Econo Floss -* spinning unit. The processed material was stored at 5°C until it was analyzed for enzymatic activity.
5 Thereafter, a sample of the spun enzyme and the unspun enzyme were equilibrated in an oven at 57°C for 21 hours to determine stability. After 21 hours, both samples retained substantially the same activity as was 0 present in the original spun and unspun sample.
The proteolytic activity was determined by the method entitled "Determination of Proteolytic Activity 5 Using Azocasein as a Substrate". This method was provided by Novo Nordisk Bioindustrials, Inc. The principle of the method is to allow the proteolytic enzyme to hydrolyze azocasein for 30 minutes at 40°C.
Undigested protein is precipitated with trichloroacetic acid and the quantity of digested product is determined by ultraviolet (UV) spectrophotometry.
The protease enzyme remained active after flash flow processing for the same period of time as the untreated enzyme.
The products and process of the present invention have shown dramatic improvement in enzyme-handling and use art. -1- Moreover, while there have been described what are presently believed to be the preferred embodiments of the preferred invention, those skilled in the art will
5 realize that changes in modification may be made thereto without departing from the spirit of the invention, and it is intended to claim also changes and modifications as forward in the true scope of the invention.

Claims

WHAT IS CLAIMED IS:
1. An enzyme product comprising an enzyme-bearing matrix formed by subjecting a feedstock comprising said enzyme and a carrier material to conditions which alter the physical and/or chemical structure of said carrier to form said enzyme-bearing matrix for delivery of said enzyme as desired for said product.
2. The enzyme product of Claim 1, wherein said conditions comprise subjecting said mixture simultaneously to flash heating and applied physical force.
3. The enzyme product of Claim 2, wherein said conditions are created by melt-spinning said feedstock.
4. The enzyme product of Claim 1, wherein said carrier material is selected from the group consisting of saccharides, thermoplastic polymers, biodegradable polymers, and water-soluble cellulosic materials.
5. The enzyme product of Claim 4, wherein said saccharides are selected from the group consisting of polydextrose, maltodextrins, sucrose, lactose, dextrose, mannitol, sorbitol, glucose, maltose and mixtures thereof.
6. The enzyme product of Claim 4, wherein said thermoplastic polymers are selected from the group consisting of polypropylene, polystyrene, polyethylene, polyvinyl acetate, polyvinyl alcohol, poly(methyl methacrylate) , polyacrylic resins, lactide/glycolide copolymer and mixtures thereof.
7. The enzyme product of Claim 4, wherein said biodegradable polymers are selected from the group consisting of poly(cis-isoprene) , aliphatic polyesters, polyurethanes and urea-formaldehyde polymers.
8. The enzyme product of Claim 4, wherein said cellulosic materials are selected from the group consisting of methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, ethyl cellulose, alkali metal salts of carboxy methyl cellulose and mixtures thereof.
9. The enzyme product of Claim 1, wherein said enzyme is selected from the group consisting of amylases, proteases, invertases, oxidases, catalases, pectinases, lipases, lactases, cellulases and mixtures thereof.
10. The enzyme product of Claim 9, wherein said enzyme is present in an amount from about 2% to about 40% by weight of the matrix.
-Si¬ ll. The enzyme product of Claim 10, wherein said enzyme is present in an amount from about 10% to about 30%.
12. The enzyme product of Claim 11, wherein said enzyme is present in an amount from about 15% to about 22%.
13. The enzyme product of Claim 1, wherein said enzyme is present in an amount from about 1% to about 10% by weight of said product and said enzyme is a protease.
14. The enzyme product of Claim 1, wherein said enzyme is selected from the group consisting of leavening agents, fermentation agents, biodegradation products, detergent agents, immunoassay agents, clinical diagnostic agents, food digestive aids and therapeutic agents.
15. A baking dough comprising the enzyme product of Claim 1, wherein said enzyme is a leavening agent.
