WO1993020019A1 - Synergistic filler blends for wood-containing papers - Google Patents

Synergistic filler blends for wood-containing papers Download PDF

Info

Publication number
WO1993020019A1
WO1993020019A1 PCT/US1993/002954 US9302954W WO9320019A1 WO 1993020019 A1 WO1993020019 A1 WO 1993020019A1 US 9302954 W US9302954 W US 9302954W WO 9320019 A1 WO9320019 A1 WO 9320019A1
Authority
WO
WIPO (PCT)
Prior art keywords
kaolin
hydrous
particle size
weight
accordance
Prior art date
Application number
PCT/US1993/002954
Other languages
French (fr)
Inventor
John Anthony Manasso
Kenneth Mueller
Susan Di Donato
Original Assignee
Ecc International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecc International, Inc. filed Critical Ecc International, Inc.
Publication of WO1993020019A1 publication Critical patent/WO1993020019A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/42Clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • fillers and pigments such as titanium dioxide, calcium carbonate, silica, alumina and kaolin
  • Kaolin a hydrous aluminum silicate
  • Hydrous kaolin is white in color, has a fine particle size, and is relatively chemically inert. This, in addition to its low cost makes it an ideal paper filler.
  • calcined (anhydrous) kaolin is also available for use as a paper filler and can impart greater opacity to paper than the hydrous kaolin, it has the serious disadvantage of generally being more abrasive.
  • Prior art kaolin paper fillers are typically produced by a beneficiation process which typically consists of fractionating in a continuous centrifuge to controlled particle size, followed by bleaching to remove iron-based colored compounds.
  • the bleaching process the kaolin is acidified with H 2 S0 4 to a pH of about 3.0, and sodium hydrosulfite is then added to reduce the iron to a more soluble ferrous form which is removed during the dewatering process.
  • the flocculated clay generally at approximately 30% solids by weight, is then filtered, such as by dewatering on a rotary vacuum filter to a solids level of approximately 60% by weight.
  • the filter cake is then either dried or redispersed with additional dry clay if it is to be sold as approximately 70% by weight solids slurry.
  • impurities may be removed from the kaolin clay by further processing the kaolin clay through flotation or magnetic separation.
  • the coarse fraction from the initial centrifugation is ground in sand grinders to shear the stacks of platelets normally found in kaolin and thereby produce individual particles having an equivalent spherical diameter less than 2 microns.
  • the anhydrous kaolin products generally available as paper fillers are typically produced by calcining hydrous kaolin at temperatures up to 1050°C so that structural hydroxyl groups are driven out as water vapor.
  • the resulting material has an amorphous structure which contains voids which produce interfaces between kaolin and air. These interfaces of kaolin and air, which are not found in hydrated kaolin, serve as sites for light scattering. Because of these voids, calcined clay has greater optical efficiency than other kaolin fillers.
  • titania is its cost. Commercial grade titania is approximately 4 times more costly than commercial grade anhydrous kaolin and up to 25 times higher than the commercial grade hydrous kaolin. Due to this cost factor, other products have been developed and are in commercial use as titania "extender" pigments.
  • These products which can be used to replace portions of the titanium dioxide without a loss of opacity of the paper, include calcined clay, delaminated hydrous clays, fine particle size silica and alumina, and sodium aluminum silicate.
  • the effectiveness of either calcined or delaminated kaolin clay as extenders for titanium dioxide can, in part, be attributed to the paucity of colloidal fines, i.e. particles having a fineness of less than about 0.3 microns equivalent spherical diameter.
  • Calcined kaolin can be produced having a content of only 5 to 10% by weight of colloidal particles and a brightness of 80-93 and standard filler clay can be produced having a content as high as about 40% by weight of colloidal particles.
  • Standard news has traditionally been made with no filler from a furnish of approximately 70+% mechanical pulp, 30% chemical pulp. Its brightness is generally 58 or less. Its opacity is very good due to the low brightness mechanical pulp and minimal calendering.
  • So-called "improved” newsprint is an upgrade in brightness and/or printability.
  • the improvements come from the use of better quality groundwood (lower freeness, higher brightness) , more chemical pulp, the use of fillers, and/or additional on-machine calendering.
  • Brightness ranges up to 62. It is generally slightly smoother than standard news. Since the more highly developed groundwood is lower in opacity than standard newsprint grade groundwood, the basis weights of these grades are usually increased slightly. These grades are most often printed by offset or rotogravure. They are primarily used in Sunday supplements and inserts. The newsprint used for USA Today would fall into this category, too.
  • these grades are differentiated from newsprint in brightness and finish.
  • the brightness ranges from 62-69% and smoothness from 40-100 ml/min (Sheffield) .
  • the brightness is typically obtained by clean, highly developed (low freeness) , bleached mechanical pulp.
  • the finish is normally obtained through high intensity and temperature gradient calendering.
  • the typical basis weight range is 50-70 g/m 2 .
  • These grades are used primarily for newspaper inserts, Sunday supplements, magazines, catalogs and groundwood business forms. They are printed by both offset and rotogravure.
  • kaolin grades Typical of these kaolin grades is Georgia Kaolin's WP or Wrens Filler HB of 84-85 brightness.
  • Kaolins available range from the 88 to 90 brightness delaminated filler clays like Georgia Kaolin's Astra-Fil and Astra-Fil 90, to newer high performance fillers such as Georgia Kaolin's hydrous clay, Astra-Plus (90 brightness) , and 80-93 brightness calcined clays.
  • the latter calcined products will yield major improvements in opacity and brightness at minimum loadings (2-4%) . This low loading aspect is important to the papermaker because of strength. Paper machine runability is also impaired with increasing filler loadings.
  • Calcined or anhydrous kaolins have the disadvantage of high cost and are extremely abrasive. Also, they have a greater negative influence upon paper strength than hydrous filler clays. Hydrous filler kaolins range in quality from the low brightness, relatively coarse particle-sized water-washed product (WP) to 90 brightness Astra-Plus type clays. Being lower in cost than most newsprint furnishes, coarse hydrous clays are ideal for fiber extension. Incorporation of these clays into newsprint will yield improvements in opacity, brightness and smoothness but at significantly higher loadings. In fact >10% in sheet will be required to yield similar improvements to calcined clay at levels of 2-4% in sheet. Paper strength is degraded significantly at the high loadings and severe runability problems result.
  • a continued trend toward 4-color offset printing demands a bright, white, smooth, strong substrate with good opacity.
  • improvements in brightness, through mechanical pulp bleaching and increased proportions of chemical pulp decrease opacity.
  • Opacity can be maintained by increased basis weight or the use of fillers or dyes. Because of this trend, there is increasing pressure to develop more cost effective fillers. This invention pertains to such a development.
  • fillers in these grades is based on economics and/or grade development. That is, clay would be used as an extender for more expensive fiber, or to provide quality enhancement in terms of opticals, surface smoothness, porosity, and print quality. Like in newsprint, each of the quality enhancements are attainable through use of the kaolin products described in this invention.
  • the present invention relates to a kaolin composition exhibiting high opacifying properties with a minimum negative influence upon paper strength properties.
  • the kaolin composition can be formulated from a range of hydrous and calcined clay products.
  • the uniqueness of the blends is such that wood-containing paper incorporating same has optical properties equivalent to those obtained with an entirety of calcined clays at similar loadings.
  • the product of the invention is formulated with a calcined clay having a scattering coefficient of 2400-2600 cm 2 /g and a hydrous filler clay having a scattering coefficient of 1900-2100 cm 2 /g
  • the resulting blend has unexpectedly been found to have a scattering coefficient of 2400-2600 cm 2 /g.
  • the product of the invention can be formulated with a range of calcined clays of varying brightness 80-93 and particle size (67-88% ⁇ 2 ⁇ ) .
  • wood-containing paper with the blends have higher strength than sheets with the calcined clay alone. This is indicated by measuring the breaking length of the paper, which is a measure of the length of paper which will disrupt or fail under its own weight when suspended vertically. This allows the papermaker to increase filler loadings without influencing machine runability.
  • the hydrous portion of the blend of the invention preferably comprises a fine particle size uncalcined kaolin which has been defined as to have a colloidal particle size content, i.e. of particles less than 0.3 microns in equivalent spherical diameter, of less than about 20% by weight, and more preferably of less than about 15% by weight.
  • the hydrous component of the blend preferably comprises 25 to 50% by weight of the total with substantially the balance being a fine particle size calcined kaolin.
  • a particularly advantageous hydrous product for use in the invention is that disclosed in U.S. Patent No. 4,934,324, which product results from subjecting a starting kaolin to delamination, defining, surface treatment with an amine and aluminum sulfate, and bleaching.
  • Kaolin products which have been defined as set forth in copending application S.N. 521,204, filed May 9, 1990 (incorporated herein by reference), are also utilizable as the hydrous component of the present invention. Both products which have been treated with an amine and also upon which aluminum hydroxide has been precipitated, as well as clays which have not been so treated are effective for the blend.
  • the product of this invention is useful in the majority of uncoated wood-containing paper grades and coating basestock for lightweight coating application.
  • the former can be categorized as standard newsprint, improved newsprint, directory, machine finished and filled supercalendered.
  • the product of this invention can be best described and understood by illustrative Examples.
  • the basic procedure consists of incorporating the pigments and fillers into a furnish utilized for uncoated wood-containing papers. As will be shown, such furnishes can vary in fiber pulp type and levels. After blending the various pulps or beating to a specified freeness, aliquots are taken to produce handsheets of the desired basis weight. To these aliquots, the required amounts of fillers or pigments are added to produce sheets having concentrations of 2% to 30% depending upon paper grade. Additives like alum and various retention aids are also added and these will be shown in Examples.
  • handsheets were formed on 8" x 8" Williams Sheet Mold, pressed and dried. These were tested for opacity, brightness, basis weight and total filler content by ashing using TAPPI standard test methods. Tensile properties of the illed handsheets were measured utilizing an Instron Universal Testing Machine.
  • opacity was corrected for basis weight variations utilizing Kubelka Munk Theory. Regression analysis was utilized to determine the relationship between filler content and opacity, brightness, and tensile properties. Using the regression equations, the properties of the paper with the various filler and pigment systems are compared at equal loading.
  • comparisons are made of various calcined clays; most notably Georgia Kaolin's Astra-Paque LB of 80-82 brightness and having a particle size distribution (P.S.D.) such that 86 to 88% by weight of the particles have an equivalent spherical diameter (E.S.D.) of ⁇ 2 ⁇ .
  • Blends were made with the hydrous Astra-Plus product of Georgia Kaolin Company, a high per ⁇ formance filler of >89.5 brightness and 88-92% ⁇ 2 ⁇ equivalent " spherical diameter.
  • An untreated modification (i.e. not surface treated) of Astra-Plus was also used. Unless indicated to be "untreated", the Astra-Plus product, in accordance with U.S. Patent No.
  • optical properties i.e. opacity and brightness of Example I are above the values of 81.2 and 56.3 that would be expected from the blending of the calcined clay and Astra-Plus.
  • Example 2 Utilizing the same pulp furnish and retention aid system as Example I and a finer calcined clay (Astra-Paque LB) of particle size 77% ⁇ 2 ⁇ equivalent spherical diameter and 81.5 brightness showed both synergistic optical and strength effects.
  • a blend of 75 parts calcined clay and 25 parts Astra-Plus was tested in addition to the 50/50 mixture of Astra-Paque LB and Astra-Plus. Results are shown in Table 2.
  • the calcined clay in this test had a brightness of 88.5.
  • both opacity and tensile strength as measured by breaking length were equal or higher respectively than the values obtained with the individual fillers.
  • the papermaker can increase loadings with sacrificing strength with Example III.
  • the results of this Example and the earlier ones show some dependency of response upon pulp differences.
  • Example 4 differs from Example III in the type of retention aid utilized. In this case, it was a high molecular weight anionic agent with aluminum sulfate also added to the system. There was strength improvements, beyond expectation, at various blend ratios of the calcined clay and Astra-Plus. Results are shown in Table 4. Table 4
  • Optimum blend ratio in the above test for opacity was 50/50 with exception of strength obtained with the 75 calcined clay/25 Astra-Plus system. There are potentially significant cost savings with the blends.
  • calcined clays were prepared in the laboratory of varying brightness and particle size as measured by cps. The latter is a measure of the volume percentage of centrifuged particle sedimentation or settling. For example, a 0.10 cps at 10 minutes means that 10% by volume of the centrifuged suspension was deposited as sediment during centrifugation. Comparisons were made of the blends and a commercial calcined clay of 80.5 brightness. All examples are 50/50 blends of calcined clay and Astra-Plus. The results appear in Table 5.
  • the product of this invention is also effective in a 30 lb. newsprint sheet prepared with a pulp blend of 85% TMP/15% Softwood Kraft with a high-molecular weight, cationic retention aid (polyacrylamide) . Results appear in Table 6.
  • Example VII The opacifying efficiency of Example VII is equal to that of calcined clay at the filler contents of 2% - 6%. Tensile strength of the paper containing Example VII is also equivalent to that of sheets with Astra-Plus alone and significantly higher than those with Astra-Paque LB. These properties will allow the producers of directory paper to realize cost benefits with the product of the invention.
  • Example VIII Comparative data of the pigment blend (Example VIII) of calcined clay and Astra-Plus against two commercially available low brightness calcined clay products (A and B) from different producers. Both have brightness values of 80-81 with particle size in the range of 78-83% ⁇ 2 ⁇ equivalent spherical diameter.
  • Example VIII was prepared by mixing slurries of 50% solids Astra-Paque LB and 65% solids Astra-Plus in a Waring Blender. The blended product was incorporated into a 30-lb. newsprint furnish of a Canadian producer containing an undisclosed blend of refiner groundwood, chemical thermo-mechanical pulp and bleached sulfite. The retention aid system was bentonite and a cationic agent. In this case, the mill is utilizing calcined clay at a loading level of 4% in the sheet to meet required properties. Results appear in Table 8.
  • Example VIII The opacity and strength of the newsprint sheets (Example VIII) are both higher than similar paper with the calcined clay. The cost of the Example VIII sample will be lower than that of either calcined product.
  • Example IX A 87.9 50% Astra-Paque LB/ 50% Astra-Plus

Abstract

A high opacity, high light scattering filler pigment for use in wood-containing paper manufacture, comprising by weight 25 to 50 % of a fine particle size hydrous kaolin which has been defined as to have particle size distribution such that less than 20 % by weight are of less than 0.3 $g(m)m E.S.D. and substantially the balance being a fine particle size calcined kaolin.

Description

SYNERGISTIC FILLER BLENDS FOR WOOD-CONTAINING PAPERS
BACKGROUND OF THE INVENTION
It is well known in the paper industry that a wide variety of fillers and pigments such as titanium dioxide, calcium carbonate, silica, alumina and kaolin, are suitable for use as paper fillers. Kaolin, a hydrous aluminum silicate, is presently the most widely utilized of these and is available in a range of particle sizes and brightnesses, as well as being either delaminated or non-delaminated. Hydrous kaolin is white in color, has a fine particle size, and is relatively chemically inert. This, in addition to its low cost makes it an ideal paper filler. Although calcined (anhydrous) kaolin is also available for use as a paper filler and can impart greater opacity to paper than the hydrous kaolin, it has the serious disadvantage of generally being more abrasive.
Prior art kaolin paper fillers are typically produced by a beneficiation process which typically consists of fractionating in a continuous centrifuge to controlled particle size, followed by bleaching to remove iron-based colored compounds. In the bleaching process the kaolin is acidified with H2S04 to a pH of about 3.0, and sodium hydrosulfite is then added to reduce the iron to a more soluble ferrous form which is removed during the dewatering process. The flocculated clay, generally at approximately 30% solids by weight, is then filtered, such as by dewatering on a rotary vacuum filter to a solids level of approximately 60% by weight. The filter cake is then either dried or redispersed with additional dry clay if it is to be sold as approximately 70% by weight solids slurry. To produce high brightness products, i.e. fillers having a brightness index greater than 90 (as measured by TAPPI procedure T-646-os-75) , impurities may be removed from the kaolin clay by further processing the kaolin clay through flotation or magnetic separation. To produce a delaminated product, the coarse fraction from the initial centrifugation is ground in sand grinders to shear the stacks of platelets normally found in kaolin and thereby produce individual particles having an equivalent spherical diameter less than 2 microns.
The anhydrous kaolin products generally available as paper fillers are typically produced by calcining hydrous kaolin at temperatures up to 1050°C so that structural hydroxyl groups are driven out as water vapor. The resulting material has an amorphous structure which contains voids which produce interfaces between kaolin and air. These interfaces of kaolin and air, which are not found in hydrated kaolin, serve as sites for light scattering. Because of these voids, calcined clay has greater optical efficiency than other kaolin fillers.
Other opacifying pigments are commercially available to the papermaker. Because of its high refractive index, 2.55 for anatase and 2.7 for rutile, titanium dioxide is presently the opacifier of primary commercial importance. When incorporated into paper, titanium dioxide also imparts exceptional brightness and whiteness to the sheet. However, the main disadvantage of titania is its cost. Commercial grade titania is approximately 4 times more costly than commercial grade anhydrous kaolin and up to 25 times higher than the commercial grade hydrous kaolin. Due to this cost factor, other products have been developed and are in commercial use as titania "extender" pigments. These products, which can be used to replace portions of the titanium dioxide without a loss of opacity of the paper, include calcined clay, delaminated hydrous clays, fine particle size silica and alumina, and sodium aluminum silicate. The effectiveness of either calcined or delaminated kaolin clay as extenders for titanium dioxide can, in part, be attributed to the paucity of colloidal fines, i.e. particles having a fineness of less than about 0.3 microns equivalent spherical diameter. Calcined kaolin can be produced having a content of only 5 to 10% by weight of colloidal particles and a brightness of 80-93 and standard filler clay can be produced having a content as high as about 40% by weight of colloidal particles.
Standard Newsprint
Standard news has traditionally been made with no filler from a furnish of approximately 70+% mechanical pulp, 30% chemical pulp. Its brightness is generally 58 or less. Its opacity is very good due to the low brightness mechanical pulp and minimal calendering.
Since the introduction of USA Today in 1982, there has been a new impetus for improved newsprint quality. This publication is printed by offset on a higher brightness newsprint (58+) , and features four-color graphics.
"Improved" Newsprint
So-called "improved" newsprint is an upgrade in brightness and/or printability. The improvements come from the use of better quality groundwood (lower freeness, higher brightness) , more chemical pulp, the use of fillers, and/or additional on-machine calendering. Brightness ranges up to 62. It is generally slightly smoother than standard news. Since the more highly developed groundwood is lower in opacity than standard newsprint grade groundwood, the basis weights of these grades are usually increased slightly. These grades are most often printed by offset or rotogravure. They are primarily used in Sunday supplements and inserts. The newsprint used for USA Today would fall into this category, too.
Directory
The primary distinction of directory from newsprint is its lower basis weight (about 35 g/m2) . This results in lower strength and opacity, requiring the use of more chemical pulp and lower freeness groundwood and the use of fillers.
These grades are printed primarily by the offset process, and are used in telephone directories and catalogs. However, it generally has lower brightness and gloss compared to catalog paper.
A significant trend in the directory paper market is a drop in basis weight to 30-31 g/m2. This market is currently very competitive. Following the AT&T break-up, the various telephone companies, as well as others, have intensified competition for yellow pages advertising. This has precipitated the lower basis weights (thinner books) and demand for improvements in print quality. Lowering basis weight has resulted in increasing use of kaolin fillers to maintain opacity.
Hicrh Brightness, Machine Finished
As the name implies, these grades are differentiated from newsprint in brightness and finish. The brightness ranges from 62-69% and smoothness from 40-100 ml/min (Sheffield) . The brightness is typically obtained by clean, highly developed (low freeness) , bleached mechanical pulp. The finish is normally obtained through high intensity and temperature gradient calendering. As brightness is increased through pulp processing, the opacity decreases. This necessitates increasing basis weight or filler loading. The typical basis weight range is 50-70 g/m2. These grades are used primarily for newspaper inserts, Sunday supplements, magazines, catalogs and groundwood business forms. They are printed by both offset and rotogravure.
There has been limited usage of fillers in newsprint with major justification being: economics, paper quality to include grade development and capacity expansion without capital equipment. Problems related to filler use are retention, paper internal strength which has an influence upon machine runability and paper surface strength which influences printability.
The choice of clay type is dependent upon the objectives for filler use. For pulp extension on satisfying the economic and capacity expansion objective noted above, a low-cost water-washed filler is the most effective.
Typical of these kaolin grades is Georgia Kaolin's WP or Wrens Filler HB of 84-85 brightness. For quality improvement, the choice of kaolin will be dependent upon described properties. Kaolins available range from the 88 to 90 brightness delaminated filler clays like Georgia Kaolin's Astra-Fil and Astra-Fil 90, to newer high performance fillers such as Georgia Kaolin's hydrous clay, Astra-Plus (90 brightness) , and 80-93 brightness calcined clays. The latter calcined products will yield major improvements in opacity and brightness at minimum loadings (2-4%) . This low loading aspect is important to the papermaker because of strength. Paper machine runability is also impaired with increasing filler loadings. Calcined or anhydrous kaolins have the disadvantage of high cost and are extremely abrasive. Also, they have a greater negative influence upon paper strength than hydrous filler clays. Hydrous filler kaolins range in quality from the low brightness, relatively coarse particle-sized water-washed product (WP) to 90 brightness Astra-Plus type clays. Being lower in cost than most newsprint furnishes, coarse hydrous clays are ideal for fiber extension. Incorporation of these clays into newsprint will yield improvements in opacity, brightness and smoothness but at significantly higher loadings. In fact >10% in sheet will be required to yield similar improvements to calcined clay at levels of 2-4% in sheet. Paper strength is degraded significantly at the high loadings and severe runability problems result.
Use of the high performance clays offer the newsprint producer the capability of improving quality to the same degree as calcined clay with only a 1.5X higher loading than that required with calcined clay. In spite of the higher filler requirement, the strength of paper with Astra-Plus type products will be equal or higher than that with calcined clay. However, even at the higher loadings, abrasiveness will be lower and there will be less propensity to pick in the offset printing process with the hydrous clay.
A continued trend toward 4-color offset printing demands a bright, white, smooth, strong substrate with good opacity. Generally, improvements in brightness, through mechanical pulp bleaching and increased proportions of chemical pulp, decrease opacity. Opacity can be maintained by increased basis weight or the use of fillers or dyes. Because of this trend, there is increasing pressure to develop more cost effective fillers. This invention pertains to such a development.
As noted earlier, other segments of the groundwood containing paper market can be classified as specialties. Filler requirements are, in general, similar to those addressed for newsprint. The one exception is filled supercalendered papers. In this application, high levels of low cost filler grades are utilized to obtain smoothness, opacity, gloss and low porosity. Paper strength is a minor issue and quality improvements, until recently have been obtained through modifications of furnishes and machine conditions. Recently, there has been an interest in alternate fillers for improvements of optical properties.
Included in other uncoated groundwood specialties are lightweight directory grades, the high brightness machine finished grades (including catalog, forms bond, newspaper inserts, Sunday supplements, magazines) , and all other applications (such as paperback book, reply card, etc.). This section is much more complicated, due to the wide variety of grades. Also, unlike the filled supercalendered market, where fillers are major furnish components, most of these grades are made both with and without fillers. Combinations of furnish changes, basis weight changes, and finishing (including surface sizing and calendering) , in addition to filler options, allow the papermaker wide degrees of freedom in producing these grades.
Generally, the use of fillers in these grades is based on economics and/or grade development. That is, clay would be used as an extender for more expensive fiber, or to provide quality enhancement in terms of opticals, surface smoothness, porosity, and print quality. Like in newsprint, each of the quality enhancements are attainable through use of the kaolin products described in this invention. SUMMARY OF INVENTION
The present invention relates to a kaolin composition exhibiting high opacifying properties with a minimum negative influence upon paper strength properties. The kaolin composition can be formulated from a range of hydrous and calcined clay products. The uniqueness of the blends is such that wood-containing paper incorporating same has optical properties equivalent to those obtained with an entirety of calcined clays at similar loadings. Despite the fact that the product of the invention is formulated with a calcined clay having a scattering coefficient of 2400-2600 cm2/g and a hydrous filler clay having a scattering coefficient of 1900-2100 cm2/g, the resulting blend has unexpectedly been found to have a scattering coefficient of 2400-2600 cm2/g. The product of the invention can be formulated with a range of calcined clays of varying brightness 80-93 and particle size (67-88% <2μ) . In another unexpected aspect of this invention, it is found that wood-containing paper with the blends have higher strength than sheets with the calcined clay alone. This is indicated by measuring the breaking length of the paper, which is a measure of the length of paper which will disrupt or fail under its own weight when suspended vertically. This allows the papermaker to increase filler loadings without influencing machine runability.
The hydrous portion of the blend of the invention preferably comprises a fine particle size uncalcined kaolin which has been defined as to have a colloidal particle size content, i.e. of particles less than 0.3 microns in equivalent spherical diameter, of less than about 20% by weight, and more preferably of less than about 15% by weight. The hydrous component of the blend preferably comprises 25 to 50% by weight of the total with substantially the balance being a fine particle size calcined kaolin. A particularly advantageous hydrous product for use in the invention is that disclosed in U.S. Patent No. 4,934,324, which product results from subjecting a starting kaolin to delamination, defining, surface treatment with an amine and aluminum sulfate, and bleaching. Kaolin products which have been defined as set forth in copending application S.N. 521,204, filed May 9, 1990 (incorporated herein by reference), are also utilizable as the hydrous component of the present invention. Both products which have been treated with an amine and also upon which aluminum hydroxide has been precipitated, as well as clays which have not been so treated are effective for the blend.
The product of this invention is useful in the majority of uncoated wood-containing paper grades and coating basestock for lightweight coating application. The former can be categorized as standard newsprint, improved newsprint, directory, machine finished and filled supercalendered.
DESCRIPTION OF PREFERRED EMBODIMENTS
The product of this invention can be best described and understood by illustrative Examples. In the Examples to be presented, the majority of performance data were obtained in handsheet tests. The basic procedure consists of incorporating the pigments and fillers into a furnish utilized for uncoated wood-containing papers. As will be shown, such furnishes can vary in fiber pulp type and levels. After blending the various pulps or beating to a specified freeness, aliquots are taken to produce handsheets of the desired basis weight. To these aliquots, the required amounts of fillers or pigments are added to produce sheets having concentrations of 2% to 30% depending upon paper grade. Additives like alum and various retention aids are also added and these will be shown in Examples. After addition of all additives, handsheets were formed on 8" x 8" Williams Sheet Mold, pressed and dried. These were tested for opacity, brightness, basis weight and total filler content by ashing using TAPPI standard test methods. Tensile properties of the illed handsheets were measured utilizing an Instron Universal Testing Machine.
From the data generated, opacity was corrected for basis weight variations utilizing Kubelka Munk Theory. Regression analysis was utilized to determine the relationship between filler content and opacity, brightness, and tensile properties. Using the regression equations, the properties of the paper with the various filler and pigment systems are compared at equal loading.
In the various Examples, comparisons are made of various calcined clays; most notably Georgia Kaolin's Astra-Paque LB of 80-82 brightness and having a particle size distribution (P.S.D.) such that 86 to 88% by weight of the particles have an equivalent spherical diameter (E.S.D.) of <2μ. Blends were made with the hydrous Astra-Plus product of Georgia Kaolin Company, a high per¬ formance filler of >89.5 brightness and 88-92% <2μ equivalent"spherical diameter. An untreated modification (i.e. not surface treated) of Astra-Plus was also used. Unless indicated to be "untreated", the Astra-Plus product, in accordance with U.S. Patent No. 4,943,324, has been surface treated with a member selected from the group consisting of a water soluble amine, aluminum sulfate, and mixtures thereof. Whether or not surface treated, the kaolins identified as Astra-Plus have also been delaminated prior to defining, again as taught in the said 4,943,324 patent. The Astra-Plus products were in all instances defined so as to include less than 20% by weight of particles having an E.S.D. of less than 0.3μ. EXAMPLE I
In this Example, tests were made in a 22-lb. directory grade of the following furnish:
53% Thermo-Mechanical Pulp
31% Refiner Groundwood Pulp
16% Softwood Kraft
Comparisons were made of a calcined clay of 80.5 brightness and a particle size of 67% <2μ equivalent spherical diameter, Astra-Plus and a 50/50 (by weight) blend of the two kaolins (Example I) . A retention aid system of polyethylene oxide and phenolic resin was utilized. The clays were added as slurries to the pulp furnish. Results were as follows:
Figure imgf000013_0001
The optical properties, i.e. opacity and brightness of Example I are above the values of 81.2 and 56.3 that would be expected from the blending of the calcined clay and Astra-Plus.
EXAMPLE II
Utilizing the same pulp furnish and retention aid system as Example I and a finer calcined clay (Astra-Paque LB) of particle size 77% <2μ equivalent spherical diameter and 81.5 brightness showed both synergistic optical and strength effects. A blend of 75 parts calcined clay and 25 parts Astra-Plus was tested in addition to the 50/50 mixture of Astra-Paque LB and Astra-Plus. Results are shown in Table 2.
Figure imgf000014_0001
50 Astra-Paque LB/50 Astra-Plus (Example II) 82.4 85.3 2.96 2.73
75 Astra-Paque LB/25 Astra-Plus (Example II A) 81.9 84.8 3.00 2.73
EXAMPLE III
In this Example, a 30 lb. newsprint sheet was formulated with a pulp furnish of 85% thermo-mechanical pulp and 15% Softwood Kraft. Again, the retention aid system was polyethylene oxide and phenolic resin. The opacifying efficiency of the fillers were compared in paper with corrections made for brightness deficiencies. Results are shown in Table 3.
Figure imgf000015_0001
The calcined clay in this test had a brightness of 88.5. As can be seen, both opacity and tensile strength as measured by breaking length were equal or higher respectively than the values obtained with the individual fillers. With results like above, the papermaker can increase loadings with sacrificing strength with Example III. The results of this Example and the earlier ones show some dependency of response upon pulp differences.
EXAMPLE IV
This Example differs from Example III in the type of retention aid utilized. In this case, it was a high molecular weight anionic agent with aluminum sulfate also added to the system. There was strength improvements, beyond expectation, at various blend ratios of the calcined clay and Astra-Plus. Results are shown in Table 4. Table 4
Bulk of Breaking
Filler Opacity Brightness Sheet Length
@6%
Calcined Clay 87.4 62.3 3.19 2.01 km.
Astra-Plus 86.4 61.8 3.12 2.01
Example IV A
50 Calc. Clay/50
Astra-Plus 87.1 62.5 3.30 2.20
Example IV B
75 Calc. Clay/25
Astra-Plus 86.8 62.1 3.05 2.27
Optimum blend ratio in the above test for opacity was 50/50 with exception of strength obtained with the 75 calcined clay/25 Astra-Plus system. There are potentially significant cost savings with the blends.
EXAMPLE V
Several calcined clays were prepared in the laboratory of varying brightness and particle size as measured by cps. The latter is a measure of the volume percentage of centrifuged particle sedimentation or settling. For example, a 0.10 cps at 10 minutes means that 10% by volume of the centrifuged suspension was deposited as sediment during centrifugation. Comparisons were made of the blends and a commercial calcined clay of 80.5 brightness. All examples are 50/50 blends of calcined clay and Astra-Plus. The results appear in Table 5.
Table 5
cps of Opacity Breaking Calcined Clay @60 Br. Length min 3 min 10 min @6% km
1.51 1.42 1.59 1.63
Figure imgf000018_0002
Figure imgf000018_0003
1.46
Figure imgf000018_0001
The finer calcined products both yield equal or higher opacity and strength when blended with Astra-Plus than the commercial calcined clay. The furnish in these tests was similar to Example IV.
EXAMPLE VI
The product of this invention is also effective in a 30 lb. newsprint sheet prepared with a pulp blend of 85% TMP/15% Softwood Kraft with a high-molecular weight, cationic retention aid (polyacrylamide) . Results appear in Table 6.
Table 6
Figure imgf000019_0001
The wide applicability of the new product for groundwood containing papers is further illustrated in a 22-lb. directory sheet having a pulp composition of 42% stone groundwood, 42% thermo-mechanical pulp and 16% unbleached sulfite pulp. In this case, print opacity - the ratio of the diffused reflectance of the sheet when backed by a black body to that of the sheet when backed by an opaque pad of the paper itself, was of concern. This property is of importance where the sheet is viewed when backed by printed pages. The retention aid system differed from that of the earlier examples as it contained bentonite and a cationic polyacrylamide. Astra-Paque LB an 81-82 brightness calcined clay was utilized in this test. Results were as follows (Table 7) :
Table 7
Print Opacity Brightness Breaking Length Filler 2% 6% 2% 6% 2% 6% km
Astra-Paque LB 81.9 Astra-Plus 81.5 Example VII 82.0
Figure imgf000020_0001
The opacifying efficiency of Example VII is equal to that of calcined clay at the filler contents of 2% - 6%. Tensile strength of the paper containing Example VII is also equivalent to that of sheets with Astra-Plus alone and significantly higher than those with Astra-Paque LB. These properties will allow the producers of directory paper to realize cost benefits with the product of the invention.
EXAMPLE VIII
Comparative data of the pigment blend (Example VIII) of calcined clay and Astra-Plus against two commercially available low brightness calcined clay products (A and B) from different producers. Both have brightness values of 80-81 with particle size in the range of 78-83% <2μ equivalent spherical diameter. Example VIII was prepared by mixing slurries of 50% solids Astra-Paque LB and 65% solids Astra-Plus in a Waring Blender. The blended product was incorporated into a 30-lb. newsprint furnish of a Canadian producer containing an undisclosed blend of refiner groundwood, chemical thermo-mechanical pulp and bleached sulfite. The retention aid system was bentonite and a cationic agent. In this case, the mill is utilizing calcined clay at a loading level of 4% in the sheet to meet required properties. Results appear in Table 8.
Table 8
Filler Opacity Breaking Length @4% km
Calcined Clay A 84.4 2.73
Calcined Clay B 83.7 3.10
Example VIII 84.5 3.16
The opacity and strength of the newsprint sheets (Example VIII) are both higher than similar paper with the calcined clay. The cost of the Example VIII sample will be lower than that of either calcined product.
EXAMPLE IX
In this Example synergies were attained by using an ASTRA-PLUS type of product, which had not, however, been surface treated with an amine. Thus, this product was a hydrous, delaminated and defined kaolin as taught in U.S. Patent No. 4,943,324, but had not been surface treated with aluminum sulfate or hexamethybenediamine as otherwise set forth in said patent. In each case, the blends were made with 50% Astra-Paque LB. The newsprint furnish was a blend of 85% stone groundwood and 15% bleached sulfite. The retention aid system was poly¬ ethylene oxide and phenolic resin. It will be seen in Table 9 that excellent results are achieved, even without the surface treatment. Table 9
Filler Opacity Brightness Breaking Length
@ 4% km
Astra-Paque LB 88.0 Astra-Plus 87.3
Example IX A 87.9
Figure imgf000022_0001
50% Astra-Paque LB/ 50% Astra-Plus
Example IX B 88.2 64.1 2.60
50% Astra-Paque LB/ 50% Untreated Astra- Plus (88% <2μ)
While the present invention has been particularly set forth in terms of specific embodiments thereof, it will be understood in view of the present disclosure that numerous variations upon the invention are now enabled to those skilled in the art, which variations yet reside within the present teaching. Accordingly, the invention is to be broadly construed, and limited only by the scope and spirit of the claims now appended hereto.

Claims

WHAT IS CLAIMED IS:
1. A high opacity, high light scattering filler pigment for use in wood-containing paper manufacture, comprising by weight
(a) 25 to 50% of a fine particle size hydrous kaolin which has been defined as to have a particle size distribution such that less than 20% by weight are of less than 0.3μm E.S.D.; and
(b) substantially the balance being a fine particle size calcined kaolin.
2. A filler pigment in accordance with claim 1, wherein about 88 to 92% by weight of said hydrous kaolin are less than 2μm E.S.D.
3. A filler pigment in accordance with claim 1, wherein said hydrous kaolin has been surface treated with a member selected from the group consisting of a water soluble amine, aluminum sulfate, and mixtures thereof.
4. A filler pigment in accordance with claim 1, wherein said hydrous component has been delaminated.
5. A filler pigment in accordance with claim 3, wherein said hydrous component has been delaminated.
6. A filler pigment in accordance with claim 1, wherein said hydrous and calcined components are present in approximately equal parts. AMENDED CLAIMS
[received by the International Bureau on 10 September 1993 (10.09.93); original claims 1-6 replaced by amended claims 1-5 (1 page)]
1. A high opacity, high light scattering filler pigment for use in wood-containing paper manufacture, comprising by weight
(a) 25 to 50% of a fine particle size hydrous kaolin which has been defined as to have a particle size distribution such that less than 20% by weight are of less than 0.3 μm E.S.D., while not being chemically surface treated; and
(b) substantially the balance being a fine particle size calcined kaolin.
2. A filler pigment in accordance with claim 1, wherein about 88 to 92% by weight of said hydrous kaolin are less than 2 μm E.S.D.
3. A filler pigment in accordance with claim 1, wherein said hydrous component has been delaminated.
4. A filler pigment in accordance with claim 1, wherein said hydrous and calcined components are present in approximately equal parts.
5. A filler pigment in accordance with claim 1, wherein said fine particle size hydrous and defined kaolin has not been chemically surface treated with an amine.
PCT/US1993/002954 1992-04-03 1993-03-30 Synergistic filler blends for wood-containing papers WO1993020019A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/863,592 US5207822A (en) 1992-04-03 1992-04-03 Synergistic filler blends for wood-containing papers
US07/863,592 1992-04-03

Publications (1)

Publication Number Publication Date
WO1993020019A1 true WO1993020019A1 (en) 1993-10-14

Family

ID=25341361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/002954 WO1993020019A1 (en) 1992-04-03 1993-03-30 Synergistic filler blends for wood-containing papers

Country Status (3)

Country Link
US (1) US5207822A (en)
AU (1) AU3970893A (en)
WO (1) WO1993020019A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0624686A1 (en) * 1993-05-04 1994-11-17 Ecc International Limited A pigment for a coating composition for printing paper

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653795A (en) * 1995-11-16 1997-08-05 Columbia River Carbonates Bulking and opacifying fillers for cellulosic products
US5676746A (en) * 1995-04-11 1997-10-14 Columbia River Carbonates Agglomerates for use in making cellulosic products
US5676748A (en) * 1995-12-29 1997-10-14 Columbia River Carbonates Bulking and opacifying fillers for paper and paper board
US5676747A (en) * 1995-12-29 1997-10-14 Columbia River Carbonates Calcium carbonate pigments for coating paper and paper board
US5755871A (en) * 1996-01-22 1998-05-26 Husson, Sr.; Thomas E. High brightness paper coating formulations
US5968250A (en) * 1997-06-06 1999-10-19 Engelhard Corporation Kaolin composition for use electrodeposition paints
US5997625A (en) * 1998-05-01 1999-12-07 Engelhard Corporation Coating pigment for ink-jet printing
JPWO2006035878A1 (en) * 2004-09-30 2008-05-15 日本製紙株式会社 Electrophotographic transfer paper
US10369828B2 (en) * 2006-04-06 2019-08-06 Hewlett-Packard Development Company, L.P. Glossy media sheet
CN103774491B (en) * 2012-10-25 2016-06-01 金东纸业(江苏)股份有限公司 White Board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118246A (en) * 1977-09-22 1978-10-03 Engelhard Minerals & Chemicals Corporation Process for producing clay slurries
US4943324A (en) * 1988-05-23 1990-07-24 Georgia Kaolin Company, Inc. High performance paper filler and method of producing same
EP0440419A1 (en) * 1990-01-29 1991-08-07 Engelhard Corporation Composite kaolin pigment for paper

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738726A (en) * 1985-05-06 1988-04-19 Engelhard Corporation Treatment of clays with cationic polymers to prepare high bulking pigments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118246A (en) * 1977-09-22 1978-10-03 Engelhard Minerals & Chemicals Corporation Process for producing clay slurries
US4943324A (en) * 1988-05-23 1990-07-24 Georgia Kaolin Company, Inc. High performance paper filler and method of producing same
EP0440419A1 (en) * 1990-01-29 1991-08-07 Engelhard Corporation Composite kaolin pigment for paper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0624686A1 (en) * 1993-05-04 1994-11-17 Ecc International Limited A pigment for a coating composition for printing paper
US5478388A (en) * 1993-05-04 1995-12-26 Ecc International Limited Pigment for a coating composition for printing paper

Also Published As

Publication number Publication date
US5207822A (en) 1993-05-04
AU3970893A (en) 1993-11-08

Similar Documents

Publication Publication Date Title
AU2016202328B2 (en) Compositions
US7226005B2 (en) Hyperplaty clays and their use in paper coating and filling, methods for making same, and paper products having improved brightness
AU621889B2 (en) High performance paper filler and method of producing same
JP3117467B2 (en) Calcined kaolin clay filler pigment for enhancing the opacity and printability of printing paper and mechanical paper
CN110714359B (en) Method for treating microfibrillated cellulose
US6149723A (en) Engineered kaolin pigment composition for paper coating
KR960006798B1 (en) Mineral fillers and pigments containing carbonate
JP6594775B2 (en) Composition derived from cellulose
US4640716A (en) High bulking pigment and method of making same
AU2002323615A1 (en) Hyperplaty clays and their use in paper coating and filling, methods for making same, and paper products having improved brightness
US5207822A (en) Synergistic filler blends for wood-containing papers
EP1497379B1 (en) Kaolin pigment having high brightness and narrow particle size distribution and method of preparation therefor
AU2002235867B2 (en) Method for recycling pulp rejects
US7413601B2 (en) Kaolin products and their use
CA2490837C (en) Kaolin pigment products
WO1998056860A1 (en) Filler composition for groundwood-containing grades of paper
JPS6327479B2 (en)
EP0440419A1 (en) Composite kaolin pigment for paper
Anjikar Change of Filler from Talc to Wet Ground Calcium Carbonate-A Noble Way to Reduce Fiber Consumption

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase