WO1994001598A1 - Procede de fabrication de couches minces presentant des proprietes optiques - Google Patents

Procede de fabrication de couches minces presentant des proprietes optiques Download PDF

Info

Publication number
WO1994001598A1
WO1994001598A1 PCT/FR1993/000707 FR9300707W WO9401598A1 WO 1994001598 A1 WO1994001598 A1 WO 1994001598A1 FR 9300707 W FR9300707 W FR 9300707W WO 9401598 A1 WO9401598 A1 WO 9401598A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
oxide
manufacturing
colloidal suspension
cylinder
Prior art date
Application number
PCT/FR1993/000707
Other languages
English (en)
Inventor
Hervé FLOCH
Philippe Belleville
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to US08/367,172 priority Critical patent/US5639517A/en
Priority to DE69307889T priority patent/DE69307889T2/de
Priority to EP93914831A priority patent/EP0648284B1/fr
Priority to JP50304694A priority patent/JP3343119B2/ja
Priority to AU45060/93A priority patent/AU4506093A/en
Publication of WO1994001598A1 publication Critical patent/WO1994001598A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/02Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material to surfaces by single means not covered by groups B05C1/00 - B05C7/00, whether or not also using other means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/284Halides
    • C03C2217/285Fluorides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/365Coating different sides of a glass substrate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/09Arrangements for reinforcement of solar collector elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/60Thermal insulation
    • F24S80/65Thermal insulation characterised by the material

Definitions

  • the present invention relates to a method for manufacturing thin layers having optical properties.
  • This process makes it possible to manufacture thin layers having, for example anti-reflective, hydrophobic or abrasion resistance properties. These thin layers can also have the properties of a dielectric mirror which reflects one or more specific wavelengths while exhibiting relatively low intrinsic absorption.
  • the thin layers relate to an organic or inorganic substrate (that is to say in particular plastics or vitreous substrates), coated with a film precisely exhibiting the desired optical properties.
  • organic or inorganic substrate that is to say in particular plastics or vitreous substrates
  • These thin layers find a multitude of applications, especially in the following fields: high power lasers, solar, thermal and photovoltaic applications, integrated optical systems or in architectural applications such as glazed panels outdoors. In the field of solar applications, these thin layers are already used in optical systems to minimize heat losses, concentrate and focus light energy and finally protect certain absorbent elements.
  • one of the techniques consists in preparing treatment solutions of colloidal nature and in depositing them on a substrate.
  • this technique consists in forming a stable and homogeneous suspension of solid particles (colloids) in a liquid solvent, this suspension constituting what is called a "sol", and then allowing this to evaporate. solvent.
  • the solvent used must be sufficiently volatile to evaporate easily and give way to a deposit of solid particles on the substrate.
  • the prepared soil is generally deposited on the substrate by soaking techniques (known by the English term “dip-coating”), by centrifugal coating ("spin-coating” in English), by spraying ("spray-coating” in English) by slip painting ( “slip-case- • ting” in English) or with a horizontal knife ( “tape-casting” in English).
  • the centrifugal coating deposition process has a number of drawbacks.
  • the size of the substrates is limited to substrates of small dimensions and the corners of the square or rectangular sub ⁇ strata are not correctly coated with a uniform layer of the substance which it is desired to deposit there.
  • the other deposition techniques also have a certain number of drawbacks.
  • the dip-coating technique requires the preparation of large quantities of solution to immerse the substrate to be treated. This becomes not very advantageous in the case of multilayer coatings for large optics.
  • the conventional deposition techniques by vacuum evaporation (PVD, CVD) make it possible to produce good quality deposits but require heavy and costly implementation (use of an evaporation bell).
  • the object of the present invention is to remedy the drawbacks of the techniques for producing thin layers of the prior art.
  • the invention relates to a process for manufacturing thin layers having optical properties.
  • this method comprises the steps consisting in:
  • this colloidal suspension having a viscosity of between 1 and 5 mPa.s,
  • This process covers a large number of applications in the field of coatings with optical properties, both by its simplicity of execution (ordinary temperature and pressures) and by its low cost. It allows in particular the deposition of thin layers obtained by the colloidal sol-gel route, that is to say the deposition of colloidal suspensions of very low viscosity. It also makes it possible to coat flat optical substrates or with a large radius of curvature, of a diverse nature (mineral or organic) or of varied geometry (angular or circular). In addition, this method makes it possible to work on large surfaces which are not circular, while this limitation is imposed by a method of treatment by centrifugation. In addition, this process makes it possible to use a very small amount of "soil” to form the thin layer. This results in a very advantageous inal cost compared to conventional evaporation techniques and also makes it possible to avoid significant pollution of the environment.
  • the use of a mask makes it possible to prevent the surface of the substrate to be treated from being directly in contact with the ambient atmosphere once the thin layer has been deposited.
  • the surface of the substrate or rather of the thin layer is therefore protected immediately after deposition and for a few seconds afterwards.
  • the drying is homogenized because the solvent vapors are sufficiently confined between the mask and the substrate.
  • the deposit made is clean, the drying speed is controlled and air turbulence around the deposit is avoided.
  • the speed of movement surround of the coating cylinder is between envi ⁇ ron 1 and 10 mm per second.
  • the thickness of the thin layer obtained being directly proportional to the coating speed, this speed range makes it possible to obtain the deposition of very thin colloidal layers.
  • means are used to rupture the meniscus at the end of the deposition of the thin layer on the substrate. This makes it possible to finish the edge of the substrate without causing significant overthickness effects.
  • the manufacturing process is carried out using alternately a first colloidal suspension comprising colloids chosen from silicon oxide, calcium fluoride or magnesium fluoride and dispersed in a solvent and a second colloidal suspension comprising colloids chosen from aluminum oxide, titanium oxide, zirconium oxide, hafnium oxide, thorium oxide, tantalum oxide, niobium, yttrium oxide, scandium oxide or lanthanum oxide and dispersed in a solvent. It is thus possible to produce dielectric mirrors.
  • the method according to the invention consists in first of all preparing at least one colloidal suspension 2, possibly a second or a third referenced 2 ′, comprising colloids 4, 4 ′ conferring the desired optical properties, these colloids being dispersed in a solvent 6, 6 '.
  • colloidal suspensions 2, 2 ′ Certain preferred colloidal suspensions 2, 2 ′ according to the invention will be described later.
  • These colloidal suspensions 2, 2 ′ generally have a viscosity of between 1 and 5 mPa.s.
  • the substrate 8 on which the deposition of the thin layer will be carried out is first of all subjected to meticulous cleaning.
  • This substrate can be either organic or inorganic in nature depending on the applications envisaged.
  • An aqueous detergent solution 10, containing for example deionized water and Triton-X TM 100, (registered trademark), is first of all applied to the surface 12 to be treated of the substrate 8.
  • a rinsing using, for example, deionized water 13 then a second cleaning with ethanol 14, filtered to 0.2 micron.
  • the cleaning also comprises an additional step (not shown in FIG. 1b) and consisting in exposing the substrate 8 under UV radiation, in the presence of ozone.
  • each colloidal suspension 2, 2 ′ is filtered through a membrane 16 made of fiberglass or Teflon (registered trademark), manufactured by EI Du Pont de Nemours and Co. ilmington, DE, depending on the case.
  • the coating deposition apparatus used here is illustrated schematically in Figures 1d and. It is described in more detail in the patent application DE 39 39501 mentioned above.
  • This device comprises a support 18 on which the substrate 8 is placed and at least one reservoir 20, (preferably two or more), intended to receive the colloidal solutions 2, 2 ′ and which can move in translation along the substrate 8, thanks to motor mechanisms which are close to those described in the German document mentioned above.
  • Each of these reservoirs 20 comprises a coating cylinder 22.
  • the driving mechanisms have been improved so that the displacement of the coating cylinder 22 takes place at a uniform speed and without jolts, in order to obtain the most homogeneous deposit possible.
  • the colloidal suspensions 2, 2 ′ After the colloidal suspensions 2, 2 ′ have been filtered, they are introduced into the fluid supply circuits (not shown) of the laminar coating device 1 , so as to load the reservoirs 20. This step is illustrated in figure ld.
  • the reservoirs 20 have a capacity of approximately 0.4 1.
  • a continuous pumping system ensures the pressurization, circulation and homogenization of the colloidal solution 2, 2 '.
  • the circuits are sufficiently hermetic to limit the evaporation of the solvents 6, 6 'used during the treatment.
  • the substrate 8 to be covered is installed on the treatment support 18, so that its race 12 to be treated is directed upwards (see FIG. Ld). It is kept in contact with this support, by suction using a primary vacuum pump, for example.
  • the support 18 and substrate 8 assembly is then turned over manually (arrow F), so as to present the face 12 of the substrate upside down, that is to say directed downward relative to FIG. 1d.
  • the deposit is then carried out as described below.
  • the coating cylinder 22 is moved in a uniform translational movement, a few tenths of a millimeter below the face to be treated 12 of the substrate 8, the longitudinal axis of the cylinder 22 being perpendicular to the movement made.
  • a meniscus 24 formed colloidal suspension to the periphery of the cylinder 1 coating 22 and more exactly along one of its generatrices, ensures throughout its movement, the formation of the thin layer 26 on the face 12 of the substrate 8 .
  • the meniscus 24 can be created by a coating cylinder 22 of the microporous type, having pore sizes of 10 microns or of the type having a longitudinal slit along one of these genera ⁇ .
  • the viscosity of the solutions used is generally between 1 and 5 mPa.s. It will be noted that if the colloidal solution was too viscous, it would risk blocking the supply channels of the coating apparatus and if it were too fluid, it would risk not being properly hooked onto the substrate 8. In order to control solvent evaporation
  • the reser ⁇ see 20 is provided with a mask 28 formed from a plate extending from one of its edges, horizontally, parallel to the support 18 and therefore to the substrate 8.
  • the mask 28 is therefore also.
  • the dimensions of this mask 28 are greater than or equal to those of the substrate 8 so as to completely cover it.
  • This mask makes it possible to confine the vapors of the solvent 6, 6 ′ and to limit the absence of homogeneity of drying. ge. This makes it possible to obtain a deposit of regular thickness and therefore excellent and uniform optical properties.
  • the adjustment of the distance between the mask 28 and the surface 26 of the thin layer is optimized according to the volatility properties of the solvents 6, 6 ′ used, the air flow around the coating device, the viscosity 2, 2 'colloidal solution or its concentration.
  • the support 18 of the substrate 8 comprises a knife 30 which makes it possible to break the meniscus 24 formed on the cylinder 22 at the end of the displacement of said cylinder, in order to avoid at the level of the layer thin 26, the appearance of significant edge effects.
  • the speed of translation of the cylinder d 1 enduc ⁇ tion 22 is controlled by the application of a precise voltage across the terminals of a DC motor, (not described and not shown in Figures ld and le) but illustrated in the Patent application DE 39 39501. Indeed, it is imperative to have a constant speed to have a deposit of regular thickness. In addition, the thickness of the layer obtained is directly proportional to the coating speed.