16. A fermentation biomass comprising the enzyme product of Claim 1, wherein said enzyme is a fermentation agent.
17. A yogurt product comprising the enzyme product of Claim 1, wherein said enzyme is contained in a yogurt culture.
18. A detergent formulation comprising the enzyme product of Claim 1.
19. The detergent formulation of Claim 18, wherein said enzyme is subtilisin.
20. A method of preparing an enzyme product comprising: providing an enzyme-bearing matrix formed by subjecting a feedstock comprising said enzyme and a carrier material to conditions which alter the physical and/or chemical structure of said carrier to form said enzyme-bearing matrix for delivery of said enzyme as desired for said product.
21. The method of Claim 20, wherein said conditions comprise subjecting said feedstock simultaneously to flash heating and applied physical force.
22. The method of Claim 21, wherein said conditions are created by melt spinning said feedstock.
23. The method of Claim 20, wherein said carrier material is selected from the group consisting of saccharides, thermoplastic polymers, biodegradable polymers and water soluble cellulosic materials.
24. The method of Claim 23, wherein said saccharides are selected from the group consisting of polydextrose, maltodextrins, sucrose, lactose, dextrose, mannitol, sorbitol, glucose, maltose, and mixtures thereof.
25. The method of Claim 23, wherein said thermoplastic polymers are selected from the group consisting of polypropylene, polystyrene, polyethylene, polyvinyl acetate, polyvinyl alcohol, poly (methyl methacrylate) , polyacrylic resins, lactide/glycolide copolymer and mixtures thereof.
26. The method of Claim 23, wherein said biodegradable polymers are selected from the group consisting of poly(sis-isoprene) , aliphatic polyesters, polyurethenes and urea formaldehyde polymers.
27. The method of Claim 23, wherein said cellulosic materials are selected from the group consisting of methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, ethyl cellulose, alkali metal salts of carboxy methyl cellulose and mixtures thereof.
28. The method of Claim 20, wherein said enzyme is selected from the group consisting of amylases, proteases, invertases, oxidases, catalases, pectinases, lipases, lactases, cellulases and mixtures thereof.
29. The method of Claim 28, wherein said enzyme is present in an amount from about 1% to about 30% by weight of the matrix.
30. The method of Claim 29, wherein said enzyme is present in an amount from about 5% to about 25%.
31. The method of Claim 30, wherein said enzyme is present in an amount from about 10% to about 20%.
32. The method of preparing an enzyme product according to Claim 20, wherein said enzyme is selected from the group consisting of leavening agents, fermentation agents, biodegradation products, detergent enzymes, immunoassay agents, clinical diagnostic agents and food digestive aids.
33. A method of preparing a detergent comprising combining an enzyme-bearing matrix formed by subjecting a feedstock comprising an enzyme and a carrier material to conditions which alter the physical and/or chemical structure of said carrier to form said enzyme-bearing matrix for delivery of said enzyme as desired with detergent ingredients to provide said detergent.
PCT/US1992/004048 1991-05-17 1992-05-13 Enzyme systems WO1992020329A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU21401/92A AU667312C (en) 1991-05-17 1992-05-13 Enzyme systems
EP92912612A EP0584245B1 (en) 1991-05-17 1992-05-13 Enzyme systems
JP5500191A JPH07500242A (en) 1991-05-17 1992-05-13 enzyme system
DE69232721T DE69232721T2 (en) 1991-05-17 1992-05-13 ENZYME SYSTEMS
US08/150,045 US5624684A (en) 1991-05-17 1992-05-13 Enzyme systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70206891A 1991-05-17 1991-05-17
US702,068 1991-05-17

Publications (1)

Publication Number Publication Date
WO1992020329A1 true WO1992020329A1 (en) 1992-11-26

Family

ID=24819742

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US1992/004053 WO1992020330A1 (en) 1991-05-17 1992-05-13 New thermoplastic polymeric material and process for making same
PCT/US1992/004048 WO1992020329A1 (en) 1991-05-17 1992-05-13 Enzyme systems

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US1992/004053 WO1992020330A1 (en) 1991-05-17 1992-05-13 New thermoplastic polymeric material and process for making same

Country Status (10)

