WO1994004214A1 - Retaining apparatus and procedure for transseptal catheterization - Google Patents

Retaining apparatus and procedure for transseptal catheterization Download PDF

Info

Publication number
WO1994004214A1
WO1994004214A1 PCT/US1993/006912 US9306912W WO9404214A1 WO 1994004214 A1 WO1994004214 A1 WO 1994004214A1 US 9306912 W US9306912 W US 9306912W WO 9404214 A1 WO9404214 A1 WO 9404214A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheath
transseptal
dilator
needle
balloon
Prior art date
Application number
PCT/US1993/006912
Other languages
French (fr)
Inventor
Zoltan Turi
Original Assignee
Wayne State University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wayne State University filed Critical Wayne State University
Publication of WO1994004214A1 publication Critical patent/WO1994004214A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • A61B2017/00252Making holes in the wall of the heart, e.g. laser Myocardial revascularization for by-pass connections, i.e. connections from heart chamber to blood vessel or from blood vessel to blood vessel

Definitions

  • This invention relates generally to the field of catheterization, such as catheterization of the heart, and more particularly to transseptal catheterization.
  • Catheterization of the human heart continues to be used with ever-increasing frequency.
  • the approach to the right atrium and right ventricle of the heart is accomplished by access through one of the femoral veins, and most commonly the right femoral vein.
  • access to the left ventricle is typically accomplished by retrograde aortic approach.
  • the most difficult chamber of the heart to access with a catheter is the left atrium. Access to the left atrium through the pulmonary artery is not possible. Approaches from the left ventricle are difficult, may cause arrhythmias and may present difficulty in obtaining stable catheter positioning. Accordingly, the presently preferred method of accessing the left atrium is through a transseptal approach, that is, catheterization of the right atrium with subsequent penetration of the interatrial septum.
  • transseptal catheterization that is, catheterization of the right atrium with subsequent penetration of the interatrial septum.
  • catheterization is accompanied by fluoroscopy or other visualizing techniques to assist in properly locating the catheter tip in relation to the septum, in a manner described in detail below.
  • left atrial access is both diagnostic and therapeutic.
  • One diagnostic use is pressure measurement in the left atrium.
  • mitral valve mitral stenosis
  • left atrial access allows a determination of the pressure difference between the left atrium and left ventricle.
  • Left atrial access also allows entry into the left ventricle through the mitral valve. This is desirable when an artificial aortic valve is in place.
  • Diagnostic measurement of the left ventricular pressures are, therefore, desirable to allow evaluation of mechanical artificial aortic valves post-replacement. It is unsafe to cross these mechanical artificial valves retrograde from the aorta; therefore, access to the left ventricle by the antegrade route using a transseptal puncture is the preferred approach. Once a catheter has been placed in the left atrium using the transseptal approach, access to the left ventricle can be gained by advancing catheters across the mitral valve.
  • Radiofrequency ablation involves the placement of a radiofrequency generating device through a catheter, into various locations of the heart to eradicate inappropriate electrical pathways affecting the heart function. When these locations are in the left atrium, the catheter through which the radiofrequency generator is placed typically is itself placed with transseptal catheterization.
  • a sheath is typically introduced into the left atrium through which appropriate catheters are placed.
  • considerable manipulation of the tip of the catheter across the atrial septum is typically required.
  • the risk associated with the manipulation of the catheter tip in the left atrium is inadvertent retraction of the sheath through the septum and back into the right atrium.
  • the invention comprises retaining apparatus for transseptal catheterization and a procedure for the use of same.
  • the retaining apparatus is a selectively deployable retaining means disposed at or proximal to the tip of the transseptal catheter assembly, including a sheath and dilator which is placed across the interatrial septum, into the left atrium.
  • the retaining means is configured to cooperate with the distal portion of the sheath to present a uniform cylindrical circumferential periphery when the retaining means is undeployed and to present a shape generally transverse to the longitudinal axis of the sheath when deployed.
  • the retaining means is a retaining balloon which, upon inflation, presents a relatively flat, disk-like shape to comprise a physical barrier for preventing inadvertent retraction of the distal tip of the sheath from the left atrium during subsequent portions of the catheterization procedure.
  • the transseptal catheterization procedure of the present invention includes the steps of placing the distal tip of the transseptal sheath across the interatrial septum, deploying the retaining means for retaining the distal tip within the left atrium, completing the left heart portion of the catheterization procedure, retracting the selectively deployable retaining means, and withdrawing the distal tip from the left atrium and completing the procedure.
  • the invention may be applicable for use with septums other than the interatrial septum.
  • FIGURE 1 is a representation of a patient including a schematic depiction of the heart and showing typical right femoral vein access of a transseptal catheter assembly with the dilator tip extending beyond the sheath and through the interatrial septum of the heart;
  • FIGURE 2A is a schematic representation of the heart in which the sheath tip has been placed against a desired location of the interatrial septum prior to penetration of the septum;
  • FIGURE 2B shows a schematic representation of the heart with a transseptal catheter assembly which has been placed across the interatrial septum;
  • FIGURE 2C is a schematic diagram of the heart in which the transseptal sheath has its retaining means selectively deployed in order to securely position the tip of the transseptal sheath within the left atrium of the heart;
  • FIGURE 3 is a fragmented illustration of the transseptal catheter assembly of the present invention.
  • FIGURE 4 is a side view of a portion of the transseptal catheter assembly of the present invention showing the retaining means prior to selective deployment;
  • FIGURE 5 shows a side view of a portion of the transseptal catheter assembly of the present invention in which the retaining means has been selectively deployed.
  • current transseptal catheterization involves access by the transseptal catheter assembly 8, preferably through the right femoral vein, with the tip of a sheath 10 passing through the right atrium, and then across the interatrial septum, into the left atrium.
  • the transseptal catheter assembly 8 of the present invention which includes a transseptal sheath 10 and a dilator 12, is eventually placed against a septum, such as the interatrial septum, as illustrated in Figure 2A.
  • a septum such as the interatrial septum
  • the distal tip 14 of the transseptal sheath 10 along with the tip of the dilator 12, is passed through the septum and into the left atrium, as illustrated in Figure 2B.
  • Figure 2C shows the retaining means 16 of the present invention which is selectively deployable to retain the distal tip 14 of sheath 10 within the left atrium of the heart while subsequent instruments are passed through sheath 10 to accomplish further left heart procedures.
  • the retaining means 16 may preferably be disposed at the distal tip 14 of sheath 10, but there may be uses when it is convenient to have retaining means 16 disposed on sheath 10 spaced apart from distal tip 14.
  • sheath 10 of the present invention has a main lumen 18 through which instruments such as dilator 12 may pass.
  • Figure 3 also shows that the transseptal sheath 10 of the present invention may also be provided with markings 26 at the proximal end nearest to the physician or operator positioned to indicate the direction of the preset curve at a distal portion of the sheath 10, and to indicate the distance between the distal tip 14 of sheath 10 and the distal tip of dilator 12.
  • a retaining means 16 comprises a retaining balloon 20.
  • retaining balloon 20 is preferably disposed within a concave portion 22 of sheath 10 located at or proximal the distal tip 14.
  • the sheath 10, retaining balloon 20, and concave portion 22 are all configured such that the sheath and balloon present a uniform, columnar circumferential periphery of the sheath when the retaining balloon 20 is in its undeployed, deflated position.
  • sheath 10 may be formed without a concave portion 22, in which case retaining balloon 20 is configured so that it presents as small a bulk as possible upon the outer periphery of sheath 10, when retaining balloon 20 is undeployed, to minimize the effort needed to advance sheath 10 through the septum.
  • Retaining means 16 which in this preferred embodiment consists of retaining balloon 20, is selectively deployable once the distal tip 14 and concave portion 22 of sheath 10 have been advanced across the interatrial septum and into the left atrium of the heart.
  • retaining balloon 20 when retaining balloon 20 is selectively deployed, by inflation, it assumes a relatively flat, disk-like shape generally transverse to the longitudinal axis of sheath 10.
  • the retaining balloon 20 extends transversely from sheath 10 to an extent sufficient to ensure that the distal tip 14 of sheath 10 is retained within the left atrium.
  • Retaining balloon 20 is selectively deployed by inflation with a fluid which passes through a balloon lumen 24, as shown in Figure 4. It should be noted that while Figure 4 shows balloon lumen 24 to be located within sheath 10 in adjacent and substantially parallel relationship to main lumen 18, other embodiments of sheath 10 of the present invention may configure balloon lumen 24 to be outside and surrounding main lumen 18, perhaps in concentric relationship therewith or within the main lumen.
  • any physiologically compatible fluid is capable of passing through balloon lumen 24 to serve as the medium which inflates selectively deployable retaining balloon 20
  • inflating fluid is preferably a biologically inert fluid.
  • preferable inflation fluids include carbon dioxide gas, contrast agent, or saline or dextrose solution or a combination of these; other gases such as air may serve to inflate retaining balloon 20 but present unnecessary risk of embolism in -li ⁇
  • the proximal terminus of sheath 10 adjacent to the operator may be provided with apparatus similar to that currently used with transseptal catheter assemblies.
  • the proximal terminus may be provided with a connector sleeve to facilitate connection of various devices to sheath 10, such as pressure measuring apparatus.
  • the proximal terminus of sheath 10 may be provided with one or more side arms to allow multiple connections to additional apparatuses.
  • the proximal terminus of sheath 10 may simply be an open end, with or without closure means, such as a protective, penetrable membrane or the like.
  • the proximal terminus of the catheter assembly may be provided with additional measuring or locating indicia 26 to assist the operator in locating the position of the distal tip of instruments such as dilator 12, relative to the distal tip 14 of sheath 10.
  • measuring or locating indicia 26 may be as simple as markings placed at the proximal terminus of either or both of the sheath 10 and dilator 12 or within the sheath. The markings may also be positioned specifically on the periphery to accurately indicate the direction of the preset curvature generally at the distal end of sheath 10.
  • sheath 10 of the present invention may be formed without a preset curved distal portion if so desired.
  • transseptal sheath 10 of the present invention provide retaining means 16 which comprise a plurality of selectively deployable ribs circumferentially spaced about the periphery of sheath 10 at or near distal tip 14.
  • retaining means 16 comprise such selectively deployable ribs
  • the ribs are preferably disposed within a concave portion 22 of the outer periphery of sheath 10.
  • Sheath 10, concave portion 22, and the ribs comprising retaining means 16 thus are configured such that the sheath and ribs present a uniform, columnar circumferential periphery when the ribs of retaining means 16 are not selectively deployed.
  • balloon lumen 24 is replaced by a control means lumen 24a through which control means serve to control the selective deployment of the ribs.
  • the control means lumen 24a may be in coaxial relationship with and surrounding main lumen 18, and may house a circumferential control sleeve which is longitudinally advanceable within sheath 10. Upon such longitudinal advancement within the sheath, the control sleeve would bear against the ribs comprising retaining means 16 to cause their selective deployment to a position in which the ribs are generally transverse to the longitudinal axis of sheath 10. In such transverse position, the ribs comprising retaining means 16 would serve to retain distal tip 14 of sheath 10 within the left atrium.
  • ribs comprising retaining means 16 may also be provided with a biasing means to bias the ribs into the undeployed position.
  • biasing means serves to urge the ribs to assume the undeployed position. In that position, the sheath and ribs present a uniform columnar circumferential periphery which does not affect the ability of the distal tip 14 of sheath 10 to advance or retract within the patient's body.
  • retaining means 16 may be of a configuration other than one which would be characterized as ribs.
  • Other selectively deployable retaining means 16 of alternative configurations may be used so long as retaining means 16 provides a physical barrier generally transverse to the axis of sheath 10. The barrier serves to prevent the unintentional withdrawal of the distal tip 14 of sheath 10 from the left atrium and through the interatrial septum.
  • control means to control the selective deployment and retraction of retaining means 16 may also serve.
  • Such alternative configurations may include, without limitation, rotation of such control means in a first direction relative to sheath 10 to control deployment of retaining means 16. Rotation of the control means in the opposite direction controls retraction of the retaining means 16. It is anticipated that in such alternative embodiments, the control means will interact with the retaining means 16 through a control means lumen 24a analogous to balloon lumen 24 in the preferred embodiment described above.
  • the method of the present invention provides a procedure for transseptal catheterization which includes the steps of placing the distal tip of a transseptal sheath of the configuration described above, across the interatrial septum, and then deploying the distal tip 14 within the left atrium. Subsequently, the remaining left heart portion of the catheterization procedure is completed. This left heart portion may include any procedure for which catheter access to or through the left atrium has been accomplished. After completion of the left heart portion of the catheterization procedure, the retaining means is retracted and the distal tip 14 of sheath 10 is withdrawn from the left atrium. The catheterization procedure is then completed. As will be appreciated from a reading of the description above, the step of deploying the retaining means secures the distal tip 14 of sheath 10 within the left atrium during subsequent portions of the procedure.
  • the method of the present invention for transseptal catheterization includes the following steps. First, the operator punctures a vein with a hollow needle.
  • the preferred vein is the right femoral vein, although access from the left femoral vein is also possible. Furthermore, it would also be theoretically possible to accomplish the procedure through any other vein of the body of suitable internal diameter and the present invention would also subsume access through other veins.
  • a spring guide wire is placed through the needle into the vein and the needle is subsequently removed.
  • a sheath 10 of the present invention with an inner dilator positioned in main lumen 18 is then introduced over the guide wire.
  • sheath 10 and inner dilator 12, in combination with the guide wire are advanced through the vein to the superior vena cava. The guide wire is then removed.
  • a transseptal needle With a stylet placed within the hollow lumen of the transseptal needle, is advanced through the dilator 12 and sheath 10.
  • the transseptal needle is advanced with the stylet in place to prevent trauma to the catheter from the transseptal needle at this stage.
  • the transseptal needle has been advanced to a point that the stylet tip is just inside the distal tip of the sheath 10 and dilator 12, a position previously noted by the operator, the stylet is withdrawn from the transseptal needle, and the needle advanced to a point just inside the distal tip of dilator 12.
  • the remaining combination of the sheath 10 with dilator within main lumen 18, and the transseptal needle just within the tip of the dilator, is then drawn back from the superior vena cava until a point when the preset curve at the distal region of sheath 10 and dilator 12 causes the tip of the sheath- dilator-transseptal needle combination to enter the right atrium.
  • the step of advancing this combination into the superior vena cava prior to placing them into the right atrium is primarily to facilitate locating the tip of the combination relative to a known landmark of the heart. It is possible to eliminate the step of advancing these instruments into the superior vena cava before drawing them back to enter the right atrium, although this is not current preferred medical practice.
  • the tip of this combination is positioned against a desired location of the interatrial septum.
  • the physician is assisted in this step, as in the entire procedure, by visualization via fluoroscopy or other visualization techniques.
  • the distal tip 14 of sheath 10 and the distal tip of dilator 12 may be provided with a radiopaque material.
  • some physicians find it preferable to infuse a radiopaque dye through the transseptal needle at various stages of the procedure to assist in visualization.
  • the transseptal needle After the tip of the sheath-dilator- transseptal needle combination has been placed in the desired location against the interatrial septum, the transseptal needle is abruptly advanced to accomplish a quick puncture of the interatrial septum. Immediately after the puncture, the preferred medical technique is to confirm the presence of the tip of the transseptal needle within the left atrium. Confirmation of such location of the tip of the transseptal needle may be accomplished by monitoring the pressure sensed through the transseptal needle lumen to ensure that the measured pressure is within the expected range and has a waveform configuration typical of left atrial pressure.
  • proper position within the left atrium may be confirmed by analysis of oxygen saturation level of the blood drawn through the transseptal needle; i.e., aspirating fully oxygenated blood.
  • visualization through fluoroscopy alone, or in combination with the use of dye, may also serve to confirm the presence of the tip of the transseptal needle in the left atrium.
  • the tip of the dilator 12 and sheath 10 are next advanced through the septum and into the left atrium. Typically, care is taken to ensure that, at the same time of advancing the dilator and sheath tip into the left atrium, the tip of the transseptal needle is not injudiciously advanced.
  • the transseptal needle is withdrawn.
  • the sheath 10 is then advanced into the left atrium, either by advancing the sheath 10 alone over the dilator 12 or by advancing the sheath and dilator in combination.
  • the dilator 12 is then withdrawn from sheath 10 when the latter has been advanced into the left atrium, thus leaving main lumen 18 of sheath 10 as a clear pathway to advancing further instruments into the left atrium.
  • retaining means 16 may be deployed to retain the distal tip 14 within the left atrium.
  • the step of deploying retaining means 16 may be accomplished either before or after the transseptal needle and dilator 12 are withdrawn from the left atrium.
  • the step of selectively deploying retaining means 16 comprises the step of introducing an inflating fluid into balloon lumen 24 until the retaining balloon 20 inflates to a point where it projects sufficiently in a direction transverse to the longitudinal action of sheath 10 to accomplish its retaining function.
  • the operator uses appropriate actuating means to selectively deploy the ribs or alternate forms which comprise retaining means 16.
  • the next step in the method of the present invention is drawing back sheath 10 until retaining means 16 bears against the interatrial septum.
  • This step serves to secure the position of distal tip 14 of sheath 10 to a known location, namely the known distance between the distal tip 14 and retaining means 16.
  • retaining means 16 also bears against the septum, the operator thus knows that the distal tip 14 is a certain known distance from the septum.
  • the remaining transseptal portion of the catheterization procedure may be accomplished.
  • such remaining transseptal, i.e., left heart, portion of the catheterization procedure is radiofrequency ablation
  • such subsequent left heart portion may include mapping of the areas of the left heart of interest, with subsequent electrode positioning and radiofrequency application to ablate electrical pathways.
  • the deployment of retaining means 16 of sheath 10 is expected to contribute significantly to stability of electrode positioning for such a procedure, to preventing inadvertent withdrawal of sheath 10, and to positioning the tip of sheath 10 flush with the septum to allow easier access to pathways within or near the septum.
  • the remaining left heart portion of the catheterization procedure may also be diagnostic, as in monitoring left atrial pressure during subsequent procedures affecting the heart or other areas of the patient's body.
  • the remaining left heart portion may also be therapeutic, such as valvuloplasty of areas of the left heart, such as the mitral valve.
  • selectively deployable retaining means 16 may be retracted and the distal tip 14 of sheath 10 may be withdrawn from the left atrium. The remaining closing portion of the catheterization procedure may then be completed.
  • the retaining means 16 of the transseptal sheath 10 disclosed herein is expected to significantly reduce the number of times in which a procedure in the left heart must be interrupted before completion, with possible subsequent attempts at a later date.
  • the necessity to interrupt the procedure, and attendant needs to postpone a second attempt to a later date, if ever, arises in the following manner.
  • an anticoagulant is routinely administered to the patient to reduce the possibility of embolism as a result of the invasive procedure.
  • the present invention by providing a retaining means 16 to ensure that distal tip 14 of sheath 10 is retained in the left atrium during the subsequent left heart portion of the catheterization, ensures against inadvertent withdrawal of the sheath 10 from the left atrium, thus reducing the number of incomplete procedures and the number of subsequent additional procedures to complete the intended task. Further, the ability to position the tip of sheath 10 flush with the septum may facilitate free manipulation of other instruments introduced through main lumen 18.