  • the translation speed of the cylinder is typically a few millimeters per second and more precisely around 1 to 10 mm / s.
  • This translation speed of the cylinder 22 corresponds to a deposit of a thin layer 26, a few hundred nanometers thick.
  • the uniformity and cleanliness of the deposit are intimately linked to the immediate environment of the coating device. It is therefore necessary to use a clean room atmosphere (class 100, US standard) in order to guarantee good performance.
  • optical coatings obtained by the method according to the invention.
  • a flow is maintained around the coating device. horizontal clean air, in light conditions.
  • silica sol 2 formed by an alcoholic suspension of colloidal silica (particles of approximately 200 A in diameter) whose stability is guaranteed by a catalyst (such as ammonia).
  • the mass concentration of silica is of the order of a few percent relative to the proportion of solvent.
  • the alkalinity of the medium is characterized by a pH 10 and the viscosity by a value close to 1 mPa.s.
  • the silica sol 2 is obtained by hydrolysis of an alkoxide type precursor, such as for example tetraethylorthosilicate, in basic alcoholic medium.
  • the aliphatic alcohol commonly used as solvent is for example ethanol.
  • the substrate is organic (plastic) or mineral (glass) in nature.
  • a layer of silicone is deposited before that of silica.
  • the dense silicone film is produced from commercial resins (Owens Illinois Inc.) which are al yl / arylalkoxy-siloxanes solubilized in an alcoholic solvent and converted into a silicone polymer network by heat treatment at approximately 180 ° C. for about ten 'hours.
  • an alkaline atmosphere ammonia vapors, for example
  • the manufacturing process according to the invention it is also possible, for example, to make a material having simultaneously anti-reflective, hydrophobic and abrasion resistance properties.
  • the method according to the invention then consists in depositing successively on a substrate 8 of organic or inorganic nature, firstly a layer of adhesion promoter, then an antireflection layer of colloidal nature, then a layer of coupling and finally an anti-abrasive layer.
  • the adhesion promoter layer is made of a material chosen from silanes.
  • the anti-reflective layer 2 is formed of silica colloids 4 coated in a siloxane binder.
  • the layer of coupling agent is made of a material chosen from silazanes and the anti-abrasive layer is made using a fluoropolymer.
  • interference dielectric mirrors comprising a substrate covered with a dielectric film which selectively reflects one or more desired wavelengths .
  • These dielectric mirrors generally comprise an alternation of a layer of colloidal suspension with a given refractive index and a second layer of colloidal suspension with an index of higher refraction than the first suspension.
  • a substrate 8 of an organic or inorganic nature and in particular siliceous, metallic or even ceramic is used as substrate.
  • the first colloidal suspension 2 comprises colloids 4 chosen from silicon oxide, calcium fluoride or magnesium fluoride and dispersed in a solvent 6 chosen from saturated aliphatic alcohols of formula ROH where R represents an alkyl having from 1 to 4 carbon atoms.
  • the second colloidal suspension 2 ′ whose refractive index is higher than that of the first suspension 2 comprises colloids 4 ′ chosen from aluminum oxide, titanium oxide, zirconium oxide, oxide hafnium, thorium oxide, tantalum oxide, niobium oxide, ytrium trioxide, scandium oxide or lanthanum oxide and dispersed in a 6 'solvent same nature as that which has just been quoted.
  • the colloidal suspensions 2, 2 ′ used come from ionic precursors (acid salts) purified by recrystallization or from molecular precursors (alkoxides) purified by distillation.
  • these soils are produced respectively according to the methods of Stober (J. Collo ⁇ d Inter ⁇ face Sci., 26, pp. 62-69, 1968) for Si ⁇ 2, by Thomas (Appli. Opt. 26, 4688, 1987 ) for Ti ⁇ 2, by Clearfield (Inorg. Chem., 3, 146, 1964) for Zr ⁇ 2 and Hf ⁇ 2, by O'Connor (US Patent 3,256,204, 1966) for h ⁇ 2, by Yoldas (Am. Cer. Soc. Bull. 54, 289, 1975) for AlOOH, by S. Parraud (MRS, Better Ceramics Through Che istry, 1991) for Ta2 ⁇ 5 and Nb2 ⁇ 5, and finally by Thomas (Appl. Opt., 27, 3356, 1988) for CaF2 and MgF 2 .
  • the ionic precursors are most often chosen from chlorides, oxychlorides, perchlorates, nitrates, oxynitrates or even acetates.
  • the molecular precursors are preferably chosen from the alkoxides of molar formula M (OR) n , (M representing a metal or an element of group III or IV, OR an alkoxy radical of 1 to 6 carbon atoms and n representing the metal valence).
  • M representing a metal or an element of group III or IV
  • OR an alkoxy radical of 1 to 6 carbon atoms and n representing the metal valence.
  • the precursor is hydrolyzed or fluorinated, then polymerized until a finished product is obtained, insoluble in the chosen solvent, nucleated and called colloidal suspension.
  • Example 1 Thanks to the method according to the invention, it has been possible to produce a certain number of substrates covered with different thin layers.
  • the practical examples of embodiment are illustrated below.
  • the substrate 8 used is a glass substrate (white ice B270) with a surface of 200 ⁇ 200 mm ⁇ and a thickness of 6 mm.
  • This substrate 8 is cleaned according to the following procedure: cleaning the surface with a hydrofluoric acid solution diluted to 1% by volume, then abundant rinsing with pure deionized water, cleaning using a detergent solution of soap vegetable (Green Soap; Eli Lilly &Co); rinse with pure water, then with ethyl alcohol filtered to 0.2 micron.
  • a colloidal suspension was prepared 2 by mixing 1046.3 g of absolute ethanol with 136.7 g of distilled tetraethylorthosilicate (167 ° C, 10 5 Pa). The mixture is homogenized by stirring for 5 minutes. Maintaining this stirring, 36.3 g of ammonia at 28% minimum are then added. The hydrolysis reaction requires a minimum of 48 h at 25 ° C to be complete. An opalescence then occurs which testifies to the formation of silica colloids. The particle size measurement carried out reveals an average diameter of the colloids of 21 ⁇ 9 nm. The final pH of this soil is around 10.5 and the mass concentration of Si ⁇ 2 is 3.2%. Before use, the silica sol is filtered to 0.2 micron.
  • the first deposition circuit of the coating apparatus is filled with approximately 400 cm ⁇ of silica sol 2.
  • the deposition parameters are adjusted as follows, translation speed: 5 mm / second, mask 28 / substrate distance 8: 4 mm, drying time: 2 minutes.
  • the substrate 8 thus treated reveals by spectrophotometry the following transmission factors:
  • the refractive index of the Si ⁇ 2 layer is under these deposition conditions from 1.22 to 1060 nm; which corresponds to a porosity of the order of 50%.
  • the substrate 8 used is a glass substrate (white ice B270) with a surface 200 ⁇ 200 mm 2 and a thickness of 6 mm.
  • the polishing is of quality 3 micron) and the refractive index is 1.52 for a wavelength of 600 nm.
  • the procedure for cleaning the substrate 8 is as follows: cleaning the surface with a hydrofluoric acid solution diluted to 1% by volume then rinsing with pure deionized water, cleaning with a detergent solution of vegetable soap (Green Soap), rinse with pure deionized water and then with ethyl alcohol filtered to 0.2 micron.
  • the first deposition circuit of the coating apparatus is filled with approximately 400 cm 3 of silica sol 2.
  • a deposition is carried out on the substrate 8 according to the following procedure, translation speed: 6.5 mm / second , mask 28 / substrate 8 distance: 4 mm, drying time: 2 minutes.
  • the substrate 8 thus treated is then placed in ammoniacal confinement in a closed enclosure (of volume 5 dm ⁇ ) containing about 500 cm3 of ammonia at least 28% in its bottom.
  • the substrate is maintained in the presence of these alkaline vapors for a minimum of 10 h in order to exhibit qualities of resistance to abrasion.
  • the substrate 8 used is identical to that of Example 1 and was prepared in the same way.
  • a colloidal suspension 2 is prepared in an identical manner to that described in the examples
  • a coloidal suspension 2 ′ is prepared by vigorously hydrolyzing 246 g of sec-bu-aluminum oxide (1 mole) in 3000 g of deionized water (166 moles at 65 ° C). A bulky white precipitate of hydrated aluminum oxide is then obtained. Isobutanol is then extracted by distillation at 98 ° C at atmospheric pressure (10 ⁇ Pa) and the whole is brought to reflux at 100 ° C. The precipitate is then peptized by adding 7.0 g of concentrated hydrochloric acid (0.07 mole) and the whole is kept under total reflux for approximately 15 hours.
  • a finely divided colloidal sol of opalescent appearance is then obtained containing hydrated alumina particles (boehmite type) of parallelepipedic morphology (40 nmx20 nmx50 nm). The distribution of these particles is monodispersed.
  • This hydrated alumina sol is concentrated under vacuum until it reaches 12% of Al2O3 (425g).
  • a product is then obtained in the form of a gelatinous paste which can easily be redispersed under ultrasound in light aliphatic alcohols. Typically, this sol is refluidified by dilution to 3.5% of Al2O3 in pure methanol.
  • the pH of the soil is brought back from 3.5 to pH 5.5 by addition of propylene oxide (epoxy 1-2 propane) which neutralizes the excess of hydrochloric acid, without losing the colloidal stability.
  • propylene oxide epoxy 1-2 propane
  • the proportion of propylene oxide added corresponds to a molar ratio (propylene oxide / HCl) of 1 in the mixture, and the pH equilibrium is only reached after several days of stirring.
  • this soil is diluted to 2.5% with methanol and filtered through a fiberglass sieve.
  • the two deposition circuits of the laminar coating apparatus are filled with respectively 400 cm 3 of soil 2, and 400 cm 3 of soil 2 '.
  • the silica layer (sol 2) is then deposited according to the following parameters; translation speed: 5 mm / second, mask 28 / substrate 8 distance: 4 mm, drying time: 2 minutes.
  • a hydrated alumina layer (sol 2 ') is then deposited according to the following parameters; translation speed: 7 mm / s, mask 28 / substrate 8 distance: 4 mm, drying time: 2 minutes. This procedure of alternating deposits is repeated until a mirror having 34 layers in total is obtained, that is to say 17 layers of Si ⁇ 2 alternated with 17 layers of Al2 ⁇ 3.H2 ⁇ .
  • the substrate is immersed in ammonia vapors for ten minutes after the deposition of each layer of Si ⁇ 2-
  • the spectral responses in reflection under normal incidence (0 °) are 98.9% d + 0.5% at a wavelength of 1060 nm and 98.1% + 0.7% at 350 nm.
  • the monolayers of Si ⁇ 2 and Al2 ⁇ 3.H2 ⁇ have clues respective refraction of 1.22 and 1.43 at 1060 nm, that is to say corresponding to respective porosities of 50% and 35%.
  • optical thin layers produced meet good quality criteria in terms of optical properties (transmission and reflection), in terms of uniformity and flatness of the deposit and in terms of mechanical resistance and resistance to laser flux.