Country Link
US (2) US6129926A (en)
EP (2) EP0584245B1 (en)
JP (2) JPH07502050A (en)
KR (1) KR100241403B1 (en)
AU (1) AU653040B2 (en)
CA (2) CA2102607A1 (en)
DE (2) DE69232721T2 (en)
DK (1) DK0584228T3 (en)
HU (2) HU214736B (en)
WO (2) WO1992020330A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540460A1 (en) * 1991-10-25 1993-05-05 Fuisz Technologies Ltd. Novel saccharide-based matrix
WO1997001629A1 (en) * 1995-06-28 1997-01-16 Novo Nordisk A/S A cellulase with reduced mobility
WO1998026911A1 (en) * 1996-12-18 1998-06-25 Jumik Technologies Limited Polymer processing method and tablet-forming apparatus
EP1005652A1 (en) * 1997-08-12 2000-06-07 McIntyre, John A. Antigens embedded in thermoplastic
WO2001044422A2 (en) * 1999-12-14 2001-06-21 Henkel Kommanditgesellschaft Auf Aktien Particulate wetting agent and machine dishwashing agent
WO2002028991A1 (en) * 2000-10-02 2002-04-11 Novozymes A/S Particles containing active in visco-elastic liquids
US6617026B2 (en) 2000-10-02 2003-09-09 Novozymes A/S Particles containing active in visco-elastic liquids
US7026375B1 (en) 1998-08-26 2006-04-11 Pvaxx Research And Development Limited PVA-containing compositions
US7195777B2 (en) 2000-03-01 2007-03-27 Pvaxx Research & Development Limited Method and apparatus for blowmoding capsules of polyvinylalcohol and blowmolded polyvinylalcohol capsules

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518730A (en) * 1992-06-03 1996-05-21 Fuisz Technologies Ltd. Biodegradable controlled release flash flow melt-spun delivery system
US5843922A (en) * 1994-07-29 1998-12-01 Fuisz Technologies Ltd. Preparation of oligosaccharides and products therefrom
US5858952A (en) * 1995-12-22 1999-01-12 Kao Corporation Enzyme-containing granulated product method of preparation and compositions containing the granulated product
RU2213460C2 (en) * 2001-07-23 2003-10-10 Зенович Сергей Михайлович Method for obtaining food, predominantly, lactic acid product (variants)
US20050148488A1 (en) * 2002-05-15 2005-07-07 Maren Jekel Detergent tablets with active phase
JP4530990B2 (en) * 2002-10-11 2010-08-25 ユニバーシティ オブ コネチカット Blends of amorphous and semi-crystalline polymers with shape memory properties
DE10260137B4 (en) * 2002-12-20 2004-11-18 Schroeter, Johannes, Dr. Process for the plastic deformation of polymers
US20090162481A1 (en) * 2004-05-25 2009-06-25 Watson James B Live bacteria product
US20100074873A1 (en) * 2004-05-25 2010-03-25 Watson James B Live bacteria product
US8802171B2 (en) * 2004-05-25 2014-08-12 James B. Watson Live organism product
US20090162419A1 (en) * 2004-05-25 2009-06-25 Watson James B Live bacteria product
US20050266027A1 (en) * 2004-05-25 2005-12-01 Watson James B Live organism product
US20100080869A1 (en) * 2004-05-25 2010-04-01 Watson James B Live Bacteria product
US20060188630A1 (en) * 2005-02-23 2006-08-24 Rettey David C Bread and dough composition and method
BRPI0708504A8 (en) * 2006-03-02 2017-03-01 Danisco Us Inc Genecor Div surface active bleach and dynamic ph
US8303874B2 (en) 2006-03-28 2012-11-06 E I Du Pont De Nemours And Company Solution spun fiber process
US20080292855A1 (en) * 2007-05-21 2008-11-27 Manderfield Cary E Methods of delivering fragrance using ethylene vinyl acetate ribbon
US9848634B2 (en) 2009-06-30 2017-12-26 Philip Morris Products S.A. Smokeless tobacco product
EP2595487B1 (en) 2010-07-21 2018-10-31 Novozymes A/S Process for producing a baked product having increased flavor stability with catalase and phospholipase
AR086993A1 (en) 2011-06-20 2014-02-05 Gen Biscuit GALLETITA MASS
US9139458B2 (en) 2013-03-15 2015-09-22 Janet Angel Compositions and methods of use
WO2016060224A1 (en) * 2014-10-17 2016-04-21 合同酒精株式会社 Lactase solution and milk using same
US20200270549A1 (en) * 2015-12-03 2020-08-27 E. I. Du Pont De Nemours And Company An enzyme delivery system and methods relating thereto
US11472099B2 (en) * 2017-02-14 2022-10-18 Covestro Deutschland Ag Method for producing an object by means of an additive manufacturing process using a polycarbonate building material with improved flowability
CN114687057B (en) * 2020-12-30 2023-06-09 江苏青昀新材料有限公司 Flash evaporation sheet and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072658A (en) * 1974-05-18 1978-02-07 Kanebo, Ltd. Novel phosphorus- and bromine-containing polymers
US4335232A (en) * 1981-07-07 1982-06-15 E. I. Du Pont De Nemours And Company Optically anisotropic melt forming polyesters
US4855326A (en) * 1987-04-20 1989-08-08 Fuisz Pharmaceutical Ltd. Rapidly dissoluble medicinal dosage unit and method of manufacture
US4871501A (en) * 1984-11-09 1989-10-03 Sumitomo Chemical Company Process for melt spinning aromatic polyester

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3118396A (en) * 1964-01-21 Machine for making candy
US2826169A (en) * 1954-01-21 1958-03-11 Veen Harry H Le Reflective heat insulating coating for animals
US2918404A (en) * 1956-07-30 1959-12-22 Ortho Pharma Corp Solid compressed amino acid spermicidal vehicle
US3067743A (en) * 1958-11-12 1962-12-11 Alginate Ind Ltd Alginic compounds
US3131428A (en) * 1958-12-19 1964-05-05 Celanese Corp Spinneret and spinning method
US3036532A (en) * 1960-06-28 1962-05-29 Bowe John Cotton candy machine with product of alternating colors
US3019745A (en) * 1960-10-03 1962-02-06 Bois Albert Du Sugar spinning machine
US3070045A (en) * 1961-04-24 1962-12-25 Bowe John Machine for spinning sugar
US3073262A (en) * 1961-08-16 1963-01-15 Bowe John Spinner head for candy cotton machine
NL136087C (en) * 1962-01-15
US3095258A (en) * 1962-06-22 1963-06-25 Du Pont Melt spinning process for producing hollow-core filament
US3308221A (en) * 1963-05-14 1967-03-07 Allied Chem Melt spinning of modified cross section yarn
US3482998A (en) * 1966-02-17 1969-12-09 Gen Mills Inc Process for preparing ground meat composition
US3766165A (en) * 1966-08-17 1973-10-16 Pfizer Polysaccharides and their preparation
US3595675A (en) * 1966-11-21 1971-07-27 Gen Mills Inc Gelatin composition
US3615671A (en) * 1968-04-19 1971-10-26 Gen Foods Corp Dry food products in spun filaments and method of making same
US3723134A (en) * 1968-05-17 1973-03-27 Gen Mills Inc Process for making candy floss
US3762846A (en) * 1968-05-17 1973-10-02 Gen Mills Inc Process and apparatus for making candy floss
US3557717A (en) * 1968-05-17 1971-01-26 Gen Mills Inc Process for making candy floss
IL32406A (en) * 1968-06-26 1973-01-30 Snam Progetti Enzyme preparations comprising a solution or dispersion of enzyme occluded in filaments of cellulose esters or synthetic polymers
CH489211A (en) 1968-07-09 1970-04-30 Nestle Sa Process for manufacturing a heat-resistant chocolate
US3523889A (en) * 1968-11-26 1970-08-11 American Sugar Method and apparatus for separating liquids from solids
US3676148A (en) * 1970-05-13 1972-07-11 Scm Corp Edible comestibles and process for making same
US3625214A (en) * 1970-05-18 1971-12-07 Alza Corp Drug-delivery device
US3686000A (en) * 1971-01-11 1972-08-22 Gen Foods Corp Moisture resistant sugar filaments
CH519858A (en) 1971-05-04 1972-03-15 Interfood S A Heat-resistant sweets - contg encapsulated fats and cocoa materials
DE2122294C3 (en) * 1971-05-05 1979-08-16 Boehringer Mannheim Gmbh, 6800 Mannheim Process for the production of creatinine amidohydrolase
BE785666A (en) * 1971-07-01 1973-01-02 Procter & Gamble PROCESS FOR THE PRODUCTION OF ENZYMATIC COMPOSITIONS IN GRANULES
US3951821A (en) * 1972-07-14 1976-04-20 The Dow Chemical Company Disintegrating agent for tablets
US3875300A (en) * 1972-12-18 1975-04-01 Ortho Pharma Corp Composition for sustained release of a medicament and method of using same
US3876794A (en) * 1972-12-20 1975-04-08 Pfizer Dietetic foods
US4186251A (en) * 1973-03-01 1980-01-29 Miles Laboratories, Inc. Composition and method for determination of cholesterol
DE2315501C3 (en) * 1973-03-28 1980-02-21 Boehringer Mannheim Gmbh, 6800 Mannheim Method for the determination of cholesterol
US3930043A (en) * 1973-07-19 1975-12-30 Tec Pak Corp Method for making cotton candy
US3856443A (en) * 1973-08-06 1974-12-24 Gen Properties Anstalt Apparatus for producing candyfloss
US3925525A (en) * 1973-08-10 1975-12-09 Celanese Corp Spinning method