Abstract

The invention comprises retaining apparatus (16) for transseptal catheterization and a procedure for the use of same. The retaining apparatus is a selectively deployable retaining means disposed at or proximal to the tip (14) of a transseptal catheter (10) or sheath which is placed across a septum, such as the interatrial septum, into the left atrium. The retaining means is configured to cooperate with the distal portion (14) of the sheath to present a uniform cylindrical circumferential periphery when the retaining means is undeployed and to present a shape generally transverse to the longitudinal axis of the sheath when deployed.

Description

RETAINING APPARATUS AND PROCEDURE FOR TRANSSEPTAL CATHETERIZATION
Technical Field
This invention relates generally to the field of catheterization, such as catheterization of the heart, and more particularly to transseptal catheterization.
Background Art
Catheterization of the human heart, as for angioplasty and other cardiac procedures, continues to be used with ever-increasing frequency. Typically, the approach to the right atrium and right ventricle of the heart is accomplished by access through one of the femoral veins, and most commonly the right femoral vein. Presently, access to the left ventricle is typically accomplished by retrograde aortic approach.
The most difficult chamber of the heart to access with a catheter is the left atrium. Access to the left atrium through the pulmonary artery is not possible. Approaches from the left ventricle are difficult, may cause arrhythmias and may present difficulty in obtaining stable catheter positioning. Accordingly, the presently preferred method of accessing the left atrium is through a transseptal approach, that is, catheterization of the right atrium with subsequent penetration of the interatrial septum. There are some risks attendant to transseptal catheterization, which are risks in addition to those associated with normal heart catheterization. The primary additional risk is that associated with inaccurate identification and localization of the atrial septum. Of course, unknowing, improper placement of the catheter tip prior to the transseptal puncture presents the risk of puncture of tissue other than the interatrial septum. For this reason, catheterization is accompanied by fluoroscopy or other visualizing techniques to assist in properly locating the catheter tip in relation to the septum, in a manner described in detail below.
Generally, the objectives of left atrial access are both diagnostic and therapeutic. One diagnostic use is pressure measurement in the left atrium. In the setting of an obstructed mitral valve (mitral stenosis) , left atrial access allows a determination of the pressure difference between the left atrium and left ventricle. Left atrial access also allows entry into the left ventricle through the mitral valve. This is desirable when an artificial aortic valve is in place. The recent advent of aortic valve replacement with mechanical artificial valves, and the increase in the aged population and growing longevity of that population subsequent to aortic valve replacement, brings a greater need to evaluate the late stage functionality of such artificial valves.
Diagnostic measurement of the left ventricular pressures are, therefore, desirable to allow evaluation of mechanical artificial aortic valves post-replacement. It is unsafe to cross these mechanical artificial valves retrograde from the aorta; therefore, access to the left ventricle by the antegrade route using a transseptal puncture is the preferred approach. Once a catheter has been placed in the left atrium using the transseptal approach, access to the left ventricle can be gained by advancing catheters across the mitral valve.
It may be noted that where the mitral or aortic valves have been replaced with a mechanical artificial prothesis, retrograde access to the left atrium <s generally viewed to be associated with unaccejr tably high risk. Of course, there are many diagnostic indications for left atrial pressure measurements in addition to evaluation of functionality of artificial mitral valves. Other diagnostic indications for accessing the left ventricle via the antegrade transseptal approach include aortic stenosis, when a cardiologist is unable to pass a catheter retrograde into the left ventricle, and some disease states where the antegrade approach is considered preferable, such as subaortic obstruction.
Presently, the therapeutic objectives of left atrial access are primarily two-fold. The first is mitral valvuloplasty which represents an alternative to surgical procedures to relieve obstruction of the mitral valve. The second therapeutic objective is for electrophysiological intervention in the left atrium. This procedure, radiofrequency ablation, is relatively new. The usage of this technique is in a growth trend. Radiofrequency ablation involves the placement of a radiofrequency generating device through a catheter, into various locations of the heart to eradicate inappropriate electrical pathways affecting the heart function. When these locations are in the left atrium, the catheter through which the radiofrequency generator is placed typically is itself placed with transseptal catheterization.
For all of these objectives of left atrial access a sheath is typically introduced into the left atrium through which appropriate catheters are placed. Especially for radiofrequency ablation of the left atrium, considerable manipulation of the tip of the catheter across the atrial septum is typically required. The risk associated with the manipulation of the catheter tip in the left atrium is inadvertent retraction of the sheath through the septum and back into the right atrium. Typically, because of the risk to the patient engendered by transseptal puncture and because of the common use of an anticoagulant to reduce the possibility of embolism after catheter access into the left atrium, it is desirable that only one transseptal puncture be attempted during the procedure. Only infrequently will the surgeon attempt a second transseptal approach during a single procedure.
Moreover, where retraction of the sheath tip back through the atrial septum is undetected, further manipulation under the mistaken belief of positioning in the left atrium presents other risks to nearby tissue. Especially for radiofrequency ablation of areas of the left atrium relatively near the atrial septum, the risk of inadvertent retraction of the sheath into the right atrium is heightened.
Following previously known procedures, the problem of inadvertent withdrawal of the catheter tip from the left atrium, through the atrial septum, and back into the right atrium remains a risk.
It is an objective of the present invention to provide a retaining means for retaining the distal tip of a sheath which has been placed through a septum, such as the interatrial septum, across the septum, in the left atrium during left heart procedures.
It is another objective of the present invention to provide retaining means for transseptal catheterization which is selectively deployable and retractable.
It is yet a further objective of the present invention to provide a method of transseptal catheterization, with subsequent manipulation of instruments in the left atrium, which assures proper positioning of the distal tip of the sheath through which those instruments are passed, within the left atrium, while avoiding inadvertent withdrawal of the sheath tip back through the septum.
Summary OfThe Invention
The invention comprises retaining apparatus for transseptal catheterization and a procedure for the use of same. The retaining apparatus is a selectively deployable retaining means disposed at or proximal to the tip of the transseptal catheter assembly, including a sheath and dilator which is placed across the interatrial septum, into the left atrium. The retaining means is configured to cooperate with the distal portion of the sheath to present a uniform cylindrical circumferential periphery when the retaining means is undeployed and to present a shape generally transverse to the longitudinal axis of the sheath when deployed.
In a preferred embodiment, the retaining means is a retaining balloon which, upon inflation, presents a relatively flat, disk-like shape to comprise a physical barrier for preventing inadvertent retraction of the distal tip of the sheath from the left atrium during subsequent portions of the catheterization procedure.
The transseptal catheterization procedure of the present invention includes the steps of placing the distal tip of the transseptal sheath across the interatrial septum, deploying the retaining means for retaining the distal tip within the left atrium, completing the left heart portion of the catheterization procedure, retracting the selectively deployable retaining means, and withdrawing the distal tip from the left atrium and completing the procedure.
The invention may be applicable for use with septums other than the interatrial septum.
BriefDescription OfThe Drawings FIGURE 1 is a representation of a patient including a schematic depiction of the heart and showing typical right femoral vein access of a transseptal catheter assembly with the dilator tip extending beyond the sheath and through the interatrial septum of the heart;
FIGURE 2A is a schematic representation of the heart in which the sheath tip has been placed against a desired location of the interatrial septum prior to penetration of the septum;
FIGURE 2B shows a schematic representation of the heart with a transseptal catheter assembly which has been placed across the interatrial septum;
FIGURE 2C is a schematic diagram of the heart in which the transseptal sheath has its retaining means selectively deployed in order to securely position the tip of the transseptal sheath within the left atrium of the heart;
FIGURE 3 is a fragmented illustration of the transseptal catheter assembly of the present invention;
FIGURE 4 is a side view of a portion of the transseptal catheter assembly of the present invention showing the retaining means prior to selective deployment; and
FIGURE 5 shows a side view of a portion of the transseptal catheter assembly of the present invention in which the retaining means has been selectively deployed.
Detailed Description Of The Preferred Embodiment
As shown in the schematic representation of Figure 1, current transseptal catheterization involves access by the transseptal catheter assembly 8, preferably through the right femoral vein, with the tip of a sheath 10 passing through the right atrium, and then across the interatrial septum, into the left atrium.
By a method described in greater detail below, the transseptal catheter assembly 8 of the present invention, which includes a transseptal sheath 10 and a dilator 12, is eventually placed against a septum, such as the interatrial septum, as illustrated in Figure 2A. Following penetration of the interatrial septum with a transseptal needle, the distal tip 14 of the transseptal sheath 10, along with the tip of the dilator 12, is passed through the septum and into the left atrium, as illustrated in Figure 2B.
Figure 2C shows the retaining means 16 of the present invention which is selectively deployable to retain the distal tip 14 of sheath 10 within the left atrium of the heart while subsequent instruments are passed through sheath 10 to accomplish further left heart procedures. The retaining means 16 may preferably be disposed at the distal tip 14 of sheath 10, but there may be uses when it is convenient to have retaining means 16 disposed on sheath 10 spaced apart from distal tip 14.
As shown in Figure 3, sheath 10 of the present invention has a main lumen 18 through which instruments such as dilator 12 may pass. Figure 3 also shows that the transseptal sheath 10 of the present invention may also be provided with markings 26 at the proximal end nearest to the physician or operator positioned to indicate the direction of the preset curve at a distal portion of the sheath 10, and to indicate the distance between the distal tip 14 of sheath 10 and the distal tip of dilator 12.
In a preferred embodiment of the present invention, a retaining means 16 comprises a retaining balloon 20. As shown in Figure 4, retaining balloon 20 is preferably disposed within a concave portion 22 of sheath 10 located at or proximal the distal tip 14. The sheath 10, retaining balloon 20, and concave portion 22 are all configured such that the sheath and balloon present a uniform, columnar circumferential periphery of the sheath when the retaining balloon 20 is in its undeployed, deflated position. Alternatively, sheath 10 may be formed without a concave portion 22, in which case retaining balloon 20 is configured so that it presents as small a bulk as possible upon the outer periphery of sheath 10, when retaining balloon 20 is undeployed, to minimize the effort needed to advance sheath 10 through the septum.
Retaining means 16, which in this preferred embodiment consists of retaining balloon 20, is selectively deployable once the distal tip 14 and concave portion 22 of sheath 10 have been advanced across the interatrial septum and into the left atrium of the heart. In the preferred embodiment as illustrated in Figure 5, when retaining balloon 20 is selectively deployed, by inflation, it assumes a relatively flat, disk-like shape generally transverse to the longitudinal axis of sheath 10. As shown in Figure 2C, the retaining balloon 20 extends transversely from sheath 10 to an extent sufficient to ensure that the distal tip 14 of sheath 10 is retained within the left atrium.
Retaining balloon 20 is selectively deployed by inflation with a fluid which passes through a balloon lumen 24, as shown in Figure 4. It should be noted that while Figure 4 shows balloon lumen 24 to be located within sheath 10 in adjacent and substantially parallel relationship to main lumen 18, other embodiments of sheath 10 of the present invention may configure balloon lumen 24 to be outside and surrounding main lumen 18, perhaps in concentric relationship therewith or within the main lumen.
It should be noted that while any physiologically compatible fluid is capable of passing through balloon lumen 24 to serve as the medium which inflates selectively deployable retaining balloon 20, present medical practice provides that such inflating fluid is preferably a biologically inert fluid. Examples of such preferable inflation fluids include carbon dioxide gas, contrast agent, or saline or dextrose solution or a combination of these; other gases such as air may serve to inflate retaining balloon 20 but present unnecessary risk of embolism in -li¬
the unlikely event of rupture of retaining balloon 20 or of balloon lumen 24.
As appreciated by those skilled in the art, the proximal terminus of sheath 10 adjacent to the operator may be provided with apparatus similar to that currently used with transseptal catheter assemblies. Thus, the proximal terminus may be provided with a connector sleeve to facilitate connection of various devices to sheath 10, such as pressure measuring apparatus. Likewise, the proximal terminus of sheath 10 may be provided with one or more side arms to allow multiple connections to additional apparatuses. Finally, the proximal terminus of sheath 10 may simply be an open end, with or without closure means, such as a protective, penetrable membrane or the like.
As shown in Figure 3, the proximal terminus of the catheter assembly may be provided with additional measuring or locating indicia 26 to assist the operator in locating the position of the distal tip of instruments such as dilator 12, relative to the distal tip 14 of sheath 10. As appreciated by those skilled in the art, such measuring or locating indicia 26 may be as simple as markings placed at the proximal terminus of either or both of the sheath 10 and dilator 12 or within the sheath. The markings may also be positioned specifically on the periphery to accurately indicate the direction of the preset curvature generally at the distal end of sheath 10. Alternatively of course, sheath 10 of the present invention may be formed without a preset curved distal portion if so desired. Alternative embodiments of transseptal sheath 10 of the present invention provide retaining means 16 which comprise a plurality of selectively deployable ribs circumferentially spaced about the periphery of sheath 10 at or near distal tip 14. Again, where retaining means 16 comprise such selectively deployable ribs, the ribs are preferably disposed within a concave portion 22 of the outer periphery of sheath 10. Sheath 10, concave portion 22, and the ribs comprising retaining means 16 thus are configured such that the sheath and ribs present a uniform, columnar circumferential periphery when the ribs of retaining means 16 are not selectively deployed.
In such an alternative embodiment, balloon lumen 24 is replaced by a control means lumen 24a through which control means serve to control the selective deployment of the ribs. In one alternative embodiment, the control means lumen 24a may be in coaxial relationship with and surrounding main lumen 18, and may house a circumferential control sleeve which is longitudinally advanceable within sheath 10. Upon such longitudinal advancement within the sheath, the control sleeve would bear against the ribs comprising retaining means 16 to cause their selective deployment to a position in which the ribs are generally transverse to the longitudinal axis of sheath 10. In such transverse position, the ribs comprising retaining means 16 would serve to retain distal tip 14 of sheath 10 within the left atrium.
Lixewise, retraction of the control sleeve would serve to control the retraction of the ribs comprising retaining means 16 into an undeployed position. In this alternative embodiment, ribs comprising retaining means 16 may also be provided with a biasing means to bias the ribs into the undeployed position. Thus, at any time in which the control sleeve is not longitudinally advanced to counteract the biasing means, such biasing means serves to urge the ribs to assume the undeployed position. In that position, the sheath and ribs present a uniform columnar circumferential periphery which does not affect the ability of the distal tip 14 of sheath 10 to advance or retract within the patient's body.
As will be readily appreciated by those skilled in the art, in alternative embodiments, retaining means 16 may be of a configuration other than one which would be characterized as ribs. Other selectively deployable retaining means 16 of alternative configurations may be used so long as retaining means 16 provides a physical barrier generally transverse to the axis of sheath 10. The barrier serves to prevent the unintentional withdrawal of the distal tip 14 of sheath 10 from the left atrium and through the interatrial septum.
Likewise, those skilled in the art will realize that alternative control means to control the selective deployment and retraction of retaining means 16 may also serve. Such alternative configurations may include, without limitation, rotation of such control means in a first direction relative to sheath 10 to control deployment of retaining means 16. Rotation of the control means in the opposite direction controls retraction of the retaining means 16. It is anticipated that in such alternative embodiments, the control means will interact with the retaining means 16 through a control means lumen 24a analogous to balloon lumen 24 in the preferred embodiment described above.
In use, the method of the present invention provides a procedure for transseptal catheterization which includes the steps of placing the distal tip of a transseptal sheath of the configuration described above, across the interatrial septum, and then deploying the distal tip 14 within the left atrium. Subsequently, the remaining left heart portion of the catheterization procedure is completed. This left heart portion may include any procedure for which catheter access to or through the left atrium has been accomplished. After completion of the left heart portion of the catheterization procedure, the retaining means is retracted and the distal tip 14 of sheath 10 is withdrawn from the left atrium. The catheterization procedure is then completed. As will be appreciated from a reading of the description above, the step of deploying the retaining means secures the distal tip 14 of sheath 10 within the left atrium during subsequent portions of the procedure.
In combination with the present practice for transseptal catheterization, the method of the present invention for transseptal catheterization includes the following steps. First, the operator punctures a vein with a hollow needle. In present practice, the preferred vein is the right femoral vein, although access from the left femoral vein is also possible. Furthermore, it would also be theoretically possible to accomplish the procedure through any other vein of the body of suitable internal diameter and the present invention would also subsume access through other veins.
Next, a spring guide wire is placed through the needle into the vein and the needle is subsequently removed. A sheath 10 of the present invention with an inner dilator positioned in main lumen 18 is then introduced over the guide wire. Subsequently, sheath 10 and inner dilator 12, in combination with the guide wire, are advanced through the vein to the superior vena cava. The guide wire is then removed.
When the sheath 10 and dilator 12 are in the superior vena cava and the guide wire has been removed, a transseptal needle, with a stylet placed within the hollow lumen of the transseptal needle, is advanced through the dilator 12 and sheath 10. The transseptal needle is advanced with the stylet in place to prevent trauma to the catheter from the transseptal needle at this stage. When the transseptal needle has been advanced to a point that the stylet tip is just inside the distal tip of the sheath 10 and dilator 12, a position previously noted by the operator, the stylet is withdrawn from the transseptal needle, and the needle advanced to a point just inside the distal tip of dilator 12.
The remaining combination of the sheath 10 with dilator within main lumen 18, and the transseptal needle just within the tip of the dilator, is then drawn back from the superior vena cava until a point when the preset curve at the distal region of sheath 10 and dilator 12 causes the tip of the sheath- dilator-transseptal needle combination to enter the right atrium.
It will be appreciated by those skilled in the art that the step of advancing this combination into the superior vena cava prior to placing them into the right atrium is primarily to facilitate locating the tip of the combination relative to a known landmark of the heart. It is possible to eliminate the step of advancing these instruments into the superior vena cava before drawing them back to enter the right atrium, although this is not current preferred medical practice.
With the sheath-dilator-transseptal needle combination now within the right atrium, the tip of this combination is positioned against a desired location of the interatrial septum. The physician is assisted in this step, as in the entire procedure, by visualization via fluoroscopy or other visualization techniques. To assist in such visualization, the distal tip 14 of sheath 10 and the distal tip of dilator 12 may be provided with a radiopaque material. Likewise, some physicians find it preferable to infuse a radiopaque dye through the transseptal needle at various stages of the procedure to assist in visualization.
After the tip of the sheath-dilator- transseptal needle combination has been placed in the desired location against the interatrial septum, the transseptal needle is abruptly advanced to accomplish a quick puncture of the interatrial septum. Immediately after the puncture, the preferred medical technique is to confirm the presence of the tip of the transseptal needle within the left atrium. Confirmation of such location of the tip of the transseptal needle may be accomplished by monitoring the pressure sensed through the transseptal needle lumen to ensure that the measured pressure is within the expected range and has a waveform configuration typical of left atrial pressure. Alternatively, proper position within the left atrium may be confirmed by analysis of oxygen saturation level of the blood drawn through the transseptal needle; i.e., aspirating fully oxygenated blood. Finally, visualization through fluoroscopy alone, or in combination with the use of dye, may also serve to confirm the presence of the tip of the transseptal needle in the left atrium.
Where any of these confirmation techniques indicate that the transseptal needle tip has not entered the left atrium, the operator must promptly analyze and deal with the consequences of improper placement and puncture of inappropriate tissue. While the step of confirming the appropriate presence of the tip of the transseptal needle within the left atrium is thus currently within prudent medical practice, such a step is not essential to the physical steps required in this procedure.
After placing the transseptal needle tip within the left atrium, the tip of the dilator 12 and sheath 10 are next advanced through the septum and into the left atrium. Typically, care is taken to ensure that, at the same time of advancing the dilator and sheath tip into the left atrium, the tip of the transseptal needle is not injudiciously advanced. When the tip of dilator 12 appears to have entered the left atrium, the transseptal needle is withdrawn. The sheath 10 is then advanced into the left atrium, either by advancing the sheath 10 alone over the dilator 12 or by advancing the sheath and dilator in combination. The dilator 12 is then withdrawn from sheath 10 when the latter has been advanced into the left atrium, thus leaving main lumen 18 of sheath 10 as a clear pathway to advancing further instruments into the left atrium.
In accordance with the method of the present invention, after the distal tip 14 of sheath 10 has been placed within the left atrium, retaining means 16 may be deployed to retain the distal tip 14 within the left atrium. As this step of deploying retaining means 16 may be effectuated any time after distal tip 14 has been placed within the left atrium, the step of deploying the retaining means may be accomplished either before or after the transseptal needle and dilator 12 are withdrawn from the left atrium.
Where the procedure is being accomplished with a sheath 10 of the preferred embodiment, the step of selectively deploying retaining means 16 comprises the step of introducing an inflating fluid into balloon lumen 24 until the retaining balloon 20 inflates to a point where it projects sufficiently in a direction transverse to the longitudinal action of sheath 10 to accomplish its retaining function. Where the procedure is being accomplished with an alternative embodiment of sheath 10 of the present invention, the operator uses appropriate actuating means to selectively deploy the ribs or alternate forms which comprise retaining means 16.
The next step in the method of the present invention is drawing back sheath 10 until retaining means 16 bears against the interatrial septum. This step serves to secure the position of distal tip 14 of sheath 10 to a known location, namely the known distance between the distal tip 14 and retaining means 16. As retaining means 16 also bears against the septum, the operator thus knows that the distal tip 14 is a certain known distance from the septum.
With the sheath 10 of the present invention providing access to the left atrium and with retaining means 16 being deployed and bearing against the interatrial septum, the remaining transseptal portion of the catheterization procedure may be accomplished. Where such remaining transseptal, i.e., left heart, portion of the catheterization procedure is radiofrequency ablation, such subsequent left heart portion may include mapping of the areas of the left heart of interest, with subsequent electrode positioning and radiofrequency application to ablate electrical pathways. The deployment of retaining means 16 of sheath 10 is expected to contribute significantly to stability of electrode positioning for such a procedure, to preventing inadvertent withdrawal of sheath 10, and to positioning the tip of sheath 10 flush with the septum to allow easier access to pathways within or near the septum. The remaining left heart portion of the catheterization procedure may also be diagnostic, as in monitoring left atrial pressure during subsequent procedures affecting the heart or other areas of the patient's body. The remaining left heart portion may also be therapeutic, such as valvuloplasty of areas of the left heart, such as the mitral valve.
Once the remaining left heart portion of the catheterization procedure is completed, selectively deployable retaining means 16 may be retracted and the distal tip 14 of sheath 10 may be withdrawn from the left atrium. The remaining closing portion of the catheterization procedure may then be completed.
It should be noted that the retaining means 16 of the transseptal sheath 10 disclosed herein is expected to significantly reduce the number of times in which a procedure in the left heart must be interrupted before completion, with possible subsequent attempts at a later date. The necessity to interrupt the procedure, and attendant needs to postpone a second attempt to a later date, if ever, arises in the following manner. In present medical practice, once left atrial access has been achieved, as by transseptal approach, an anticoagulant is routinely administered to the patient to reduce the possibility of embolism as a result of the invasive procedure. Thus, where the distal tip of a transseptal sheath is inadvertently withdrawn from the left atrium during subsequent instrument manipulation during the left heart portion of the catheterization, current prudent medical practice contraindicates an immediate subsequent second attempt at transseptal penetration. Such immediate second transseptal penetration is to be avoided because of the increased severity of adverse consequences if inadvertent puncture of surrounding tissue is made due to a mistaken belief that the transseptal needle has been correctly positioned against the septum. Obviously, the severity of the consequences of such inadvertent puncture of surrounding tissue is heightened by virtue of the presence of the anticoagulant in the patient.
It is thus seen that the present invention, by providing a retaining means 16 to ensure that distal tip 14 of sheath 10 is retained in the left atrium during the subsequent left heart portion of the catheterization, ensures against inadvertent withdrawal of the sheath 10 from the left atrium, thus reducing the number of incomplete procedures and the number of subsequent additional procedures to complete the intended task. Further, the ability to position the tip of sheath 10 flush with the septum may facilitate free manipulation of other instruments introduced through main lumen 18.
Those skilled in the art will appreciate that, while the invention has been described with regard to transseptal catheterization across the interatrial septum, it may be used to advantage in catheterizations across other septums within the human body as well.
It will be understood by those skilled in the art that the foregoing description of the transseptal sheath and method of using the same are capable of alternative embodiments which are still within the scope of the present invention, which is to be limited only by the following claims.

Claims

What Is Claimed Is:
1. A sheath for a transseptal catheterization procedure, said sheath having a main lumen and having selectively deployable retaining means for retaining a distal tip of said sheath in relation to a the septum during the catheterization procedure.
2. The sheath of claim 1 wherein said retaining means comprises a selectively inflatable balloon disposed at the distal tip of said sheath.
3. The sheath of claim 2 further comprising a balloon lumen for passing an inflating fluid into said inflatable balloon.
4. The sheath of claim 3 wherein said balloon lumen and said main lumen are adjacent and substantially parallel to each other within said sheath.
5. The sheath of claim 3 wherein said balloon lumen is concentric with and surrounds said main lumen.
6. The sheath of claim 3 wherein said balloon lumen is within said main lumen.
7. The sheath of claim 3 wherein said sheath has a circumferentially concave portion disposed at said tip, said balloon being disposed within said concave area and being configured so that said sheath and balloon present a uniform, cylindrical circumferential periphery when said balloon is deflated.
8. The sheath of claim 1 wherein said retaining means comprises a selectively inflatable balloon disposed on the sheath spaced apart from said distal tip.
9. The sheath of claim 8 further comprising a balloon lumen for passing an inflating fluid into said inflatable balloon.
10. The sheath of claim 9 wherein said balloon lumen and said main lumen are adjacent and substantially parallel to each other within said sheath.
11. The sheath of claim 9 wherein said balloon lumen is concentric with and surrounds said main lumen.
12. The sheath of claim 9 wherein said balloon lumen is within said main lumen.
13. The sheath of claim 9 wherein said sheath has a circumferentially concave portion disposed on the sheath spaced apart from said distal tip and said balloon is disposed within said concave area and is configured so that said sheath and balloon present a uniform, cylindrical circumferential periphery when said balloon is deflated.
14. The sheath of claim 1 wherein said retaining means comprises a plurality of selectively deployable ribs circumferentially spaced about the periphery of said sheath and disposed proximate the distal tip of said sheath.
15. The sheath of claim 14 further comprising control means for controlling deployment of said ribs, said control means extending longitudinally with said sheath.
16. The sheath of claim 15 wherein said control means comprises a longitudinally advanceable circumferential sleeve disposed within said sheath which, upon advancement, engages and deploys said ribs.
17. The sheath of claim 16 wherein retraction of said longitudinally advanceable sleeve retracts said ribs.
18. The sheath of claim 14 further comprising biasing means to retract said ribs.
19. A procedure for transseptal catheterization comprising the steps of: a) placing a distal tip of a transseptal sheath across a septum; b) deploying retaining means for retaining said distal tip in relation to the septum, whereby deployment of said retaining means secures said distal tip in relation to the septum during subsequent portions of the procedure; c) completing a transseptal portion of the catheterization procedure; d) retracting said retaining means; and e) withdrawing said distal tip from the septum and completing the catheterization procedure.
20. The procedure of claim 19 wherein said septum is the interatrial septum and the step of placing the distal tip of the transseptal sheath across the interatrial septum further comprises the steps of: a) advancing a sheath-dilator- transseptal needle combination into the right atrium; b) placing a tip of said sheath- dilator-transseptal needle combination against a desired location of the interatrial septum; c) puncturing said interatrial septum with a transseptal needle of the combination; d) advancing the tip of the dilator and sheath through the septum and into the left atrium; and e) withdrawing said transseptal needle and dilator.
21. The procedure of claim 20 comprising the further steps of: a) percutaneously puncturing a vein with a hollow needle; b) placing a spring guide wire within the needle into the vein; c) removing said needle; d) introducing a sheath with an inner dilator over said guidewire; e) advancing said sheath and dilator into the vein and towards the heart; f) removing said guidewire; g) advancing a stylet and said transseptal needle through said dilator and sheath; and h) withdrawing said stylet from said transseptal needle.
22. The procedure of claim 19 wherein said retaining means comprises a selectively inflatable balloon and said sheath comprises a balloon lumen, said step of deploying said retaining means further comprising the step of inflating said balloon by passing an inflating fluid through said balloon lumen.
23. A procedure for transseptal catheterization comprising the steps of: a) percutaneously puncturing a vein with a hollow needle; b) placing a spring guidewire within the needle into the vein; c) removing said needle; d) introducing a sheath with inner dilator over said guidewire; e) advancing said sheath and dilator into the vein and into the superior vena cava; f) removing said guidewire; g) advancing a stylet and said transseptal needle through said dilator and sheath; h) withdrawing said stylet from said transseptal needle; i) drawing back said transseptal needle, said dilator and said sheath until said transseptal needle, dilator and sheath enter the right atrium; j) placing the tip of a combination of said sheath, dilator and transseptal needle against a desired location of the interatrial septum; k) puncturing said interatrial septum with said transseptal needle;
1) advancing the tip of the dilator and sheath through the septum and into the left atrium; m) withdrawing said transseptal needle and dilator; n) deploying retaining means for retaining the sheath tip within the left atrium; o) drawing back said sheath until said retaining means bears against the septum; p) continuing with the remaining left heart portion of the catheterization procedure; q) retracting said retaining means; r) withdrawing said sheath tip from the left atrium; and s) completing the remaining portion of said catheterization procedure.
24. A procedure for transseptal catheterization comprising the steps of: a) percutaneously puncturing a femoral vein with a hollow needle; b) placing a spring guidewire within the needle into the femoral vein; c) removing said needle; d) introducing a sheath with inner dilator over said guidewire; e) advancing said sheath and dilator into the femoral vein and advancing said sheath and dilator to the superior vena cava; f) removing said guidewire; g) advancing a stylet and said transseptal needle through said dilator and sheath; h) withdrawing said stylet from said transseptal needle; i) drawing back said transseptal needle, said dilator and said sheath until said transseptal needle, dilator and sheath enter the right atrium; j) placing the tip of said sheath- dilator-transseptal needle combination against a desired location of the interatrial septum; k) puncturing said interatrial septum with said transseptal needle;
1) confirming the presence of the transseptal needle in the left atrium; m) advancing the tip of the dilator and sheath through the septum and into the left atrium; n) withdrawing said transseptal needle and dilator; o) deploying retaining means for retaining the sheath tip within the left atrium; p) drawing back said sheath until said retaining means bears against the septum; q) continuing with the remaining left heart portion of the catheterization procedure; r) retracting said retaining means; s) withdrawing said sheath tip from the left atrium; and t) completing the remaining portion of said catheterization procedure.
PCT/US1993/006912 1992-08-14 1993-07-23 Retaining apparatus and procedure for transseptal catheterization WO1994004214A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/930,340 US5312341A (en) 1992-08-14 1992-08-14 Retaining apparatus and procedure for transseptal catheterization
US930,340 1992-08-14

Publications (1)

Publication Number Publication Date
WO1994004214A1 true WO1994004214A1 (en) 1994-03-03

Family

ID=25459223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/006912 WO1994004214A1 (en) 1992-08-14 1993-07-23 Retaining apparatus and procedure for transseptal catheterization

Country Status (2)

Country Link
US (1) US5312341A (en)
WO (1) WO1994004214A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094363A2 (en) * 2001-05-21 2002-11-28 Medtronic,Inc. Trans-septal catheter with retention mechanism

Families Citing this family (237)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797960A (en) * 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US6346074B1 (en) * 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
US5575766A (en) * 1993-11-03 1996-11-19 Daig Corporation Process for the nonsurgical mapping and treatment of atrial arrhythmia using catheters guided by shaped guiding introducers
US5564440A (en) * 1993-11-03 1996-10-15 Daig Corporation Method for mopping and/or ablation of anomalous conduction pathways
US5846223A (en) * 1993-11-03 1998-12-08 Daig Corporation Diagnosis and treatment of atrial flutter in the right atrium
US6723069B1 (en) 1994-02-16 2004-04-20 Novoste Corporation Electrophysiology positioning catheter
CA2141522A1 (en) * 1994-02-16 1995-08-17 Thomas D. Weldon Electrophysiology positioning catheter
US6302875B1 (en) * 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
IL151563A0 (en) 1995-10-13 2003-04-10 Transvascular Inc A longitudinal compression apparatus for compressing tissue
US6375615B1 (en) 1995-10-13 2002-04-23 Transvascular, Inc. Tissue penetrating catheters having integral imaging transducers and their methods of use
US6283951B1 (en) 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US5830222A (en) * 1995-10-13 1998-11-03 Transvascular, Inc. Device, system and method for intersititial transvascular intervention
US6117153A (en) 1996-10-03 2000-09-12 Interventional Technologies, Inc. Neovascularization catheter
US5800450A (en) * 1996-10-03 1998-09-01 Interventional Technologies Inc. Neovascularization catheter
US6379319B1 (en) 1996-10-11 2002-04-30 Transvascular, Inc. Systems and methods for directing and snaring guidewires
US6004280A (en) 1997-08-05 1999-12-21 Cordis Corporation Guiding sheath having three-dimensional distal end
US6889082B2 (en) * 1997-10-09 2005-05-03 Orqis Medical Corporation Implantable heart assist system and method of applying same
US20060064135A1 (en) * 1997-10-14 2006-03-23 Transoma Medical, Inc. Implantable pressure sensor with pacing capability
US20020120200A1 (en) * 1997-10-14 2002-08-29 Brian Brockway Devices, systems and methods for endocardial pressure measurement
US7713190B2 (en) * 1998-02-24 2010-05-11 Hansen Medical, Inc. Flexible instrument
ATE392858T1 (en) 1998-03-31 2008-05-15 Medtronic Vascular Inc CATHETER AND SYSTEMS FOR A PERCUTANE INSITU ARTERIO-VENOUS BYPASS
US6250308B1 (en) * 1998-06-16 2001-06-26 Cardiac Concepts, Inc. Mitral valve annuloplasty ring and method of implanting
US6889089B2 (en) * 1998-07-28 2005-05-03 Scimed Life Systems, Inc. Apparatus and method for treating tumors near the surface of an organ
US6210365B1 (en) * 1998-08-14 2001-04-03 Cardiovention, Inc. Perfusion catheter system having sutureless arteriotomy seal and methods of use
US7128073B1 (en) 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US7044134B2 (en) * 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
US6193763B1 (en) 1998-12-17 2001-02-27 Robert A. Mackin Apparatus and method for contemporaneous treatment and fluoroscopic mapping of body tissue
US6926662B1 (en) * 1998-12-23 2005-08-09 A-Med Systems, Inc. Left and right side heart support
US6939361B1 (en) 1999-09-22 2005-09-06 Nmt Medical, Inc. Guidewire for a free standing intervascular device having an integral stop mechanism
US6994092B2 (en) * 1999-11-08 2006-02-07 Ev3 Sunnyvale, Inc. Device for containing embolic material in the LAA having a plurality of tissue retention structures
US7517352B2 (en) 2000-04-07 2009-04-14 Bacchus Vascular, Inc. Devices for percutaneous remote endarterectomy
US6650923B1 (en) 2000-04-13 2003-11-18 Ev3 Sunnyvale, Inc. Method for accessing the left atrium of the heart by locating the fossa ovalis
US7056294B2 (en) * 2000-04-13 2006-06-06 Ev3 Sunnyvale, Inc Method and apparatus for accessing the left atrial appendage
CA2423360A1 (en) * 2000-09-21 2002-03-28 Atritech, Inc. Apparatus for implanting devices in atrial appendages
US8091556B2 (en) * 2001-04-20 2012-01-10 V-Wave Ltd. Methods and apparatus for reducing localized circulatory system pressure
US20050148925A1 (en) * 2001-04-20 2005-07-07 Dan Rottenberg Device and method for controlling in-vivo pressure
JP2002338688A (en) * 2001-05-15 2002-11-27 Sumitomo Chem Co Ltd Method for producing purified polyethersulfone
US7022109B1 (en) * 2001-07-09 2006-04-04 Ditto Deborah L Pain abatement catheter system
ATE363313T1 (en) * 2001-07-31 2007-06-15 Amir Belson CATHETER GUIDANCE IN THE FLOW DIRECTION WITH VARIABLE STIFFNESS SHAFT
US6702835B2 (en) 2001-09-07 2004-03-09 Core Medical, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US20060052821A1 (en) 2001-09-06 2006-03-09 Ovalis, Inc. Systems and methods for treating septal defects
WO2003022344A2 (en) * 2001-09-06 2003-03-20 Nmt Medical, Inc. Flexible delivery system
US6776784B2 (en) 2001-09-06 2004-08-17 Core Medical, Inc. Clip apparatus for closing septal defects and methods of use
US6596013B2 (en) 2001-09-20 2003-07-22 Scimed Life Systems, Inc. Method and apparatus for treating septal defects
WO2003053493A2 (en) * 2001-12-19 2003-07-03 Nmt Medical, Inc. Septal occluder and associated methods
US7318833B2 (en) * 2001-12-19 2008-01-15 Nmt Medical, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
WO2003059152A2 (en) * 2002-01-14 2003-07-24 Nmt Medical, Inc. Patent foramen ovale (pfo) closure method and device
AU2003225532A1 (en) 2002-01-24 2003-09-02 The Johns Hopkins University Methods and devices for percutaneous and surgical interventions
US7618430B2 (en) * 2002-02-28 2009-11-17 Biosense Webster, Inc. Retractable dilator needle
WO2003082076A2 (en) 2002-03-25 2003-10-09 Nmt Medical, Inc. Patent foramen ovale (pfo) closure clips
JP2005528162A (en) * 2002-06-03 2005-09-22 エヌエムティー メディカル インコーポレイテッド Device with biological tissue scaffold for intracardiac defect occlusion
WO2003103476A2 (en) 2002-06-05 2003-12-18 Nmt Medical, Inc. Patent foramen ovale (pfo) closure device with radial and circumferential support
US20050216078A1 (en) * 2002-06-13 2005-09-29 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US7883538B2 (en) 2002-06-13 2011-02-08 Guided Delivery Systems Inc. Methods and devices for termination
US20040243227A1 (en) * 2002-06-13 2004-12-02 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US7758637B2 (en) * 2003-02-06 2010-07-20 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
EP1530441B1 (en) * 2002-06-13 2017-08-02 Ancora Heart, Inc. Devices and methods for heart valve repair
US9226825B2 (en) * 2002-06-13 2016-01-05 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US8287555B2 (en) 2003-02-06 2012-10-16 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7666193B2 (en) * 2002-06-13 2010-02-23 Guided Delivery Sytems, Inc. Delivery devices and methods for heart valve repair
US9949829B2 (en) 2002-06-13 2018-04-24 Ancora Heart, Inc. Delivery devices and methods for heart valve repair
US8641727B2 (en) 2002-06-13 2014-02-04 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7753922B2 (en) 2003-09-04 2010-07-13 Guided Delivery Systems, Inc. Devices and methods for cardiac annulus stabilization and treatment
US7588582B2 (en) * 2002-06-13 2009-09-15 Guided Delivery Systems Inc. Methods for remodeling cardiac tissue
US7753858B2 (en) * 2002-06-13 2010-07-13 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US20060122633A1 (en) 2002-06-13 2006-06-08 John To Methods and devices for termination
AU2003209629A1 (en) * 2002-08-05 2004-02-23 Gil Ofir Embolism filter with self-deployable guidewire stop
WO2004037333A1 (en) 2002-10-25 2004-05-06 Nmt Medical, Inc. Expandable sheath tubing
ATE420593T1 (en) * 2002-11-07 2009-01-15 Nmt Medical Inc CLOSURE OF PERSONAL SEPTUM DAMAGE USING MAGNETIC FORCE
WO2004052213A1 (en) 2002-12-09 2004-06-24 Nmt Medical, Inc. Septal closure devices
US20040176788A1 (en) * 2003-03-07 2004-09-09 Nmt Medical, Inc. Vacuum attachment system
US7658747B2 (en) 2003-03-12 2010-02-09 Nmt Medical, Inc. Medical device for manipulation of a medical implant
US7473266B2 (en) 2003-03-14 2009-01-06 Nmt Medical, Inc. Collet-based delivery system
US8021387B2 (en) * 2003-07-11 2011-09-20 Biosense Webster, Inc. Trans-septal sheath with splitting dilating needle and method for its use
US8480706B2 (en) 2003-07-14 2013-07-09 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US7678123B2 (en) 2003-07-14 2010-03-16 Nmt Medical, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US9861346B2 (en) 2003-07-14 2018-01-09 W. L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with linearly elongating petals
DE602004017750D1 (en) 2003-08-19 2008-12-24 Nmt Medical Inc Expandable lock hose
US7534204B2 (en) * 2003-09-03 2009-05-19 Guided Delivery Systems, Inc. Cardiac visualization devices and methods
EP1663014B1 (en) * 2003-09-11 2008-08-13 NMT Medical, Inc. Suture sever tube
WO2005034763A1 (en) 2003-09-11 2005-04-21 Nmt Medical, Inc. Devices, systems, and methods for suturing tissue
WO2005028872A2 (en) 2003-09-18 2005-03-31 Myrakelle, Llc Rotary blood pump
FR2859912B1 (en) * 2003-09-22 2005-11-18 Ela Medical Sa NECESSARY FOR DRILLING THE CARDIAC SEPTUM AND PLACING A TRANSSEPTAL DEVICE, IN PARTICULAR A STIMULATION PROBE OF A LEFT CAVITY
US8172747B2 (en) * 2003-09-25 2012-05-08 Hansen Medical, Inc. Balloon visualization for traversing a tissue wall
JP4496223B2 (en) 2003-11-06 2010-07-07 エヌエムティー メディカル, インコーポレイティッド Septal penetration device
US8292910B2 (en) 2003-11-06 2012-10-23 Pressure Products Medical Supplies, Inc. Transseptal puncture apparatus
US6976679B2 (en) * 2003-11-07 2005-12-20 The Boeing Company Inter-fluid seal assembly and method therefor
WO2005055834A1 (en) * 2003-11-20 2005-06-23 Nmt Medical, Inc. Device, with electrospun fabric, for a percutaneous transluminal procedure, and methods thereof
US20050273119A1 (en) 2003-12-09 2005-12-08 Nmt Medical, Inc. Double spiral patent foramen ovale closure clamp
US20050273138A1 (en) * 2003-12-19 2005-12-08 Guided Delivery Systems, Inc. Devices and methods for anchoring tissue
US20050149097A1 (en) * 2003-12-30 2005-07-07 Regnell Sandra J. Transseptal needle
US20060106447A1 (en) * 2004-01-26 2006-05-18 Nmt Medical, Inc. Adjustable stiffness medical system
US20050192626A1 (en) * 2004-01-30 2005-09-01 Nmt Medical, Inc. Devices, systems, and methods for closure of cardiac openings
JP2007519498A (en) 2004-01-30 2007-07-19 エヌエムティー メディカル, インコーポレイティッド Devices, systems, and methods for closure of cardiac openings
US7871419B2 (en) 2004-03-03 2011-01-18 Nmt Medical, Inc. Delivery/recovery system for septal occluder
US20050209669A1 (en) * 2004-03-03 2005-09-22 Kao John A System for stent placement in a vasculature bifurcation
US20050234509A1 (en) * 2004-03-30 2005-10-20 Mmt Medical, Inc. Center joints for PFO occluders
US20050267524A1 (en) * 2004-04-09 2005-12-01 Nmt Medical, Inc. Split ends closure device
US8361110B2 (en) 2004-04-26 2013-01-29 W.L. Gore & Associates, Inc. Heart-shaped PFO closure device
US8801746B1 (en) 2004-05-04 2014-08-12 Covidien Lp System and method for delivering a left atrial appendage containment device
US8308760B2 (en) 2004-05-06 2012-11-13 W.L. Gore & Associates, Inc. Delivery systems and methods for PFO closure device with two anchors
US7842053B2 (en) * 2004-05-06 2010-11-30 Nmt Medical, Inc. Double coil occluder
JP2007535997A (en) 2004-05-07 2007-12-13 エヌエムティー メディカル, インコーポレイティッド Capturing mechanism of tubular septal occluder
US7704268B2 (en) * 2004-05-07 2010-04-27 Nmt Medical, Inc. Closure device with hinges
US7678081B2 (en) * 2004-07-12 2010-03-16 Pacesetter, Inc. Methods and devices for transseptal access
US7515970B2 (en) * 2004-08-18 2009-04-07 Cardiac Pacemakers, Inc. Transeptal lead
US7704277B2 (en) 2004-09-14 2010-04-27 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
US7393181B2 (en) 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
WO2006036837A2 (en) 2004-09-24 2006-04-06 Nmt Medical, Inc. Occluder device double securement system for delivery/recovery of such occluder device
US20070083168A1 (en) * 2004-09-30 2007-04-12 Whiting James S Transmembrane access systems and methods
US8029470B2 (en) * 2004-09-30 2011-10-04 Pacesetter, Inc. Transmembrane access systems and methods
US20060079787A1 (en) * 2004-09-30 2006-04-13 Whiting James S Transmembrane access systems and methods
US20060241687A1 (en) * 2005-03-16 2006-10-26 Glaser Erik N Septal occluder with pivot arms and articulating joints
US20060217760A1 (en) * 2005-03-17 2006-09-28 Widomski David R Multi-strand septal occluder
EP1868507A1 (en) 2005-03-18 2007-12-26 NMT Medical, Inc. Catch member for pfo occluder
US8372113B2 (en) * 2005-03-24 2013-02-12 W.L. Gore & Associates, Inc. Curved arm intracardiac occluder
WO2006116666A2 (en) * 2005-04-28 2006-11-02 Nmt Medical, Inc. System and method for bonding closure of an intra-cardiac opening using energy
US8579936B2 (en) 2005-07-05 2013-11-12 ProMed, Inc. Centering of delivery devices with respect to a septal defect
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
US9259267B2 (en) 2005-09-06 2016-02-16 W.L. Gore & Associates, Inc. Devices and methods for treating cardiac tissue
WO2007030433A2 (en) * 2005-09-06 2007-03-15 Nmt Medical, Inc. Removable intracardiac rf device
US7972359B2 (en) 2005-09-16 2011-07-05 Atritech, Inc. Intracardiac cage and method of delivering same
US20070088388A1 (en) * 2005-09-19 2007-04-19 Opolski Steven W Delivery device for implant with dual attachment sites
WO2007120186A2 (en) * 2005-10-24 2007-10-25 Nmt Medical, Inc. Radiopaque bioabsorbable occluder
WO2007073566A1 (en) 2005-12-22 2007-06-28 Nmt Medical, Inc. Catch members for occluder devices
US9681948B2 (en) 2006-01-23 2017-06-20 V-Wave Ltd. Heart anchor device
CA2646277C (en) 2006-03-23 2016-01-12 The Penn State Research Foundation Heart assist device with expandable impeller pump
JP2009532125A (en) 2006-03-31 2009-09-10 エヌエムティー メディカル, インコーポレイティッド Deformable flap catch mechanism for occluder equipment
US8870913B2 (en) 2006-03-31 2014-10-28 W.L. Gore & Associates, Inc. Catch system with locking cap for patent foramen ovale (PFO) occluder
US20070231135A1 (en) 2006-03-31 2007-10-04 Orqis Medical Corporation Rotary Blood Pump
US8551135B2 (en) * 2006-03-31 2013-10-08 W.L. Gore & Associates, Inc. Screw catch mechanism for PFO occluder and method of use
US20070282257A1 (en) * 2006-06-05 2007-12-06 Schatz Richard A Myocardial injector with balloon abutment
US7803136B2 (en) * 2006-06-05 2010-09-28 Schatz Richard A Myocardial injector
US20080039897A1 (en) * 2006-08-10 2008-02-14 Kluge Stanley E Trans-Septal Left Ventricular Pressure Measurement
US9005242B2 (en) 2007-04-05 2015-04-14 W.L. Gore & Associates, Inc. Septal closure device with centering mechanism
WO2008131167A1 (en) 2007-04-18 2008-10-30 Nmt Medical, Inc. Flexible catheter system
US8500697B2 (en) 2007-10-19 2013-08-06 Pressure Products Medical Supplies, Inc. Transseptal guidewire
US7963947B2 (en) * 2008-01-16 2011-06-21 Pressure Products Medical Supplies, Inc. Apparatus, system, and method of shielding the sharp tip of a transseptal guidewire
WO2009100242A2 (en) 2008-02-06 2009-08-13 Guided Delivery Systems, Inc. Multi-window guide tunnel
US20130165967A1 (en) 2008-03-07 2013-06-27 W.L. Gore & Associates, Inc. Heart occlusion devices
WO2009157408A1 (en) 2008-06-23 2009-12-30 テルモ株式会社 Blood pump apparatus
US20100121349A1 (en) 2008-10-10 2010-05-13 Meier Stephen C Termination devices and related methods
EP2349020B1 (en) 2008-10-10 2020-06-03 Ancora Heart, Inc. Tether tensioning device
EP2372160B1 (en) 2008-12-08 2014-07-30 Thoratec Corporation Centrifugal pump device
WO2010085456A1 (en) 2009-01-20 2010-07-29 Guided Delivery Systems Inc. Anchor deployment devices and related methods
US8361039B2 (en) * 2009-01-26 2013-01-29 Schatz Richard A Myocardial injector with spring loaded protective array
JP5378010B2 (en) 2009-03-05 2013-12-25 ソラテック コーポレーション Centrifugal pump device
US8770945B2 (en) 2009-03-06 2014-07-08 Thoratec Corporation Centrifugal pump apparatus
US20210161637A1 (en) 2009-05-04 2021-06-03 V-Wave Ltd. Shunt for redistributing atrial blood volume
US10076403B1 (en) 2009-05-04 2018-09-18 V-Wave Ltd. Shunt for redistributing atrial blood volume
US9034034B2 (en) 2010-12-22 2015-05-19 V-Wave Ltd. Devices for reducing left atrial pressure, and methods of making and using same
EP2427143B1 (en) 2009-05-04 2017-08-02 V-Wave Ltd. Device for regulating pressure in a heart chamber
US9636094B2 (en) 2009-06-22 2017-05-02 W. L. Gore & Associates, Inc. Sealing device and delivery system
NL2003063C2 (en) * 2009-06-22 2010-12-23 Ureca B V SURGICAL CUTTING INSTRUMENT.
US20120029556A1 (en) 2009-06-22 2012-02-02 Masters Steven J Sealing device and delivery system
US8535211B2 (en) 2009-07-01 2013-09-17 Thoratec Corporation Blood pump with expandable cannula
US8821365B2 (en) 2009-07-29 2014-09-02 Thoratec Corporation Rotation drive device and centrifugal pump apparatus using the same
JP5443197B2 (en) 2010-02-16 2014-03-19 ソラテック コーポレーション Centrifugal pump device
JP5572832B2 (en) 2010-03-26 2014-08-20 ソーラテック コーポレイション Centrifugal blood pump device
JP5681403B2 (en) 2010-07-12 2015-03-11 ソーラテック コーポレイション Centrifugal pump device
US9861350B2 (en) 2010-09-03 2018-01-09 Ancora Heart, Inc. Devices and methods for anchoring tissue
EP2613821B1 (en) 2010-09-07 2023-02-15 Paul A. Spence Cannula systems
JP5577506B2 (en) 2010-09-14 2014-08-27 ソーラテック コーポレイション Centrifugal pump device
US8485961B2 (en) 2011-01-05 2013-07-16 Thoratec Corporation Impeller housing for percutaneous heart pump
US8597170B2 (en) 2011-01-05 2013-12-03 Thoratec Corporation Catheter pump
US9138518B2 (en) 2011-01-06 2015-09-22 Thoratec Corporation Percutaneous heart pump
US8591393B2 (en) 2011-01-06 2013-11-26 Thoratec Corporation Catheter pump
EP2693609B1 (en) 2011-03-28 2017-05-03 Thoratec Corporation Rotation and drive device and centrifugal pump device using same
US9629715B2 (en) 2011-07-28 2017-04-25 V-Wave Ltd. Devices for reducing left atrial pressure having biodegradable constriction, and methods of making and using same
US11135054B2 (en) 2011-07-28 2021-10-05 V-Wave Ltd. Interatrial shunts having biodegradable material, and methods of making and using same
US9770232B2 (en) 2011-08-12 2017-09-26 W. L. Gore & Associates, Inc. Heart occlusion devices
JP6083929B2 (en) 2012-01-18 2017-02-22 ソーラテック コーポレイション Centrifugal pump device
US9821145B2 (en) 2012-03-23 2017-11-21 Pressure Products Medical Supplies Inc. Transseptal puncture apparatus and method for using the same
GB2504176A (en) 2012-05-14 2014-01-22 Thoratec Corp Collapsible impeller for catheter pump
US8721517B2 (en) 2012-05-14 2014-05-13 Thoratec Corporation Impeller for catheter pump
US9872947B2 (en) 2012-05-14 2018-01-23 Tc1 Llc Sheath system for catheter pump
US9327067B2 (en) 2012-05-14 2016-05-03 Thoratec Corporation Impeller for catheter pump
US9446179B2 (en) 2012-05-14 2016-09-20 Thoratec Corporation Distal bearing support
EP4186557A1 (en) 2012-07-03 2023-05-31 Tc1 Llc Motor assembly for catheter pump
US9421311B2 (en) 2012-07-03 2016-08-23 Thoratec Corporation Motor assembly for catheter pump
US9358329B2 (en) 2012-07-03 2016-06-07 Thoratec Corporation Catheter pump
EP2908880B1 (en) 2012-10-16 2018-12-05 Paul A. Spence Devices for facilitating flow from the heart to a blood pump
US10828019B2 (en) 2013-01-18 2020-11-10 W.L. Gore & Associates, Inc. Sealing device and delivery system
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
EP4122520A1 (en) 2013-03-13 2023-01-25 Tc1 Llc Fluid handling system
US11033728B2 (en) 2013-03-13 2021-06-15 Tc1 Llc Fluid handling system
US11077294B2 (en) 2013-03-13 2021-08-03 Tc1 Llc Sheath assembly for catheter pump
US9308302B2 (en) 2013-03-15 2016-04-12 Thoratec Corporation Catheter pump assembly including a stator
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
EP2999412B1 (en) 2013-05-21 2020-05-06 V-Wave Ltd. Apparatus for delivering devices for reducing left atrial pressure
CA3117171C (en) 2013-08-07 2024-02-20 Baylis Medical Company Inc. Methods and devices for puncturing tissue
WO2015057573A1 (en) * 2013-10-15 2015-04-23 The United States Of America, As Represented By The Secretary Department Of Health & Human Services Vascular dilators
US9808283B2 (en) 2013-12-04 2017-11-07 Heartware, Inc. Apparatus and methods for cutting an atrial wall
EP3131615B1 (en) 2014-04-15 2021-06-09 Tc1 Llc Sensors for catheter pumps
EP3131597B1 (en) 2014-04-15 2020-12-02 Tc1 Llc Catheter pump introducer systems
EP3131599B1 (en) 2014-04-15 2019-02-20 Tc1 Llc Catheter pump with access ports
US10583232B2 (en) 2014-04-15 2020-03-10 Tc1 Llc Catheter pump with off-set motor position
US9808230B2 (en) 2014-06-06 2017-11-07 W. L. Gore & Associates, Inc. Sealing device and delivery system
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
US9675738B2 (en) 2015-01-22 2017-06-13 Tc1 Llc Attachment mechanisms for motor of catheter pump
US9770543B2 (en) 2015-01-22 2017-09-26 Tc1 Llc Reduced rotational mass motor assembly for catheter pump
EP3804797A1 (en) 2015-01-22 2021-04-14 Tc1 Llc Motor assembly with heat exchanger for catheter pump
EP3256183A4 (en) 2015-02-11 2018-09-19 Tc1 Llc Heart beat identification and pump speed synchronization
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
CA2978599C (en) 2015-03-05 2022-09-06 Ancora Heart, Inc. Devices and methods of visualizing and determining depth of penetration in cardiac tissue
US9907890B2 (en) 2015-04-16 2018-03-06 Tc1 Llc Catheter pump with positioning brace
WO2016178171A1 (en) 2015-05-07 2016-11-10 The Medical Research Infrastructure And Health Services Fund Of The Tel-Aviv Medical Center Temporary interatrial shunts
US10980973B2 (en) 2015-05-12 2021-04-20 Ancora Heart, Inc. Device and method for releasing catheters from cardiac structures
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US20170340460A1 (en) 2016-05-31 2017-11-30 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
US10835394B2 (en) 2016-05-31 2020-11-17 V-Wave, Ltd. Systems and methods for making encapsulated hourglass shaped stents
US10667914B2 (en) 2016-11-18 2020-06-02 Ancora Heart, Inc. Myocardial implant load sharing device and methods to promote LV function
CN110494183B (en) * 2017-02-10 2022-04-29 德克萨斯医疗中心 Transcatheter device for interatrial anastomosis
WO2018158747A1 (en) 2017-03-03 2018-09-07 V-Wave Ltd. Shunt for redistributing atrial blood volume
US11291807B2 (en) 2017-03-03 2022-04-05 V-Wave Ltd. Asymmetric shunt for redistributing atrial blood volume
CN110831520B (en) 2017-04-27 2022-11-15 波士顿科学国际有限公司 Occlusive medical devices with fabric retention barbs
WO2019142152A1 (en) 2018-01-20 2019-07-25 V-Wave Ltd. Devices and methods for providing passage between heart chambers
US10898698B1 (en) 2020-05-04 2021-01-26 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US11458287B2 (en) 2018-01-20 2022-10-04 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
CN112714632A (en) 2018-08-21 2021-04-27 波士顿科学医学有限公司 Barbed protruding member for cardiovascular devices
CN109621198B (en) * 2018-12-25 2023-04-18 创领心律管理医疗器械(上海)有限公司 Medical device and fixing device of slender body medical equipment thereof
US11612385B2 (en) 2019-04-03 2023-03-28 V-Wave Ltd. Systems and methods for delivering implantable devices across an atrial septum
EP3972499A1 (en) 2019-05-20 2022-03-30 V-Wave Ltd. Systems and methods for creating an interatrial shunt
WO2021011659A1 (en) 2019-07-15 2021-01-21 Ancora Heart, Inc. Devices and methods for tether cutting
EP3998962A1 (en) 2019-07-17 2022-05-25 Boston Scientific Scimed, Inc. Left atrial appendage implant with continuous covering
EP3986284A1 (en) 2019-08-30 2022-04-27 Boston Scientific Scimed, Inc. Left atrial appendage implant with sealing disk
US11457903B2 (en) 2020-01-21 2022-10-04 Pressure Products Medical Supplies, Inc. Cardiac transseptal instruments, assemblies, and method of use of the same
US11903589B2 (en) 2020-03-24 2024-02-20 Boston Scientific Scimed, Inc. Medical system for treating a left atrial appendage
US11801369B2 (en) 2020-08-25 2023-10-31 Shifamed Holdings, Llc Adjustable interatrial shunts and associated systems and methods
US11857197B2 (en) 2020-11-12 2024-01-02 Shifamed Holdings, Llc Adjustable implantable devices and associated methods
US11234702B1 (en) 2020-11-13 2022-02-01 V-Wave Ltd. Interatrial shunt having physiologic sensor
WO2023079498A1 (en) 2021-11-04 2023-05-11 V-Wave Ltd. Systems for delivering devices for regulating blood pressure across an atrial septum
WO2023199267A1 (en) 2022-04-14 2023-10-19 V-Wave Ltd. Interatrial shunt with expanded neck region

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833003A (en) * 1972-07-05 1974-09-03 A Taricco Intravascular occluding catheter
US4985014A (en) * 1989-07-11 1991-01-15 Orejola Wilmo C Ventricular venting loop
US5030199A (en) * 1989-12-11 1991-07-09 Medical Engineering Corporation Female incontinence control device with magnetically operable valve and method
US5042976A (en) * 1987-01-13 1991-08-27 Terumo Kabushiki Kaisha Balloon catheter and manufacturing method of the same
US5073166A (en) * 1989-02-15 1991-12-17 Medical Innovations Corporation Method and apparatus for emplacement of a gastrostomy catheter
US5112310A (en) * 1991-02-06 1992-05-12 Grobe James L Apparatus and methods for percutaneous endoscopic gastrostomy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833003A (en) * 1972-07-05 1974-09-03 A Taricco Intravascular occluding catheter
US5042976A (en) * 1987-01-13 1991-08-27 Terumo Kabushiki Kaisha Balloon catheter and manufacturing method of the same
US5073166A (en) * 1989-02-15 1991-12-17 Medical Innovations Corporation Method and apparatus for emplacement of a gastrostomy catheter
US4985014A (en) * 1989-07-11 1991-01-15 Orejola Wilmo C Ventricular venting loop
US5030199A (en) * 1989-12-11 1991-07-09 Medical Engineering Corporation Female incontinence control device with magnetically operable valve and method
US5112310A (en) * 1991-02-06 1992-05-12 Grobe James L Apparatus and methods for percutaneous endoscopic gastrostomy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THORACIC SURGERY, Volume 27, No. 4, issued April 1959, C. COPE, "Technique for Transseptal Catheterization of the Left Atrium", p. 482. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094363A2 (en) * 2001-05-21 2002-11-28 Medtronic,Inc. Trans-septal catheter with retention mechanism
WO2002094363A3 (en) * 2001-05-21 2003-02-06 Medtronic Inc Trans-septal catheter with retention mechanism
US8096959B2 (en) 2001-05-21 2012-01-17 Medtronic, Inc. Trans-septal catheter with retention mechanism

Also Published As

Publication number Publication date
US5312341A (en) 1994-05-17

Similar Documents

Publication Publication Date Title
US5312341A (en) Retaining apparatus and procedure for transseptal catheterization
US11007346B2 (en) Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation
US8096959B2 (en) Trans-septal catheter with retention mechanism
US8123742B2 (en) Catheter and method for ablation of atrial tissue
EP1063935B1 (en) Device for the treatment of atrial arrhythmia
US8005529B2 (en) Systems and methods for internal tissue penetration
US7842015B2 (en) Diagnostic and injection catheter, in particular for an application in cardiology
US8694077B2 (en) Apparatus and method for targeting a body tissue
JP2023153314A (en) Apparatus and method for puncturing tissue
CN114727804A (en) Directional balloon transseptal insertion device for medical procedures and improved transseptal puncture system with puncture member balloon seal
WO2021231465A1 (en) Transseptal crossing system for single pass large bore access
JP2017189614A (en) Pulmonary-vein cork device with ablation guiding trench
US11904109B2 (en) Catheter introducer
EP3841998A1 (en) Lasso catheter with balloon
WO2022150593A1 (en) Apparatus and method for septal punch and delivery and maneuvering of therapeutic device
EP3673843A1 (en) Pericardium catheter including camera for guiding cutting through pericardium
WO2008072261A2 (en) A medical device its use (s) and method (s) thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA