WO1993005985A1 - Airtight woven sheet for air bags and method of manufacturing the same - Google Patents

Airtight woven sheet for air bags and method of manufacturing the same Download PDF

Info

Publication number
WO1993005985A1
WO1993005985A1 PCT/JP1992/001217 JP9201217W WO9305985A1 WO 1993005985 A1 WO1993005985 A1 WO 1993005985A1 JP 9201217 W JP9201217 W JP 9201217W WO 9305985 A1 WO9305985 A1 WO 9305985A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
woven fabric
airbag
warp
weft
Prior art date
Application number
PCT/JP1992/001217
Other languages
English (en)
French (fr)
Inventor
Kunio Nishimura
Hideo Nakagawa
Nobuo Takahashi
Kiyoshi Maruo
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to DE1992612979 priority Critical patent/DE69212979T2/de
Priority to US03/005,660 priority patent/US5296278A/en
Priority to EP19920920309 priority patent/EP0558762B1/en
Publication of WO1993005985A1 publication Critical patent/WO1993005985A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/02Inflatable articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1362Textile, fabric, cloth, or pile containing [e.g., web, net, woven, knitted, mesh, nonwoven, matted, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3065Including strand which is of specific structural definition

Definitions

  • the present invention relates to an airtight woven sheet for an airbag and a method for producing the same. More specifically, in contrast to the conventional two-sided smooth airtight s fabric, the present invention has an extremely low air permeability despite the fact that one side is not smoothed, thereby providing an excellent safety protection function.
  • the air permeability is higher than that of a resin-coated woven sheet, and even in the examples of the above patent specification, 0.1 ccZcm 2 / sec 0.5 The value exceeds inchAq.
  • polyester woven fabrics have insufficient burst strength at the sewn part compared to nylon 66 woven fabric, so the area around the inflator and the sewn part of the top cloth have a stronger effect than the mere sewing. It is necessary to improve the burst strength of the bag by means such as sewn or sewing after partially increasing the burst strength by adhesive strength. This applies to both beltless bags and belted bags.
  • the above-described double-sided render fabric has poor adhesiveness because both sides are smoothed. Therefore, it has been extremely difficult to increase the strength by bonding and laminating the fabric with the same fabric or another fabric.
  • U.S. Pat. No. 4,921,735 Japanese Patent Application Laid-Open No.
  • an object of the present invention is to solve the above-mentioned problems that have been left unresolved in the conventional non-resin-coated polyester fabric for airbags, and to form a ventilation hole in the bag at the time of inflation.
  • An airbag with low air permeability, surface characteristics that can be reinforced for adhesion, improved burst strength and excellent texture to prevent burns from being caused by gas passage An object of the present invention is to provide an airtight woven fabric sheet and a method for producing the same. Disclosure of the invention
  • the airtight woven sheet for an airbag of the present invention is made of a polyester multifilament yarn having a denier of 200-550 denier ⁇ yarn and a twist coefficient of 300 or less.
  • a woven fabric composed of a warp and a weft and having one smoothed surface and the other unsmoothed surface;
  • ' ⁇ represents pressure (unit: kgZcm 2 G),
  • Q (P) represents the air permeability of the woven fabric at a pressure P (unit: mlZ cm 2 / sec);
  • R 1 represents a radius of curvature (unit:) of at least one half of the smoothed surface side of the yarn cross-sectional profile selected from the warp and the weft constituting the smoothed surface of the woven fabric;
  • R 2 represents the radius of curvature (unit: mm) of at least one of the opposite half of the yarn cross-sectional profile selected from the warp and the weft constituting the smoothing surface of the woven fabric;
  • R 3 is the radius of curvature (unit: mm) of at least one half of the non-smoothed surface side of the yarn cross-sectional profile selected from the warp and the weft constituting the non-smoothed surface of the woven fabric.
  • M c represents the average deviation of the surface friction coefficient of the smoothed surface of the fabric
  • M u represents the average deviation of the surface friction coefficient of the non-smooth surface of the woven fabric
  • S c is the average deviation of the surface roughness of the smoothed surface of the woven fabric (unit: U m).
  • S u represents an average deviation (unit: u m) of the surface roughness of the non-smooth surface of the woven fabric
  • P represents the fiber filling rate (unit:%) of the woven fabric
  • thermosetting resin coating weight 1 ⁇ 2 0 s / m z, coating or may be ⁇ .
  • the method of the present invention for producing the air-tight airtight woven sheet as defined above comprises a yarn having a yarn weave of 200 to 550 denier and a fire coefficient of 300 or less.
  • the cover factor in the warp direction and the weft direction is 150 to 130 in both cases.
  • thermosetting resin Heating surface temperature of 150-220 ° C, linear pressure of more than 500 kg / cm, and speed of 1-50 m / min, using a smoothing metal roll only on one side of the above woven fabric It is intended to carry out the calendar processing by.
  • a step of coating or soaking the thermosetting resin with the applied amount of 1 to 20 g / m 2 on the calendered fabric may be further provided.
  • FIG. 1 is a human body side front view of one embodiment of a bag obtained by the woven sheet of the present invention
  • FIG. 2 is a rear view of the airbag shown in FIG. 1 on the steering side
  • FIG. 3A is a front explanatory view of one embodiment of the airbag of the present invention. Indicating that the bag will be folded,
  • FIG. 3B is a rear view of the folded and folded airbag of FIG. 3A, showing that the airbag is further folded along the dotted line in the figure;
  • FIG. 3C is a perspective explanatory view of the airbag shown in FIGS. 3A and 3B, which is folded first along the dotted line in FIG. B shows the state folded along the dotted line,
  • FIG. 4 is an explanatory front view of the airbag of the present invention folded, rare, and connected to an inflator;
  • FIG. 5 is a graph showing the region of the air permeability function Q (p) satisfying F (p) ⁇ Q (P) ⁇ G (p) of the airtight fabric for an air bag of the present invention
  • FIG. 6 is an explanatory sectional view of one embodiment of the woven sheet of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the airbag is used to protect the human body sitting in the front seat of the car or aircraft when the accident occurs in the car or aircraft. is there.
  • the airbag 1 has a circular topsheet portion (the surface portion facing the human body) 2 and a circular badder sheet portion (the surface portion facing the steering) 3.
  • the circular top sheet portion and the circular back sheet portion are firmly stitched at a circumferential portion 4 thereof.
  • the circular backsheet portion 3 of the airbag 1 has a center hole 5 located at the center thereof, and is connected to an airbag 1 inflator (not shown) through the center hole 5.
  • the combustion gas flow generated in the inflator flows into the airbag.
  • the circular backsheet section 3 of the airbag 1 is provided with at least 1 mm, usually at least 2 ventholes 6, and the combustion gas introduced into the airbag from the inflator. Part of the waste is discharged through this vent hole.
  • An apron 6 is arranged around the center 1 hole 5 on the back ( ⁇ side) of the circular backsheet 3 and the end of the apron.
  • the airbag is stored folded in the space in front of the front seat of the car or aircraft.
  • the folded and folded airbag 1 has a shape as shown in FIG. 3C.
  • the folded airbag is housed in a container as shown in Fig. 4 and is housed in a predetermined place on a car or aircraft.
  • the folded and folded airbag 1 is housed in a container 11, and the center hole of the airbag 1 is connected to the inflator 12.
  • the inflator 12 has a plurality of combustion gas injection holes 13 opening inside the center hole of the airbag 1.
  • shock absorbing airbags must be able to withstand the high temperatures and pressures of the combustion gases.
  • the airtight fabric sheet for an air bag according to the present invention has a yarn fineness of 200 to 550 denier, preferably 300 to 450 denier, and preferably 300 or less.
  • the main component is a woven fabric composed of warp and weft made of polyester multifilament yarn having a twist coefficient of 250 or less, more preferably 140 to 220. This is what it is.
  • the combustion coefficient of a multifilament yarn is defined by the following equation.
  • K represents the coefficient of combustion of the yarn
  • T represents the number of twists per m of the yarn
  • D represents the total denier of the yarn.
  • the twist coefficient of the polyester multifilament yarn is larger than 300, the air permeability of the obtained woven fabric cannot be sufficiently reduced, and as a result, the gas during inflation is also reduced.
  • the air bag has ventilation holes, which may cause burns to the human body, and the adhesive does not easily permeate between the filaments, resulting in poor adhesion on non-smooth surfaces. Inconvenience is caused.
  • the fabric included in the airbag fabric sheet of the present invention has a smoothed surface and an unsmoothed opposite surface.
  • This smoothed surface gives the resulting fabric low air permeability, and the non-smoothed opposite surface shows a high adhesion to the strength resin and thus the resulting fabric Enables adhesive strength by high strength resin.
  • the smoothed surface forms the outer surface of the airbag, and the non-smoothed surface forms the inner surface of the airbag.
  • the fabric constituting the airtight fabric sheet for an air bag of the present invention is as follows. Notation formulas (1) to (7):
  • P represents a pressure (unit: kgZcm 2 G), and its value is in the range of O p O.03.
  • Q (P) represents the permeability of the woven fabric at the pressure P (unit: rnlZcm 2 / sec).
  • the pressure applied to the airbag is 0.3 kg / cm 2 G or less.
  • () corresponds to a pressure in the range of 0 to 0.03 kg / cm 2 G, that is, between the vertical axis and the straight line H in FIG.
  • the permeability Q (P) of the woven fabric that satisfies the equation 78.74 P ⁇ Q (P) ⁇ 7.874P (where 0 ⁇ P ⁇ 0.03) is shown in Fig. 5. , Are within the triangular area defined by the straight lines H, G, and H.
  • the air permeability Q (P) of the woven fabric is greater than 78.74p (straight line F)
  • the Q (P) value of the woven fabric must be equal to or less than the value of the linear function 7'8.74 P (straight line F) at a pressure of 0 to 0.03 kg / cm 2 G.
  • the obtained woven fabric has excessive hardness and a rough texture. Yes, with low tear strength, and insufficient adhesion of the non-smoothed surface to the strong resin.
  • the fabric for an air bag used in the present invention is as follows:
  • R 1 is the curvature half of the smoother surface side half of the yarn cross-sectional profile of the warp and Z or weft constituting the smoothed surface of the woven fabric.
  • unit: mm represents
  • R 2 is of the yarn cross-section contour
  • the radius of curvature (unit opposite halves: mm) represents
  • R 3 constitutes a Hitaira smoothing surface of the fabric warp And / or of the weft, Indicates the radius of curvature (unit:) of the non-smooth surface side half.
  • the fabric 20 has a smoothed surface 21 and a non-smoothed surface 22.
  • the shape of the smoothed surface side (outer) half 2 approximates a semicircular shape having a radius of curvature R 1.
  • the shape of the opposite (inner) half 25 approximates a semicircular shape having a radius of curvature R 2.
  • the shape of the non-smoothed surface side (outer) half 27 is the radius of curvature. It approximates a semicircular shape with R3.
  • the values of the radii of curvature Rl, R2, and R3 are each represented by an average of the radii of curvature of the half of the cross-sectional profile of the ten yarns.
  • the woven fabric must satisfy the relational expression (2): R 1> R 2.
  • R 1 the values of R 1 and R 2 are in the relationship of R 1 R 2, the resulting fabric has insufficient fiber filling on the smoothed surface portion, and the air bag is rapidly swallowed by the combustion gas jet. At this time, the gas pressure makes it easier to form a ventilation hole in the woven fabric.
  • the woven fabric must satisfy the relational expression (3): R 1> R 3.
  • R 1 and R 3 are in a relationship of R 1 ⁇ R 3, the non-smooth surface (roughness) of the non-smooth surface of the obtained woven fabric becomes insufficient, and Adhesion to the reinforcing resin becomes insufficient, and thus its reinforcement becomes difficult.
  • the woven fabric must satisfy the relational expression (3): 3.5 ⁇ R 3 ⁇ 0.5. If the value of R 3 is less than 0.5 mm, the fiber filling on the non-smooth surface portion of the obtained woven fabric will be insufficient, so that the air bag will not be affected by the combustion gas jet.
  • the gas pressure When inflating, the gas pressure facilitates the formation of ventilation holes in the fabric. Also, the value of R 3 is larger than 3.5 mm As a result, the non-smooth surface (roughness) of the non-smooth surface of the obtained woven fabric becomes insufficient, so that the adhesiveness of the non-smooth surface to the reinforcing resin becomes insufficient, and a sufficient trapping effect is obtained. Will be difficult to obtain.
  • the woven fabric of the airtight woven sheet for an air bag of the present invention must satisfy the relational expression (5) : Mu-Mc ⁇ 0.0005.
  • M u represents the average deviation of the coefficient of surface friction of the non-smooth surface of the fabric
  • M c represents the average deviation of the coefficient of surface friction of the smooth surface of the fabric. If the (M u ⁇ M c) value is less than 0.0005, the friction coefficient of the smoothed surface of the obtained woven fabric becomes excessively large, so that the outside of the airbag formed by this woven fabric is reduced. When the coefficient of friction of the surface becomes excessive, and a car or an aircraft collides and the airbag inflates, the outer surface of the inflated airbag may cause frictional damage to the human body in contact with it.
  • Preferred (M u-M c) values are 0.0 or more.
  • the woven fabric must satisfy the following equation (6): S u -S c ⁇ 0.5.
  • Su represents the average deviation (unit: m) of the surface roughness of the non-smooth surface of the woven fabric
  • Sc represents the average deviation (unit:; / m) of the surface roughness of the smoothed surface of the woven fabric. If the (Su-Sc) value is less than 0.5, the smoothness of the obtained woven fabric (the outer surface of the fiber bag) becomes insufficient, so that automobiles or airplanes cannot be used.
  • the outer surface of the airbag can cause frictional damage to the human body in contact with it.
  • the non-smooth surface (roughness) of the non-smooth surface of the obtained woven fabric becomes insufficient, so that the adhesiveness of the non-smooth surface to the reinforcing resin becomes insufficient.
  • the preferred (S u — S c) value is 1.0 or more.
  • the above-mentioned woven fabric according to the present invention must satisfy the relational expression (7): 85 ⁇ P ⁇ 70.
  • P represents the fiber filling rate (unit:%) of the woven fabric.
  • the fiber filling rate P is defined by the following equation.
  • BSG represents the bulk specific gravity of the woven fabric
  • TSG represents the true specific gravity of the woven fabric
  • the fiber filling rate P when the fiber filling rate P is less than 70%, when the obtained air bag is rapidly engulfed by the combustion gas jet, a large number of air bags are generated by the gas pressure.
  • the ventilation holes may be formed, and the combustion gas may be easily spilled out, and it may become impossible to sufficiently protect the human body.
  • the fiber filling ratio P exceeds 85%, the hardness of the obtained woven fabric becomes excessive, the feeling deteriorates, the berth strength and the tear strength become insufficient, and the airbag obtained from the woven fabric becomes When the fuel is rapidly occupied by the combustion gas jet, the gas pressure tends to form ventilation openings.
  • the preferred fiber filling rate is 72-80%.
  • the monofilament degree of the polyester multifilament used in the woven fabric of the present invention is preferably in the range of 0.5 to 2.5 de. If the single-weave degree exceeds 2.5 de, the resulting fabric will have an excessively high air permeability, and the fabric itself will be rough and rigid, making it difficult to smooth one surface. In addition, ventilation holes are formed without suppressing the outflow of gas during the inflation of the obtained airbag, and there is a risk of burns to the human body. In addition, the surface area of the non-smoothed surface decreases, and the adhesiveness to the reinforcing resin decreases.
  • the single fiber weave degree is less than 0.5 de, the burst strength of the obtained woven fabric decreases, and the adhesiveness of the non-smooth surface may be insufficient. Therefore, it is preferable to select from the range of 0.5 to 2.5 de for single fiber size.
  • the preferred range of the monofilament degree is 1-2 de.
  • Polyester that constitutes the above polyester multifilament
  • the polymer examples include polyethylene terephthalate, polybutylene terephthalate, polyhexylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and poly (1,2-bis (phenoxy)).
  • Ethane-4, 4'-Dicarboxylate and other copolyesters such as polyethylene isophthalate, polybutylene terephthalate / naphthalate, polybutylene terephthalate / decandyl carboxylate, etc. Can be raised.
  • the resulting fabric can have a low air permeability, but this will result in poor penetration of the bonding thorn from the non-smoothed surface. Therefore, when using a non-twisted yarn, it is preferable to arrange the non-twisted yarn only in the warp direction or only in the weft direction. On the other hand, when non-combustible yarn is used in both the warp direction and the weft direction, it is necessary to secure a non-smooth surface with good adhesion by relaxing the force rendering conditions described later.
  • both the warp direction and the weft direction cover factor of the animal according to the present invention be in the range of 150 to 130.
  • the above-mentioned cover factor one value corresponds to a density of about 51 to 63 inches each in the weft history. And it is preferable that the density of the longitude and the latitude is as high as possible.
  • the term "cover factor in the warp direction" as used herein refers to the product of the square root of the denier value of the warp yarn and the warp density (this kann).
  • the cover factor in the weft direction is the product of the square root of the denier value of the weft yarn and the weft density (this Z-inch).
  • this cover factor is preferably in the range of 150 to 130, more preferably in the range of 180 to 125.
  • the woven fabric density when a polyester film having a yarn denier of 420 de is used, it is preferable that the woven fabric has a density of about 51 to 63 pcs / inch, and 1 / inch is preferred.
  • the fabric preferably has a tensile breaking strength of 180 kgZ 3 cm or more and a tensile elongation at break of 25% or more.
  • Tensile strength of the fabric from the Conoco is, 1 8 0 k g 3 c m or more at which this and is rather preferable, further 2 0 0 kgZ 3 cm or more and particularly preferred arbitrariness.
  • the tensile elongation at break of the woven fabric is less than 25%, the shock absorbing capacity at the inflation of the obtained airbag is insufficient, so that the ventilation opening is easily formed and the burst strength is also insufficient.
  • the tensile elongation at break of the fabric from the e Conoco which is 2 to 5% or more and this is rather preferable, further 2 7% or more and particularly preferred arbitrariness.
  • the yarn constituting the yarn has a tensile breaking strength of 8.0 g Zde or more and a tensile breaking elongation of 18% or more.
  • the tensile breaking strength of the yarn is preferably 8.0 g / de or more, and particularly preferably 8.3 gZde or more.
  • the tensile elongation at break of the yarn constituting the woven fabric is less than 18%, the obtained airbag is likely to be damaged during inflation.
  • the tensile elongation at break of the yarn is preferably at least 18%, more preferably at least 20%.
  • the fabric of the present invention preferably has a 1Z1 plain weave or 2/2 mat weave, but has a 2Z1 twill or 2Z2 twill weave. It may be.
  • a polyester filament yarn having a yarn denier of 200 to 550 de and a twist coefficient of 300 or less (preferably, the range of the single arrowhead de described above, the number of twists)
  • a greige machine is produced using a yarn that satisfies the requirements of the range.
  • the dry heat shrinkage at 150 mm of the multifilament yarn exceeds 8%, the shrinkage of the resulting woven fabric by the set calender after scouring is too large, and uniform shrinkage is hindered. And the resulting fabric has low air permeability and high smoothness. If the dry heat shrinkage is less than 3%, the shrinkage of the resulting woven fabric by the set calendar after scouring is too small, resulting in low air permeability. Fabrics with high smoothness cannot be obtained. Therefore, the dry heat shrinkage at 150 of the multifilament yarn is preferably 3 to 8%, and more preferably 4 to 7%.
  • the boiling shrinkage of the multifilament yarn is preferably 1.5 to 5%, and more preferably 2 to 4%.
  • the metal roll In order to smooth one side of the woven fabric obtained in this way and maintain the other side in a non-smooth structure, after refining and setting the woven fabric, the metal roll selectively contacts only one side of the woven fabric. Perform calendar processing. 'This force-rendering is generally performed by a pair of upper and lower metal elastic-rendering rolls, and the surface processed by the metal rolls is smoothed. If a metal / metal calender roll is used, a temperature difference is created, and the processed surface is smoothed by the roll with the higher temperature.
  • the surface temperature of the metal roll for obtaining a smooth surface is generally from 150 to 220, more preferably from 160 to 200.
  • the roll pressure is generally at least 500 kg Zcm, more preferably 550 to 140 kg / cm.
  • the roll speed is generally between l and 50 mZ minutes, and more preferably between 2 and 25 mZ minutes.
  • a contact and / or non-contact type heater may be provided just before the calendar to preheat the fabric, and 1-4 m / min. Of degree It may be processed at a low speed.
  • Force rendering is usually performed at least once on only one side of the fabric. However, it may be applied more than once. If both sides are processed, the texture of the fabric deteriorates, and the fabric becomes paper-like. In addition, since both surfaces of the woven fabric have a smooth surface, the penetration of the adhesive is poor, the anchor effect on the adhesive is reduced, and the peel strength of the adhesive is significantly reduced. However, when calendering is performed on only one surface, the surface in contact with the elastic roll surface is not smoothed, so that the adhesive is good on the non-smoothed surface and the adhesiveness is good. It becomes easy to adhere and capture the area around the inflator of the airbag made of such a fabric and the top cloth (apron).
  • the airtight woven fabric for an airbag according to the present invention can be used as a non-coated airbag woven fabric without being coated with silicone rubber, black plain rubber or the like.
  • thermosetting resin it is preferable to coat or soak such a non-coated fabric with a thermosetting resin at an adhesion amount of 1 to 20 g / m 2 in order to prevent swelling caused by cutting and sewing.
  • Silicone rubber, urethane resin, polyester resin, etc. can be used as the thermosetting resin. Among these, it is preferable to use one having excellent flexibility and durability.
  • silicon rubber an addition reaction type catalyst-added silicon rubber is preferable.
  • silicone rubber dimethylsilicon, methylvinylsilicon, methylphenylsilicon, fluorosilicon and the like can be used. Of these, methyl-silicon is particularly preferred in terms of mechanical properties, cost, and workability.
  • thermosetting resin is filled with an inorganic compound such as a flame retardant or a silicide.
  • An agent may be included.
  • Adhesion amount of the thermosetting resin is 1-2 0 8 Roh 111 2 Dearuko and is rather preferred, 'especially 2 ⁇ 2 0 g / m 2 is preferred arbitrariness. If the resin adhesion amount exceeds 20 g / m 2 , the texture of the obtained fabric decreases, and the lightness, compactness, and storability of the obtained airbag decrease. However, if it is less than 1 g / m 2 , the obtained resin layer has low film strength and the resin layer is easily damaged.
  • the smoothened surface of the airtight woven sheet for an airbag of the present invention is preferably used so as to form the outer surface of the airbag. If the non-smoothed surface forms an outer surface, the airbag will rapidly inflate and cause frictional damage to the human body in contact with the outer surface. Also, if the non-smoothed surface on which the adhesive reinforcement is applied is used so as to form the inner surface of the airbag, the appearance of the obtained airbag is improved.
  • the airtight woven sheet for a bag according to the present invention has an extremely low air permeability, despite being subjected to a single-sided calendering process, as compared with a conventional airtight non-coated woven fabric which has been subjected to a double-sided calendar treatment. Furthermore, in the inflation of the obtained air bag, there is no concern about face burns due to the formation of ventilation holes and the passage of the inflation gas. Further, the fabric of the present invention The sheet has a soft texture because it has been treated with a one-sided surface, and has excellent airtightness when resin is applied for the purpose of preventing hot spots. And it can be uniform. In addition, by using the smoothed surface as the outer surface of the bag as an airbag, there is no frictional damage to the human body, and the other surface is a non-smoothed surface. It is easy to increase the strength.
  • the airtight fabric sheet for an airbag uses the non-smoothness of the non-smoothed surface at the time of forming the airbag to strengthen the adhesive around the inflator and the top cross (apron). Can be applied.
  • reinforcement can be provided on the inner surface.
  • the sewing part may be damaged, especially in the case of inflation with a strong inflator, and if the burst strength is insufficient.
  • the sewn part is formed on the top cloth, the bottom cloth, and the connecting part of the belt cloth.
  • adhesive reinforcement with an adhesive is optimal. Adhesive strength may be performed only with adhesive, and sewing and You may use together with adhesion
  • thermoplastic nonwoven fabric or a thermoplastic film in consideration of workability.
  • nonwoven fabric film made of a low melting point copolymerized polyester.
  • Such bonding may be performed by hot-press bonding such as iron or press.
  • Curable silicone rubber can also be used for reinforcing adhesion.
  • various types of silicone rubber of a condensation reaction type or an addition reaction type can be used, but an addition reaction type is preferred because of its high adhesive strength.
  • the same airtight woven fabric for an airbag of the present invention may be used, or another woven fabric may be used, but the same strong elongation and modulus for the airbag of the present invention are used. It is preferable to use airtight woven fabric (co-fabric) arranged in the same direction. In this case, it is preferable to arrange the non-smoothed surfaces of the airbag body fabric and the reinforcing fabric so that the non-smoothed surfaces are adhered to each other and to bond them using the adhesive. If necessary, two or three laminations are also useful.
  • the airtight woven sheet for an airbag of the present invention has high airtightness, it is possible to reduce the amount of the thermosetting resin that is coated or soaked in order to prevent swelling. It can be stored more compactly than fabric for one bag.
  • one surface of the woven fabric has excellent smoothness, the resin can be uniformly applied to this surface.
  • such a resin-attached woven fabric maintains a high peel strength even after long-term storage.
  • Air permeability The air permeability was measured using an orifice having an opening cross-sectional area of 100 cm 2 using an air permeability measuring instrument FX330 (trademark: manufactured by Textest).
  • Yarn cross-section contour radius of curvature The cross-section of the fabric was photographed with an electron microscope, and the radius of curvature of the cross-section outline was approximately measured.
  • the friction coefficient of the woven fabric was measured using a surface tester KES-FB4 (trademark) manufactured by Kato Tech Co., Ltd., and the average deviation was determined from the results. The average value of the process and the latitude was adopted as the measured value.
  • Average deviation of surface roughness The vertical displacement was measured when the coefficient of friction was measured, and the average deviation was determined from the results. Similarly, the measured values were the average values of the longitude and latitude.
  • Textile filling rate The bulk specific gravity calculated by dividing the thickness of the woven fabric by the basis weight was divided by the true specific gravity of the fiber, and it was found. The thickness of the fabric was measured using a micrometer (manufactured by Mitutoyo Seisakusho Co., Ltd.).
  • Dry heat shrinkage rate Polyester multifilament yarn was shrunk for 30 minutes at 150 without being twisted, and the shrinkage rate was calculated by the following equation.
  • L represents the length of the filament yarn before contraction
  • L. represents the length of the filament yarn after contraction
  • Boiling water shrinkage Polyester multifilament yarn was treated in untwisted boiling water for 30 minutes, and its shrinkage was calculated in the same manner as the above-mentioned method of calculating dry heat shrinkage.
  • Tensile breaking strength and elongation of the woven fabric Measured by the tensile test method for the woven fabric described in JISL-1096.
  • the woven fabric width was 3 cni
  • the tensile speed was 20 cm
  • the test length was 2 Ocm
  • the average value of the measured values was determined.
  • Tensile breaking strength of yarn Tensile test of fiber described in JISL-1013 It was measured by the method. In this case, the warp and the weft were pulled out of the woven fabric, and the twisted state was maintained as it was. The tensile speed was set to 20 c and the test length was set to 20 cm. The average of the measured values of the process was determined.
  • Tensile breaking elongation of yarn Measured simultaneously with the tensile breaking strength of the yarn. Texture: An airbag was formed, and the sensory evaluation of the feel and flexibility of the fabric surface was performed, assuming that the face would hit the airbag strongly in the event of a collision.
  • Inflation resistance A type 1 inflator manufactured by Morton International Inc. is installed in a module containing a 60-liter airbag for a single driver seat. And this is 95. Inflation was performed immediately after heating at C for at least 6 hours. At this time, the use of high-speed video was used to observe the formation of ventilation holes in the bag, the presence or absence of damage, and the degree of shielding of the inflation gas.
  • Burst strength A high pressure nitrogen gas at room temperature was rapidly injected into the 60 liter air bag to measure the burst strength (kgZcni 2 G) of the bag. The state of damage was also observed.
  • an air bag of 60 liters was prepared for a single seat of this woven fabric sheeter and a driver.
  • the calendered smoothed surface was arranged so as to form the outer surface of the bag.
  • top cross and in A piece of woven fabric for strengthening was adhered to the periphery of the flatter with an adhesive to capture the strength.
  • the reinforcing fabric was the same fabric sheet as the fabric sheet for the airbag body, and was bonded in the same direction as the body.
  • the type of adhesive was as shown in Tables 1-5. In this state, the inflation and burst tests were performed. Tables 1 to 5 also show the properties of the obtained fabric and the performance of the airbag.
  • Example 1 Example 2
  • Example 3 Raw (d e) 420 420 500 Single fiber (d e) 1.7 1.7 2.0 Yarn
  • Example 10 Example 1 1 1 ft (d e) 420
  • Thread pulling tensile strength ( ⁇ / d e) 8.7 8.9 ifefe
  • Tensile elongation (%) 22.1 22.0 Weight (g / m 2O OL34 237
  • Example 1 since both the physical properties of the raw yarn and the physical properties of the woven fabric satisfy all the requirements of the present invention, the airbag has excellent inflation resistance, burst strength, and texture, and has good airbag characteristics.
  • Example 3 since the yarn denier and the single-weave denier were large, the texture was somewhat hardened, but good results were obtained.
  • Example 3 since the warp and the weft were non-rubbing, there was a concern that the adhesiveness would decrease.However, the single fiber denier was large, the calendering conditions were slightly relaxed, and the basis weight was large. For that reason, the burst strength has improved. In Example 4, since the single fiber denier was large, both the warp and the weft were untwisted, but the burst strength was good.
  • Example 5 Although one-sided calendering was performed, good air-bag characteristics were obtained.
  • Example 6 since the single fiber denier was small and the warp and the weft were non-twisted, the force rendering conditions were slightly relaxed. As a result, good air bag characteristics were obtained.
  • Example 7 the silicone rubber was coated at 5%, but excellent feeling and good air-bag characteristics were obtained.
  • Example 8 since the yarn shrinkage was large, the cover factor and the fiber filling rate were increased, but good airbag characteristics were obtained.
  • Example 9 the yarn denier was considerably large, and in Example 10, the single arrowhead denier was considerably large, but in all cases, good airbag characteristics were obtained.
  • Example 11 as a result of applying adhesive strength to both the inner side and the outer side of the bag with the reinforcing fabric, the burst strength was slightly improved as compared with the case where only the inner side was strengthened.
  • Example 12 a polyester-based nonwoven fabric was used as the adhesive, but good burst strength was obtained.
  • Example 13 a polystyrene-based copolymer film was used as an adhesive, but good burst strength was obtained.
  • the reinforcing fabric was the same fabric as the airbag body, and was bonded in the same direction as the body.
  • the adhesives listed in Tables 6 to 10 were used. Then, an inflation test and a burst test were performed on the airbag. The properties of the obtained fabric and the performance of the airbag are shown in Tables 6 to 10.
  • Comparative Example 1 the permeability coefficient was large because the warp coefficient and the warp coefficient were both large, and a ventilation hole was formed in the top cross during inflation. Also, the burst strength did not improve sufficiently.
  • Comparative Example 2 similarly, the twist coefficient was large and the yarn shrinkage was small, so that the air permeability function was further increased.In the inflation, the vent hole was formed in the tofu cross at the time of inflation. Formed and burst strength was low.
  • R 1 and R 3 were equivalent values due to double-sided calendering, and the values of Mu-Mc and Su-Sc were all small, resulting in poor texture. However, the effect of the adhesive reinforcement did not increase, and the burst strength decreased.
  • Comparative Example 4 since the twist coefficient was large for both warp and weft yarns and the yarn shrinkage was small, the air permeability function was large, and a ventilation hole was formed in the top cloth at the time of inflation to strengthen the adhesion. However, the burst strength was insufficient. In Comparative Example 5, since the cover factor in the weft direction was small, a ventilation hole was formed in the top cross at the time of inflation. In Comparative Example 6, the cover factor in the warp direction was extremely large, and the cover factor in the weft direction was extremely small. did. In Comparative Example 7, the effect of force-rendering was not sufficiently increased due to the large yarn denier, and the air permeability function was increased, so that air-permeable holes were formed during inflation.
  • Example 1 of U.S. Pat. No. 4,977,016, a base fabric for an air bag in which force rendering is applied to only one side is shown as a comparative example.
  • the fabric is then force-rendered at 70 Psi and 360 ° F, with a permeability of 1.82 CFM (1 calendered) and a permeability of 1.42 CFM (calendered 2 times). ) Is obtained.
  • the air permeability function Q (P) becomes extremely large and does not exist in the region between F (P) and G (p). Also, R 3 is less than 0.5, and the airtightness is reduced. Further, since there is little difference in the surface structure between the two surfaces, the S u—S c value becomes small and becomes less than 0.5. At the same time, the fiber filling rate becomes less than 70%. As a result, the outflow of hot gas from the fabric during inflation became extremely large, and vent holes were formed in the top cloth and the bottom cloth. In addition, due to the large twisting coefficient, the burst strength was insufficient even when adhesive strength was applied. Thus, it is clear that these fabrics are unsuitable as non-coated airbags. Industrial applicability
  • the airtight fabric for an airbag of the present invention has a one-sided force render treatment as compared with a conventional two-sided force render fabric, but has a significantly lower air permeability, so that the bag by inflation is used. No ventilation holes are formed, so there is no burn due to gas ventilation, and it is safe.Also, a non-smoothed surface is left on one side to give a good feel. Reinforcement is possible, and it is possible to provide a non-coated airbag having a high burst strength and a high reinforcement strength.

Description

明 細 書 エアーバッグ用気密性織物シー ト、 およびその製造方法 技術分野
本発明はエアーバッグ用気密性織物シー ト、 およびその製造方法 に関する。 更に詳しく述べるならば、 本発明は従来の両面平滑性気 密性 s織物とは対照的に、 片面が平滑化されていないにも拘らず通気 度が極めて低く、 これによりすぐれた安全保護機能を発揮するエア 一バッグ用気密性織物シー ト、 およびその製造方法に閬する。 背景技術
従来のエアーバッグ用気密性織物シー トの典型的な例としては米 国特許第 4,977,016号明細書 (日本特開平 4 —2835号) に開示され ているように、 0. 5 cc//cm2 /sec / 0. 5 inchAq以下の樹脂を被覆、 または舍浸していないポリエステル織物 (以下、 ノ ンコー ト織物と 称する) がある。 また米国特許第 5, 010, 663号明細書 (日本特開平 4 一 2835号) には、 1. S ccZcm2 /sec 0· 5 inchAq以下のポリ エ ステルノ ンコー ト織物が開示されている。 これらのボリエステル織 物はいずれも両面カ レンダ加工によって得られる両面平滑性織物で ある。 しかし、 これらは、 両面カ レンダ加工によって得られた織物 としては、 樹脂被覆織物シー トに比べてその通気度は大き く、 上記 特許明細書の実施例中でも 0. 1 ccZcm2 /sec 0. 5 inchAqを越え た値となっている。
しかるにこれらの織物を現実にエアーバッグに適用した場合、 上 記の値の通気度ではィ ンフ レーショ ンにおいてバッグに通気透孔が 形成しやすく、 イ ンフ レーショ ンガスの通気により乗員が顔面火傷 を食いやすいという致命的問題点が潜在していることが判明した。 特にイ ンフ レーショ ン時に発生微粒子が多い場合、 あるいは強力な ィ ンフ レーターを使用したイ ンフ レーショ ン時には、 このノ ンコー トエアーバッグば重大な欠陥を抱えていると言っても過言ではない。 しかもこれらの織物は両面に力レンダ処理が施されているため、 両 面が平滑であり、 風合いが硬く、 すなわちペーパーライ クであると いう欠点、もある。
ところでボリエステル織物は、 ナイ ロ ン 6 6織物に比べて縫製部 のバース ト強度が不足するためィ ンフ レーター周囲や ト ッブク ロス の縫製部を、 単なる縫製に比べて捕強効果の大きい接着捕強を施し たり、 接着捕強により部分的にバース ト強度を向上させた後に縫製 を行うなどの手段により、 バッグのバース ト強度を向上させること が必要である。 これはベルトレスバッグにおいてもベルト付バッグ においても同様である。 しかし上述の両面力レンダ織物では両面と も平滑化されているため接着性に乏しく、 このため、 これを共布あ るいは別織物で接着積層して強度捕強することが甚だ困難であつた。 一方米国特許第 4 , 921 , 735号明細書 (日本特開平 1 —122752号) にもカ レンダ加工によるエアーバッグ用気密性織物として、 その通 気度が 0〜0. 5 3 cc/cm 2 /sec Z 0. 5 i nchAqの織物が開示されて いる。 しかしその実施例中にも具体的な数値は何ら記載されていな い。 また経糸と緯糸の密度において、 前者が 4 0. 6本 Zィ ンチであ り、 後者が 8 6. 4本 Zィ ンチであつて、 両者が極端に異なるため、 バース ト強度が一方向に極端に低下し、 さらに接着強度も一方向に 極端に低いという問題点を抱えている。 さらに上記米国特許明細書 においても、 片側のみを平滑化する技術思想や、 接着性を向上させ るという概念が開示されていないのは、 前掲の 2件の先行文献の場 合と同じである。 よって、 本発明の目的は従来のエアーバツグ用非樹脂被覆ポリ ェ ステル織物について未解決のまま放置されていた上記問題点を解消 し、 イ ンフ レーシ ョ ンの際にバッグに通気透孔が形成し、 ガス通過 により火傷が発生することを防止しう るように、 通気度が低く、 接 着補強が可能な表面特性を有し、 改善されたバース ト強度および優 れた風合いを有するエア一バッグ用気密性織物シ一 ト、 およびその 製造方法を提供するこ とにある。 発明の開示
本発明のエアーバッグ用気密性織物シー トは、 2 0 0〜 5 5 0デ ニール ρヤーン織度、 および、 3 0 0 0以下の撚り係数を有するポ リ エステルマルチフ ィ ラメ ン トヤーンからなる経糸および緯糸によ つて構成され、 かつ平滑化された一方の面と、 平滑化されていない 他方の面とを有する織物を舍み、
かつ、 この織物が下記関係 :
( 1 ) 7 8.7 4 P ≥ Q ( P ) ≥ 7. 8 7 4 P
( 2 ) R 1 > R 2
( 3 ) R 1 > R 3
( 4 ) 3. 5 ≥ R 3 ≥ 0. 5
( 5 ) M u - M c ≥ 0. 0 0 0 5
( 6 ) S u - S c ≥ 0. 5
( 7 ) 8 5 ≥ ?≥ Ί 0
〔但し、 上記閬係 ( 1 ) 〜 ( 7 ) において、
' Ρ は、 圧力 (単位 : kgZcm2 G ) を表わし、 但し
0 ≤ P≤ 0.0 3であり、
Q ( P ) は、 圧力 Pにおける前記織物の通気度閬数 (単位 : mlZ cm2 /sec) 表わし、 R 1 は、 前記織物の平滑化面を構成している経糸および緯糸から 選ばれた少なく とも一方の、 糸断面輪郭線の平滑化表面側半部の曲 率半径 (単位 : ) を表わし、
R 2ば、 前記織物の平滑化面を構成している経糸および緯糸から 選ばれた少なく とも一方の、 糸断面輪郭線の反対側半部の曲率半径 (単位: mm ) を表わし、
R 3 は、 前記織物の非平滑化表面を構成している経糸および緯糸 から選ばれた少なく とも一方の、 糸断面輪郭線の、 非平滑化表面側 半部の曲率半径 (単位 : mm ) を表わし、
M c は、 前記織物の平滑化表面の表面摩擦係数の平均偏差を表わ し、
M uば、 前記織物の非平滑化表面の表面摩擦係数の平均偏差を表 わし、
S cは、 前記織物の平滑化表面の表面粗さの平均偏差 (単位 : U m ) ¾:表わし、
S uは、 前記織物の非平滑化表面の表面粗さの平均偏差 (単位 : u m ) を表わし、
Pは、 前記織物の繊維充瑱率 (単位 : %) を表わす〕
のすベてを満足することを特徴とするものである。
また、 本発明のエアーバッグ用気密性織物シー トは、 付着量 1〜 2 0 s / m z の熱硬化性樹脂により、 被覆、 又は舍浸されていても よい。
上記のように規定されたエアーバツグ用気密性織物シー トを製造 するための本発明方法は、 2 0 0〜 5 5 0デニールのヤーン織度お よび 3 0 0 0以下の燃り係数を有するポ リ エステルマルチフィ ラメ ン トヤーンを経糸および緯糸として使用して、 経糸方向および緯糸 方向のカバーファ クターが、 いづれも 1 0 5 0〜 1 3 0 0である織 物を作製し、
上記織物の片面のみに、 平滑化金属ロールを用いて、 1 5 0〜 2 2 0 °Cの加熱表面温度、 5 0 0 k g / cm以上の線圧、 および 1〜 5 0 m /分の速度によるカ レ ンダー加工を施すことを舍むものである。 本発明方法において、 前記カ レ ンダーを施された織物に、 熱硬化 性樹脂を 1〜 2 0 g / m 2 の付着量で被覆、 又は舍浸する工程が更 に.舍まれていてもよい。 図面の簡単な説明
第 1図は、 本発明の織物シー トにより得られるヱァーバッグの一 実施態様の人体側正面図であり、
第 2図は、 第 1図のエアーバッグのステアリ ング側背面図であり、 第 3 A図は、 本発明のヱァーバッグの一実施態様の正面説明図で あって、 図中の点線に沿ってエアーバッグが折りた まれることを 示し、
第 3 B図は、 第 3 A図の折りた 、まれたエア一バッグの背面説明 図であって、 図中の点線に沿ってエアーバッグが更に折りた ^まれ ることを示し、
第 3 C図は、 第 3 A図および第 3 B図に示されたエア一バッグの 斜視説明図であって、 先づ第 3 A図の点線に沿って折りた ゝまれ、 次に第 3 B図の点線に沿って折りた まれた状態を示し、
第 4図は、 折りた 、まれ、 かつイ ンフ レ一ターに連結された本発 明のヱァーバッグの正面説明図であり、
第 5図は、 本発明のエアーバッグ用気密性織物の F ( p ) ≥ Q ( P ) ≥ G ( p ) を満足する通気度関数 Q ( p ) の領域を示すダラ フであり、
第 6図は、 本発明の織物シ一トの一実施態様の断面説明図である。 発明を実施するための最良の形態
エアーバッグは、 自動車、 又は航空機に事故が発生したときに、 それを球状にふく らまして、 前記自動車、 又は航空機のフロン トシ 一トに座乗している人体を保護するために用いられるものである。 第 1図および第 2図に示されているように、 エアーバッグ 1 は、 円形ト ップシー ト部 (人体に対向する面部) 2 と、 円形バッダシー ト部 (ステアリ ングに対向する面部) 3 とを有し、 上記円形 ト ップ シー ト部と、 円形バック シー ト部とは、 その円周緣部 4 において強 固に縫い合わされている。 エアーバッグ 1 の円形バックシー ト部 3 はその中心に位置しているセンターホール 5 を有し、 このセンター ホール 5を通してエアーバッグ 1 ばィ ンフ レーター (図示されてい ない) に連結されており、 ィ ンフ レーター中に発生した燃焼ガス流 がエアーバッグに流入するようになっている。 エアーバッグ 1 の円 形バックシー ト部 3には、 1偭以上の、 通常は 2個以上のベン トホ ール 6が設けられていて、 ィ ンフ レーターからエアーバッグ中に導 入された燃焼ガスの一部が、 このベン トホールを通って排出される ようになつている。 円形バックシー ト部 3の裏 (旳側) 面のセンタ 一ホール 5 の周辺には、 エプロ ン 6が配置され、 エプロ ンの端緣部
7 , 8 は、 パック P!形部 3にしつかり と縫合されている。 同様にべ ン トホール 6の周辺にもェプロンが縫合される。
エアーバッグは、 自動車、 又は航空機の前部座席の前面のスぺー ス中に折りた まれた状態で収納される。
第 3 A , 3 B , 3 C図において、 エアーバッグ 1 は、 先づ、 第 3
A図に示されているように、 点線 9 に沿って折りた ^まれ、 次に、 第 3 B図に示されているように、 点線 1 0に沿って折りた 、まれる。 すると、 折りた、まれたエアーバッグ 1 は第 3 C図に示されている ような形状になる。 折りた 、まれたエアーバッグは第 4図に示されているよう に容器 に収容され、 自動車又は航空機の所定場所に収納される。
第 4図において、 折り た 、 まれたエアーバッグ 1 は、 容器 1 1 に 収容され、 エアーバッグ 1 のセ ンターホールがイ ンフ レ一ター 1 2 に連結される。 イ ンフ レ一ター 1 2 は、 エアーバッグ 1 のセ ンター ホールの内側に開口している複数個の燃焼ガス噴射孔 1 3 を有して いる。
自動車、 又は航空機が衝突したとき、 電源 (図示されていない) に連結された電線 1 4 を通って電流が流れ、 イ ンフ レ一ター 1 2 内 において燃焼ガスが発生し、 この燃焼ガス噴射流が急速にエアーバ ッグ 1 中に流入し、 エアーバッ グ 1 を、 点線 1 5 で示されているよ うにほ '球形にふ く らませる。
従って、 ショ ッ ク吸収用エアーバッグは、 燃焼ガスの高温および 高圧に耐えるものでなければならない。
本発明のエアーバッグ用気密性織物シー ト は、 2 0 0 〜 5 5 0 デ ニール、 好ま し く は 3 0 0 〜 4 5 0 デニールのヤー ン繊度と、 3 0 0 0以下、 好ま し く は 2 5 0 0以下、 より好ま し く は 1 4 0 0 〜 2 2 5 0 の撚り係数を有するポリ エステルマルチフ ィ ラメ ン トヤーン からなる経糸および緯糸によつて構成された織物を主構成要素と し て舍むものである。
マルチフ ィ ラメ ン トヤーンの燃り係数とは、 下記式によって定義 されるものである。
K = ( T X D 1 / 2 )
〔上式中、 Kは当該ヤー ンの燃り係数を表わし、 Tは、 当該ヤーン の m当り の撚り数を表わし、 Dは、 当該ヤー ンの全デニール数を表 わす。 〕
上記ヤーン織度は、 2 0 0 デニール未満の場合は下記の不都合を 先ずる。
(ィ ) 得られる織物のバース ト強度が不十分になる。
(口) 得られる織物の非平滑化表面の補強樹脂に対する接着性が 不十分になる。
また、 上記ヤーン繊度が、 5 5 0デニールをこえると、 得られる 織物に下記の不都合を生ずる。
(ィ) 織物の糸条間隙が大き くなり、 織物の通気度が過大になる, (口) 織物の厚さが過大になり、 このため風合が悪化し、 得られ るエアーバッグの折りた ^みが困難になり、 その収納体積 が過大になる。
(ハ) 織物の平滑化表面の平滑性が不十分になる。
(二) 織物の非平滑化表面の表面粗さが低下し、 捕強樹脂に対す る接着性が不十分になる。
また、 上記ボリエステルマルチフィ ラメ ン トヤーンの撚り係数が 3 0 0 0より大き く なると、 得られる織物の通気性を十分に低くす ることができず、 その結果、 ィ ンフレーショ ン時のガスもれが多く なり、 エアーバッグに通気透孔が形成され、 人体に火傷を負わせる おそれがあり、 またフイ ラメ ン ト間に接着剤が摻透しにくいので非 平滑面の接着性が不良になるという不都合を生ずる。
本発明のエア一バッグ用織物シ一 卜に含まれる織物は、 平滑化さ れたー表面と、 平滑化されていない反対側表面とを有するものであ る。 この平滑化された表面は、 得られる織物に低通気性を与えるも のであり、 平滑化されていない反対側表面は、 捕強樹脂に対して、 高い接着性を示し、 従って、 得られる織物の捕強樹脂による接着捕 強を可能にする。 上記平滑化表面は、 エアーバッグの外表面を形成 し、 非平滑化表面はエアーバッグの内表面を形成する。
本発明のエアーバッグ用気密性織物シー トを構成する織物は、 下 記閬係式 ( 1 ) 〜 ( 7 ) :
( 1 ) 7 8. 7 4 P ≥ Q ( P ) ≥ 7. 8 7 4 p
' ( 2 ) R 1 > R 2
( 3 ) R 1 > R 3
( 4 ) 3. 5 ≥ R 3 ≥ 0. 5
( 5 ) M u - M c ≥ 0. 0 0 0 5
( 6 ) S u - S c ≥ 0. 5
( 7 ) 8 5 ≥ P ≥ 7 0
のすベてを満足することを特徴とするものである。
下記に、 上記関係 ( 1 ) 〜 ( 7 ) のそれぞれのその意義について 説明する。
( 1 ) 7 8. 7 4 P ≥ Q ( p ) ≥ 7. 8 7 4 P ·
上記関係式 ( 1 ) において、 P は、 圧力 (単位 : kgZcm2 G ) を 表わし、 その値は、 O p O. 0 3の範囲内にある。 また、 Q ( P ) は、 圧力 Pにおける織物の通気度閬数 (単位 rnlZcm2 /sec)を表わ す。
一般に、 エアーバッグが、 イ ンフ レ一ターにより発生した燃焼ガ ス噴射流によりふく らむ際、 エアーバッグに与えられる圧力は、 0. 3 kg/cm2 G以下である。
上記閬係式 ( 1 ) を満足する Q ( P ) の領域は、 第 5図において、 直線 F、 G、 および Hにより規定される三角形により示される。 第 5図は、 圧力 (kg/cm2 G ) を横軸とし、 通気度 (ml/cm2 /sec) を縦軸とする。 圧力一通気度関係を示すものである。 .
上記関係 0 ≤ P ≤ 0. 0 3
から、 ( ) は、 0〜 0. 0 3 kg/cm2 Gの範囲内圧力に閬するも のであり、 つまり第 5図の縦軸と、 直線 Hとの間にある。 また、 一 次関数 F ( p ) = 7 8. 7 4 P は直線 Fにより表わされ、 一次関数 G ( p ) = 7. 8 7 4 P は直線 Gによって表わされうる。 従って、 閬 係式 7 8. 7 4 P ≥ Q ( P ) ≥ 1. 8 Ί Pを満足する Q Pは、 直線 H と直線 Gとの間にある。
つまり、 閬係式 7 8. 7 4 P ≥ Q ( P ) ≥ 7. 8 7 4 P (但し 0 ≤ P ≤ 0. 0 3 ) を満足する織物の通気度 Q ( P ) は、 第 5図において、 直線 H、 Gおよび Hにより規定される三角形領域内にあるものであ る。
織物の通気度 Q ( P ) が、 7 8. 7 4 p (直線 F ) より も大きいと きは、 エアーバッグが燃焼ガス噴射流によりふく らむとき、 バッグ に通気透孔が形成され、 高温の燃焼ガス流がこの通気透孔が人体に 吹き当り これに火傷を与えるおそれがある。 従って、 織物の Q ( P ) 値は、 0〜0. 0 3 kg/cm2 Gの圧力において、 一次関数 7'8. 7 4 P (直線 F ) の値以下でなければならない。
また、 織物の通気度 Q ( P ) が、 一次関数 7. 8 7 4 Pの値 (直線 G ) より も小さいときは、 得られる織物は、 硬さが過大であり、 風 合が粗剛であり、 かつ、 引裂強度が低く、 非平滑化表面の捕強樹脂 に対する接着性が不十分になる。
本発明に用いられるエアーバッグ用織物を、 下記閬係式 :
( 2 ) R 1 > R 2
( 3 ) R 1 > R 3、 および
( ) 3. 5 ≥ R 3 ≥ 0. 5
を満足していなければならない。 ' 上式 ( 2 ) 〜 ( 4 ) において、 R 1 は、 織物の平滑化面を構成し ている経糸および Z又は緯糸の、 糸断面輪郭線の、 平滑化表面側半 部の曲率半痊 (単位: mm) を表わし、 R 2は、 上記糸断面輪郭線の、 反対側半部の曲率半径 (単位: mm) を表わし、 R 3 は、 織物の非平 滑化表面を構成している経糸および/又は緯糸の、 糸断面輪郭線の、 非平滑化表面側半部の曲率半径 (単位 : ) を表わす。
第 6図に示された織物の断面図において、 織物 2 0 は、 平滑化さ れた表面 2 1 と、 .非平滑化表面 2 2 とを有するものである。 平滑化 表面を形成している経糸 (又は緯糸) 2 3の断面輪郭線において、 その平滑化表面側 (外側) 半部 2 の形状は、 曲率半径 R 1 を有す る半円弧形状に近似し、 その反対側 (内側) 半部 2 5 の形状は曲率 半径 R 2を有する半円弧形状に近似している。 また、 織物 2 0 の非 平滑化表面 2 2を形成している経糸 (又は緯糸) 2 6 の断面輪郭線 において、 その非平滑化表面側 (外側) 半部 2 7 の形状は、 曲率半 径 R 3を有する半円弧形状に近似している。 曲率半径 R l、 R 2お よび R 3の値は、 それぞれ、 1 0本の当該糸条の断面輪郭線半部の 曲率半径を測定し、 その平均値によって表わされる。
本発明において、 織物は関係式 ( 2 ) : R 1 > R 2を満足しなけ ればならない。 R 1および R 2の値が R 1 R 2 の関係にあるとき は、 得られる織物の平滑化表面部分における繊維充塡率が不十分に なり、 ェァーバッグが、 燃焼ガス噴射流により急速にふく らむとき、 ガスの圧力により織物に通気透孔が形成されやすく なる。
本発明において、 織物は関係式 ( 3 ) : R 1 > R 3を満足しなけ ればならない。 R 1 および R 3の値が R 1 ≤ R 3の関係にあるとき は、 得られる織物の非平滑化表面の非平滑性 (粗面度) が不十分に なり、 この非平滑化表面の、 補強樹脂に対する接着性が不十分にな り、 従って、 その補強が困難になる。 本発明において、 織物は関係 式 ( 3 ) : 3. 5 ≥ R 3 ≥ 0. 5を満足しなければならない。 R 3 の値 が、 0. 5 mm未満であると、 得られる織物の非平滑化表面部分におけ る繊維充塡率が不十分になり、 このため、 エア一バッグが燃焼ガス 噴射流によつてふく らむとき、 ガス圧力によつて、 織物に通気透孔 が形成されやすく なる。 ま 、 R 3 の値が、 3. 5 mmより大き く なる と、 得られる織物の非平滑化表面の非平滑性 (粗面度) が不十分と なり、 このため、 この非平滑化表面の補強樹脂に対する接着性が不 十分になり、 十分な捕強効果を得ることが困難になる。
本発明のエアーバッグ用気密性織物シー トの織物は、 関係式 ( 5 ) : M u - M c≥ 0. 0 0 0 5を満足しなければならない。 M uば織物の 非平滑化表面の表面摩擦係数の平均偏差を表わし、 M cは、 織物の 平滑化表面の表面摩擦係数の平均偏差を表わす。 (M u—M c ) 値 が、 0. 0 0 0 5未満であると、 得られる織物の平滑化表面の摩擦係 数が過大になり、 このため、 この織物により形成されたエアーバッ グの外表面の摩擦係数が過大になり、 このため自動車、 又は航空機 が衝突し、 エア一バッグがふく らんだとき、 このふく らんだエアー バッグの外表面が、 それに接触する人体に対し摩擦傷を与えるおそ れが大き くなる。 好ましい (M u— M c ) 値は、 0. 0 ひ 1以上であ る。 また、 本発明において、 上記織物は、 閬係式 ( 6 ) : S u - S c≥ 0. 5を潢足しなければならない。 S uは織物の非平滑化表面の 表面粗さの平均偏差 (単位 : m ) を表わし、 S cは、 織物の平滑 化表面の表面粗さの平均偏差 (単位 : ; / m ) を表わす。 ( S u— S c ) 値が 0. 5未満であると、 得られる織物の平滑化表面 (ヱァーバ ッグの外表面) の平滑性が不十分になり、 このため自動車、 又は航 空機が衝突し、 エアーバッグがふく らんだとき、 エアーバッグの外 表面が、 それに接触した人体に摩擦傷を与えるおそれがある。 また、 得られる織物の非平滑化表面の非平滑性 (粗面度) が不十分になり、 このため、 非平滑化表面の、 補強樹脂に対する接着性が不十分にな る。 好ましい ( S u— S c ) 値は 1. 0以上である。 本発明に係る上 記織物は、 関係式 ( 7 ) : 8 5 ≥ P≥ 7 0を潢足しなければならな い。 Pは、 織物における繊維充塡率 (単位 : %) を表わす。 繊維充 塡率 Pは、 下記式により定義される。 B S G
P % = X 1 0 0
T S G
(上式中、 P は下記の通りであり、 B S Gは、 当該織物の嵩比重を 表わし、 T S Gは当該織物の眞比重を表わす) 。
本発明.に係る上記織物において、 繊維充塡率 Pが、 7 0 %未満の ときは、 得られたエア一バッグが燃焼ガス噴射流により急速にふく らむとき、 ガス圧力によって、 エアーバッ グに多数の通気開孔が形 成され、 燃焼ガスが容易に流失し、 人体を十分に保護する こ とがで きな く なるおそれがある。 また、 繊維充塡率 Pが 8 5 %をこえる と、 得られる織物の硬さが過大になり、 風合が悪化し、 そのバース強度 および引裂強度が不十分になり、 この織物から得られるエアーバッ グは、 燃焼ガス噴射流によって急速にふ く らむとき、 ガス圧によつ て通気開孔が形成されやす く なる。
好ま しい織維充塡率は、 7 2〜 8 0 %である。
本発明の上記織物に用いられるポリ エステルマルチフィ ラメ ン ト の単織維織度は 0. 5〜 2. 5 d e の範囲である ことが好ま しい。 この 単織維織度が 2. 5 d e を越える と、 得られる織物の通気度が過大に なり、 また織物自体も粗剛なものとなり、 一方の表面を平滑化する こ とが困難になる。 また得られるエアーバッグのィ ンフ レーショ ン 時のガスの流出を抑えられずに通気開孔が形成され、 人体が火傷を 負うおそれがある。 また、 非平滑化表面の表面積が減少して補強樹 脂に対する接着性が低下する。 一方単繊維織度が 0. 5 d e未満では、 得られる織物のバース ト強度が減少し、 また非平滑面の接着性が不 足する こ とがある。 従って、 単織維繊度の 0. 5 〜 2. 5 d e の範囲か ら選ばれる こ とが好ま しい。 そ してこの単織維織度の好ま しい範囲 は 1 〜 2 d eである。
上記のボリ エステルマルチフ ィ ラメ ン トを構成するポリ エステル ボリ マーとしては、 例えばポリエチレンテレフタ レー ト、 ポリ プチ レンテレフタ レー ト、 ボリ へキシレンテレフタ レー ト、 ボリ エチレ ンナフタ レー ト、 ポリ ブチレンナフタ レー ト、 ポリ エチレン一 1 , 2 —ビス (フエノ キシ) エタ ンー 4 , 4 ' —ジカルボキシレー トな どのほか、 ボリ エチレンイ ソフタ レー ト、 ポリ ブチレンテレフタ レ ー ト/ナフタ レー ト、 ボリ ブチレンテレフタ レー 卜/デカ ンジカル ボキシレートなどのような共重合ポリエステルをあげることができ る。 中でも機械的性質、 纖維形成性のバランスなどのとれたポリェ チレンテレフタ レー トを用いるこ とがと く に好ましい。
マルチフィ ラメ ン トヤーンが無撚の場合は、 得られる織物の通気 度を低くできるが、 これに伴って非平滑化表面からの接着荊の浸透 が不良となる。 従って無撚ヤーンを用いるときは経糸方向のみか、 あるいは緯糸方向にのみのいずれか一方に無撚ヤーンを配すること が好ましい。 一方経糸方向および緯糸方向の両方とも無燃ヤーンを 用いる場合は、 後述する力レンダ条件を緩和することにより接着性 良好な非平滑化表面を確保する必要がある。
本発明に係る上記鎩物の経糸方向および緯糸方向のカバーファク ターは、 共に 1 0 5 0〜 1 3 0 0であることが好ま しい。 ヤーンデ ニールが 4 2 0 d eのボリエステルフィ ラメ ン トを用いる場合、 上 記カバ一ファクタ一値は、 織物における経緯各々約 5 1 〜 6 3本ノ ィ ンチの密度に相当する。 そして経および緯の密度は極力同密度が 好ましい。 ここでいう経糸方向のカバーファクターとは、 経糸ヤー ンのデニール値の平方根と、 経糸密度 (本ノィ ンチ) との積をいう。 また緯糸方向のカバーフアクターとは、 緯糸ヤーンのデニール値の 平方根と緯糸密度 (本 Zィ ンチ) との積をいう。 このカバーファ タ ターが 1 0 5 0未満では、 得られる織物の気密性が不十分である。 またこの値が 1 3 0 0を越える場合は、 粗剛な織物となり風合いが 低下し、 しかし気密性はそれほど向上しない。 同時に非平滑化表面 の接着性が低下する。 従って、 このカバ一ファ クタ一は 1 0 5 0 〜 1 3 0 0 である こ とが好ま し く、 1 0 8 0 〜 1 2 5 0 である こ と力く 更に好ま しい。 織物密度については、 ヤーンデニールが 4 2 0 d e のポリ エステルフ ィ ラメ ン トを用いる場合、 経緯とも約 5 1 〜 6 3 本/イ ンチの密度を有する こ とが好ま し く 、 5 3 〜 6 1 本/イ ンチ が.更に好ま しい。
一方、 経糸密度を極端に上昇し、 緯糸密度を低下させた織物では、 みかけ上のカバ一ファ クタ一は上昇しても気密性は充分には向上せ ず、 また風合いも粗剛となるた 1 め好ま し く ない。 またこの場合、 ノ、'
δ
—ス ト強度も一方向に極端に低く なるのでエアーバッグ用としては 不適当であり、 更に非平滑化表面の接着性も一方向に極端に低下す る。
本発明のエアーバッグ用気密性織物シー トにおいて、 織物の引張 破断強度が 1 8 0 kgZ 3 cm以上、 引張破断伸度が 2 5 %以上である こ とが好ま しい。
織物の引張破断強度が 1 8 0 kgZ 3 cm未満のときは、 得られるェ ァ一バッグのィ ンフ レーショ ンにおける衝撃吸収力が不足して通気 閲孔が形成しやす く 、 またバース ト強度が不足する。 このこ とから 織物の引張破断強度は、 1 8 0 kg 3 cm以上であるこ とが好ま し く、 更に 2 0 0 kgZ 3 cm以上が特に好ま しい。
一方、 該織物の引張破断伸度が 2 5 %未満のときは、 得られるェ ァーバッグのィ ンフ レーショ ンにおける衝撃吸収力が不足して通気 開孔が形成しやす く 、 またバース ト強度も不足する e このこ とから 織物の引張破断伸度は、 2 5 %以上であるこ とが好ま し く 、 更に 2 7 %以上が特に好ま しい。
本発明におけるエアーバッグ用気密性織物シー トにおいて、 織物 を構成する糸条の引張破断強度が 8. 0 g Z d e以上であり、 その引 張破断伸度が 1 8 %以上であることが好ましい。
織物を構成する糸条の引張破断強度が 8. 0 g / ά e未満のときは、 得られるエアーバッグは、 そのイ ンフレーショ ン時に破損しゃすく なる。 このことから糸条の引張破断強度は 8. 0 g / d e以上である ことが好ましく、 さらに 8. 3 g Z d e以上が特に好ましい。
—方、 織物を構成する糸条の引張破断伸度が 1 8 %未満のときは、 得られ エアーバッグのィ ンフ レーショ ン時に破損が発生し易い。 このことから糸の引張破断伸度は 1 8 %以上であることが好ましく、 更に 2 0 %以上が特に好ましい。
また本発明の織物の織物組織としては、 1 Z 1の平織物組織や 2 / 2のマツ ト織物組織を有することが好ましいが、 2 Z 1綾あるい は 2 Z 2綾織物組織を有するものであってもよい。
次に、 本発明のエアーバッグ用気密性織物シー トの製造法につい て述べる。 まず、 ポリエステルフィ ラメ ン トヤーンとして、 ヤーン デニールが 2 0 0〜 5 5 0 d eであって 3 0 0 0以下の撚り係数を 有するもの (好ましく は既に述べた単鏃維 d eの範囲、 撚数の範囲 の要伴を満足するヤーン) を用いて、 生機を作製する。 この場合、 ポリ エステルマルチフィ ラメ ン トヤーンとしては、 1 5 0 'Cにおけ る乾熱収縮率 3〜 8 %であり、 沸水収縮率が 1. 5〜 5 %のものを用 いることが好ましい。
マルチフィ ラメ ン トヤーンの 1 5 0 ΐにおける乾熱収縮率が 8 % を越えると、 得られる織物の精練後のセッ トゃカ レンダによる収縮 が大きすぎるため、 かえって均一収縮が阻害され、 糸条間隙が広く なり、 その結果得られる織物の通気度が低くなり且つ平滑性が高く なる。 上記乾熱収縮率が 3 %未満であると、 得られる織物の精練後 のセ ッ トゃカレンダによる収縮が小さすぎるため、 通気度が低く且 つ平滑性の高い織物が得られない。 従って、 マルチフィ ラメ ン トャ ーンの 1 5 0てにおける乾熱収縮率は 3 〜 8 %であることが好ま し く、 更に 4 〜 7 %が特に好ましい。
また、 マルチフ ィ ラ メ ン トヤーンの沸水収縮率が 5 %を越えると、 精練時ゃセ ッ ト時に得られる織物が過度に収縮するため、 かえって シヮが発生しやすぐ、 このためカ レンダ工程の効率が低下し、 通気 度が低く、 且つ平滑性の高い織物を得るこ とが困難になる。 またこ のような織物を長期間放置すると、 その気密性や平滑性が不良にな る傾向がある。 一方マルチフィ ラメ ン トヤーンの沸水収縮率が 1. 5 %未満であると、 精練時ゃセッ ト時に織物が収縮し難いため、 同様 に通気度が低く、 かつ平滑性の高い織物を得ることが困難になる。 従って、 マルチフ ィ ラメ ン トヤーンの沸水収縮率は 1. 5〜 5 %であ ることが好ましく、 更に 2〜 4 %が特に好ま しい。
このようにして得られた織物の一方の面を平滑化し、 他方の面を 非平滑構造に保持するためには、 この織物を精練、 セッ ト後、 その 片面にのみ選択的に金属ロールが接触するカ レ ンダ加工を施す。 'こ の力 レ ンダ加工は一般に上下一対の金属ノ弾性力 レ ンダロールによ つて行われ、 金属ロールにより加工された面が平滑化される。 金属 /金属カ レ ンダロールを用いる場合は、 温度差を付け、 より温度の 高い方のロールにより加工された表面が平滑化される。 平滑化表面 を得るための金属ロールの表面温度は、 一般に 1 5 0〜 2 2 0てで あり、 更に好ましく は 1 6 0〜 2 0 0 てである。 ロール圧力は一般 に 5 0 0 kg Zcm以上であり、 更に好ま し く は 5 5 0 〜 1 4 0 0 kg / cmである。 ロール速度は一般に l 〜 5 0 m Z分であり、 更に好ま し く は 2〜 2 5 m Z分である。 この際、 充分な加熱加圧効果を達成す るには、 例えばカ レンダの直前に接触および,または非接触方式の ヒーターを設けて織物を予熱してもよ く、 また 1 〜 4 m /分程度の 低速で加工してもよい。
力レンダ加工は、 通常織物の片面のみに少なく とも 1回施す。 し かし 2回以上施してもよい。 両面に加工を行う と、 織物の風合いが 悪化し、 ペーパーライ クな織物になる。 また、 織物の両面ともに平 滑化表面になるため接着剤の浸透が不良となり接着剤に対するァン カー効果が低下し、 接着剤の剝離強度が大幅に低下する。 しかし片 面のみにカ レンダ加工を施す場合は、 弾性ロール面に接触した表面 は平滑化されないため、 この非平滑化表面における接着剤の付着が 良好であり、 接着性が良好になる。 このような織物から作られたェ ァーバッグのイ ンフ レ一ター周囲や、 ト ップクロス (エプロン) を 接着捕強することが容易になる。
本発明によるエアーバッグ用気密性織物は、 シ リ コ ンゴムやクロ 口プレンゴムなどによる被覆を施すことなくノ ンコー トエアーバッ グ用織物として使用することができる。
しかしながらこのようなノ ンコー ト織物に、 裁断縫製に伴うホッ レ防止のために熱硬化性樹脂を 1 〜 2 0 g / m 2 の付着量で被覆ま たは舍浸することが好ましい。 一般に被覆処理を施す場合は、 織物 の平滑化表面に上記樹脂を施すことが好ましい。
熱硬化性樹脂としてはシ リ コ ンゴム、 ウ レタ ン樹脂、 ポリエステ ル樹脂などを用いることができる。 これらの中でも柔軟性、 耐久性 に優れたものを用いることが好ましく、 その例としては、 シリ コ ン ゴムの場合、 付加反応型の触媒添加型シリ コ ンゴムが好ましい。 具 体的なシ リ コ ンゴムの種類と しては、 ジメ チルシリ コ ン、 メ チルビ ニルシリ コ ン、 メ チルフエニルシリ コ ン、 フ ロ ロ シリ コ ンなどを使 用することができる。 この内、 機械特性、 コス ト、 作業性などの面 からメ チルビュルシリ コ ンが特に好ましい。
前記熱硬化性樹脂中には、 難燃剤、 シリ力などの無機化合物ゃ充 塡剤などが含まれていてもよい。
熱硬化性樹脂の付着量は 1 〜 2 0 8ノ111 2 であるこ とが好ま し く、 '特に 2 〜 2 0 g / m 2 が好ま しい。 樹脂付着量が 2 0 g / m 2 を越 えると得られる織物の風合いが低下し、 また得られるエア一バッグ の軽量性、 コ ンパク ト性、 収納性が低下する。 しかし、 それが 1 g / m 2 未満では得られる樹脂層の皮膜強度が小さ く樹脂層が損傷さ れやすく なる。
本発明のエアーバッグ用気密性織物シー トの平滑化表面は、 ェァ ーバッグの外表面をなすように使用されることが好ま しい。 非平滑 化表面が外表面をなす場合は、 エアーバッグが急速にふくれるとき、 この外表面に接触する人体に摩擦傷を生じやすい。 また接着補強を 施す非平滑化表面はエアーバッグの内側面を形成するように使用す ると、 得られるエアーバッグの外観が良好になる。
本発明のエアーバッグ用気密性織物シ一 トから ドライ バ一席用ェ ァ一バッグを形成する場合、 2枚の円形状織物を裁断採取してその 円周緣に沿って縫製結合する。 この場合、 エアーバッグ用気密性織 物の平滑化表面を、 人体と接するエアーバッグの外表面を形成する ように縫製する。 平滑化表面が内側面を形成すると、 非平滑化表面 が外側面になるため、 急速にふく らんだエアーバッグ外表面により、 人体に摩擦傷を生じやすい。 また接着補強を外側から施すことが必 要になり、 このため得られるエアーバッグの外観が不良になる。 ノ、' ッセンジャー用のエアーバッグの場合も上記と同様である。
本発明のヱァーバッグ用気密性織物シー トは、 従来の.両面カ レン ダ処理された気密性ノ ンコー ト織物に比べて、 片面カ レンダ加工さ れているにも拘らず極めて通気度が低いために、 得られるエアーバ ッグのイ ンフレーショ ンにおいて、 通気開孔の形成ゃィ ンフ レーシ ョ ンガスの通過による顔面火傷の懸念もない。 さらに本発明の織物 シー トは片面力 レンダ処理されたものであるためにソフ トな風合い を有し、 しかもホッ レ防止の目的で樹脂を付与する場合に、 気密性 に優れていることから、 その付着量を少なくかつ均一にすることが できる。 またエアーバッグとしては平滑化表面をバッグ外側面をな すように用いることにより、 人体に摩擦傷を与えることがなく、 さ らに他の片面が非平滑化表面であるため、 捕強接着剤による強度補 強が容易である。
従来のク口口プレンゴムによりコー 卜されるエアーバッグの場合、 未加硫ゴムの熱圧接着により、 エアーバッグ側面を接着捕強するこ とができたが、 しかしノ ンコー トエアーバッグではこれに代わる捕 強手段が必要であつた。 と くにポリェステル織物はナイ ロ ン 6 6織 物に比べてバース ト強度が不十分であるため、 これを向上させるに は捕強接着剤による捕強が最も有効な手段である。 従来の両面力レ ンダ処理された気密性織物では、 各種接着剤に対する接着性が不良 であったが、 本発明の織物にあっては、 その非平滑化表面の接着剤 に対するアンカー効果により良好な接着捕強が可能である。
本発明におけるエアーバッグ用気密性織物シー トは、 エアーバッ グ形成時に、 非平滑化表面の非平滑性を利用して、 イ ンフレ一ター 周囲や ト ップク ロス (エプロ ン) に接着による捕強を施すことがで きる。 本発明におけるエアーバッグでは、 非平滑化表面がバッグ内 側面をなしているので、 補強を内側面に.することができる。 ポリエ ステルエアーバッグでは、 ィ ンフレーター周囲や ト ッブク ロスを捕 強しなければ、 特に強力なィ ンフレータ一によるィ ンフ レーショ ン では、 縫製部が損傷されることがあり、 またバース ト強度が不十分 となる。 縫製部は トップク ロスやボ トムクロスの捕強布や、 ベル ト 布の結合部に形成される。 縫製部の捕強には接着剤による接着補強 が最適である。 接着捕強は接着剤のみで行ってもよ く、 また縫製と 接着とを併用してもよい。 '
接着には各種接着剤を使用してもよいが、 作業性を考慮すると熱 可塑性不織布や熱可塑性フ ィ ルムを用いることが好ましい。 これら のう ち、 低融点の共重合ポリ エステルによる不織布ゃフイ ルムを用 いることがさらに好ま しい。 これらの接着には、 アイ ロ ンやプレス などの熱圧接着を施せばよい。 これらの不織布やフィルムは長期間 にわたり高い耐熱性および耐湿性を保持することができる。
また補強接着のために硬化性のシリ コ ンゴムを使用することもで きる。 この場合、 縮合反応型や'付加反応型の各種シ リ コ ンゴムを使 用することができるが、 付加反応型のものが接着力が高くて好ま し い。
補強用織物としては、 本発明のエアーバッグ用気密性織物 同じ ものを用いてもよ く、 あるいは他の織物を使用してもよいが、 強伸 度、 モジュラスが同一の本発明のエアーバッグ用気密性織物 (共布) を同一方向に配して使用することが好ま しい。 この場合、 エアーバ ッグ本体用織物と補強用織物との非平滑化表面同士が接着されるよ う配置して前記接着剤を使用して接合することが好ましい。 さらに 必要な場合は 2 〜 3層の積層接着も有用である。
このように本発明のエアーバッグ用気密性織物シー トは、 気密性 が高いため、 ホッレ防止のために被覆または舍浸する熱硬化性樹脂 の付着量を低減することができ、 従来のヱァ一バッグ用織物に比べ てコ ンパク ト に収納できる。 また織物の一方の面は平滑性に優れる ' ため、 この面に前記樹脂を均一に付与することができる。 しかもこ のような樹脂付着織物は長期間の保管後も剝離強度を高水準に維持 するものである。
以下、 実施例をあげて本発明をさらに詳細に説明する。 なお、 実 施例における繊維および織物の物性の測定、 エアーバッグの評価は それぞれ下記の方法にしたがって行った。
通気度:通気度測定機 F X 3 3 0 0 (商標 : テクステス ト社製) を用い、 開口断面積が 1 0 0 cm 2 のオリ フィ スにより測定した。 糸断面輪郭線曲率半径 : 電子顕微鏡により織物の断面を撮影し、 その断面輪郭線の曲率半径を近似的に計測した。
摩擦係数の平均偏差: カ トーテック (株) 製表面試験機 K E S一 F B 4 (商標) を用いて織物の摩擦係数を測定しこの結果から平均 偏差を求めた。 測定値は経と緯の平均値を採用した。
表面粗さの平均偏差 : 前記摩擦係数の測定時に垂直変位を測定し、 この結果からその平均偏差を求めた。 同様に測定値は経と緯の平均 値を採用した。
織維充瑱率 : 織物の厚さを目付で除して算出した嵩比重を、 繊維 の真比重で除して箕出した。 織物の厚さはマイ クロメータ (ミッ ト ョ製作所 (株) 製) を用いて測定した。
乾熱収縮率: ボリ エステルマルチフィ ラメ ン トヤーンを無撚のま ま 1 5 0てで 3 0分間収縮させ、 その収縮率を下記の式により算出 した。
乾熱収缩率 (%) = ( ( L— L。 ) Z L ) X 1 0 0
(上式中、 Lは収縮前のフィ ラメ ン トヤーンの長さを表わし、 L。 は収縮後のフィ ラメ ン トヤーンの長さを表わす。 )
沸水収縮率: ポリエステルマルチフ ィ ラメ ン トヤーンを無撚のま ま沸水中で 3 0分間処理し、 その収縮率を上記乾熱収縮率の算出方 法と同様にして算出した。
織物の 張破断強伸度 J I S L— 1 0 9 6記載の織物の引張 試験法により測定した。 この場合、 織物幅を 3 cni、 引張速度を 2 0 cmノ分、 試験長を 2 O cmとし、 経緯の測定値平均値を求めた。
糸の引張破断強度: J I S L - 1 0 1 3記載の纖維の引張試験 法により測定した。 この場合、 織物から経糸および緯糸を引き抜き、 そのままの撚糸状態を保持しつ ^引張速度を 2 0 c ノ分、 試験長を 2 0 cmと して測定した。 経緯の測定値の平均値を求めた。
糸の引張破断伸度 : 前記の糸の引張破断強度と同時に測定した。 風合い : エア一バッグを形成し、 衝突事故の際エアーバッグに顔 面が強く 当たる こ とを想定しっ ゝ、 織物表面の感触と柔軟性につい て官能評価じた。
耐ィ ンフ レーショ ン性 : ドライ バ一席用、 内容積 6 0 リ ッ トルの エアーバッグを収納したモ ジュールに、 Morton I n ter na t i ona 1社製 タイ プ 1 型イ ンフ レ一ターを装着して、 これを 9 5 。Cで 6時間以上 加熱レて直ちにイ ンフ レーシ ョ ンを実施した。 このときのバッグの 通気透孔の形成の有無、 損傷の有無、 イ ンフ レーシ ョ ンガスの遮蔽 の度合いを高速ビデオを用いて観察した。
バース ト強度 : 常温で高圧の窒素ガスを急激に前記 6 0 リ ッ ト ル のエア一バッグに注入してバッグの破裂強度 (kgZcni2 G ) を測定 した。 また損傷の状況を観察した。
実施例 1 〜 1 3
実施例 1 〜 1 3 の各々 において、 表 1 〜表 5 に示す各物性を有す るポ リ エステルマルチフ ィ ラメ ン トヤー ンを用い、 高密度の平織物 を製織し、 これに精練加工、 熱セ ッ ト、 片面カ レ ンダを施した。 力 レンダ条件は、 温度 1 8 0 〜 2 0 0 て、 圧力 8 0 〜 2 1 0 ト ン (線 圧 5 3 3〜 1 4 0 0 kg/cm) 、 速度 4 〜 6 m Z分であった。 カ レ ン ダ加工は 1 〜 2 回繰り返して実施した。 また一部の織物にはシリ コ ンゴムによるホッ レ防止加工を施した。
次にこの織物シ一 トカ、ら ドライ バ一席用の 6 0 リ ッ トルのエアー バッグを作製した。 その際、 カ レ ンダ加工を施した平滑化表面はバ. ッグの外側面を形成するように配置した。 また トップク ロスとイ ン フ レーター周囲には捕強用織物片を接着剤により接着して捕強した。 捕強用織物はエアーバッグ本体用織物シ一卜と同じ織物シー トであ り、 これを本体と同方向に接着した。 また、 接着剤の種類は表 1 〜 5に記載されている通りであつた。 この状態でィ ンフ レーショ ンと バース トテス トを実施した。 得られた織物物性およびエアーバッグ の性能を併せて表 1〜表 5に示す。
1 卜く H 'ヾ一'
実 施 例 1 実 施 例 2 実 施 例 3 原 (d e) 420 420 500 単纖た (d e) 1.7 1.7 2.0 糸
燃り係数 2049 1 639 0 物 0 0 0 性 乾熱収節率(%) 4.5 4.5 5.0
沸水収蹄率(%) 2.1 2.1 2.6 抜糸弓張強度 (B/d e) 8.9 8.8 9.0 抜糸弓張伸度(%) 22.0 21.1 23.6 目 付(g/m:) 237 229 245 厚 さ (mm) 0.2 1 9 0.2 12 0.234 摁
力 / iー フ *1糸方向 1 1 89 1 187 1 1 68
7ク タ 一 絳糸方向 1 227 1 107 1 086 物
圖張強度 (kg/3cm) 236 227 267 難弓張仲度(%) 30.8 29.8 34.4 物 カ レ ン ダ 処 理 片而 2回 片面 2回 片面 2回
Q p) (cc/ cm2 / sec) 24.5 P 21.3 P 34.9 P 性 R 1 (mm) 3.90 4.10 4.4 7 R 2 (mm) 0.40 0.50 0.55 3 (mm) 1.15 1.32 1.44
M u— M c 0.005 0.004 0.007
S u— S c (〃m) 2.1 1.5 2.7
P (%) 78.4 78.9 76.6 熱硬化性樹脂 m 類 な し な し な し による処理 付着量 (g/mz) 0 0 0
風 合 い 極めて良好 極めて良好 良 好
耐 ン 透 孔*撗 傷 ¾ し な し な し フ レシ 'ί ガス遮 蔽 性 極めて良好 極めて良好 極めて良好 接 着 有無/場所/ 有/インフレ-夕-周 EBと 有/インフレ-タ-周 BBと 有 z フレ -ク-周 siと グ内側 ·外側/ トフブク πス中央部/バフグ hブク πス中央部/ グ トフブク πス中央部 Z グ 補 強 糨物稱類/接着 内側 Ζクグ と共布/ 内側/ ク'と共布/ 内側 っグ と共布/ 剂 /方向性 シリコン iム /同方向 シリコン: 同方向 シリコン: ίλ/同方向 - ス ト強度 (kg/cm2 G) 2.0 1.9 2.3 総 合 評 価 良 好 良 好 良 好 表 2
表 3
表 4
実 施 例 10 実 施 例 1 1 原 トンた- ft (d e) 420
単難テ ·:-» (d e) 6.0
撚り係数 2459 2049 物 緯糸 0 0 性 乾熱収 率(%) 4.5 4.5
沸水収縮率(%) 2.1 2.1
抜糸引張強度 (ε/d e) 8.7 8.9 ifefe引張伸度 (%) 22.1 22.0 目 付(g/m 2O OL34 237
W- さ (mm) 0.231 0.219 镞
力 Λ フ 経糸方向 1 188 1 189 7クタ一 緯糸方向 1210 1227 物
難引張' (kg/3cra) 236
機物弓張忡度 (%) 30.8
物 カ レ ン ダ 処 理 片而 回 片面 2J I:N -回
o
Q. p) (cc/cra: / sec) 77.7 P 24.5
M u— M c 0.001 0.005
S u— S c (fim) 1.7 2.1
P (%) 73.4 78.4 熱硬化性樹脂 種 類 な し な し による処理 付着膨 ) 0 0
風 合 い 良 好 極めて良好
X if ·ίン 透 孔,掼 傷 な し な し
7 7 レ
[ シ 3 ガ ス遮 蔽 性 良 好 極めて良好 ノ、'
V 接 着 有無/場所 /% 有 Zインフレ-タ- J lと 有/インフレ-ダ-周丽とトウブク グ ク'内側 ·外側 Z ト7ナク11ス中央部 Z ク' πス中央部/ グ内側と外 捕 強 難種類 Z接着 内側/ グと共布/ /Mと共布/シリコン: ΓΑ 剤/方向性 シリ: DJA/同方向 ノ同方向
Λ -ス ト ¾l¾Og/cnz G) 2.1 2.2
総 合 評 価 良 妤 良 好 5
表 1 〜表 5の結果から下記事項が明らかになった。
まず実施例 1では原糸物性、 織物物性とも本発明の全ての要件を 満たしているのでエアーバッグの耐ィ ンフ レーショ ン性、 バース ト 強度、 風合いが優れ、 良好なエアーバッグ特性である。 実施例 3で はヤーンデニールと単織維デニールが大き く なっているため幾分風 合いが硬化するが良好な成績が得られた。 実施例 3では、 経糸も緯 糸も無擦であるため、 接着性の低下が懸念されたが、 単繊維デニー ルが大きいこと、 カ レンダ条件を若干緩和したこと、 および目付が 大きいことなどの理由でバース ト強度は向上した。 実施例 4では、 単繊維デニールが大きいため、 経糸も緯糸も無撚であつたがバース ト強度は良好であつた。 実施例 5では、 片面 1回のカ レンダ加工て はあるが良好なエア一バッグ特性である。 実施例 6では、 単繊維デ ニールが小さ く、 経糸も緯糸も無撚であるため、 力 レンダ条件を若 干緩和した。 このため良好なエアーバッグ特性が得られた。 実施例 7では、 シリ コ ンゴムを 5 %被覆したが、 風合いに優れ良好なエア 一バッグ特性が得られた。 実施例 8では、 原糸収縮率が大きいため、 カバーファクタ一や織維充填率が大き く なったが良好なエアーバッ グ特性が得られた。 実施例 9では、 ヤーンデニールがかなり大き く 、 また実施例 1 0では、 単鏃維デニールがかなり大きいが、 いずれも 良好なヱァ一バッグ特性が得られた。 実施例 1 1では、 バッグの内 側と外側に共に補強織物により接着捕強を施した結果、 内側のみを 捕強した場合に比べて若干バース ト強度が向上した。 実施例 1 2で は、 ポリエステル系の共重合不織布を接着剤として使用したが良好 なバース ト強度が得られた。 同様に実施例 1 3では、 ボリエステル 系の共重合フィルムを接着剤として使用したが良好なバース ト強度 が得られた。 Lh較例 1 〜 ; I 2
比較例 1 〜 1 2の各々において、 表 6〜表 1 0 に示す物性を有す るポ リ エステルマルチフ ィ ラ メ ン ト ヤーンを用い、 高密度の平織物 を製織し、 これに精練加工、 熱セ ッ ト、 片面あるいは両面カ レ ンダ を施した。 カ レ ンダ条件は、 実施例 1 〜 1 3 と概ね同様であった。 また一部の織物には、 シ リ コ ンゴムによるホッ レ防止加工を施した。 次にこの織物シー トを用いて ドライバ一席用の 6 0 リ ッ トルのエア —バッグを形成した。 その際、 カ レ ンダ加工を施した平滑化表面が バッグの外側面を形成するように配置した。 更に一部のエアーバッ グには、 ト ップク ロスとイ ンフレーター周囲に補強用織物を接着剤 により接着補強した。 補強用織物はエアーバッグ本体と同じ織物で あり、 これを本体と同方向に接着した。 また接着剤としては表 6〜 1 0に記載のものを使用した。 そして、 このエアーバッグにイ ンフ レーショ ンテス トとバース トテス トを実施した。 得られた織物物性 およびエアーバッグの性能を表 6〜表 1 0に示す。
表 6
7
表 8
9
1.レ
丄匕 9 it T i?y l υ ヤ-- ft (d e) n
原 ノた - Ό 単繊維た- ft (d e) 1.7 1.7 糸
撚り係数 2049 2049 物 綺糸 0 0 性 乾熱収縮率 (%) 4.5 4.5
沸水収縮率 (%) 2. I 2· 1 抜糸 (ε/d e) 8.9 8.9 抜糸弓;請度 (%) 22.0 22.0 目 付 /m 237 237 厚 さ (mra) 0.219 0.219 捣
力 パ 一 フ 経糸方向 1 189 1 189 7 ク タ 一 糸方向 1227 1227 物
翻 ¾艮強度 (kg/3cm) 236 236
½物弓 i長伸度 {%) 30.8 30.8 物 カ ンタ 処 理 片面 2回 片而 2回
Q 、P) (cc/ cm2 / sec; 24.5 p 24.5 p 性 R 1 (mm) 3.90 3.90 R 2 (mm) 0.40 0.40 R 3 (mm) 1.15 1.15 u— M c 0.005 0.005
S u— S c (/ m) 2.1 2.1
P (%) 78.4 78.4 熱硬化性樹脂 稲 m シ リ コ ン : f i な し による処理 付着量 (e :) 25 0
風 合 い 不 良 良 好
X 耐ィ、J 透 孔*撗 \% な し な し
7 フ レ ー
1 シ 3 ン性 ガス遮 蔽 性 良 妤 良 好 ノ、'
y 接 着 有無/場 J r/バ 7 有/インフレ-タ-周囲と
グ タ内側 · 側 Z トクブク πス中央部/; iウタ な し 捕 強 諭讓/接着 内側/ '/ と共布/
剂 /方向性 シリコン /同方向
-ス ト 5$度 (kgん mz G) 1.9 1.0 総 合 評 価 良 好 良 妤 表 1 0
表 6〜表 1 0 の結果から下記事項が明らかになった。
まず、 比較例 1 では、 燃り係数が経糸も緯糸も大きいために通気 度関数が大き く なり、 ィ ンフ レ一シ ョ ン時に ト ップク ロスに通気透 孔が形成された。 またバース ト強度が充分には向上しなかった。 比 較例 2では、 同様に撚り係数が大き く、 かつ原糸収縮率が小さいた めに、 更に通気度関数が大き く なり、 イ ンフ レーシ ョ ン時に ト ツフ' ク ロスに通気透孔が形成され、 バース ト強度が低かった。 比較例 3 では、 両面カレンダ加工であるために R 1 と R 3が同等の値となり、 M u — M c、 S u— S c の値がいずれも小さ く なり、 これらの結果 風合いが不良となり、 接着補強の効果が上がらず、 バース ト強度が 低下した。 比較例 4 では、 撚り係数が経糸緯糸ともに大き く、 原糸 収縮率が小さいために、 通気度関数が大き く なり、 イ ンフ レ一ショ ン時に ト ップクロスに通気透孔が形成され、 接着補強を施してもバ ース ト強度が不足した。 比較例 5では、 緯糸方向のカバーファ クタ 一が小さいためにィ ンフ レーシ ョ ン時に ト ッ プク ロスに通気透孔が 形成された。 比較例 6では、 経糸方向のカバーファ クターが極端に 大き く、 緯糸方向のカバーファ クターが極端に小さいためにイ ンフ レーショ ン時に ト ップク ロスに通気透孔が形成し、 またバース ト強 度が低下した。 比較例 7では、 原糸ヤーンデニールが大きいために 力 レンダ加工の効果が充分に上がらず通気度関数が大き く なり、 ィ ンフ レーシ ヨ ン時に通気透孔が形成した。 比較例 8では、 カ レ ンダ 条件が不足のため織維充塡率が小さ く、 通気度関数が極端に大き く なり、 その結果 ト ップク ロスもボ ト ムク ロスにも通気透孔が形成し た。 比較例 9では、 シリ コ ンゴムを被覆したが付着量が 2 5 %と高 いため風合いが不良であった。 比較例 1 0では、 接着補強を施さな いため、 バース ト強度が不足であつた。 比較例 1 1 では、 バッグの 外側の平滑面に接着補強を施したためバース ト強度が不足した。 非 平滑面 1 2では、 ナイ 口ン系共重合不織布を接着剤として使用した ため接着力が不足してバース ト強度が小さい結果となつた。
t:鲛例 1 3 ~ 1 4
米国特許第 4,977,016号明細書の実施例 1には片面のみに力 レン ダ加工を施されたエアーバッグ用基布が比較例として示されている。 この比較例によれば、 経糸は 4 4 0 d e Z 1 0 0 ί i 1 (撚数 3 1 / 4 tノイ ンチ = 1 3 0 t /m) 、 緯糸は 4 4 0 d eノ 1 0 0 f i 1 (擦数 0 ) であり、 これらを用いて 2 X 2の格子織物を得 ている。 そして織物を 7 0 P s i、 3 6 0 ° Fの条件下に力レンダ 加工を施し、 1.8 2 C F Mの通気度 (カ レンダ加工 1面) 、 および 1.4 2 C F Mの通気度 (カ レンダ加工 2回) の基布が得られている。 そこで比較例 1 3および 1 4においては、 ポリエステルマルチフ イ ラメ ン トヤーンを用いて、 上記の糸使い、 および上記力 レンダ加 ェ条件の下に各々 1.8 2 C F M (比較例 1 3 ) 、 1.4 2 C F M (比 較例 1 4 ) の通気度を有する基布を作製し、 それらの基布の特性に ついて測定したところ、 その結果は表 1 1に示されている通りであ つた。
表 1 1
S: 比 較 例 13 比 較 例 1 4 m
原 Ϋ- ' ニ- ft (d e) 440
単繊維 - » (d e) 4.4
撚り係数 2726 2726 物 0 0 性 乾熱収 (%) 4.3 4.3
沸水収蹄率(%) 2.5 2.5
張強度( e)
張仲度(%)
目 付 (g/m:) 222 224 厚 さ (mm) 0.27: 5 0.260 糨
力 Λ—フ 経糸方向 1 1 30 1 1 33
ク タ一 絳糸方向 1068 1 07 1 物
張強度 0cg/3cm)
張仲度 (%)
ccJi
物 カ -ノ ダ 処 理 片面 10 片而 2回
o
Q (p; cc/ cmz secノ 728 p 559 o P t o 性 0.4 1
0.38
0.37
M u— M c 0.0009 0.00 1 1
S u— S c ( rn) 0.3 0.4
P (%) 58.5 62.4 熱硬化性袼 i脂 • m 類 な し な し による処理 付着 fi(g/mつ 0 0
風 合 い 良 好 & 好 耐 ン 透 孔 ·撗 慯 トっブク πス,ボトムク πス とも有 hブク πス,ボトムク πス fcfc フ レ —
シ 3ン性 ガ ス遮 蔽 性 不 良 不 良 接 着 有無/場所/^, 有 Zインフレ-タ-周囬と _ インフレ-タ-周 Ef]と ク'内側 ·外側/ トクブク πス中央部/パフグ ト プク Hス中央部/バッグ 補 強 馳讓 Z接着 内側 Zプグと共布 Z 内 HZ グ と共布 Z 剂 /方向性 シリコン 同方 Iftj シリコン: ίλ/同方向 ίϊ一ス ト強度(kgん mz G) 1.5 1.5 総 合 価 不 良 不 良 表 1 1 に示す通り、 比較例 1 3および 1 4 の織物において、 経糸 の燃'り係数が大きいこと、 またカレンダ条件が 7 0 P s i (本文中 の記載では 6 5〜 8 0 トンノ7 0 ィ ンチ幅に相当し、 線圧としては 3 6 5〜 4 5 0 kg Z cmとなる) と弱いことから、 カ レンダ加工を片 面に 2面施しても、 充分な片面平滑構造は得られないことが理解さ れる。 すなわち、 通気度関数 Q ( P ) が極めて大き くなり、 F ( P ) と G ( p ) に挟まれる領域には存在しない。 また R 3が 0. 5未満と なり、 気密性が低下する。 また両面の表面構造に差異が少ないため に、 S u— S c値が小さ く なり、 0. 5未満となる。 同時に繊維充塡 率が 7 0 %未満になる。 この結果、 ィ ンフ レーショ ン時に織物から の高温ガス流出が極めて大き く なり、 ト ップクロスとボ トムクロス に通気透孔が形成した。 また撚り係数が大きいために接着捕強を施 してもバース ト強度が不足であった。 従って.、 これらの織物はノ ン コートエアーバッグとして不適当であることが明らかである。 産業上の利用可能性
本発明のエアーバッグ用気密性織物は、 従来の両面力レンダ織物 に比べて片面力 レンダ処理されたものであるにも拘らず、 より著し く低い通気度のためにィ ンフ レーショ ンによるバッグの通気透孔の 形成がなく、 従ってガス通気による火傷の発生がなく安全であり、 かつ片面に非平滑化面を残しているため風合いが良好で、 この非平 滑化面を利用して接着補強が可能であり、 バース ト強度ゃィ ンフ レ ーショ ン強度の大きいノ ンコ一 トエアーバッグを提供することがで きる。

Claims

請 求 の 範 囲
1. 2 0 0〜 5 5. 0デニールのヤーン織度、 および 3 0 0 0以下 の撚り係数を有するポリ エステルマルチフィ ラメ ン トヤーンからな る経糸および緯糸によって構成され、 かつ平滑化された一方の表面 と、 平滑化されていない他方の表面とを有する織物を舍み、
かっこの織物が下記関係 :
( 1 ) 7 8. 7 4 P ≥ Q ( P ) ≥ 7. 8 7 4 P
( 2 ) R 1 > R 2
( 3 ) R 1 > R 3
( 4 ) 3. 5 ≥ R 3 ≥ 0. 5
( 5 ) M u - M c ≥ 0. 0 0 0 5
( 6 ) S u - S c ≥ 0. 5
( 7 ) 8 5 ≥ P≥ 7 0
(但し、 上記関係 ( 1 ) 〜 ( 7 ) において、
P は、 圧力 (単位 : kgZcm2 G ) を表し、 O p ≤ 0. 0 3であり、 Q ( P ) は、 圧力 Pにおける前記織物の通気度関数 (単位 : ml, cm2 ノ秒) を表し、
R 1 は前記織物の平滑化面を構成している経糸および緯糸から選 ばれた少な く とも一方の糸断面輪郭線の平滑化された表面側半部の 曲率半径 (単位 : mm) を表し、
R 2 は、 前記織物の平滑化面を構成している経糸および緯糸から 選ばれた少なく とも一方の糸断面輪郭線の半部の曲率半径 (単位 : mm ) を表し、
R 3 は、 前記織物の非平滑化表面を構成している経糸および緯糸 から選ばれた少な く とも一方の糸断面輪郭線の非平滑化表面側半部 の曲率半径 (単位 : ) を表し、 M cは、 前記織物の平滑化表面の表面摩擦係数の平均偏差を表し、 M uは、 前記織物の非平滑化表面の表面摩擦係数の平均偏差を表 し、
S cば、 前記織物の平滑化表面の表面粗さの平均偏差 (単位 : β m ¾:表し、
S uは、 前記織物の非平滑化表面の表面粗さの平均偏差 (単位: m ) を表し、
Pは、 前記織物の繊維充塡率 (単位 : % ) を表す。 )
のすベてを満足することを特徴とする、 エアーバッグ用気密性織物 シー ト。
2. 前記ポ リ エステルマルチフ ィ ラメ ン ト経糸および緯糸がいず れも 2 5 0 0以下の撚り係数を有する、 請求の範囲第 1項に記載の エアーバッグ用気密性織物シー ト。
3. 前記織物の経糸方向および緯糸方向のカバーファクタ一が、 いずれも 1 0 5 0〜 1 3 0 0である、 請求の範囲第 1項記載のエア ーバッグ用気密性織物シ一ト。
4. 前記ボリ ェステルマルチフ イ ラメ ン ト経糸および緯糸が、
2. &デニール以下の単織維繊度を有する、 請求の範囲第 1項記載の エアーバッグ用気密性織物シー ト。
5. 前記織物の経糸方向および緯糸方向における引張破断強度が、 1 8 0 kg/ 3 cm以上であり、 かつその引張破断伸度が 2 5 %以上で ある、 請求の範囲第 1項記載のエアーバッグ用気密性織物シー ト。
6. 前記ポリエステルマルチフイ ラメ ン ト経糸および緯糸が、
8. 0 g Z d以上の引張破断強度と、 1 8 %以上の引張破断伸度を有 する、 請求の範囲第 1項記載のエア一バッグ用気密性織物シー ト。
7. 前記織物が、 1 〜 2 0 g Z m 2 の付着量の熱硬化性樹脂によ り被覆、 又は舍浸されている、 請求の範西第 1項記載のエアーバッ グ用気密性織物シー ト。
8. 前記熱硬化性樹脂が、 付加反応型シ リ コ ー ンゴムから選択さ れる、 請求の範囲第 7項記載のエアーバッグ用気密性織物シー ト。
9. 前記請求の範囲第 1項〜第 8項のいずれか 1項に記載の織物 シ一 トによって形成されたエアーバッグであって、 前記平滑化表面 がエアーバッグの外側面を形成し、 かつ前記非平滑化表面がエアー ノぺ' グの内側面を形成しているエア一バッグ。
10. 前記エア一バッグが、 イ ンフ レータ一および ト ツプクロスを 有し、 前記エアーバッグの内側面の、 前記イ ンフ レ一ター周囲部分、 および/又は、 前記 ト ップク ロスが接着補強されている、 請求の範 囲第 9項記載のエアーバッグ。
11 . 2 0 0〜 5 5 0デニールのヤー ン繊度、 および 3 0 0 0以下 の撚り係数を有するポ リ エステルマルチフィ ラメ ン トを経糸および 緯糸として使用して、 経糸方向および緯糸方向のカバ一ファ クター がいずれも 1 0 5 0〜 1 3 0 0である織物を作製し、
上記織物の片面のみに、 平滑化金属ロールを用いて、 1 5 0〜 2 2 0 *Cの加熱表面温度、 5 0 0 kg Z cm以上の線圧、 および 1〜 5 0 分の速度によるカ レ ンダ加工を施すことを含む、 請求の範囲第 1項記載のエアーバッグ用気密性織物シー トを製造する方法。
12. 前記カ レ ンダ加工を施された織物に、 熱硬化性樹脂を 1〜 2 0 g / m 2 の付着量で被覆、 又は舍浸することを更に舍む、 請求の 範囲第 1 1項記載のエアーバッグ用気密性織物シー トの製造方法。
13. 前記ポ リ エステルマルチフ ィ ラ メ ン ト経糸および緯糸が、 い ずれも 2 5 0 0以下の撚り係数を有する、 請求の範囲第 1 1項に記 載のヱァーバッグ用気密性織物シー トの製造方法。
14. 前記ポリ エステルマルチフィ ラメ ン ト経糸および緯糸の 1 5 0 tにおける乾熱収縮率が 3〜 8 %であり、 かつその 1 0 0 てにお ける沸水収縮率が 1. 5〜 5 %である、 請求の範囲第 1 1項記載のェ ァーバッグ用気密性織物シ一 ト の製造方法。
15. 前記ポ リ エステルマルチフ ィ ラ メ ン ト力;、 2. 5 デニール以下 の単纈維織度を有する、 請求の範囲第 1 1項記載のエアーバッグ用 気密性織物シー トの製造方法。
16. 前記ボリ エステルマルチフ ィ ラ メ ン トヤーンが、 9. 0 g / d 以上の引張破断強度と、 1 0 %以上の引張破断伸度を有する、 請求 の範囲第 1 1項記載のエア一バッグ用気密性織物シ一 卜の製造方法。
17. 前記熱硬化性樹脂が、 付加反応型シ リ コーンゴムから選択さ れる、 請求の範囲第 1 2項記載のエアーバッグ用気密性織物シー ト の製造方法。
PCT/JP1992/001217 1991-09-27 1992-09-25 Airtight woven sheet for air bags and method of manufacturing the same WO1993005985A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE1992612979 DE69212979T2 (de) 1991-09-27 1992-09-25 Luftundurchlässige gewellte stoffbahn für luftkissen und verfahren zu ihrer herstellung
US03/005,660 US5296278A (en) 1991-09-27 1992-09-25 Gastight woven fabric sheet for air bags and a process for producing same
EP19920920309 EP0558762B1 (en) 1991-09-27 1992-09-25 Airtight woven sheet for air bags and method of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3/275011 1991-09-27
JP27501191 1991-09-27
JP17081292 1992-06-29
JP4/170812 1992-06-29

Publications (1)

Publication Number Publication Date
WO1993005985A1 true WO1993005985A1 (en) 1993-04-01

Family

ID=26493705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001217 WO1993005985A1 (en) 1991-09-27 1992-09-25 Airtight woven sheet for air bags and method of manufacturing the same

Country Status (5)

Country Link
US (1) US5296278A (ja)
EP (1) EP0558762B1 (ja)
CA (1) CA2097054C (ja)
DE (1) DE69212979T2 (ja)
WO (1) WO1993005985A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098082A1 (ja) * 2012-12-17 2014-06-26 旭化成せんい株式会社 エアバッグ用織物
WO2014098083A1 (ja) * 2012-12-17 2014-06-26 旭化成せんい株式会社 エアバッグ用布帛
WO2015137495A1 (ja) * 2014-03-14 2015-09-17 東レ株式会社 エアバッグ用基布およびその製造方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2112853C (en) * 1993-01-06 1999-04-06 Kunio Nishimura Polyester filament woven fabric for air bags
JPH07125592A (ja) * 1993-11-05 1995-05-16 Takata Kk エアバッグ
JP3353424B2 (ja) * 1993-11-25 2002-12-03 タカタ株式会社 エアバッグ及びエアバッグ装置
US5503197A (en) * 1994-03-30 1996-04-02 Milliken Research Corporation Method for producing high weave density airbag fabric on a water-jet loom using unsized yarns
US5421378A (en) * 1994-03-30 1995-06-06 Milliken Research Corporation Airbag weaving on a water-jet loom using yarns
US5566434A (en) * 1994-06-15 1996-10-22 Jps Automotive Products Corporation Air bag for use in a motor vehicle and method of producing same
US5650207A (en) * 1995-09-29 1997-07-22 Highland Industries, Inc. Airbag fabric
US5763330A (en) * 1995-09-29 1998-06-09 Highland Industries, Inc. Extrusion coated fabric
CN1234000A (zh) * 1996-10-21 1999-11-03 精密结构集团有限公司 具有平衡模量和不平衡结构的织物
CN1096511C (zh) 1997-01-21 2002-12-18 王盼 织物织造装置及生产织物的方法
US5881776A (en) 1997-01-24 1999-03-16 Safety Components Fabric Technologies, Inc. Rapier woven low permeability air bag fabric
JPH10264187A (ja) * 1997-03-26 1998-10-06 Takata Kk 樹脂製袋体の製造方法及び樹脂製袋体
US6473948B1 (en) * 1997-04-17 2002-11-05 Milliken & Company Air bag fabric possessing improved packed volume characteristics
EP1033292B1 (en) * 1997-11-28 2009-03-25 Asahi Kasei Fibers Corporation Lightweight air bag
US6112634A (en) * 1998-01-08 2000-09-05 A&P Technology, Inc. High coverage area braiding material for braided structures
JP2000153743A (ja) 1998-11-20 2000-06-06 Takata Corp エアバッグ用基布
US6296921B1 (en) * 1998-12-22 2001-10-02 Bay Mills Ltd Composite fabric
US6294487B1 (en) * 1999-09-24 2001-09-25 Milliken & Company Airbag fabric processing very low cover factor
US6524980B1 (en) 1999-10-01 2003-02-25 The Garland Company, Inc. Roofing membranes using composite reinforcement constructions
JP2001138849A (ja) * 1999-11-18 2001-05-22 Takata Corp エアバッグ用基布
JP2001233155A (ja) * 2000-02-24 2001-08-28 Toyoda Gosei Co Ltd エアバッグ装置
JP3833119B2 (ja) * 2000-04-07 2006-10-11 旭化成ケミカルズ株式会社 コーティング布帛およびエアバッグ
US6632753B1 (en) 2000-04-26 2003-10-14 Safety Components Fabric Technologies, Inc. Motor vehicle air bag and fabric for use in same
US20040077236A1 (en) * 2001-02-01 2004-04-22 Hideaki Ishii Silicone coating cloth and air bag
DE10105043A1 (de) * 2001-02-05 2002-08-08 Trw Repa Gmbh Luftsackgewebe, Verfahren zu seiner Herstellung und Verwendung
US7871480B1 (en) 2001-11-21 2011-01-18 Toney Wayne H Apparatus and method for making motor vehicle air bags, and air bags made by same
US7413214B2 (en) * 2002-01-08 2008-08-19 Milliken & Company Airbag made from low tenacity yarns
US20050161919A1 (en) * 2002-06-04 2005-07-28 Johann Berger Airbag and method of producing an airbag
DE10224771A1 (de) * 2002-06-04 2004-01-08 Berger Seiba-Technotex Gmbh & Co Gassack und Verfahren zum Herstellen eines Gassacks
FR2845771A1 (fr) * 2002-10-09 2004-04-16 Ncv Ind Appareil de caracterisation de materiaux et procede associe
WO2004085204A2 (en) * 2003-03-21 2004-10-07 Safety Components Fabric Technologies, Inc. Motor vehicle air bag and fabric for use in same
DE10326757A1 (de) * 2003-06-13 2005-01-13 Bst Berger Safety Textiles Gmbh & Co. Kg Verfahren zur Herstellung eines Luftsacks
US7014914B2 (en) * 2004-01-09 2006-03-21 Milliken & Company Polyester yarn and airbags employing certain polyester yarn
WO2005087601A1 (fr) * 2004-03-01 2005-09-22 Aisapack Holding S.A. Structure multicouche
US7581568B2 (en) * 2006-02-07 2009-09-01 International Textile Group, Inc. Water jet woven air bag fabric made from sized yarns
DE102006021082A1 (de) * 2006-05-05 2007-11-15 Bst Safety Textiles Gmbh Nahtkonstruktion für ein Gewebe
CN101363154B (zh) * 2007-08-09 2011-05-18 东丽纤维研究所(中国)有限公司 一种气囊用织物
EP2436836B1 (en) * 2009-05-29 2017-03-01 Toyobo Co., Ltd. Coated base fabric for air bag and method for producing same
US8109534B2 (en) * 2009-07-22 2012-02-07 Highland Industries, Inc. Highly thermal resistant material for a vehicle safety device
EP2486572B1 (en) * 2009-10-07 2019-11-13 Federal-Mogul Powertrain LLC Flexible textile sleeve with end fray resistant, protective coating and method of construction thereof
DE102010046209A1 (de) * 2010-09-21 2011-05-12 Daimler Ag Airbag, insbesondere für einen Kraftwagen
CN112286139B (zh) * 2020-09-24 2021-10-15 台州学院 基于神经网络和扰动观测的运动系统轮廓控制方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192767A (ja) * 1983-04-15 1984-11-01 帝人株式会社 低通気性織物の製造方法
JPS6128046A (ja) * 1984-07-17 1986-02-07 帝人株式会社 裏地用織物
JPS61146840A (ja) * 1984-12-21 1986-07-04 帝人株式会社 紫外線遮蔽用途用織編物及びその製造法
JPH01122752A (ja) * 1987-11-03 1989-05-16 Klaus Bloch 自動車のためのエアバック

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4872270A (en) * 1988-03-09 1989-10-10 Eastman Kodak Company Drying process
US4977016B1 (en) * 1988-10-28 1998-03-03 Stern & Stern Ind Inc Low permeability fabric and method of making same
US5010663A (en) * 1988-10-28 1991-04-30 Stern & Stern Industries, Inc. Low permeability fabric and method of making same
DE59006012D1 (de) * 1989-09-07 1994-07-14 Akzo Nobel Nv Unbeschichtetes Gewebe für Airbags.
ES2041112T5 (es) * 1990-01-12 1999-10-01 Akzo Nobel Nv Procedimiento para fabricar tejidos tecnicos sin revestir con escasa permeabilidad al aire.
DE4004216A1 (de) * 1990-02-12 1991-08-14 Hoechst Ag Gewebe fuer einen airbag
CA2044378A1 (en) * 1990-10-02 1992-04-03 Mitsuo Matsumoto Shock-absorbing air bag
JP2978319B2 (ja) * 1991-10-31 1999-11-15 東レ・ダウコーニング・シリコーン株式会社 エアーバッグ用基布

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192767A (ja) * 1983-04-15 1984-11-01 帝人株式会社 低通気性織物の製造方法
JPS6128046A (ja) * 1984-07-17 1986-02-07 帝人株式会社 裏地用織物
JPS61146840A (ja) * 1984-12-21 1986-07-04 帝人株式会社 紫外線遮蔽用途用織編物及びその製造法
JPH01122752A (ja) * 1987-11-03 1989-05-16 Klaus Bloch 自動車のためのエアバック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0558762A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098082A1 (ja) * 2012-12-17 2014-06-26 旭化成せんい株式会社 エアバッグ用織物
WO2014098083A1 (ja) * 2012-12-17 2014-06-26 旭化成せんい株式会社 エアバッグ用布帛
US9822471B2 (en) 2012-12-17 2017-11-21 Asahi Kasei Kabushiki Kaisha Woven fabric for airbags having superior suppression of air permeability, high tear strength, and excellent reliability
US9868413B2 (en) 2012-12-17 2018-01-16 Asahi Kasei Kabushiki Kaisha Fabric for an air bag that maintains air permeability during high-pressure deployment at high speed
US10259421B2 (en) 2012-12-17 2019-04-16 Asahi Kasei Kabushiki Kaisha Method of producing fabric for airbag
WO2015137495A1 (ja) * 2014-03-14 2015-09-17 東レ株式会社 エアバッグ用基布およびその製造方法
JP6011721B2 (ja) * 2014-03-14 2016-10-19 東レ株式会社 エアバッグ用基布およびその製造方法
US10543803B2 (en) 2014-03-14 2020-01-28 Toray Industries, Inc. Airbag base fabric and manufacturing method therefor

Also Published As

Publication number Publication date
US5296278A (en) 1994-03-22
EP0558762A4 (ja) 1995-05-17
CA2097054C (en) 1996-12-03
EP0558762B1 (en) 1996-08-21
DE69212979D1 (de) 1996-09-26
DE69212979T2 (de) 1997-03-27
EP0558762A1 (en) 1993-09-08
CA2097054A1 (en) 1993-03-28

Similar Documents

Publication Publication Date Title
WO1993005985A1 (en) Airtight woven sheet for air bags and method of manufacturing the same
TW521051B (en) Silicone coating fabric and air bag
US5607183A (en) Air bag provided with reinforcing belts
WO2017057300A1 (ja) エアバッグ用織物およびエアバッグ
US5470106A (en) Air bag having a high burst strength
WO1991018768A1 (en) Air bag made of hollow weave fabric
JP3457739B2 (ja) ノンコートサイドエアーバッグ用織物
JP2010203023A (ja) エアバッグ用織物およびエアバッグ
JP3849818B2 (ja) エアバッグ用基布およびエアバッグとその製造方法
JP3461517B2 (ja) エアバッグ
JP2555300B2 (ja) エアーバック用気密性織物シート、およびその製造方法
JP3849812B2 (ja) エアバッグ用基布およびエアバッグ
JP3336931B2 (ja) エアバッグ用基布およびエアバッグ
JP4007049B2 (ja) エアバッグ用基布およびエアバッグ
JPH04262938A (ja) エアーバッグ
JPH042835A (ja) 低い透過性の織布及びその製造方法
JPH07166476A (ja) 低通気性織物及びその製造方法
JPH08199449A (ja) ノンコートエアバッグ用基布およびエアバッグ
JP3545878B2 (ja) エアバッグ用ノンコート織物基布
JP4980858B2 (ja) エアバッグ用織物およびエアバッグ
JPH04262937A (ja) エアーバッグ
JP3401794B2 (ja) エアバッグ
JPH04143141A (ja) エアーバッグ
JPH0593340A (ja) ベントクロスおよびそれを用いたエアーバツグ
JP3613812B2 (ja) エアーバッグの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 2097054

Country of ref document: CA

Ref document number: 1992920309

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08066093

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1992920309

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992920309

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2097054

Country of ref document: CA

Kind code of ref document: A