US4164448A (en) * 1973-12-07 1979-08-14 Boehringer Mannheim Gmbh Activation of cholesterol oxidase for cholesterol assay
GB1460614A (en) * 1974-04-16 1977-01-06 Tate & Lyle Ltd Production of crystalline sugar
US4136145A (en) * 1974-07-05 1979-01-23 Schering Aktiengesellschaft Medicament carriers in the form of film having active substance incorporated therein
US4056364A (en) * 1974-08-30 1977-11-01 Amstar Corporation Two stage continuous crystallization apparatus with controls
US3981739A (en) * 1974-08-30 1976-09-21 Amstar Corporation Continuous crystallization
US3967623A (en) * 1975-06-30 1976-07-06 Johnson & Johnson Disposable absorbent pad
US3992265A (en) * 1975-12-31 1976-11-16 American Cyanamid Company Antibiotic susceptibility testing
US4090920A (en) * 1976-02-19 1978-05-23 Fisher Scientific Company Disposable antibiotic susceptability test package
US4086418A (en) * 1976-02-27 1978-04-25 International Telephone And Telegraph Corporation Process for producing a regenerated hollow cellulosic fiber
US4153512A (en) * 1976-04-07 1979-05-08 Fisher Scientific Company Storage stable antibiotic susceptibility test kit and method of testing
DE2625834B2 (en) * 1976-06-09 1978-10-12 Boehringer Mannheim Gmbh, 6800 Mannheim Method for the determination of substrates or enzyme activities
US4160696A (en) * 1976-08-23 1979-07-10 Eastman Kodak Company Ascorbic acid determination
GB1548022A (en) * 1976-10-06 1979-07-04 Wyeth John & Brother Ltd Pharmaceutial dosage forms
USRE32016E (en) * 1976-12-10 1985-10-29 Eastman Kodak Company Analysis of lactic acid or lactate using lactate oxidase
US4241178A (en) * 1978-01-06 1980-12-23 Eastman Kodak Company Process and composition for the quantification of glycerol ATP and triglycerides
US4194063A (en) * 1978-02-24 1980-03-18 Eastman Kodak Company Method, composition and elements for the detecting of nitrogen-containing compounds
US4159210A (en) * 1978-06-15 1979-06-26 Amstar Corporation Maple sugar product and method of preparing and using same
US4293570A (en) * 1979-04-02 1981-10-06 Chimicasa Gmbh Process for the preparation of sweetener containing product
US4291015A (en) * 1979-08-14 1981-09-22 Key Pharmaceuticals, Inc. Polymeric diffusion matrix containing a vasodilator
US4303684A (en) * 1980-03-17 1981-12-01 General Foods Corporation Rapidly-soluble sweetener, process for its preparation and beverage mix employing it
US4348420A (en) * 1980-08-25 1982-09-07 Nutrisearch Company Process for binding comminuted meat
US4362757A (en) * 1980-10-22 1982-12-07 Amstar Corporation Crystallized, readily water dispersible sugar product containing heat sensitive, acidic or high invert sugar substances
US4338350A (en) * 1980-10-22 1982-07-06 Amstar Corporation Crystallized, readily water-dispersible sugar product
US4500546A (en) * 1980-10-31 1985-02-19 International Telephone And Telegraph Corporation Suspensions containing microfibrillated cellulose
US4585797A (en) * 1981-04-13 1986-04-29 Seton Company Cosmetic and pharmaceutical sheet material containing polypeptides
US4376743A (en) * 1981-06-12 1983-03-15 Fiber Industries, Inc. Melt spinning process
US4382963A (en) * 1981-11-09 1983-05-10 General Foods Corporation Low-calorie, sugar-free chewing gum containing polydextrose
JPS5966841A (en) * 1982-10-05 1984-04-16 Meiji Seika Kaisha Ltd Preparation of conjugate fibrous chewing gum
GB2137470B (en) * 1983-04-08 1986-11-26 Meiji Seika Kaisha Fleecy confectionery producing machine
US4511584A (en) * 1983-05-31 1985-04-16 Scm Corporation Particulate food acidulant
IT1212778B (en) * 1983-10-07 1989-11-30 Lisapharma Spa PHARMACEUTICAL COMPOSITIONS ANTI-INFLAMMATORY AND / OR ANALGESIC ADAPTERITY, NON ULCEROGENE.
GB8406734D0 (en) 1984-03-15 1984-04-18 Tate & Lyle Plc Sugar process
DE3430809A1 (en) * 1984-08-22 1986-03-06 Merck Patent Gmbh, 6100 Darmstadt SUCRALFAT SUSPENSION
US4619833A (en) * 1984-12-13 1986-10-28 General Foods Inc. Process for producing a rapidly water-soluble, free-flowing, sugar-free dry beverage mix
US4879108A (en) * 1985-12-20 1989-11-07 Warner-Lambert Company Confectionery delivery system for antipyretics
US4765991A (en) * 1986-05-02 1988-08-23 Warner-Lambert Company Reduced calorie chewing gums and method
US4772477A (en) * 1986-10-17 1988-09-20 Balchem Corporation Meat acidulant
US4793782A (en) * 1986-12-17 1988-12-27 Sells-Floto Inc. Cotton candy machine
US4872821A (en) * 1987-03-23 1989-10-10 Gold Medal Products Co. Cotton candy machine
FR2613619B1 (en) * 1987-04-07 1993-10-15 Recherche Informatique Pharmacie DRUGS, DIETETIC PRODUCTS OR HYGIENE PRODUCTS IN THE FORM OF POWDER COMPOSITIONS OBTAINED BY ADSORPTION OF ACTIVE INGREDIENTS ON A FAST-DISSOLVING SUGAR
US5238696A (en) * 1987-04-20 1993-08-24 Fuisz Technologies Ltd. Method of preparing a frozen comestible
US5096492A (en) * 1987-04-20 1992-03-17 Fuisz Technologies Ltd. Dispersed systems and method of manufacture
US5286513A (en) * 1987-04-20 1994-02-15 Fuisz Technologies Ltd. Proteinaceous food product containing a melt spun oleaginous matrix
US5034421A (en) * 1988-12-13 1991-07-23 Fuisz Pharmaceutical Ltd. Moderated spun fibrous system and method of manufacture
US5236734A (en) * 1987-04-20 1993-08-17 Fuisz Technologies Ltd. Method of preparing a proteinaceous food product containing a melt spun oleaginous matrix
US5028632A (en) * 1987-04-20 1991-07-02 Fuisz Pharmaceutical Ltd. Taste masked medicated pharmaceutical
US4873085A (en) * 1987-04-20 1989-10-10 Fuisz Pharmaceutical Ltd. Spun fibrous cosmetic and method of use
US4997856A (en) * 1987-04-20 1991-03-05 Fuisz Pharmaceutical Ltd. Method of producing compacted dispersable systems
US5456932A (en) * 1987-04-20 1995-10-10 Fuisz Technologies Ltd. Method of converting a feedstock to a shearform product and product thereof
US5011532A (en) * 1988-03-18 1991-04-30 Fuisz Pharmaceutical Ltd. Dispersed systems and method of manufacture
US5066218A (en) * 1987-05-13 1991-11-19 Genencor International, Inc. Composition of a steeped starched-containing grain and a cellulase enzyme
US5041377A (en) * 1988-03-18 1991-08-20 Genencor International Inc. Subtilisin crystallization process
US5039446A (en) * 1988-07-01 1991-08-13 Genencor International, Inc. Liquid detergent with stabilized enzyme
US5089606A (en) * 1989-01-24 1992-02-18 Minnesota Mining And Manufacturing Company Water-insoluble polysaccharide hydrogel foam for medical applications
NL8900598A (en) * 1989-03-13 1990-10-01 Stork Friesland Bv SPRAY DRYER; PROCESS FOR PREPARING A SPRAY-DROUGH PRODUCT WITH A DESIRED DUMP WEIGHT.
US4978537A (en) * 1989-04-19 1990-12-18 Wm. Wrigley Jr. Company Gradual release structures for chewing gum
US5037662A (en) * 1989-06-23 1991-08-06 Genencor International Inc. Enzyme assisted degradation of surface membranes of harvested fruits and vegetables
US5094872A (en) * 1989-07-19 1992-03-10 American Maize-Products Company Method for making a reduced fat product
US5073387A (en) * 1990-01-24 1991-12-17 Lafayette Applied Chemistry, Inc. Method for preparing reduced calorie foods
US5084295A (en) * 1990-02-02 1992-01-28 The Procter & Gamble Company Process for making low calorie fat-containing frozen dessert products having smooth, creamy, nongritty mouthfeel
US5082684A (en) * 1990-02-05 1992-01-21 Pfizer Inc. Low-calorie fat substitute
US5082682A (en) * 1990-11-09 1992-01-21 Fantasy Flavors, Inc. Nonfat frozen dairy dessert with method and premix therefor
US5196199A (en) * 1990-12-14 1993-03-23 Fuisz Technologies Ltd. Hydrophilic form of perfluoro compounds and method of manufacture
US5173322A (en) * 1991-09-16 1992-12-22 Nestec S.A. Reformed casein micelles
US5288508A (en) * 1992-03-20 1994-02-22 Fuisz Technologies, Ltd. Delivery systems containing elastomer solvents subjected to flash flow
US5279849A (en) * 1992-05-12 1994-01-18 Fuisz Technologies Ltd. Dispersible polydextrose, compositions containing same and method for the preparation thereof
US5518730A (en) * 1992-06-03 1996-05-21 Fuisz Technologies Ltd. Biodegradable controlled release flash flow melt-spun delivery system
US5348758A (en) * 1992-10-20 1994-09-20 Fuisz Technologies Ltd. Controlled melting point matrix formed with admixtures of a shearform matrix material and an oleaginous material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072658A (en) * 1974-05-18 1978-02-07 Kanebo, Ltd. Novel phosphorus- and bromine-containing polymers
US4335232A (en) * 1981-07-07 1982-06-15 E. I. Du Pont De Nemours And Company Optically anisotropic melt forming polyesters
US4871501A (en) * 1984-11-09 1989-10-03 Sumitomo Chemical Company Process for melt spinning aromatic polyester
US4855326A (en) * 1987-04-20 1989-08-08 Fuisz Pharmaceutical Ltd. Rapidly dissoluble medicinal dosage unit and method of manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0584245A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540460A1 (en) * 1991-10-25 1993-05-05 Fuisz Technologies Ltd. Novel saccharide-based matrix
WO1997001629A1 (en) * 1995-06-28 1997-01-16 Novo Nordisk A/S A cellulase with reduced mobility
US6544452B1 (en) 1996-12-18 2003-04-08 Pvaxx Technologies Ltd. Polymer processing method and tablet-forming apparatus
WO1998026911A1 (en) * 1996-12-18 1998-06-25 Jumik Technologies Limited Polymer processing method and tablet-forming apparatus
EP1005652A1 (en) * 1997-08-12 2000-06-07 McIntyre, John A. Antigens embedded in thermoplastic
EP1005652A4 (en) * 1997-08-12 2002-06-26 John A Mcintyre Antigens embedded in thermoplastic
AU753093B2 (en) * 1997-08-12 2002-10-10 Embedded Concepts, Llc Antigens embedded in thermoplastic
EP1715342A1 (en) * 1997-08-12 2006-10-25 Embedded Concepts, LLC Binding assay using antigens embedded in thermoplastic
US7026375B1 (en) 1998-08-26 2006-04-11 Pvaxx Research And Development Limited PVA-containing compositions
WO2001044422A3 (en) * 1999-12-14 2002-03-14 Henkel Kgaa Particulate wetting agent and machine dishwashing agent
WO2001044422A2 (en) * 1999-12-14 2001-06-21 Henkel Kommanditgesellschaft Auf Aktien Particulate wetting agent and machine dishwashing agent
US7195777B2 (en) 2000-03-01 2007-03-27 Pvaxx Research & Development Limited Method and apparatus for blowmoding capsules of polyvinylalcohol and blowmolded polyvinylalcohol capsules
WO2002028991A1 (en) * 2000-10-02 2002-04-11 Novozymes A/S Particles containing active in visco-elastic liquids
US6617026B2 (en) 2000-10-02 2003-09-09 Novozymes A/S Particles containing active in visco-elastic liquids

Also Published As

Publication number Publication date
EP0584228A1 (en) 1994-03-02
EP0584245A1 (en) 1994-03-02
WO1992020330A1 (en) 1992-11-26
JPH07502050A (en) 1995-03-02
DE69231247T2 (en) 2000-11-23
DE69231247D1 (en) 2000-08-17
DE69232721T2 (en) 2002-12-05
CA2102607A1 (en) 1992-11-18
HUT68509A (en) 1995-06-28
EP0584228B1 (en) 2000-07-12
DE69232721D1 (en) 2002-09-12
KR100241403B1 (en) 2000-02-01
HUT67171A (en) 1995-02-28
CA2109622A1 (en) 1992-11-26
AU653040B2 (en) 1994-09-15
HU214736B (en) 1998-08-28
HU9303093D0 (en) 1994-01-28
EP0584245A4 (en) 1995-02-08
EP0584245B1 (en) 2002-08-07
AU667312B2 (en) 1996-03-21
US6129926A (en) 2000-10-10
AU2016492A (en) 1992-12-30
EP0584228A4 (en) 1995-02-08
HU9303094D0 (en) 1994-02-28
DK0584228T3 (en) 2000-09-18
AU2140192A (en) 1992-12-30
US5624684A (en) 1997-04-29
JPH07500242A (en) 1995-01-12

Similar Documents

Publication Publication Date Title
EP0584245B1 (en) Enzyme systems
Cowan et al. Industrial enzymes
Rathi et al. A novel alkaline lipase from Burkholderia cepacia for detergent formulation
Hiroto et al. Breakdown of plastics and polymers by microorganisms
Zarate et al. Oligosaccharide formation during enzymatic lactose hydrolysis: a literature review
Oda et al. Microbial degradation of poly (3-hydroxybutyrate) and polycaprolactone by filamentous fungi
HU193936B (en) Detergent additive containing fusarium oxysporum lipase
CN105339481A (en) Structured liquid compositions
CN102056936A (en) Recovery of insoluble enzyme from fermentation broth and formulation of insoluble enzyme
Aderibigbe et al. Growth and extracellular enzyme production by strains of Bacillus species isolated from fermenting African locust bean, iru
Ramakrishnan et al. Encapsulation of endoglucanase using a biopolymer Gum Arabic for its controlled release
John Amylases-bioprocess and potential applications: a review
Rani Applicative biodegradation study of egg albumin nanospheres by alkaline protease for release of encapsulated cicer arietinum amylase in washing as bio-active detergent additive
Sharmeen et al. Application of polysaccharides in enzyme immobilization
Momsia et al. A review on microbial lipase-versatile tool for industrial applications
AU667312C (en) Enzyme systems
Arroyo et al. Immobilisation/stabilisation on different hydroxilic supports of lipase from Candida rugosa
JP2000511567A (en) Degradation of biodegradable polyesteramide by enzymes
KR100624353B1 (en) Process for producing protein hydrolyzate
Esawy et al. Comparative study between free and immobilized Penicillium chrysogenum mannanase: a local fungal isolate
Saxena et al. Commercial importance of some fungal enzymes
JP2004510876A (en) Particles containing active ingredient in viscoelastic liquid
Rose et al. Production of isomalt
PANYACHANAKUL et al. STUDY OF BIOLOGICAL RECYCLING PROCESS OF POLY (DL-LACTIC ACID) USING ACTINOMYCETES ENZYMES
Madras Enzymatic degradation of polymers G MADRAS, Indian Institute of Science, India

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA HU JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2102607

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08150045

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1992912612

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992912612

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992912612

Country of ref document: EP