Abstract

L'invention concerne un procédé de fabrication de couches minces présentant des propriétés optiques. Le but de l'invention est de réaliser un procédé permettant de traiter notamment des substrats plans, de grandes dimensions et de forme éventuellement non circulaire. Ce but est atteint à l'aide d'un procédé consistant à préparer une suspension colloïdale (2, 2') et à la déposer sur un substrat (8) grâce à un cylindre d'enduction (22). Cette invention permet notamment de fabriquer des miroirs diélectriques et des couches antireflet.

Description

PROCEDE DE FABRICATION DE COUCHES MINCES
PRESENTANT DES PROPRIETES OPTIQUES
DESCRIPTION
La présente invention concerne un procédé de fabrication de couches minces présentant des proprié¬ tés optiques.
Ce procédé permet de fabriquer des couches minces présentant par exemple des propriétés antireflet, hydrophobes ou de résistance à l'abrasion. Ces couches minces peuvent également présenter les propriétés d'un miroir diélectrique qui réfléchit une ou plusieurs longueurs d'onde spécifiques tout en présentant une absorption intrinsèque relativement faible.
Les couches minces concernent un substrat organique ou inorganique, (c'est-à-dire notamment les plastiques ou les substrats vitreux), revêtu d'un film présentant justement les propriétés optiques recherchées. Ces couches minces trouvent une multitude d'application, notamment dans les domaines suivants : les lasers de forte puissance, les applications solaires, thermiques et photovoltaiques, les systèmes optiques intégrés ou encore dans les applications architecturales comme les panneaux vitrés en extérieur. Dans le domaine des applications solaires, ces couches minces sont d'ores et déjà utilisées dans des systèmes optiques pour minimiser les pertes thermiques, concentrer et focaliser l'énergie lumineuse et enfin protéger certains éléments absorbants.
Le grand intérêt suscité par ces couches minces à propriétés optiques a entraîné la mise au point de divers procédés de fabrication.
Hormis les techniques classiques permettant de déposer des couches optiques sur divers substrats, à savoir, 1'évaporation sous vide, le plasma réactif et les procédés de fluorination, qui sont coûteuses et entraînent des traitements thermiques à des tempé¬ ratures élevées, on connaît d'après l'art antérieur, les techniques de chimie douce telles que les procédés de dépôt par voie sol-gel. Ce type de procédé permet l'élaboration de films disposés sur des substrats et présentant des propriétés optiques diverses, sans avoir recours à une étape thermique à des températures éle¬ vées.
Parmi les procédés de dépôt par voie sol-gel, l'une des techniques consiste à préparer des solutions traitantes de nature colloïdale et à les déposer sur un substrat. En d'autres termes, cette technique consis- te à former une suspension stable et homogène de parti¬ cules solides (colloïdes) dans un solvant liquide, cette suspension constituant ce que l'on appelle un "sol", puis à laisser évaporer ce solvant. Pour la réalisation de couches minces, le solvant utilisé, doit être suffisamment volatil pour s'évaporer facile¬ ment et laisser place à un dépôt de particules solides sur le substrat. Le sol préparé est généralement déposé sur le substrat par des techniques de trempage (connues sous le terme anglais de "dip-coating") , par enduction centrifuge ( "spin-coating" en anglais), par épendage ("spray-coating" en anglais), par engobage ("slip-cas- ting" en anglais) ou à l'aide d'un couteau horizontal ("tape-casting" en anglais).
Des exemples de réalisation de couches minces p r voie sol-gel sont décrits, par exemple, dans la demande de brevet américain 7 148 458 (NTIS), correspon¬ dant aux brevets US 4,929,278 et US 4,966,812, ou dans les brevets US 2,432,483 et US 4,271,210.
Par ailleurs, des procédés de dépôt de ces couches colloïdales sont également décrits. Ainsi, un article intitulé "Colloïdal Sol-Gel Optical Coatings" paru dans "The American Ceramic Society Bulletin", vol. 69, n° 7, pp. 1141-1143 (1990), décrit la pos¬ sibilité, de réaliser le dépôt de plusieurs couches de matières colloïdales par enduction centrifuge, afin de fabriquer les composants optiques d'un laser. Cet article précise qu'en utilisant les suspensions col¬ loïdales sol-gel et en choisissant judicieusement les solvants volatils constituant la phase liquide du milieu colloïdal, il est possible d'effectuer des traitements à température ambiante, sans chauffage excessif du substrat.
Le procédé de dépôt par enduction centrifuge présente toutefois un certain nombre d'inconvénients. En effet, la taille des substrats est limitée à des substrats de petites dimensions et les coins des sub¬ strats carré ou rectangulaire ne sont pas correctement revêtus d'une couche uniforme de la substance que l'on souhaite y déposer. Les autres techniques de dépôt présentent également un certain nombre d'inconvénients.
La technique de trempage ( "dip-coating" ) nécessite la préparation de grandes quantités de solu¬ tion pour immerger le substrat à traiter. Ceci devient peu avantageux dans le cas de revêtements multicouches pour des optiques de grandes dimensions. Les techniques de dépôts classiques par évaporation sous vide (PVD, CVD) permettent de réaliser des dépôts de bonne qualité mais nécessitent pour cela une mise en oeuvre lourde et coûteuse (emploi d'une cloche à évaporation).
Par ailleurs, on connaît d'après la demande de brevet DE 39 39 501, un dispositif d'enduction lami¬ naire permettant d'effectuer des dépôts de couches sur des substrats plans. Il est ainsi possible de réali- ser des revêtements photographiques aussi bien qu'électroniques (écrans plats).
Enfin, on connaît également d'après le brevet US-4,370,356, un procédé de dépôt utilisant un cylindre creux rempli de la substance à déposer et que l'on déplace en translation par rapport à un substrat, de façon à déposer à la surface de celui-ci une couche mince de ladite substance. Ce procédé est plus particulièrement destiné au dépôt de résines photosensibles, de laques, de couches antireflet ou de polyimides.
La présente invention a pour objet de remédier aux inconvénients des techniques de réalisation de couches minces de l'art antérieur.
A cet effet, l'invention concerne un procédé de fabrication de couches minces présentant des proprié¬ tés optiques.
Selon les caractéristiques de l'invention, ce procédé comprend les étapes consistant à :
- préparer au moins une suspension colloïdale comprenant des colloïdes conférant lesdites propriétés optiques, dispersés dans un solvant, cette suspension colloïdale présentant une viscosité comprise entre 1 et 5 mPa.s,
- placer le substrat destiné à être recouvert de la couche mince sur un support,
- introduire ladite suspension colloïdale sous pression, à l'intérieur d'un cylindre d'enduction,
- déplacer ledit cylindre en translation et à vitesse constante, sous la surface à traiter du substrat, de façon que le ménisque de suspension col¬ loïdale formé à la périphérie du cylindre d'enduction, assure le dépôt d'une couche mince de nature colloïdale sur la surface dudit substrat,
- déplacer également en translation et après le passage du cylindre d'enduction, un masque, parallèlement au plan de la surface du substrat,
- laisser sécher ledit substrat ainsi recou¬ vert.
Ce procédé couvre un grand nombre d'applica- tions dans le domaine des revêtements à propriétés optiques, tant par sa simplicité d'exécution (tempéra¬ ture et pressions ordinaires), que par son faible coût. Il permet notamment le dépôt de couches minces obtenues par la voie sol-gel colloïdale, c'est-à-dire le dépôt de suspensions colloïdales de très faible viscosité. Il permet également de procéder à l'enduction de substrats optiques plans ou à grand rayon de courbure, de nature diverse (minérale ou organique) ou de géométrie variée (angulaire ou circulaire). En outre, ce procédé permet de travailler sur des grandes surfaces qui ne sont pas circulaires, alors que cette limitation est imposée par un procédé de traitement par centrifugation. De plus, ce procédé permet d'utiliser une très faible quantité de "sol" pour former la couche mince. Ceci entraîne un coût inal très avantageux comparé aux techniques d'évaporation classiques et permet en outre d'éviter une pollution importante de l'environnement.
Enfin, l'utilisation d'un masque permet d'éviter que la surface du substrat à traiter soit directement en contact avec 1'atmosphère ambiante une fois la couche mince déposée. La surface du substrat ou plutôt de la couche mince est donc protégée immédiatement après le dépôt et pendant quelques secondes après. Le séchage s'en trouve homogénéisé car les vapeurs de solvant sont suffisamment confinées entre le masque et le substrat. En outre, le dépôt effectué est propre, la vitesse de séchage est contrôlée et les turbulences d'air autour du dépôt sont évitées. De façon avantageuse, la vitesse de dépla- cernent du cylindre d'enduction est comprise entre envi¬ ron 1 et 10 mm par seconde.
L'épaisseur de la couche mince obtenue étant directement proportionnelle à la vitesse d'enduction, cette gamme de vitesse permet d'obtenir le dépôt de couches colloïdales très minces.
De préférence, on utilise des moyens pour rompre le ménisque à la fin du dépôt de la couche mince sur le substrat. Ceci permet de réaliser la finition du bord du substrat sans occasionner d'effets de surépaisseur importants.
Selon un mode de réalisation de l'invention, le procédé de fabrication est réalisé en utilisant alternativement une première suspension colloïdale comprenant des colloïdes choisis parmi l'oxyde de silicium, le fluorure de calcium ou le fluorure de magnésium et dispersés dans un solvant et une deuxième suspension colloïdale comprenant des colloïdes choisis parmi l'oxyde d'aluminium, l'oxyde de titane, l'oxyde de zirconium, l'oxyde d'hafnium, l'oxyde de thorium, l'oxyde de tantale, l'oxyde de niobium, l'oxyde d'yttrium, l'oxyde de scandium ou l'oxyde de lanthane et dispersés dans un solvant. II est ainsi possible de réaliser des miroirs diélectriques.
L'invention sera mieux comprise à la lecture de la description suivante d'un mode de réalisation préférentielle de l'invention donné à titre d'exemple illustratif et non limitatif, cette description étant faite en faisant référence aux dessins joints, dans lesquels :
- les figures la à le illustrent respecti¬ vement les différentes étapes du procédé de fabrication des couches minces selon l'invention. Comme illustré en figure la, le procédé selon l'invention consiste à préparer tout d'abord au moins une suspension colloïdale 2, éventuellement une seconde ou une troisième référencée 2' , comprenant des colloïdes 4, 4' conférant les propriétés optiques recherchées, ces colloïdes étant dispersés dans un solvant 6, 6'. Certaines suspensions colloïdales 2, 2' préférées selon l'invention seront décrites ultérieurement. Ces suspen¬ sions colloïdales 2 , 2' ont généralement une visco- site comprise entre 1 et 5 mPa.s.
Comme illustré en figure lb, le substrat 8 sur lequel sera effectué le dépôt de la couche mince est tout d'abord soumis à un nettoyage méticuleux. Ce substrat peut être indifféremment de nature organique ou inorganique en fonction des applications envisagées. Une solution aqueuse détergente 10, contenant par exem¬ ple de l'eau désionisée et du Triton-X™ 100, (marque déposée), est tout d'abord appliquée sur la surface 12 à traiter du substrat 8. Ensuite, on effectue un rinçage à l'aide, par exemple, d'eau désionisée 13, puis un deuxième nettoyage à l'ethanol 14, filtré à 0,2 micron.
Lorsque le substrat 8 est de nature inorga¬ nique, le nettoyage comprend en outre une étape sup- plémentaire, (non représentée sur la figure lb) et consistant à exposer le substrat 8 sous rayonnement UV, en présence d'ozone. Il en résulte une hydrophi- lie accrue de la surface 12 du substrat et par consé¬ quent une meilleure mouillabilité lors du dépôt. Comme illustré en figure le, avant utilisa¬ tion, chaque suspension colloïdale 2, 2' est filtrée sur une membrane 16 en fibre de verre ou en Téflon (marque déposée), fabriquée par E.I. Du Pont de Nemours et Co. ilmington, DE, suivant le cas. L'appareil de dépôt par enduction utilisé ici est illustré schématiquement aux figures ld et le. Il est décrit plus en détail dans la demande de brevet DE 39 39501 évoquée précédemment. Cet appareil comprend un support 18 sur lequel est placé le substrat 8 et au moins un réservoir 20, (de préférence deux ou plus), destiné à recevoir les solutions colloïdales 2, 2' et pouvant se déplacer en translation le long du substrat 8, grâce à des mécanismes moteurs qui sont voisins de ceux décrits dans le document allemand précédemment évoqué. Chacun de ces réservoirs 20 comprend un cylindre d'enduction 22. Les mécanismes moteurs ont été améliorés de façonque le déplacement du cylindre d'enduction 22 s'effectue à une vitesse uniforme et sans secousses, pour obtenir le dépôt le plus homogène possible.
Après que les suspensions colloïdales 2, 2' aient été filtrées, on les introduit dans les cir¬ cuits d'alimentation en fluide (non représentés) de l'appareil d1enduction laminaire, de façon à charger les réservoirs 20. Cette étape est illustrée en figure ld. Les réservoirs 20 ont une capacité d'environ 0,4 1. Un système de pompage en continu assure la mise sous pression, la circulation et l'homogénéisation de la solution colloïdale 2, 2'. Les circuits sont suffisam- ment hermétiques pour limiter 1'évaporation des solvants 6, 6' utilisés lors du traitement.
Ensuite, le substrat 8 à recouvrir est instal¬ lé sur le support de traitement 18, de façon que sa race 12 à traiter soit dirigée vers le haut (voir figure ld). Il est maintenu en contact avec ce support, par aspiration à l'aide d'une pompe à vide primaire, par exemple. L'ensemble support 18 et substrat 8 est ensuite retourné manuellement (flèche F), de façon à présenter la face 12 du substrat à l'envers, c'est-à-dire dirigée vers le bas par rapport à la figure ld. Le dépôt s'effectue alors de la façon décrite ci-après. Comme illustré en figure le, le cylindre d'enduction 22 est déplacé selon un mouvement de translation uniforme, à quelques dizièmes de millimètres sous la face à traiter 12 du substrat 8, l'axe longitudinal du cylindre 22 étant perpendiculaire au déplacement effectué. Un ménisque 24 de suspension colloïdale formé à la périphérie du cylindre d1enduction 22 et plus précisément le long d'une de ses génératrices, assure tout au long de son déplacement, la formation de la couche mince 26 sur la face 12 du substrat 8.
Le ménisque 24 peut être créé par un cylindre d'enduction 22 du type microporeux, présentant des tailles de pores de 10 microns ou du type présentant une fente longitudinale le long de l'une de ces généra¬ trices.
La viscosité des solutions utilisées est généralement comprise entre 1 et 5 mPa.s. On notera que si la solution colloïdale était trop visqueuse, elle risquerait d'obturer les canaux d'alimentation de l'appareil d'enduction et si elle était trop fluide, elle risquerait de ne pas accrocher correctement sur le substrat 8. En vue de contrôler 1'évaporation du solvant
6, 6', lors du séchage de la couche mince 26, le réser¬ voir 20 est muni d'un masque 28 formé d'une plaque s'étendant depuis l'un de ses rebords, horizontalement, parallèlement au support 18 et donc au substrat 8. Lorsque le cylindre 22 est déplacé en translation, le masque 28 l'est donc également. Les dimensions de ce masque 28 sont supérieures ou égales à celles du substrat 8 de façon à le recouvrir intégralement. Ce masque permet de confiner les vapeurs du solvant 6, 6' et de limiter les absences d'homogénéité de sécha- ge. Ceci permet d'obtenir un dépôt d'épaisseur régulière et donc des propriétés optiques excellentes et uniformes. Le réglage de la distance entre le masque 28 et la surface 26 de la couche mince s'optimise selon les propriétés de volatilité des solvants 6, 6' utilisés, l'écoulement d'air autour de l'appareil d'enduction, la viscosité de la solution colloïdale 2, 2' ou sa concentration.
En outre, comme illustré en figures ld et le, le support 18 du substrat 8 comprend un couteau 30 qui permet de rompre le ménisque 24 formé sur le cylindre 22 à la fin du déplacement dudit cylindre, afin d'éviter au niveau de la couche mince 26, l'ap¬ parition d'effets de bords importants. La vitesse de translation du cylindre d1enduc¬ tion 22 est contrôlée par l'application d'une tension précise aux bornes d'un moteur à courant continu, (non décrit et non représenté sur les figures ld et le) mais illustré dans la demande de brevet DE 39 39501. En effet, il est imp'ératif d'avoir une vitesse constante pour avoir un dépôt d'une épaisseur régulière. En outre, l'épaisseur de la couche obtenue est directement propor¬ tionnelle à la vitesse d'enduction. Dans le cas des suspensions colloïdales utilisées dans l'invention et décrites ultérieurement, la vitesse de translation du cylindre est typiquement de quelques millimètres par seconde et plus précisément d'environ 1 à 10 mm/s. Cette vitesse de translation du cylindre 22 correspond à un dépôt d'une couche mince 26, de quelques centaines de nanomètres d'épaisseur.
Enfin, l'homogénéité et la propreté du dépôt sont intimement liées à l'environnement immédiat de l'appareil d'enduction. Il est donc nécessaire d'uti¬ liser une atmosphère de salle blanche (classe 100, norme US) afin de garantir les bonnes performances optiques des revêtements obtenus par le procédé selon l'invention. De façon avantageuse, on maintient autour de l'appareil d'enduction un flux . d'air propre horizontal, en régime luminaire. Après le séchage complet de la première couche mince 26, l'utilisation d'un second réservoir 20 rempli d'une solution colloïdale différente de la première permet l'élaboration de dépôts multicouches.
Grâce au procédé de fabrication selon 1'inven- tion, il est possible de réaliser des dépôts antireflet.
On dépose alors dans ce cas, une solution colloïdale
2 formée par une suspension alcooolique de silice col- loïdale (particules d'environ 200 A de diamètre) dont la stabilité est garantie par un catalyseur (tel 1'am- moniaque). La concentration en masse de silice est de l'ordre de quelques pourcents par rapport à la proportion en solvant. L'alcalinité du milieu se caractérise par un pH 10 et la viscosité par une valeur proche de 1 mPa.s. Pratiquement, le sol de silice 2 est obtenu par une hydrolyse d'un précurseur de type alcoxyde, comme par exemple le tétraéthylorthosilicate, en milieu alcoolique basique. L'alcool aliphatique couramment utilisé comme solvant est par exemple l'ethanol. Le substrat est de nature organique (plastique) ou minérale (verre).
Lorsque les substrats craignent les atmosphè¬ res humides comme les cristaux de KDP utilisés en conversion de fréquence par exemple, une couche de silicone est déposée préalablement à celle de silice. Le film de silicone dense est réalisé à partir de résines commerciales (Owens Illinois Inc. ) qui sont des al yl/arylalcoxy-siloxanes solubilisés dans un solvant alcoolique et convertis en réseau polymérique silicone par traitement thermique à 180°C environ pendant une dizaine d'heures. Afin d'améliorer les caractéristiques de résistance à l'abrasion des dépôts antireflet, il est possible d'effectuer une exposition de. la couche de silice colloïdale à une atmosphère alcaline (vapeurs ammoniacales, par exemple), pendant quelques heures. Ce traitement renforce suffisamment la cohésion des colloïdes entre eux et autorise un toucher précaution¬ neux de la couche ainsi qu'un essuyage à l'aide d'un tissu imbibé d'alcool. Grâce au procédé de fabrication selon l'inven¬ tion, il est également possible, par exemple, de réali¬ ser un matériau présentant simultanément des propriétés antireflet, hydrophobe et de résistance à l'abrasion. A cet effet, le procédé selon l'invention consiste alors, à déposer successivement sur un substrat 8 de nature organique ou inorganique, premièrement une couche de promoteur d'adhérence, puis une couche antireflet de nature colloïdale, ensuite une couche d'agent de couplage et enfin une couche anti-abrasive. La couche de promoteur d'adhérence est réalisée dans un matériau choisi parmi les silanes. La couche antireflet 2 est formée de colloïdes de silice 4 enrobés dans un liant de siloxanes. La couche d'agent de couplage est réalisée dans un matériau choisi parmi les silazanes et la couche anti-abrasive est réalisée à l'aide d'un polymère fluo¬ ré.
Grâce au procédé de fabrication selon l'inven¬ tion, il est également possible de réaliser, par exem¬ ple, des miroirs diélectriques interférentiels compre- nant un substrat recouvert d'un film diélectrique qui réfléchit sélectivement une ou plusieurs longueurs d'onde souhaitées. Ces miroirs diélectriques comprennent généralement une alternance d'une couche de suspension colloïdale d'un indice de réfraction donné et une deu- xième couche de suspension colloïdale à indice de réfraction supérieur à celui de la première suspension.
Dans ce cas, on utilise comme substrat 8 un substrat de nature organique ou inorganique et en particulier siliceux, métallique ou encore céramique. La première suspension colloïdale 2, comprend des colloïdes 4 choisis parmi l'oxyde de silicium, le fluorure de calcium ou le fluorure de magnésium et dispersé dans un solvant 6 choisi parmi les alcools aliphatiques saturés de formule ROH où R représente un alkyle ayant de 1 à 4 atomes de carbone.
La deuxième suspension colloïdale 2 ' dont l'indice de réfraction est supérieur à celui de la première suspension 2 comprend des colloïdes 4 ' choisis parmi l'oxyde d'aluminium, l'oxyde de titane, l'oxyde de zirconium, l'oxyde d'hafnium, l'oxyde de thorium, l'oxyde de tantale, l'oxyde de niobium, l'oxyde d'yt- trium, l'oxyde de scandium ou l'oxyde de lanthane et dispersés dans un solvant 6 ' de même nature que celui qui vient d'être cité. Les suspensions colloïdales 2, 2' utilisées sont issues de précurseurs ioniques (sels d'acide) purifiés par recristallisation ou de précurseurs molécu¬ laires (alkoxydes) purifiés par distillation.
De préférence, ces sols sont fabriqués respec- tivement selon les méthodes de Stober (J. Colloïd Inter¬ face Sci., 26, pp. 62-69, 1968) pour Siθ2, de Thomas (Appli. Opt. 26, 4688, 1987) pour Tiθ2, de Clearfield (Inorg. Chem. , 3, 146, 1964) pour Zrθ2 et Hfθ2, de O'Connor (brevet U.S. 3 256 204, 1966) pour hθ2, de Yoldas (Am. Cer. Soc. Bull. 54, 289, 1975) pour AlOOH, de S. Parraud (MRS, Better Ceramics Through Che istry, 1991) pour Ta2Û5 et Nb2Û5, et enfin de Thomas (Appl. Opt., 27, 3356, 1988) pour CaF2 et MgF2.
Les précurseurs ioniques sont choisis le plus souvent parmi les chlorures, les oxychlorures, les perchlorates, les nitrates, les oxynitrates ou encore les acétates.
Les précurseurs moléculaires sont de préfé¬ rence choisis parmi les alkoxydes de formule molaire M(OR)n, (M représentant un métal ou un élément du groupe III ou IV, OR un radical alkoxy de 1 à 6 atomes de carbone et n représentant la valence du métal). Dans les méthodes décrites précédemment, le précurseur est hydrolyse ou fluoré, puis polymérisé jusqu'à l'obtention d'un produit fini, insoluble dans le solvant choisi, nucléé et appelé suspension colloïdale.
Dans tous les exemples qui viennent d'être décrits, il est possible de traiter le substrat 8 recou¬ vert d'au moins une couche mince 26 par des vapeurs alcalines, afin notamment d'améliorer les propriétés de tenue mécanique et de tenue du flux des couches ainsi déposées.
Grâce au procédé selon l'invention, on a pu réaliser un certain nombre de substrats recouverts de couches minces différentes. Les exemples pratiques de réalisation sont illustrés ci-après. Exemple 1
Le substrat 8 utilisé est un substrat en verre (glace blanche B270) de surface 200x200 mm^ et d'épaisseur 6 mm. La qualité du polissage est de 3A (A=l,06 micron) et l'indice de réfraction est de 1,52 a une longueur d'onde de 600 nm. Ce substrat 8 est nettoyé selon la procédure suivante : nettoyage de la surface avec une solution d'acide fluorhydrique diluée à 1% en volume, puis rinçage abondant à l'eau pure désionisée, nettoyage à l'aide d'une solution détergente de savon végétal (Green Soap ; Eli Lilly & Co) ;rinçage à l'eau pure, puis à l'alcool éthylique filtré à 0,2 micron. 1) on a préparé une suspension colloïdale 2 en mélangeant 1046,3 g d'éthanol absolu avec 136,7 g de tétraéthylorthosilicate distillé (167°C, 105Pa). Le mélange est homogénéisé par agitation pendant 5 minutes. En maintenant cette agitation, on additionne alors 36,3 g d'ammoniaque à 28% minimum. La réaction d'hydrolyse nécessite un minimum de 48 h à 25°C pour être complète. Il survient alors une opalescence qui témoigne de la formation de colloïdes de silice. La mesure granulometrique effectuée révèle un diamètre moyen des colloïdes de 21 +_ 9 nm. Le pH final de ce sol est d'environ 10,5 et la concentration massique en Siθ2 est de 3,2%. Avant utilisation le sol de silice est filtré à 0,2 micron.
2) On remplit le premier circuit de dépôt de l'appareil d'enduction avec environ 400 cm^ du sol de silice 2. Les paramètres de dépôt sont ajustés comme suit, vitesse de translation : 5 mm/seconde, distance masque 28/substrat 8 : 4 mm, temps de séchage : 2 mi¬ nutes. Le substrat 8 ainsi traité révèle par spectro- photométrie les facteurs de transmission suivants :
T = 95,8% à 1100 nm (maximum),
T = 95,6% à 1200 nm
T ≈ 95,4% à 1000 nm. Ces mesures sont précises à _+0,3% en transmis¬ sion et sont représentatives de l'ensemble de la surface traitée antireflet.
L'indice de réfraction de la couche de Siθ2 est dans ces conditions de dépôt de 1,22 à 1060 nm ; ce qui correspond à une porosité de l'ordre de 50%. Exemple 2
Le substrat 8 utilisé est un substrat en verre (glace blanche B270) de surface 200x200 mm2 et d'épaisseur 6 mm. Le polissage est de qualité 3
Figure imgf000017_0001
micron) et l'indice de réfraction est de 1,52 pour une longueur d'onde de 600 nm. La procédure de nettoyage du substrat 8 est la suivante : nettoyage de la surface avec une solution d'acide fluorhydrique diluée à 1% en volume puis rinçage à l'eau pure désionisée, nettoyage à l'aide d'une solution détergente de savon végétal (Green Soap), rinçage à l'eau pure désionisée puis à l'alcool éthylique filtré à 0,2 micron.
1) On a préparé une suspension colloïdale 2 comme dans l'exemple 1.
2) On remplit le premier circuit de dépôt de l'appareil d'enduction avec environ 400 cm^ du sol de silice 2. On effectue un dépôt sur le substrat 8 selon la procédure suivante, vitesse de translation : 6,5 mm/seconde, distance masque 28/substrat 8 : 4 mm, temps de séchage : 2 minutes.
3) Le substrat 8 ainsi traité est alors mise en confinement ammoniacal dans une enceinte close (de volume 5 dm^) contenant environ 500 cm3 d'ammoniaque à 28% minimum dans son fond. Le substrat est maintenu en présence de ces vapeurs alcalines pendant un minimum de lOh afin de présenter des qualités de résistance à l'abrasion.
4) On procède alors au traitement antireflet de l'autre face du substrat selon les mêmes paramètres de dépôt qu'en 2) .
5) Le substrat traité sur les deux faces est mis à nouveau en confinement ammoniacal selon le procédé décrit au paragraphe 3. Les propriétés apportées par l'ensemble de ce traitement sont :
- des valeurs de transmission optique qui atteignent 99,8% à 1100 nm, 99,5% à 1200 nm et 99,4% à 1000 nm. Ces valeurs sont précises à _+0,3% en trans- mission et sont représentatives de l'ensemble de la surface traitée.
- une résistance à l'abrasion des couches déposées qui autorise des essuyages de la surface avec un papier buvard imbibé d'alcool (essuyage connu sous le terme anglais d'essuyage type "Drag wipe").
- des valeurs de tenue au flux laser qui dépasse 18J/cm2 avec une durée d'impulsion de 3 ns, à une longueur d'onde de l'ordre de 1064 nm et qui excède 45J/cm2, avec une durée d'impulsion de 8 ns et à une longueur d'onde de l'ordre de 1064 nm. Exemple 3
Le substrat 8 utilisé est identique à celui de l'exemple 1 et a été préparé de la même façon.
1) On prépare une suspension colloïdale 2 de façon identique à celle décrite dans les exemples
1 et 2.
2) On prépare en outre une suspension col¬ loïdale 2' en hydrolysant vigoureusement 246g de sec-bu- toxyde d'aluminium (1 mole) dans 3000g d'eau désionisée (166 moles à 65°C). On obtient alors un précipité blan¬ châtre volumineux d'oxyde d'aluminium hydraté. On extrait alors l'isobutanol par distillation à 98°C à la pression atmosphérique (lO^Pa) et on porte l'ensem¬ ble à reflux à 100°C. On peptise alors le précipité par ajout de 7,0g d'acide chlorhydrique concentré (0,07 mole) et on maintient l'ensemble sous reflux total pendant 15 heures environ. On obtient alors un sol colloïdal finement divisé d'aspect opalescent contenant des particules d'alumine hydratée (type boehmite) de morphologie parallélépipédique (40 nmx20 nmx50 nm). La répartition de ces particules est monodispersée. Ce sol d'alumine hydratée est concentré sous vide jus¬ qu'à atteindre 12% en AI2O3 (425g). On obtient alors un produit sous forme d'une pâte gélatineuse que l'on peut aisément redisperser sous ultrasons dans des alcools aliphatiques légers. Typiquement, on refluidifie ce sol par dilution à 3,5% en AI2O3 dans du méthanol pur. Le pH du sol est ramené de 3,5 à pH 5,5 par ajout d'oxyde de propylene (epoxy 1-2 propane) qui neutralise l'excès d'acide chlorhydrique, sans perdre la stabilité colloïdale. La proportion d'oxyde de propylene rajoutée correspond à un rapport molaire (oxyde de propylène/HCl) de 1 dans le mélange, et l'équilibre en pH n'est atteint qu'après plusieurs jours d'agitation. Avant utilisation, ce sol est dilué à 2,5% avec du méthanol et filtré sur un tamis en fibre de verre.
3) On remplit les deux circuits de dépôt de l'appareil d'enduction laminaire avec respectivement 400 cm3 du sol 2, et 400 cm3 du sol 2'. On procède ensuite au dépôt de la couche de silice (sol 2) selon les paramètres suivants ; vitesse de translation : 5 mm/seconde, distance masque 28/substrat 8 : 4 mm, temps de séchage : 2 minutes. Sur ce dépôt de Siθ2r on réalise ensuite le dépôt d'une couche d'alumine hydratée (sol 2' ) selon les paramètres suivants ; vites¬ se de translation : 7 mm/s, distance masque 28/substrat 8 : 4 mm, temps de séchage : 2 minutes. On répète cette procédure de dépôts alternés jusqu'à l'obtention d'un miroir présentant 34 couches au total, c'est-à-dire 17 couches de Siθ2 alternées avec 17 couches d'Al2θ3.H2θ. Afin de limiter les contraintes d'un tel empilement, on procède à une immersion du substrat dans des vapeurs d'ammoniac pendant dix minutes après le dépôt de chaque couche de Siθ2- Les réponses spectrales en réflexion sous incidence normale (0°) sont de 98,9% j+0,5% à une longueur d'onde de 1060 nm et de 98,1% +0,7% à 350 nm. Dans ce miroir diélectrique exempt de craquelures ou d'effets de bord prononcés, les monocouches de Siθ2 et d'Al2θ3.H2θ ont des indices de réfraction respectifs de 1,22 et 1,43 à 1060 nm, c'est-à-dire correspondant à des porosités respectives de 50% et 35%.
Globalement, les couches minces optiques réalisées répondent à de bons critères de qualité en matière de propriétés optiques (transmission et ré¬ flexion), en matière d'uniformité et de planéité du dépôt et en matière de résistance mécanique et de tenue au flux laser.

Claims

REVENDICATIONS
1. Procédé de fabrication de couches minces (26) présentant des propriétés optiques, caractérisé en ce qu'il comprend les étapes consistant à :
- préparer au moins une suspension colloïdale (2, 2') comprenant des colloïdes (4, 4') conférant lesdites propriétés optiques, dispersés dans un solvant (6, 6'), cette suspension colloïdale présentant une viscosité comprise entre 1 et 5 mPa.s,
- placer le substrat (8) destiné à être recou¬ vert de la couche mince sur un support (18),
- introduire ladite suspension colloïdale (2, 2') sous pression, à l'intérieur d'un cylindre d'enduction (22),
- déplacer ledit cylindre (22) en translation et à vitesse constante, sous la surface (12) à traiter du substrat (8), de façon que le ménisque (24) de suspension colloïdale (2, 2') formé à la périphérie du cylindre d' nduction (22), assure le dépôt d'une couche mince (26) de nature colloïdale sur la surface (12) dudit substrat (8),
- déplacer également en translation et après le passage du cylindre d'enduction (22), un masque (28), parallèlement au plan de la surface (12) du substrat (8) ,
- laisser sécher ledit substrat (8) ainsi recouvert.
2. Procédé de fabrication selon la revendica- tion 1, caractérisé en ce que la vitesse de déplacement du cylindre d'enduction (22) est comprise entre environ 1 et 10 mm par seconde.
3. Procédé de fabrication selon la revendica¬ tion 1 ou 2, caractérisé en ce que le cylindre d'enduction (22) est muni d'une fente longitudinale prévue le long de l'une de ces génératrices.
4. Procédé de fabrication selon la revendica¬ tion 1, caractérisé en ce que le cylindre d'enduction (22) est un cylindre microporeux.
5. Procédé de fabrication selon la revendica¬ tion 1, caractérisé en ce qu'on utilise des moyens (30) pour rompre le ménisque (24), à la fin du dépôt de la couche mince (26) sur le substrat (8).
6. Procédé de fabrication selon la revendica- tion 1, caractérisé en ce qu'avant d'effectuer le dépôt de la suspension colloïdale (2, 2'), on nettoie le substrat (8) à l'aide d'une solution aqueuse détergente et d'une solution d'éthanol.
7. Procédé de fabrication selon la revendica- tion 6, caractérisé en ce que le substrat (8) est inor¬ ganique et en ce qu'après l'étape de nettoyage, le substrat (8) est soumis à un traitement aux rayonnements ultraviolets, en présence d'ozone.
8. Procédé de fabrication selon l'une quel- conque des revendications précédentes, caractérisé en ce qu'il consiste à déposer une suspension colloïdale (2) comprenant des colloïdes d'oxyde de silicium disper¬ sés dans un alcool aliphatique.
9. Procédé de fabrication selon la revendica- tion 8, caractérisé en ce que l'on dépose sur le sub¬ strat (8), une couche de silicone, avant d'effectuer le dépôt de la couche mince (26) d'oxyde de silicium.
10. Procédé de fabrication selon l'une quel¬ conque des revendications l à 7, caractérisé en ce qu'il consiste à déposer alternativement une première suspension colloïdale (2) comprenant des colloïdes (4) choisis parmi l'oxyde de silicium, le fluorure de calcium ou le fluorure de magnésium et dispersés dans un solvant (6) et une deuxième suspension col- loïdale (2') comprenant des colloïdes (41) choisis parmi l'oxyde d'aluminium, l'oxyde de titane, l'oxyde de zirconium, l'oxyde d'hafnium, l'oxyde thorium, l'oxy¬ de de tantale, l'oxyde de niobium, l'oxyde d'yttrium, l'oxyde de scandium ou l'oxyde de lanthane et dispersés dans un solvant (6' ) .
11. Procédé de fabrication selon la revendica¬ tion 10, caractérisé en ce que le solvant (6, 6') est choisi parmi les alcools aliphatiques saturés de formule ROH où R représente un alkyle ayant de 1 à 4 atomes de carbone.
12. Procédé de fabrication selon l'une quel¬ conque des revendications l à 7, caractérisé en ce qu'il consiste à introduire à l'intérieur d'un cylindre d'enduction (22) puis à déposer successivement grâce à ce cylindre,
- une couche de promoteur d'adhérence réalisée dans un matériau choisi parmi les silanes,
- une couche antireflet formée de colloïdes de silice enrobés d'un liant siloxane, ~ une couche d'agent de couplage réalisée dans un matériau choisi parmi les silazanes, et
- une couche anti-abrasive d'un polymère fluoré.
13. Procédé de fabrication selon l'une quelconque des revendications 8 à 12, caractérisé en ce que les couches déposées sont traitées par des vapeurs alcalines.
PCT/FR1993/000707 1992-07-09 1993-07-08 Procede de fabrication de couches minces presentant des proprietes optiques WO1994001598A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/367,172 US5639517A (en) 1992-07-09 1993-07-08 Process for the production of thin films having optical properties
DE69307889T DE69307889T2 (de) 1992-07-09 1993-07-08 Verfahren zur herstellung von dünnschichten mit optischen eigenschaften
EP93914831A EP0648284B1 (fr) 1992-07-09 1993-07-08 Procede de fabrication de couches minces presentant des proprietes optiques
JP50304694A JP3343119B2 (ja) 1992-07-09 1993-07-08 光学的特性を有する薄膜の製造方法
AU45060/93A AU4506093A (en) 1992-07-09 1993-07-08 Method for producing thin films having optical properties

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9208524A FR2693558B1 (fr) 1992-07-09 1992-07-09 Procédé de fabrication de couches minces présentant des propriétés optiques.
FR92/08524 1992-07-09

Publications (1)

Publication Number Publication Date
WO1994001598A1 true WO1994001598A1 (fr) 1994-01-20

Family

ID=9431745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000707 WO1994001598A1 (fr) 1992-07-09 1993-07-08 Procede de fabrication de couches minces presentant des proprietes optiques

Country Status (8)

Country Link
US (1) US5639517A (fr)
EP (1) EP0648284B1 (fr)
JP (1) JP3343119B2 (fr)
AU (1) AU4506093A (fr)
DE (1) DE69307889T2 (fr)
ES (1) ES2099454T3 (fr)
FR (1) FR2693558B1 (fr)
WO (1) WO1994001598A1 (fr)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989462A (en) * 1997-07-31 1999-11-23 Q2100, Inc. Method and composition for producing ultraviolent blocking lenses
US6419873B1 (en) 1999-03-19 2002-07-16 Q2100, Inc. Plastic lens systems, compositions, and methods
US6698708B1 (en) 2000-03-30 2004-03-02 Q2100, Inc. Gasket and mold assembly for producing plastic lenses
US6723260B1 (en) 2000-03-30 2004-04-20 Q2100, Inc. Method for marking a plastic eyeglass lens using a mold assembly holder
US6716375B1 (en) 2000-03-30 2004-04-06 Q2100, Inc. Apparatus and method for heating a polymerizable composition
US6528955B1 (en) 2000-03-30 2003-03-04 Q2100, Inc. Ballast system for a fluorescent lamp
DE10019822A1 (de) * 2000-04-20 2001-10-25 Iwt Stiftung Inst Fuer Werksto Verfahren zur Strukturierung dünner Schichten
US6632535B1 (en) 2000-06-08 2003-10-14 Q2100, Inc. Method of forming antireflective coatings
US6758663B2 (en) 2001-02-20 2004-07-06 Q2100, Inc. System for preparing eyeglass lenses with a high volume curing unit
US6752613B2 (en) 2001-02-20 2004-06-22 Q2100, Inc. Apparatus for preparing an eyeglass lens having a controller for initiation of lens curing
US6840752B2 (en) * 2001-02-20 2005-01-11 Q2100, Inc. Apparatus for preparing multiple eyeglass lenses
US6702564B2 (en) 2001-02-20 2004-03-09 Q2100, Inc. System for preparing an eyeglass lens using colored mold holders
US7051290B2 (en) * 2001-02-20 2006-05-23 Q2100, Inc. Graphical interface for receiving eyeglass prescription information
US6709257B2 (en) 2001-02-20 2004-03-23 Q2100, Inc. Eyeglass lens forming apparatus with sensor
US6612828B2 (en) 2001-02-20 2003-09-02 Q2100, Inc. Fill system with controller for monitoring use
US6808381B2 (en) 2001-02-20 2004-10-26 Q2100, Inc. Apparatus for preparing an eyeglass lens having a controller
US6790022B1 (en) 2001-02-20 2004-09-14 Q2100, Inc. Apparatus for preparing an eyeglass lens having a movable lamp mount
US6676399B1 (en) 2001-02-20 2004-01-13 Q2100, Inc. Apparatus for preparing an eyeglass lens having sensors for tracking mold assemblies
US7083404B2 (en) * 2001-02-20 2006-08-01 Q2100, Inc. System for preparing an eyeglass lens using a mold holder
US6726463B2 (en) 2001-02-20 2004-04-27 Q2100, Inc. Apparatus for preparing an eyeglass lens having a dual computer system controller
US6790024B2 (en) 2001-02-20 2004-09-14 Q2100, Inc. Apparatus for preparing an eyeglass lens having multiple conveyor systems
US6655946B2 (en) 2001-02-20 2003-12-02 Q2100, Inc. Apparatus for preparing an eyeglass lens having a controller for conveyor and curing units
US7139636B2 (en) * 2001-02-20 2006-11-21 Q2100, Inc. System for preparing eyeglass lenses with bar code reader
US6676398B2 (en) 2001-02-20 2004-01-13 Q2100, Inc. Apparatus for preparing an eyeglass lens having a prescription reader
US7124995B2 (en) * 2001-02-20 2006-10-24 Q2100, Inc. Holder for mold assemblies and molds
US6712331B2 (en) 2001-02-20 2004-03-30 Q2100, Inc. Holder for mold assemblies with indicia
SE0101702D0 (sv) * 2001-05-15 2001-05-15 Ardenia Investments Ltd Novel potentiating compounds
WO2003080520A1 (fr) * 2002-03-15 2003-10-02 Yazaki Corporation Procede de production d'articles minces de verre de silice
US6464484B1 (en) 2002-03-30 2002-10-15 Q2100, Inc. Apparatus and system for the production of plastic lenses
JP4059709B2 (ja) * 2002-05-29 2008-03-12 富士フイルム株式会社 薄膜塗布方法及びその装置
KR20050083597A (ko) * 2002-09-19 2005-08-26 옵티맥스 테크놀러지 코포레이션 표면 활성화 나노 분자의 반사 방지 및 반사 차단 코팅
US20060128836A1 (en) * 2002-10-29 2006-06-15 Jsr Corporption Curing composition and antireflective multilayer body using same
EP1689824B1 (fr) * 2003-11-21 2016-10-12 BrisMat Inc. Films de silice et procede de production correspondant
US8734906B2 (en) * 2003-11-21 2014-05-27 Brismat Inc. Films and method of production thereof
EP1724613A4 (fr) * 2004-03-09 2009-06-24 Teijin Dupont Films Japan Ltd Couche antireflet et processus pour fabriquer celle-ci
US7294405B2 (en) * 2004-08-26 2007-11-13 3M Innovative Properties Company Antiglare coating and articles
US7291386B2 (en) * 2004-08-26 2007-11-06 3M Innovative Properties Company Antiglare coating and articles
EP1920023A4 (fr) * 2005-05-31 2009-08-19 Xerocoat Inc Controle de la morphologie de films de silice
ITBO20060151A1 (it) * 2006-03-03 2007-09-04 Andrea Capucci Impianto per l'applicazione di un materiale nanostruttura su articoli, in particolare piastrelle, vetri e simili.
FR2921498B1 (fr) 2007-09-25 2010-08-13 Commissariat Energie Atomique Dispositif optique dispersif a cristal photonique tridimensionnel.
US20100068404A1 (en) * 2008-09-18 2010-03-18 Guardian Industries Corp. Draw-off coating apparatus for making coating articles, and/or methods of making coated articles using the same
CA2794519C (fr) * 2010-04-02 2014-09-16 Elmira Ryabova Machine a enduire sur rouleaux
EP2673241A1 (fr) 2011-02-11 2013-12-18 DSM IP Assets B.V. Procédé de dépôt de couche antireflet sur un substrat
EP2882540B1 (fr) * 2012-08-09 2017-12-27 DSM IP Assets B.V. Procédé de revêtement au rouleau
KR102289792B1 (ko) 2013-11-06 2021-08-17 어플라이드 머티어리얼스, 인코포레이티드 졸 겔 코팅된 지지 링
EP2947178A1 (fr) * 2014-05-21 2015-11-25 IMEC vzw Revêtement conforme sur des substrats tridimensionnels
ES2706877T3 (es) 2014-11-13 2019-04-01 Gerresheimer Glas Gmbh Filtro de partículas de máquina para conformar vidrio, unidad de émbolo, cabeza de soplado, soporte de cabeza de soplado y máquina para conformar vidrio adaptada a dicho filtro o que lo comprende
FR3050730B1 (fr) * 2016-04-27 2018-04-13 Saint-Gobain Glass France Procede d'impression d'email pour vitrage feuillete a couches fonctionnelles
CN108262236B (zh) * 2018-01-12 2020-10-20 中国工程物理研究院流体物理研究所 一种固体颗粒在金属工件曲面表面的粘附方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756196A (en) * 1968-08-22 1973-09-04 Asahi Glass Co Ltd Method of coating glass surfaces
GB2098510A (en) * 1981-05-20 1982-11-24 Integrated Technologies Inc Meniscus coating
EP0414001A2 (fr) * 1989-08-01 1991-02-27 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Procédé de contrôle photoinitié de la formation des réseaux inorganiques lors d'un procédé sol-gel
DE3939501A1 (de) * 1989-11-30 1991-06-06 Convac Gmbh Laminar-beschichtungsvorrichtung fuer ebene substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966812A (en) * 1988-01-26 1990-10-30 The United States Of America As Represented By The Department Of Energy Sol-gel antireflective coating on plastics
US5260094A (en) * 1991-09-30 1993-11-09 Cornell Research Foundation, Inc. Preparing densified low porosity titania sol-gel forms

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756196A (en) * 1968-08-22 1973-09-04 Asahi Glass Co Ltd Method of coating glass surfaces
GB2098510A (en) * 1981-05-20 1982-11-24 Integrated Technologies Inc Meniscus coating
EP0414001A2 (fr) * 1989-08-01 1991-02-27 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Procédé de contrôle photoinitié de la formation des réseaux inorganiques lors d'un procédé sol-gel
DE3939501A1 (de) * 1989-11-30 1991-06-06 Convac Gmbh Laminar-beschichtungsvorrichtung fuer ebene substrate

Also Published As

Publication number Publication date
DE69307889D1 (de) 1997-03-13
JP3343119B2 (ja) 2002-11-11
ES2099454T3 (es) 1997-05-16
EP0648284A1 (fr) 1995-04-19
US5639517A (en) 1997-06-17
JPH07509174A (ja) 1995-10-12
DE69307889T2 (de) 1997-08-14
FR2693558B1 (fr) 1994-08-19
FR2693558A1 (fr) 1994-01-14
AU4506093A (en) 1994-01-31
EP0648284B1 (fr) 1997-01-29

Similar Documents

Publication Publication Date Title
EP0648284B1 (fr) Procede de fabrication de couches minces presentant des proprietes optiques
EP0708929B1 (fr) Materiau composite a indice de refraction eleve, procede de fabrication de ce materiau composite et materiau optiquement actif comprenant ce materiau composite
EP0600022B1 (fr) Materiau presentant des proprietes antireflet, hydrophobes et de resistance a l'abrasion et procede de depot d'une couche antireflet, hydrophobe et resistance a l'abrasion sur un substrat
CA2279828C (fr) Materiau polymerique inorganique a base d'oxyde de tantale, notamment a indice de refraction eleve, mecaniquement resistant a l'abrasion, son procede de fabrication, et materiau optique comprenant ce materiau
CA2714279C (fr) Materiau hybride organique-inorganique, couche mince optique de ce materiau, materiau optique les comprenant, et leur procede de fabrication
EP0970025B1 (fr) Procede de preparation d'un materiau optique multicouches avec reticulation-densification par insolation aux rayons ultraviolets et materiau optique ainsi prepare
US20120009429A1 (en) substrate having a self cleaning anti-reflecting coating and method for its preparation
JPS6071545A (ja) 反射防止シリカ塗膜
EP0608375B1 (fr) Miroir dielectrique interferentiel et procede de fabrication d'un tel miroir
EP0693186B1 (fr) Procede de fabrication de couches minces presentant des proprietes optiques et des proprietes de resistance a l'abrasion
US20150263189A1 (en) Thin film and method for manufacturing the same
JP2017201338A (ja) 反射防止膜、並びにそれを用いた光学用部材および光学機器
Floch et al. Porous silica sol-gel coatings for Nd: glass high-power pulsed laser uses
FR3117900A1 (fr) Procede de preparation de couches minces, notamment par la technique sol-gel
Que et al. Fabrication of composite sol-gel optical channel waveguides by laser writing lithography
FR2967992A1 (fr) Preparation de sols d'oxydes metalliques stables, utiles notamment pour la fabrication de films minces a proprietes optiques et resistants a l'abrasion

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP KR NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993914831

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08367172

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1993914831

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993914831

Country of ref document: EP