WO1994015530A1 - System for continuously measuring forces applied by the foot - Google Patents

System for continuously measuring forces applied by the foot Download PDF

Info

Publication number
WO1994015530A1
WO1994015530A1 PCT/US1994/000536 US9400536W WO9415530A1 WO 1994015530 A1 WO1994015530 A1 WO 1994015530A1 US 9400536 W US9400536 W US 9400536W WO 9415530 A1 WO9415530 A1 WO 9415530A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
sensor array
foot
individual
force sensor
Prior art date
Application number
PCT/US1994/000536
Other languages
French (fr)
Inventor
George Fullen
Jeryl G. Fullen
Original Assignee
Fullen Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fullen Systems, Inc. filed Critical Fullen Systems, Inc.
Priority to EP94908597A priority Critical patent/EP0700270A1/en
Priority to AU61629/94A priority patent/AU684749B2/en
Priority to US08/481,457 priority patent/US5678448A/en
Publication of WO1994015530A1 publication Critical patent/WO1994015530A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • A43B3/44Footwear characterised by the shape or the use with electrical or electronic arrangements with sensors, e.g. for detecting contact or position

Definitions

  • This invention relates generally to foot pressure sensors and more particularly to a system that may be employed by orthopedic surgeons, their patients, physical therapists, athletes, coaches, trainers, and others to measure forces applied by the foot.
  • Forces applied by the foot are not always evenly distributed over the entire surface or sole of the foot. They are usually, but not always, concentrated at the heel or ball of the foot, and they are also usually not applied to these two areas at the same time.
  • a typical walking or running foot strike first loads the heel and then the ball of the foot. In other situations, such as when performing an athletic maneuver, the weight placed on the foot will shift in different patterns. The specific location on the sole of the foot where forces are present, the times at which those forces occur, and the magnitude of those forces are of interest in a number of situations.
  • Many devices have been designed to measure forces applied by the foot. These include devices for measuring applied forces that are coincident with the position of the leg and body during walking or running, for measuring peak pressure to alert sensory impaired individuals such as diabetics, for measuring the total force applied by the foot, and for measuring forces applied by certain areas of the foot for various purposes.
  • Such foot force measurement devices are typically heavy and cumbersome and, thus, act to restrict the wearer's movements.
  • Devices which employ an electronic package strapped to the wearer's leg above the ankle and electrically connected to a foot sensor reguire extra effort when attaching or removing the device. Although this extra effort may seem insignificant, it is never ⁇ theless an inconvenience that may prompt wearer's of such devices to neglect their use. Further, these bulky devices chafe the wearer's skin, are prone to snagging, and are subject to failure resulting from stress on the electrical cable that connects the electronic package to the foot sensor. Other devices employ a stationary foot sensor pad and are therefore only suited for use in a laboratory.
  • All of the known foot force measurement devices function to convert mechanical force into a suitable signal medium, usually electrical signals. Consequently, the devices can be conveniently categorized according to the type of sensor used to convert changes in mechanical force to changes in electrical signals. Accordingly, these types of sensors include pneumatic or hydraulic fluid activated switches, strain gauge sensors that respond to mechanical deformation, single direct electronic force sensors, multiple direct electronic force sensors with random spacing, and multiple direct electronic force sensors with regular spacing. Pneumatic and hydraulic sensors are prone to produce inaccurate readings because changes in internal pressure are not necessarily proportional to changes in force.
  • An accurate hydraulic sensor can be constructed if the fluid is displaced from a containing structure which itself, not t ⁇ _e fluid, supports the applied forces, and the force reguired to activate a switch or sensor is very small compared to the force being measured.
  • Exemplary of such sensors are those taught in German patent 3631-923-A to Ernst and in U.S. Patent No. 3,974,491 to Sipe.
  • Another way to construct an accurate fluid sensor is to use rigid plates which limit the applied force to a constant area of fluid contact, as taught in U.S. Patent No. 3,791,375 to Pfeiffer. In such sensors, the fluid pressure is proportional to the applied force.
  • these sensors are disadvantageous due their bulkiness and weight.
  • the sensors which measure mechanical deformation of structural elements supporting the wearer's foot by use of electrical wire or ribbon type strain gauges accurately measure weight, but they are also disadvantageous because of their bulk and weight.
  • Exemplary of these sensors are those taught by Donald Endicott et al. , "Leg Load Warning System for the Orthopedically Handicapped,” Medical and Biological Engineering (May, 1974), S. Miyazaki and H. Iwakura, "Foot-Force Measuring Device for Clinical Assessment of Pathological Gait,” Medical and Biological Engineering and Computing (July, 1978) , and G.A. Spolek and F.G. Lippert, "An Instrumented Shoe-A Portable Force Measuring Device,” J. Biomechanics (Great Britain, June, 1976) .
  • All of the above-mentioned direct electronic force sensor devices are essentially identical to a type of microphone used in telephones.
  • the acoustic force compresses a partially conductive material (carbon granules) and thereby reduces its electrical resistance.
  • a force sensor based on this concept can be constructed by forming thin electrodes on two plastic films and then covering the electrodes with a thin layer of suitable partially conductive material. When the two coated films are positioned so that the two layers of partially conductive material are in contact, the electrical resistance through the sensor from electrode to electrode varies inversely with a compressing force on the sensor. This is because as the coating is pressed with greater force, the electrical current path becomes broader due to increased area of contact.
  • a practical sensor array preferably includes several hundred individual force sensors.
  • the problem of electrically connecting this number of individual sensors to data acquisition circuitry is a significant one.
  • a simple connection scheme would require as many electrical connections to the circuitry sensors, plus one common connection.
  • the circuitry described by John A. Purbrick, "A Force Transducer Employing Conductive Silicon Rubber,” First Robot Vision and Sensors Conferences, Stratford-on-Avon, England (April, 1981) makes a more efficient connection method possible.
  • This prior art circuit can measure current through individual force sensors in a two-vector array of rows and columns with a top electrode of all sensors in each column commonly connected and a bottom electrode of all the sensors in each row likewise commonly connected.
  • Devices in accordance with the present invention provide a force measurement system useful to the medical patient, attendant physician, physical therapist, prosthetist, orthotist, podiatrist, athlete, sports trainer, coach or research professional interested in carefully studying or managing a wide range of problems of the human lower extremity.
  • a self-contained system is provided for measuring forces applied by the foot of a user, whereby a force sensor array is positioned relative to a user's foot, thus allowing the measurement of the forces applied by the foot as weight is applied while the user is standing, walking or running.
  • the force sensor array is comprised of a multiplicity of individual force sensors arranged so the force sensor array will operatively conform to the user's foot where the force is applied.
  • a force analysis unit for measuring the force applied to the force sensor array by the user as well as an interconnection device for transferring one or more signals related to the force from the sensor array to the force analysis unit or electronic circuit module.
  • the force analysis unit primarily serves the purpose of substantially continuously monitoring signals from the force sensor array to obtain information which is indicative of the force sensed by each individual force sensor on a multiplicity of force sensors which make up the force sensor array.
  • the individual force sensors are arranged in a wrinkle resistant pattern that covers a substantial area of contact of the user's foot. This prevents inadvertent force readings as a result of wrinkling under the foot.
  • the force sensor array is comprised of a substrate material so rigid as to not operatively conform to the foot in the absence of a removed cutout portion.
  • This cutout portion of the substrate material allows the force sensor array to operatively conform to the user's foot when force is applied, thus providing additional comfort to the user.
  • these cutouts provide flexibility to the force sensor array, thus preventing wrinkling and subsequent damage to • '-he force sensor array or erroneous force readings.
  • an electronic circuit module, or force analysis means is adapted for removable attachment to foot related apparel, such as a shoe, bootie, slipper or prosthetic device.
  • the force analysis unit is comprised of scanning circuitry for scanning the force sensor array and a central processing unit for executing instructions and controlling the scanning circuitry and for processing force and pressure information provided by either one or a multiplicity of force sensors in the force sensor array.
  • a read-only memory device is coupled to the central processing unit for storing programs and subroutines of instructions to be executed by the central processing unit during a system boot period of operation.
  • a random access memory unit is provided for storing additional routines and subroutines of instructions to be executed by the central processing unit subsequent to the system boot period of operation and for storing the usage data.
  • a clock or time measuring device is attached to the central processing unit for providing date and time of day information thereto. This allows therapists or doctors to evaluate when the force sensing unit was used and for what duration and when forces were applied.
  • an annunciator device such as a beeper or horn is used which provides an audible signal to the user during certain preprogrammed system operating conditions.
  • the central processing unit may be programmed for accumulating the forces sensed by each one or by a multiplicity of individual force sensors in the force array which can compare the accumulated force to a predetermined threshold force. If the accumulated force exceeds the predetermined threshold force, the annunciator will audibly provide a signal to the user.
  • a wireless data transmitter unit is provided for coupling the central processing unit to a remotely located computer, thus enabling the transfer of selected information, including the force data, between the central processing unit and the external computer.
  • a force sensor array which is positioned relative to a user's foot to measure the forces applied by the user.
  • This force sensor array is comprised of both top and bottom electrode layers, the top and bottom layers including corresponding pluralities of substantially vertically coincident and individual sensor electrodes.
  • the pluralities of individual sensor electrodes of each of the top and bottom electrode layers are arranged to form lines of sensor electrodes and the individual sensor electrodes of a given line of sensor electrodes are electrically serially connected by a conductive trace that follows a substantially nonlinear path.
  • at least one partially conductive pressure sensitive coating is sandwiched between the top and bottom electrode layers.
  • each of the top and bottom substrate layers comprising a plurality of geometric cutouts in areas not directly overlying the pluralities of individual sensor electrodes.
  • the cutouts in the substrate serve the purpose of allowing the force sensor array to stretch in multiple horizontal directions simultaneously and to operatively conform to the user's foot when pressure is applied.
  • the system includes top and bottom conductive trace layers overlying the top and bottom electrode layers, respectively, each of the top and bottom conductive trace layers including a plurality of conductive traces, and each of the conductive traces being electrically connected through a corresponding one of the top and bottom substrate layers to a particular one of the lines of sensor electrodes of a corresponding one of the top and bottom electrode layers.
  • the individual sensor electrodes are spaced horizontally equidistant apart.
  • the pluralities of the individual sensor electrodes of each of the top and bottom electrode layers are arranged to form substantially parallel equidistant lines of sensor electrodes positioned diagonally with respect to a longitudinal axis of the shoe.
  • each of the top and bottom substrate layers comprises a dielectric film. In accordance with yet another embodiment of the present invention, each of the top and bottom substrate layers comprises a partially conductive pressure sensitive coating.
  • each one of the plurality of cutouts in each of the top and bottom substrate layers is hexagonal in shape.
  • each one of the plurality of cutouts in each of the top and bottom substrate layers is shaped in a modified hourglass configuration.
  • a self-contained system for measuring forces applied by the foot of a user comprises a force sensor array positioned relative to a user's foot, the force sensor array comprising a multiplicity of individual force sensors arranged in a predetermined wrinkle resistant pattern that covers a substantial area of contact of the user's foot such that the force sensor array operatively conforms to the user's foot where force is applied.
  • the force sensors comprise a top and bottom electrode layer with the top and bottom electrode layers including corresponding pluralities of substantially vertically coincident spaced individual sensor electrodes. These pluralities of individual sensor electrodes of each of the top and bottom electrode layers are arranged to form substantially parallel equidistant lines of sensor electrodes positioned diagonally with respect to a longitudinal axis of the shoe. Further, the individual sensor electrodes of a given diagonal line of sensor electrodes are electrically serially connected by a conductive trace that follows a substantially nonlinear path. Additionally, at least one partially conductive pressure sensitive coating is sandwiched between the top and bottom electrode layers.
  • top and bottom substrate layers overlay the top and bottom electrode layers, respectively, each of the top and bottom substrate layers comprising a lattice structure having a plurality of cutouts in areas not directly overlying the pluralities of individual sensor electrodes. These cutouts are provided to allow the force sensor array to stretch in multiple horizontal directions simultaneously and to conform to the user's foot when pressure is applied.
  • top and bottom conductive trace layers are provided which overlay the top and bottom electrode layers, respectively.
  • Each of the top and bottom conductive trace layers include a plurality of conductive traces and each of the conductive traces are electrically connected through a corresponding one of the top and bottom substrate layers to a particular one of the diagonal lines of sensor electrodes of a corresponding one of the top and bottom electrode layers.
  • the force analysis unit for measuring a force applied to the force sensor array is adapted for attachment to foot related apparel and a method of interconnecting is provided for transferring one or more signals related to the force from the sensor array to the force analysis unit.
  • the force analysis unit is operative for substantially continuously monitoring signals from the force sensor array to obtain information indicative of force sensed by the multiplicity of individual force sensors comprising the force sensor array.
  • a force sensor array which comprises a first signal conducting plurality of spaced apart pressure sensing signaling devices so that a signal from each device relates to a force applied thereto. Furthermore, a second signal conducting plurality of spaced apart pressure sensing signaling devices are provided so that a first signal between a first device from the first plurality and a second device from the second plurality uniquely determines a force applied to the first and second devices.
  • the first and second signal conducting pluralities are each arranged in diagonal rows in relation to a longitudinal axis of the array so that the devices in each row are electrically serially connected by a different conductive trace for transmission of a signal related to a force applied thereto.
  • the system includes a partially conductive pressure sensitive device conducting the first signal between the first and second devices, and additionally including a substrate material attached to the first and second signal conducting pluralities, the substrate having a plurality of shaped cutouts allowing the force sensor array to smoothly conform to a pressure- applying object when pressure is applied. Additionally, the substrate contacts the first and second signal conducting pluralities in a manner capable of conducting a force to the first and second devices, wherein the conductive traces traverse a thickness of the substrate.
  • each first conductive trace connected to a first row of the first signal conducting plurality is capable of transmitting an electrical signal to a second conductive trace connected to a second row of the second signal conducting plurality through a unique pair of pressure sensing devices, one pressure sensing device of the pair from the first row and one pressure sensing device of the pair from the second row.
  • the force sensor array includes diagonal rows for the first signal conducting plurality directed in a first direction while the diagonal rows for the second signal conducting plurality are directed in a second direction with the first and second directions substantially different.
  • Figure 1 is a pictorial diagram of a shoe fitted with a force sensor array and an interconnected electronic circuit module in accordance with the present invention.
  • Figure 2 is a partial sectional pictorial diagram of the shoe of Figure 1 illustrating the position of the force sensor array within the shoe.
  • Figure 3 is an exploded sectional diagram of the force sensor array employed within the shoe of Figures 1 and 2.
  • Figure 4 is a detailed diagram of a portion of the force sensor array of Figure 3 illustrating the planar arrangement of the conductive traces forming the top and bottom sensor electrodes and their relationship to pressure sensitive conductive coatings and removed areas of the substrates.
  • Figure 5 is a detailed diagram illustrating conductive traces on a top surface of a top substrate of the force sensor array of Figure 3.
  • Figure 6 is a detailed diagram illustrating conductive traces on a bottom surface of the top substrate of the force sensor array of Figure 3.
  • Figure 7 is a detailed diagram illustrating conductive traces on a top surface of a bottom substrate of the force sensor array of Figure 3.
  • Figure 8 is a detailed diagram illustrating conductive traces on a bottom surface of the bottom substrate of the force sensor array of Figure 3.
  • Figure 9 is a sectional diagram illustrating the details of the interconnection between the force sensor array and electronic circuit module of Figures 1 and 2.
  • Figure 10 is an exploded pictorial diagram of the interconnection of Figure 9.
  • Figure 11 is a block diagram of circuitry employed in the electronic circuit module of Figures l and 2.
  • Figure 12 is a flow chart of a software routine performed by the circuitry of Figure 11 within the electronic circuit module of Figures 1 and 2 to enable the f ⁇ t force measurement system of the present invention to function as a weight monitor.
  • Figure 13 is a detailed diagram illustrating the substrate material, force sensors, and a modified hourglass cutout configuration in the force sensor array.
  • FIG. 1 there is shown a shoe 10 containing a force sensor array 100 and an electronic circuit module 500 connected thereto by means of a flat ribbon cable 102.
  • Force sensor array 100 is arranged to cover a substantial area of contact between the bottom of the wearer's foot and foot apparel (e.g., shoe) 10.
  • foot apparel e.g., shoe
  • the force sensor array may be used inside a sock, bootie, or attached to a prosthetic device to accomplish the same result of measuring and monitoring forces applied by the user's foot.
  • the preferred embodiment involves the measurement of forces between a foot and shoe, it should be appreciated that this device could be used to measure other forces, such as between the end of an amputated limb and a prosthetic device.
  • Electronic circuit module 500 is preferably clipped or otherwise attached to the side of shoe 10 that is opposite the other foot and slightly forward of the center thereof, where it is least likely to be damaged or to interfere with the normal physical activities of the wearer.
  • covering layers 112 and 142 are used to hold the remaining parts of the force sensor array 100 together and to isolate them from contamination.
  • Covering layers 112 and 142 can include, for example, a 1/16-inch thick, adhesive coated, closed cell vinyl foam tape such as 3M Scotchfoam 4726TM.
  • a conductive trace layer 122 includes a multiplicity of conductive traces, each of which is electrically connected through a substrate 124 to each line of a multiplicity of lines of sensor electrodes (123 in Figure 4) that are formed by a conductive trace layer 126 and a like number of contact points that are also formed by conductive trace layer 126.
  • a conductive trace layer 132 includes a multiplicity of conductive traces, each of which is electrically connected through a substrate 134 to each line of a multiplicity of lines of sensor electrodes (123 in Figure 4) formed by another conductive trace layer 136.
  • Conductive trace layers 122, 126, 132, and 136 can be fabricated from any suitable electrically conductive material capable of being printed or otherwise deposited on substrates 124, 134.
  • Substrates 124, 134 are dielectric films and can be fabricated from, for example, du Pont KaptonTM polyimide film material. Other films can also be used.
  • substrates 124 and 134 are fabricated from materials which are too rigid to operatively conform to a user's foot when no portions have been removed therefrom.
  • Pressure sensitive coating layers 128, 138 can comprise a commercially available partially conductive pressure sensitive coating, such as one of those designated as numbers 4407 and 4408 produced by Chomerics, Inc. of Woburn, MA.
  • hexagonal areas 130 of the substrates 124, 134 are removed to increase the flexibility of the assembled force sensor array 100, allow it to operatively conform to the user's foot, provide mechanical isolation for the individual sensors 123 comprising force sensor array 100, and allow contact of the adhesive coatings 114, 144.
  • any suitable geometric shape of cutout can be utilized which enhances the flexibility of the force sensor array 100.
  • the actual geometric configuration is dependent on a number of variables including the substrate material, thickness of the substrate and total length and width of the material necessary for each particular application.
  • Conductive trace layers 126, 136, which form individual force sensor electrodes 123, are prevented from directly contacting each other by the position and shape of pressure sensitive coatings 128, 138.
  • the areas of the partially conductive pressure sensitive coatings 128, 138 are slightly larger than the sensor electrode areas, and the conductive traces connecting the individual force sensor electrodes 123 not covered by the pressure sensitive coatings 128, 138 do not come into contact because their positions are not coincident.
  • the film substrates 124, 134 between the hexagonal or other geometric removed areas are wide enough to accommodate the various conductive traces, electrodes, and sensor areas. Narrower bands of the film substrates 124, 134 between the individual force sensors 123 of force sensor array 100 result in greater flexibility and provide better mechanical isolation of the individual sensors.
  • conductive trace layer 122 on the top surface of film substrate 124 connects each line 121 of individual force sensor electrodes 123 formed by conductive trace layer 126 on the bottom surface of film substrate 124 to the electronic circuit module 500 of Figures 1 and 2. Electrical connections through the film substrate to conductive trace layer 126 on the bottom surface of film substrate 124 are represented as enlarged areas 117 at both ends of each conductive trace 101 of conductive trace layer 122.
  • conductive trace layer 126 forms diagonal lines 121 of sensor electrodes 123 and contact areas for connection to the electronic circuit module 500. Electrical connections through the substrate 124 to conductive trace layer 122 on the top surface of film substrate 124 are represented as enlarged areas 127 located firstly between consecutive force sensor electrodes 123 and secondly under the contact areas 125 in connector tab 104. Thus, all of the individual force sensor electrodes 123 in a diagonal line 121 are commonly connected through a single conductive trace 101 of conductive trace layer 122 to electronic circuit module 500.
  • conductive trace layer 136 forms lines of individual force sensor electrodes and contacts for connection to the electronic circuit module 500. Electrical connections through the substrate 134 to conductive layer 132 are represented as enlarged areas located firstly between consecutive individual force sensor electrodes and secondly under the contact areas of conductive trace layer 136 in connector tab 104. Thus, all of the individual force sensor electrodes in a line are commonly connected through a single conductive trace of conductive trace layer 132 to electronic circuit module 500.
  • conductive traces of conductive trace layer 132 connect each line of individual force sensor electrodes formed by conductive trace layer 136 to the electronic circuit module 500. Electrical connections through the substrate 134 to conductive trace layer 136 are represented as enlarged areas at both ends of each trace of layer 132.
  • the layout of the force sensors 123, lines of individual force sensor electrodes formed by conductive traces of conductive trace layers 126, 136, and conductive traces 122, 132 permit trimming the array to fit any shape or size of a user's foot or shoe.
  • the diagonal arrangement of force sensors 128, 138 results in a smaller number of electrical leads in conductive trace layers 122, 132 than would be required if the sensors 128 ' , 138 were perpendicularly arranged. This is because the ratio of the length to width of the human foot is about 3.5, and a similar ratio of rows to columns would result. In the diagonal sensor layout of the present invention, the ratio of rows to columns can be closer to unity.
  • honeycomb pattern of the substrates produces meandering nonlinear courses for electrical conductive leads in conductive trace layers 122, 132. This prevents a stiff conductive material such as copper from excessively restricting the flexing of the force sensor array 100 along the general direction of the leads.
  • a portion of a standard two-sided printed circuit board 550 extends to the exterior periphery of electronic circuit module 500, together with conductive leads 552 to form contacts arranged to coincide with contact areas of electrode lines formed by conductive trace layers 126, 136.
  • the connector portion of force sensor array 100 and the printed circuit board 550 are clamped between facing halves 502 of electronic circuit module 500. Any conventional mechanical fastening device may be used to hold the facing halves 502 of electronic circuit module 500 together.
  • Elastic material 504 evenly distributes the clamping force. A thickened center of elastic material 504 compensates for any bending that may take place in the two facing halves 502 of electronic circuit module 500.
  • Guides 506 position the end portions of the force sensor array 100, while the two facing halves 502 of electronic circuit module 500 are tightened.
  • the clearance between the connector parts 104 of substrates 124, 134 to guides 506 is small enough to assure alignment between each of the connector contact areas of electrode lines formed by conductive trace layers 126, 136 and contact areas 552.
  • the conductive traces of conductive trace layers 122, 132 are as closely spaced as practical to make the cable 102 portion of substrates 124, 134 as narrow as possible. Curving the re-entrant edges of substrates 124, 134 reduces fatigue stress.
  • force sensor array 100 is connected to electronic circuit module 500, which contains scanning circuitry 210 controlled by a central processing unit (CPU) 220.
  • CPU central processing unit
  • CPU 220 executes software routines stored in a read-only memory (ROM) 230 during system boot and thereafter executes software programs stored in a random access memory (RAM) 250.
  • An interface 240 is used to up ⁇ load data stored in RAM 250 to an external personal computer (PC) and to down-load operational data and software programs from a PC to RAM 250.
  • a time of day and calendar clock 260 provides time and date information to CPU 220.
  • An annunciator 270 is controlled by CPU 220 for signalling, for example, the occurrence of measured forces exceeding preset thresholds, hardware fault conditions, and operator errors.
  • a wireless data transmitter (not shown) may be included to interface electronic circuit module 500 to external electronic equipment for the purpose of transferring data and other information between electronic circuit module 500 and the external electronic equipment.
  • Initialization step 302 can be a conventional software initialization step involving setting memory areas to proper values, checking hardware configurations, etc.
  • Step 304 reads one byte of data from the scanning circuitry 210. This data represents either the result of a single instantaneous reading from an individual sensor within force sensor array 100 or a special synchronizing value to mark the beginning or end of a scan of the entire force sensor array 100.
  • Step 306 tests the data byte for the special value. When this value is the special synchronizing value, the next byte of data read will be force data from a known sensor of force sensor array 100.
  • the next byte is not read until it is time to do so, as determined by steps 307 and 308.
  • the force sensor array 100 can be scanned many times per second.
  • the loop formed by steps 310-318 is executed as many times as there are individual sensors within the force sensor array 100.
  • the current through each of the sensors of force sensor array 100 is measured in a predetermined order and consequently the individual force sensor being addressed can be associated to stored data representing its location within the force sensor array 100.
  • Step 312 tests for the special synchronizing byte, and if it is found at this point in the routine, it is a clear error.
  • Step 314 makes an appropriate data record for future reference, annunciates the error, and resets a loop counter to point to the first sensor.
  • Step 316 extracts information stored in RAM 250 for the particular sensor of force sensor array 100 currently being evaluated. This information is used to translate the measured current through an individual sensor to a value accurately representing the force being placed on that sensor. This is necessary because the output voltage of each sensor of the force sensor array 100 is inversely and logarithmically proportional to the applied force, and the response varies between individual sensors due to unavoidable manufacturing variances. More specifically, within the RAM 250 is stored a two-vector data array previously loaded by use of a PC and other suitable test equipment. In this array, a first vector applies to each sensor, and a second vector applies to each possible input data value from a particular sensor. Contained in each storage location within the data array is the appropriate output value.
  • a counter incremented with each iteration of the loop comprising steps 310, 312, 314, 316 and 318 is taken as a first pointer and the value from the sensor measurement is taken as a second pointer to the proper output data stored in the two-vector data array.
  • the value pointed to is added to the value representing the total weight measured by the force sensor array 100.
  • Steps 320, 322, 324, 326, 328, and 330 serve to test the total instantaneous force from the scan of the force sensor array 100 against two preset values stored in RAM 250. If a "maximum allowable force" (MAF) has been exceeded, a recognizable tone is produced by the annunciator 270. If the total force is less than the MAF, but greater than a predetermined proportion of the MAF, a clearly different tone is produced. If the total force is less than the predetermined proportion of the MAF, no tone is produced.
  • the program can be designed to monitor forces in desired localized areas rather than over the entire foot. Step 305 clears the storage location for total force. Since the next byte should be a synchronizing byte, it must be wasted.
  • modified hourglass cutouts 199 are removed from the film substrate 124, 134 to increase the flexibility of the force sensor array and allowing it to operatively conform to the user's foot yet provide mechanical isolation for the pressure sensitive coating layers 128, 138.
  • the actual geometric configuration of the cutout may change depending on the substrate material used and the length, width and thickness of the material.
  • the foot force measurement system described above is capable of measuring the instantaneous force on all of the individual force sensors within force sensor array 100 during a scan that takes place at regular, predetermined time intervals.
  • the scan rate is fast enough to assure a multiplicity of scans for any foot strike and thus capture any significant instantaneous force value. Consequently, a time-based plot of force on the entire foot or any part thereof may be produced for each foot strike.
  • the force centroid or balance point of forces placed on a foot or portions of a foot may be computed for each scan of force sensor array 100 because the relative position of each of the sensors within force sensor array 100 is fixed. Therefore, a time-based two-coordinate plot of the path of the centroid may be produced for each foot strike.
  • the foot force measurement system of the present invention may be used as a foot force monitor by persons with prosthetic bone or joint implants and fractures who need to carefully control the weight placed on an affected leg during a recovery period.
  • the individual uses crutches or a walker for physical support and, guided by audible tones from the annunciator 270, can control the amount of weight placed on the affected leg.
  • the foot force measurement system of the present invention also has the capability of generating and storing computer data records which, for example, may include the date and time of system turn on and turn off, and the number of foot strikes of a minimum useful force. When the stored data is reviewed following a period of usage that may extend for several weeks, for example, clear indications are provided regarding the extent of system usage and adherence by the wearer to a prescribed course of therapy.
  • the foot force measurement system of the present invention may also be used to alert the staff of a nursing center when patients who are prone to confusion or are otherwise at risk of falling attempt to stand and walk without assistance.
  • the force is detected by the force sensor array 100 fitted into flexible footwear typically worn by such patients. This would trigger a suitable display and annunciator on a computer console located at the central nurses' station to provide an early warning of a patient's attempt to rise from his or her bed.
  • the foot force measurement system of the present invention may also find application as a guide to fitting and adjustment of a prosthetic leg. It may also be used in training a patient in use of a prosthesis. In this instance, the force sensor array 100 can be placed between the prosthetic foot and a shoe or between the end of the limb and the prosthetic device.
  • the foot force measurement system of the present invention may also be used to provide runners and other athletes instantaneous and continuous measurements of their power output and pace, as measured by frequency of foot strikes. These measurements can be compared to historical values for the current wearer and others so that appropriate and timely adjustments in pace or other running techniques may be made. Deviations of force centroid path or force-time curve from normal values for the individual wearer can be detected. Such deviations imply impending injury, and when they occur, a warning may be sounded in time to avoid an injury.
  • the foot force measurement system of the present invention may also find application in weight loss programs to monitor the wearer's compliance with an established exercise schedule.
  • the foot force measurement system of the present invention may be used to detect lower extremity abnormalities or improper footwear and to monitor the result of corrective measures. This is done by comparing a patient's force-time plot(s) and/or the force centroid path plot with normal plots of these parameters.
  • the precise functional information provided by the system of the present invention can be used to quantify and display well- understood anatomical conditions. Use of the present invention to measure and chart a statistically significant number of subjects could produce detailed standards for subsequent comparison not otherwise available. By comparing individual plots with known standards developed through use of the foot force measurement system of the present invention, a wider range of problems could be detected earlier and more accurately than is presently possible.

Abstract

A self-contained system for measuring forces applied by the foot of a user includes a force sensor array (100) positioned within the user's shoe (10) between the foot and the inner sole of the shoe, the force sensor array including a multiplicity of individual force sensors (123) arranged in a pattern that covers the area of contact between the sole of the user's foot and the inner sole of the shoe, an electronic circuit module (500) removably attached to the side of the shoe, and a flat interconnecting cable (102) for electrically coupling the force sensor array to the electronic circuit module. An annunciator (270) audibly signals the user when a force on the foot greater than a predetermined threshold force is sensed.

Description

SYSTEM FOR CONTINUOUSLY MEASURING FORCES APPLIED BY THE FOOT
Field of the Invention This invention relates generally to foot pressure sensors and more particularly to a system that may be employed by orthopedic surgeons, their patients, physical therapists, athletes, coaches, trainers, and others to measure forces applied by the foot.
Background of the Invention Controlling the weight placed on an affected leg while moving about can prevent injury and speed recovery of patients recovering from certain trauma or orthopedic procedures. A person is able to perceive a changing relative weight on a foot, but cannot reliably sense how much constant weight is actually being loaded. That is, an individual's own senses cannot reliably detect how much actual constant weight he or she is placing on a foot. This essential weight information must therefore be provided by some type of external or artificial device.
Forces applied by the foot are not always evenly distributed over the entire surface or sole of the foot. They are usually, but not always, concentrated at the heel or ball of the foot, and they are also usually not applied to these two areas at the same time. A typical walking or running foot strike first loads the heel and then the ball of the foot. In other situations, such as when performing an athletic maneuver, the weight placed on the foot will shift in different patterns. The specific location on the sole of the foot where forces are present, the times at which those forces occur, and the magnitude of those forces are of interest in a number of situations.
Many devices have been designed to measure forces applied by the foot. These include devices for measuring applied forces that are coincident with the position of the leg and body during walking or running, for measuring peak pressure to alert sensory impaired individuals such as diabetics, for measuring the total force applied by the foot, and for measuring forces applied by certain areas of the foot for various purposes.
Such foot force measurement devices are typically heavy and cumbersome and, thus, act to restrict the wearer's movements. Devices which employ an electronic package strapped to the wearer's leg above the ankle and electrically connected to a foot sensor reguire extra effort when attaching or removing the device. Although this extra effort may seem insignificant, it is never¬ theless an inconvenience that may prompt wearer's of such devices to neglect their use. Further, these bulky devices chafe the wearer's skin, are prone to snagging, and are subject to failure resulting from stress on the electrical cable that connects the electronic package to the foot sensor. Other devices employ a stationary foot sensor pad and are therefore only suited for use in a laboratory.
All of the known foot force measurement devices function to convert mechanical force into a suitable signal medium, usually electrical signals. Consequently, the devices can be conveniently categorized according to the type of sensor used to convert changes in mechanical force to changes in electrical signals. Accordingly, these types of sensors include pneumatic or hydraulic fluid activated switches, strain gauge sensors that respond to mechanical deformation, single direct electronic force sensors, multiple direct electronic force sensors with random spacing, and multiple direct electronic force sensors with regular spacing. Pneumatic and hydraulic sensors are prone to produce inaccurate readings because changes in internal pressure are not necessarily proportional to changes in force. An accurate hydraulic sensor can be constructed if the fluid is displaced from a containing structure which itself, not tι_e fluid, supports the applied forces, and the force reguired to activate a switch or sensor is very small compared to the force being measured. Exemplary of such sensors are those taught in German patent 3631-923-A to Ernst and in U.S. Patent No. 3,974,491 to Sipe. Another way to construct an accurate fluid sensor is to use rigid plates which limit the applied force to a constant area of fluid contact, as taught in U.S. Patent No. 3,791,375 to Pfeiffer. In such sensors, the fluid pressure is proportional to the applied force. However, these sensors are disadvantageous due their bulkiness and weight.
The sensors which measure mechanical deformation of structural elements supporting the wearer's foot by use of electrical wire or ribbon type strain gauges accurately measure weight, but they are also disadvantageous because of their bulk and weight. Exemplary of these sensors are those taught by Donald Endicott et al. , "Leg Load Warning System for the Orthopedically Handicapped," Medical and Biological Engineering (May, 1974), S. Miyazaki and H. Iwakura, "Foot-Force Measuring Device for Clinical Assessment of Pathological Gait," Medical and Biological Engineering and Computing (July, 1978) , and G.A. Spolek and F.G. Lippert, "An Instrumented Shoe-A Portable Force Measuring Device," J. Biomechanics (Great Britain, June, 1976) .
All of the above-mentioned direct electronic force sensor devices are essentially identical to a type of microphone used in telephones. In this device, the acoustic force compresses a partially conductive material (carbon granules) and thereby reduces its electrical resistance. A force sensor based on this concept can be constructed by forming thin electrodes on two plastic films and then covering the electrodes with a thin layer of suitable partially conductive material. When the two coated films are positioned so that the two layers of partially conductive material are in contact, the electrical resistance through the sensor from electrode to electrode varies inversely with a compressing force on the sensor. This is because as the coating is pressed with greater force, the electrical current path becomes broader due to increased area of contact. This effect occurs with any conductive material, but materials useful as active elements in practical force sensors must have a relatively high electrical resistance. Such thin film electronic force sensors have the advantages of simplicity, compactness, and light weight. Single direct electronic force sensors, such as that taught in German patent 2656-864, cannot be corrected for variations in response from one part of the sensor to another. They cannot separately measure forces on different parts of the foot. It is also possible that simple bending of this type of sensor will produce a signal inappropriately indicating an applied force.
The multiple direct electronic force sensor system taught in U.S. Patent No. 4,813,436 to Au measure forces only where the individual sensors are attached to the foot. If the measurements are used to compute total force applied to the foot and are variously spaced, the contributory area of each sensor must be used in the necessary computation of the total force applied. This system is disadvantageous in that the relative position of each sensor must be separately determined for each person on which the sensor is used.
This problem is solved by the multiple direct electronic force sensors taught in U.S. Patent Nos. 4,734,034, 4,856,993, and 5,033,291 to Maness et al. in which the sensors are regularly spaced. Since the relative position of each sensor is fixed, a mathematical description of the location of each sensor can easily be made part of a permanent computer database. These sensor arrays are very thin and very light weight, but they cannot conform to a compound curved surface without wrinkling. Such wrinkled or folded thin film sensor arrays will produce erroneous results. For example, if the sensor array is folded so that two separate sensors are positioned one above the other, they both measure the same force. This is an obvious error. A folded sensor array may produce an electrical signal from the folding alone, another obvious error. Folding or wrinkling also subjects the sensor array to severe fatigue stress, which can lead to early and sudden failure.
A practical sensor array preferably includes several hundred individual force sensors. The problem of electrically connecting this number of individual sensors to data acquisition circuitry is a significant one. A simple connection scheme would require as many electrical connections to the circuitry sensors, plus one common connection. However, the circuitry described by John A. Purbrick, "A Force Transducer Employing Conductive Silicon Rubber," First Robot Vision and Sensors Conferences, Stratford-on-Avon, England (April, 1981) , makes a more efficient connection method possible. This prior art circuit can measure current through individual force sensors in a two-vector array of rows and columns with a top electrode of all sensors in each column commonly connected and a bottom electrode of all the sensors in each row likewise commonly connected. If such an array has equal numbers of columns and rows, the number of connections to circuitry is reduced to twice the square root of the number of sensors. The Purbrick method is not as efficient when employing other ratios of columns to rows of sensors, but it nevertheless represents an efficient method for interconnecting the sensor array of the present invention. A similar method is taught by W.D. Hillis, "Active Touch Sensing," Artificial Intelligence Laboratory Memo 629, M.I.T. (April, 1981).
Summary of the Invention
It would therefore be advantageous to provide a self- contained force measurement system for continuously sampling the magnitude and distribution of forces that are present on the bottom of one or both feet of the user when engaged in various activities.
It would further be advantageous to provide such a force measurement system that does not unduly impede walking, running or other ordinary movements of the user.
It would further be advantageous to provide such a force measurement system that is self-contained for use away from a laboratory or clinic and that is capable of annunciating appropriate weight bearing conditions, of generating computer data for future reference and analysis, and be capable of transmitting this computer data by wireless means to remotely located equipment.
Devices in accordance with the present invention provide a force measurement system useful to the medical patient, attendant physician, physical therapist, prosthetist, orthotist, podiatrist, athlete, sports trainer, coach or research professional interested in carefully studying or managing a wide range of problems of the human lower extremity. In accordance with an embodiment of the present invention, a self-contained system is provided for measuring forces applied by the foot of a user, whereby a force sensor array is positioned relative to a user's foot, thus allowing the measurement of the forces applied by the foot as weight is applied while the user is standing, walking or running. The force sensor array is comprised of a multiplicity of individual force sensors arranged so the force sensor array will operatively conform to the user's foot where the force is applied. Furthermore, a force analysis unit is provided for measuring the force applied to the force sensor array by the user as well as an interconnection device for transferring one or more signals related to the force from the sensor array to the force analysis unit or electronic circuit module. The force analysis unit primarily serves the purpose of substantially continuously monitoring signals from the force sensor array to obtain information which is indicative of the force sensed by each individual force sensor on a multiplicity of force sensors which make up the force sensor array. In accordance with an additional embodiment of the present invention, the individual force sensors are arranged in a wrinkle resistant pattern that covers a substantial area of contact of the user's foot. This prevents inadvertent force readings as a result of wrinkling under the foot.
In accordance with an additional embodiment of the present invention, the force sensor array is comprised of a substrate material so rigid as to not operatively conform to the foot in the absence of a removed cutout portion. This cutout portion of the substrate material allows the force sensor array to operatively conform to the user's foot when force is applied, thus providing additional comfort to the user. Furthermore, these cutouts provide flexibility to the force sensor array, thus preventing wrinkling and subsequent damage to '-he force sensor array or erroneous force readings.
In accordance with a more preferred embodiment of the present invention, an electronic circuit module, or force analysis means, is adapted for removable attachment to foot related apparel, such as a shoe, bootie, slipper or prosthetic device.
In accordance with a more preferred embodiment of the present invention, the force analysis unit is comprised of scanning circuitry for scanning the force sensor array and a central processing unit for executing instructions and controlling the scanning circuitry and for processing force and pressure information provided by either one or a multiplicity of force sensors in the force sensor array. Furthermore, a read-only memory device is coupled to the central processing unit for storing programs and subroutines of instructions to be executed by the central processing unit during a system boot period of operation. Additionally, a random access memory unit is provided for storing additional routines and subroutines of instructions to be executed by the central processing unit subsequent to the system boot period of operation and for storing the usage data.
In accordance with a preferred embodiment of the present invention, a clock or time measuring device is attached to the central processing unit for providing date and time of day information thereto. This allows therapists or doctors to evaluate when the force sensing unit was used and for what duration and when forces were applied.
In accordance with an improved embodiment of the present invention, an annunciator device such as a beeper or horn is used which provides an audible signal to the user during certain preprogrammed system operating conditions. Further, the central processing unit may be programmed for accumulating the forces sensed by each one or by a multiplicity of individual force sensors in the force array which can compare the accumulated force to a predetermined threshold force. If the accumulated force exceeds the predetermined threshold force, the annunciator will audibly provide a signal to the user.
In accordance with a further improved embodiment of the present invention, a wireless data transmitter unit is provided for coupling the central processing unit to a remotely located computer, thus enabling the transfer of selected information, including the force data, between the central processing unit and the external computer.
In accordance with a preferred embodiment of the present invention, a force sensor array is provided which is positioned relative to a user's foot to measure the forces applied by the user. This force sensor array is comprised of both top and bottom electrode layers, the top and bottom layers including corresponding pluralities of substantially vertically coincident and individual sensor electrodes. The pluralities of individual sensor electrodes of each of the top and bottom electrode layers are arranged to form lines of sensor electrodes and the individual sensor electrodes of a given line of sensor electrodes are electrically serially connected by a conductive trace that follows a substantially nonlinear path. Furthermore, at least one partially conductive pressure sensitive coating is sandwiched between the top and bottom electrode layers. Accordingly, there are both top and bottom substrate layers overlying the top and bottom electrode layers, respectively, each of the top and bottom substrate layers comprising a plurality of geometric cutouts in areas not directly overlying the pluralities of individual sensor electrodes. The cutouts in the substrate serve the purpose of allowing the force sensor array to stretch in multiple horizontal directions simultaneously and to operatively conform to the user's foot when pressure is applied.
Furthermore, the system includes top and bottom conductive trace layers overlying the top and bottom electrode layers, respectively, each of the top and bottom conductive trace layers including a plurality of conductive traces, and each of the conductive traces being electrically connected through a corresponding one of the top and bottom substrate layers to a particular one of the lines of sensor electrodes of a corresponding one of the top and bottom electrode layers.
In accordance with a more preferred embodiment of the present invention, the individual sensor electrodes are spaced horizontally equidistant apart.
In accordance with yet a more preferred embodiment of the present invention, the pluralities of the individual sensor electrodes of each of the top and bottom electrode layers are arranged to form substantially parallel equidistant lines of sensor electrodes positioned diagonally with respect to a longitudinal axis of the shoe.
In accordance with an additional embodiment of the present invention, each of the top and bottom substrate layers comprises a dielectric film. In accordance with yet another embodiment of the present invention, each of the top and bottom substrate layers comprises a partially conductive pressure sensitive coating.
In accordance with a preferred embodiment of the present invention, each one of the plurality of cutouts in each of the top and bottom substrate layers is hexagonal in shape. In accordance with another preferred embodiment of the present invention, each one of the plurality of cutouts in each of the top and bottom substrate layers is shaped in a modified hourglass configuration. In accordance with a preferred embodiment of the present invention, a self-contained system for measuring forces applied by the foot of a user comprises a force sensor array positioned relative to a user's foot, the force sensor array comprising a multiplicity of individual force sensors arranged in a predetermined wrinkle resistant pattern that covers a substantial area of contact of the user's foot such that the force sensor array operatively conforms to the user's foot where force is applied.
Furthermore, the force sensors comprise a top and bottom electrode layer with the top and bottom electrode layers including corresponding pluralities of substantially vertically coincident spaced individual sensor electrodes. These pluralities of individual sensor electrodes of each of the top and bottom electrode layers are arranged to form substantially parallel equidistant lines of sensor electrodes positioned diagonally with respect to a longitudinal axis of the shoe. Further, the individual sensor electrodes of a given diagonal line of sensor electrodes are electrically serially connected by a conductive trace that follows a substantially nonlinear path. Additionally, at least one partially conductive pressure sensitive coating is sandwiched between the top and bottom electrode layers.
Furthermore, top and bottom substrate layers overlay the top and bottom electrode layers, respectively, each of the top and bottom substrate layers comprising a lattice structure having a plurality of cutouts in areas not directly overlying the pluralities of individual sensor electrodes. These cutouts are provided to allow the force sensor array to stretch in multiple horizontal directions simultaneously and to conform to the user's foot when pressure is applied.
Additionally, top and bottom conductive trace layers are provided which overlay the top and bottom electrode layers, respectively. Each of the top and bottom conductive trace layers include a plurality of conductive traces and each of the conductive traces are electrically connected through a corresponding one of the top and bottom substrate layers to a particular one of the diagonal lines of sensor electrodes of a corresponding one of the top and bottom electrode layers.
Furthermore, the force analysis unit for measuring a force applied to the force sensor array is adapted for attachment to foot related apparel and a method of interconnecting is provided for transferring one or more signals related to the force from the sensor array to the force analysis unit. The force analysis unit is operative for substantially continuously monitoring signals from the force sensor array to obtain information indicative of force sensed by the multiplicity of individual force sensors comprising the force sensor array.
In accordance with an additional embodiment of the present invention, a force sensor array is provided which comprises a first signal conducting plurality of spaced apart pressure sensing signaling devices so that a signal from each device relates to a force applied thereto. Furthermore, a second signal conducting plurality of spaced apart pressure sensing signaling devices are provided so that a first signal between a first device from the first plurality and a second device from the second plurality uniquely determines a force applied to the first and second devices. Thus, the first and second signal conducting pluralities are each arranged in diagonal rows in relation to a longitudinal axis of the array so that the devices in each row are electrically serially connected by a different conductive trace for transmission of a signal related to a force applied thereto. Furthermore, the system includes a partially conductive pressure sensitive device conducting the first signal between the first and second devices, and additionally including a substrate material attached to the first and second signal conducting pluralities, the substrate having a plurality of shaped cutouts allowing the force sensor array to smoothly conform to a pressure- applying object when pressure is applied. Additionally, the substrate contacts the first and second signal conducting pluralities in a manner capable of conducting a force to the first and second devices, wherein the conductive traces traverse a thickness of the substrate. Additionally, each first conductive trace connected to a first row of the first signal conducting plurality is capable of transmitting an electrical signal to a second conductive trace connected to a second row of the second signal conducting plurality through a unique pair of pressure sensing devices, one pressure sensing device of the pair from the first row and one pressure sensing device of the pair from the second row.
In accordance with a preferred embodiment of the present invention, the force sensor array includes diagonal rows for the first signal conducting plurality directed in a first direction while the diagonal rows for the second signal conducting plurality are directed in a second direction with the first and second directions substantially different.
Brief Description of the Drawings Figure 1 is a pictorial diagram of a shoe fitted with a force sensor array and an interconnected electronic circuit module in accordance with the present invention.
Figure 2 is a partial sectional pictorial diagram of the shoe of Figure 1 illustrating the position of the force sensor array within the shoe.
Figure 3 is an exploded sectional diagram of the force sensor array employed within the shoe of Figures 1 and 2. Figure 4 is a detailed diagram of a portion of the force sensor array of Figure 3 illustrating the planar arrangement of the conductive traces forming the top and bottom sensor electrodes and their relationship to pressure sensitive conductive coatings and removed areas of the substrates.
Figure 5 is a detailed diagram illustrating conductive traces on a top surface of a top substrate of the force sensor array of Figure 3. Figure 6 is a detailed diagram illustrating conductive traces on a bottom surface of the top substrate of the force sensor array of Figure 3.
Figure 7 is a detailed diagram illustrating conductive traces on a top surface of a bottom substrate of the force sensor array of Figure 3.
Figure 8 is a detailed diagram illustrating conductive traces on a bottom surface of the bottom substrate of the force sensor array of Figure 3.
Figure 9 is a sectional diagram illustrating the details of the interconnection between the force sensor array and electronic circuit module of Figures 1 and 2.
Figure 10 is an exploded pictorial diagram of the interconnection of Figure 9.
Figure 11 is a block diagram of circuitry employed in the electronic circuit module of Figures l and 2.
Figure 12 is a flow chart of a software routine performed by the circuitry of Figure 11 within the electronic circuit module of Figures 1 and 2 to enable the fθθt force measurement system of the present invention to function as a weight monitor.
Figure 13 is a detailed diagram illustrating the substrate material, force sensors, and a modified hourglass cutout configuration in the force sensor array.
Detailed Description of the Preferred Embodiment Referring now to Figures 1 and 2, there is shown a shoe 10 containing a force sensor array 100 and an electronic circuit module 500 connected thereto by means of a flat ribbon cable 102. Force sensor array 100 is arranged to cover a substantial area of contact between the bottom of the wearer's foot and foot apparel (e.g., shoe) 10. Although the use of a force sensor array in a shoe represents a preferred embodiment of the present invention, many similar types of foot apparel may utilize the same type of system. For example, the force sensor array may be used inside a sock, bootie, or attached to a prosthetic device to accomplish the same result of measuring and monitoring forces applied by the user's foot.
Additionally, although the preferred embodiment involves the measurement of forces between a foot and shoe, it should be appreciated that this device could be used to measure other forces, such as between the end of an amputated limb and a prosthetic device.
Electronic circuit module 500 is preferably clipped or otherwise attached to the side of shoe 10 that is opposite the other foot and slightly forward of the center thereof, where it is least likely to be damaged or to interfere with the normal physical activities of the wearer.
Referring now to Figure 3, covering layers 112 and 142 are used to hold the remaining parts of the force sensor array 100 together and to isolate them from contamination. Covering layers 112 and 142 can include, for example, a 1/16-inch thick, adhesive coated, closed cell vinyl foam tape such as 3M Scotchfoam 4726™. A conductive trace layer 122 includes a multiplicity of conductive traces, each of which is electrically connected through a substrate 124 to each line of a multiplicity of lines of sensor electrodes (123 in Figure 4) that are formed by a conductive trace layer 126 and a like number of contact points that are also formed by conductive trace layer 126. Similarly, a conductive trace layer 132 includes a multiplicity of conductive traces, each of which is electrically connected through a substrate 134 to each line of a multiplicity of lines of sensor electrodes (123 in Figure 4) formed by another conductive trace layer 136. Conductive trace layers 122, 126, 132, and 136 can be fabricated from any suitable electrically conductive material capable of being printed or otherwise deposited on substrates 124, 134. Substrates 124, 134 are dielectric films and can be fabricated from, for example, du Pont Kapton™ polyimide film material. Other films can also be used. Preferably, substrates 124 and 134 are fabricated from materials which are too rigid to operatively conform to a user's foot when no portions have been removed therefrom. However, when selected portions of substrates 124 and 134 are removed, as shown in Figures 5 and 13, the substrates are capable of operatively conforming to the user's foot, while simultaneously avoiding undesirable wrinkling. Pressure sensitive coating layers 128, 138 can comprise a commercially available partially conductive pressure sensitive coating, such as one of those designated as numbers 4407 and 4408 produced by Chomerics, Inc. of Woburn, MA. Referring now to Figure 4, hexagonal areas 130 of the substrates 124, 134 are removed to increase the flexibility of the assembled force sensor array 100, allow it to operatively conform to the user's foot, provide mechanical isolation for the individual sensors 123 comprising force sensor array 100, and allow contact of the adhesive coatings 114, 144. Although hexagonal cutouts 130 are a preferred embodiment of the present invention, any suitable geometric shape of cutout can be utilized which enhances the flexibility of the force sensor array 100. The actual geometric configuration is dependent on a number of variables including the substrate material, thickness of the substrate and total length and width of the material necessary for each particular application. Conductive trace layers 126, 136, which form individual force sensor electrodes 123, are prevented from directly contacting each other by the position and shape of pressure sensitive coatings 128, 138. The areas of the partially conductive pressure sensitive coatings 128, 138 are slightly larger than the sensor electrode areas, and the conductive traces connecting the individual force sensor electrodes 123 not covered by the pressure sensitive coatings 128, 138 do not come into contact because their positions are not coincident. The film substrates 124, 134 between the hexagonal or other geometric removed areas are wide enough to accommodate the various conductive traces, electrodes, and sensor areas. Narrower bands of the film substrates 124, 134 between the individual force sensors 123 of force sensor array 100 result in greater flexibility and provide better mechanical isolation of the individual sensors.
Referring now to Figure 5 and 6, conductive trace layer 122 on the top surface of film substrate 124 connects each line 121 of individual force sensor electrodes 123 formed by conductive trace layer 126 on the bottom surface of film substrate 124 to the electronic circuit module 500 of Figures 1 and 2. Electrical connections through the film substrate to conductive trace layer 126 on the bottom surface of film substrate 124 are represented as enlarged areas 117 at both ends of each conductive trace 101 of conductive trace layer 122.
Referring now to Figure 6, conductive trace layer 126 forms diagonal lines 121 of sensor electrodes 123 and contact areas for connection to the electronic circuit module 500. Electrical connections through the substrate 124 to conductive trace layer 122 on the top surface of film substrate 124 are represented as enlarged areas 127 located firstly between consecutive force sensor electrodes 123 and secondly under the contact areas 125 in connector tab 104. Thus, all of the individual force sensor electrodes 123 in a diagonal line 121 are commonly connected through a single conductive trace 101 of conductive trace layer 122 to electronic circuit module 500.
Referring now to Figure 7, conductive trace layer 136 forms lines of individual force sensor electrodes and contacts for connection to the electronic circuit module 500. Electrical connections through the substrate 134 to conductive layer 132 are represented as enlarged areas located firstly between consecutive individual force sensor electrodes and secondly under the contact areas of conductive trace layer 136 in connector tab 104. Thus, all of the individual force sensor electrodes in a line are commonly connected through a single conductive trace of conductive trace layer 132 to electronic circuit module 500.
Referring now to Figure 8, conductive traces of conductive trace layer 132 connect each line of individual force sensor electrodes formed by conductive trace layer 136 to the electronic circuit module 500. Electrical connections through the substrate 134 to conductive trace layer 136 are represented as enlarged areas at both ends of each trace of layer 132.
Referring now generally to Figures 5-8, the layout of the force sensors 123, lines of individual force sensor electrodes formed by conductive traces of conductive trace layers 126, 136, and conductive traces 122, 132 permit trimming the array to fit any shape or size of a user's foot or shoe. The diagonal arrangement of force sensors 128, 138 results in a smaller number of electrical leads in conductive trace layers 122, 132 than would be required if the sensors 128', 138 were perpendicularly arranged. This is because the ratio of the length to width of the human foot is about 3.5, and a similar ratio of rows to columns would result. In the diagonal sensor layout of the present invention, the ratio of rows to columns can be closer to unity. The honeycomb pattern of the substrates produces meandering nonlinear courses for electrical conductive leads in conductive trace layers 122, 132. This prevents a stiff conductive material such as copper from excessively restricting the flexing of the force sensor array 100 along the general direction of the leads.
Referring now to Figures 9 and 10, a portion of a standard two-sided printed circuit board 550 extends to the exterior periphery of electronic circuit module 500, together with conductive leads 552 to form contacts arranged to coincide with contact areas of electrode lines formed by conductive trace layers 126, 136. The connector portion of force sensor array 100 and the printed circuit board 550 are clamped between facing halves 502 of electronic circuit module 500. Any conventional mechanical fastening device may be used to hold the facing halves 502 of electronic circuit module 500 together. Elastic material 504 evenly distributes the clamping force. A thickened center of elastic material 504 compensates for any bending that may take place in the two facing halves 502 of electronic circuit module 500. Guides 506 position the end portions of the force sensor array 100, while the two facing halves 502 of electronic circuit module 500 are tightened. The clearance between the connector parts 104 of substrates 124, 134 to guides 506 is small enough to assure alignment between each of the connector contact areas of electrode lines formed by conductive trace layers 126, 136 and contact areas 552. The conductive traces of conductive trace layers 122, 132 are as closely spaced as practical to make the cable 102 portion of substrates 124, 134 as narrow as possible. Curving the re-entrant edges of substrates 124, 134 reduces fatigue stress. Referring now to Figure 11, force sensor array 100 is connected to electronic circuit module 500, which contains scanning circuitry 210 controlled by a central processing unit (CPU) 220. CPU 220 executes software routines stored in a read-only memory (ROM) 230 during system boot and thereafter executes software programs stored in a random access memory (RAM) 250. An interface 240 is used to up¬ load data stored in RAM 250 to an external personal computer (PC) and to down-load operational data and software programs from a PC to RAM 250. A time of day and calendar clock 260 provides time and date information to CPU 220. An annunciator 270 is controlled by CPU 220 for signalling, for example, the occurrence of measured forces exceeding preset thresholds, hardware fault conditions, and operator errors. In addition, a wireless data transmitter (not shown) may be included to interface electronic circuit module 500 to external electronic equipment for the purpose of transferring data and other information between electronic circuit module 500 and the external electronic equipment.
Referring now to Figure 12, there is shown a software program executed by CPU 220 contained within electronic circuit module 500 to facilitate operation of the foot force measurement system of the present invention as a weight monitor. Initialization step 302 can be a conventional software initialization step involving setting memory areas to proper values, checking hardware configurations, etc. Step 304 reads one byte of data from the scanning circuitry 210. This data represents either the result of a single instantaneous reading from an individual sensor within force sensor array 100 or a special synchronizing value to mark the beginning or end of a scan of the entire force sensor array 100. Step 306 tests the data byte for the special value. When this value is the special synchronizing value, the next byte of data read will be force data from a known sensor of force sensor array 100. The next byte is not read until it is time to do so, as determined by steps 307 and 308. The force sensor array 100 can be scanned many times per second. The loop formed by steps 310-318 is executed as many times as there are individual sensors within the force sensor array 100. The current through each of the sensors of force sensor array 100 is measured in a predetermined order and consequently the individual force sensor being addressed can be associated to stored data representing its location within the force sensor array 100. Step 312 tests for the special synchronizing byte, and if it is found at this point in the routine, it is a clear error. Step 314 makes an appropriate data record for future reference, annunciates the error, and resets a loop counter to point to the first sensor. Step 316 extracts information stored in RAM 250 for the particular sensor of force sensor array 100 currently being evaluated. This information is used to translate the measured current through an individual sensor to a value accurately representing the force being placed on that sensor. This is necessary because the output voltage of each sensor of the force sensor array 100 is inversely and logarithmically proportional to the applied force, and the response varies between individual sensors due to unavoidable manufacturing variances. More specifically, within the RAM 250 is stored a two-vector data array previously loaded by use of a PC and other suitable test equipment. In this array, a first vector applies to each sensor, and a second vector applies to each possible input data value from a particular sensor. Contained in each storage location within the data array is the appropriate output value. Stated in other words, a counter incremented with each iteration of the loop comprising steps 310, 312, 314, 316 and 318 is taken as a first pointer and the value from the sensor measurement is taken as a second pointer to the proper output data stored in the two-vector data array. The value pointed to is added to the value representing the total weight measured by the force sensor array 100. Following execution of the loop comprising steps 310, 312, 314, 316 and 318, a single scan of the force sensor array 100 has been completed, and the total force on the force sensor array 100 has been computed.
Steps 320, 322, 324, 326, 328, and 330 serve to test the total instantaneous force from the scan of the force sensor array 100 against two preset values stored in RAM 250. If a "maximum allowable force" (MAF) has been exceeded, a recognizable tone is produced by the annunciator 270. If the total force is less than the MAF, but greater than a predetermined proportion of the MAF, a clearly different tone is produced. If the total force is less than the predetermined proportion of the MAF, no tone is produced. Alternatively, the program can be designed to monitor forces in desired localized areas rather than over the entire foot. Step 305 clears the storage location for total force. Since the next byte should be a synchronizing byte, it must be wasted. This is done by step 304 before beginning execution of the next loop comprising steps 310, 312, 314, 316 and 318. Referring now to Figure 13, modified hourglass cutouts 199 are removed from the film substrate 124, 134 to increase the flexibility of the force sensor array and allowing it to operatively conform to the user's foot yet provide mechanical isolation for the pressure sensitive coating layers 128, 138. The actual geometric configuration of the cutout may change depending on the substrate material used and the length, width and thickness of the material.
In use, the foot force measurement system described above is capable of measuring the instantaneous force on all of the individual force sensors within force sensor array 100 during a scan that takes place at regular, predetermined time intervals. The scan rate is fast enough to assure a multiplicity of scans for any foot strike and thus capture any significant instantaneous force value. Consequently, a time-based plot of force on the entire foot or any part thereof may be produced for each foot strike. The force centroid or balance point of forces placed on a foot or portions of a foot may be computed for each scan of force sensor array 100 because the relative position of each of the sensors within force sensor array 100 is fixed. Therefore, a time-based two-coordinate plot of the path of the centroid may be produced for each foot strike. Force placed on the foot in excess of that required to counteract the individual's weight may be assumed to be due to acceleration resulting from work done by that individual. This acceleration can be used to compute an instantaneous resultant velocity from which the mechanical power produced by the individual can be computed. Using these primary measurements and computations, information can be produced which is useful in circumstances including but not limited to those discussed below.
The foot force measurement system of the present invention may be used as a foot force monitor by persons with prosthetic bone or joint implants and fractures who need to carefully control the weight placed on an affected leg during a recovery period. The individual uses crutches or a walker for physical support and, guided by audible tones from the annunciator 270, can control the amount of weight placed on the affected leg. In addition to annunciating individually set optimum and excessive weight thresholds, the foot force measurement system of the present invention also has the capability of generating and storing computer data records which, for example, may include the date and time of system turn on and turn off, and the number of foot strikes of a minimum useful force. When the stored data is reviewed following a period of usage that may extend for several weeks, for example, clear indications are provided regarding the extent of system usage and adherence by the wearer to a prescribed course of therapy.
The foot force measurement system of the present invention may also be used to alert the staff of a nursing center when patients who are prone to confusion or are otherwise at risk of falling attempt to stand and walk without assistance. When the patient first places weight on either foot in an effort to stand, the force is detected by the force sensor array 100 fitted into flexible footwear typically worn by such patients. This would trigger a suitable display and annunciator on a computer console located at the central nurses' station to provide an early warning of a patient's attempt to rise from his or her bed. The foot force measurement system of the present invention may also find application as a guide to fitting and adjustment of a prosthetic leg. It may also be used in training a patient in use of a prosthesis. In this instance, the force sensor array 100 can be placed between the prosthetic foot and a shoe or between the end of the limb and the prosthetic device.
The foot force measurement system of the present invention may also be used to provide runners and other athletes instantaneous and continuous measurements of their power output and pace, as measured by frequency of foot strikes. These measurements can be compared to historical values for the current wearer and others so that appropriate and timely adjustments in pace or other running techniques may be made. Deviations of force centroid path or force-time curve from normal values for the individual wearer can be detected. Such deviations imply impending injury, and when they occur, a warning may be sounded in time to avoid an injury.
The foot force measurement system of the present invention may also find application in weight loss programs to monitor the wearer's compliance with an established exercise schedule. The foot force measurement system of the present invention may be used to detect lower extremity abnormalities or improper footwear and to monitor the result of corrective measures. This is done by comparing a patient's force-time plot(s) and/or the force centroid path plot with normal plots of these parameters. The precise functional information provided by the system of the present invention can be used to quantify and display well- understood anatomical conditions. Use of the present invention to measure and chart a statistically significant number of subjects could produce detailed standards for subsequent comparison not otherwise available. By comparing individual plots with known standards developed through use of the foot force measurement system of the present invention, a wider range of problems could be detected earlier and more accurately than is presently possible.
While the invention has been described in combination with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications, and variations as fall within the spirit and broad scope of the claims.

Claims

What is claimed is;
1. A self-contained system for measuring forces applied by the foot of a user, the system comprising:
(a) a force sensor array positioned relative to a user's foot so as to measure the forces applied by said foot, said force sensor array comprising a multiplicity of individual force sensors arranged such that said force sensor array conforms to the user's foot where force is applied; (b) force analysis means for monitoring signals from said force sensor array to obtain information indicative of force sensed by said multiplicity of individual force sensors comprising said force sensor array; and
(c) interconnection means for transferring one or more signals related to the force from said force sensor array to said force analysis means.
2. The system as claimed in claim 1, wherein said individual force sensors are arranged in a wrinkle resistant pattern that covers a substantial area of contact of the user's foot.
3. The system as claimed in claim 1, wherein said force sensor array comprises a substrate material which is so rigid that it will not operatively conform to the user's foot unless a cutout portion of said substrate material is removed in order to allow said force sensor array to operatively conform to the user's foot when force is applied.
4. The system as claimed in claim 1, wherein said force analysis means is adapted for removable attachment to foot related apparel.
5. The system as claimed in claim 1, wherein said force analysis means comprises:
(a) scanning circuitry for scanning said force sensor array;
(b) central processing means for executing instructions controlling said scanning circuitry and for processing said information indicative of the force sensed by said multiplicity of individual force sensors comprising said force sensor array to obtain force data;
(c) read-only memory means coupled to said central processing means for storing routines and subroutines of instructions to be executed by said central processing means during a system boot period of operation; and
(d) random access memory means for storing additional routines and subroutines of instructions to be executed by said central processing means subsequent to said system boot period of operation and for storing said force data.
6. The system as claimed in claim 5, further comprising clock means coupled to said central processing means for providing date and time of day information thereto.
7. The system as claimed in claim 5, further comprising: annunciator means for providing an audible signal to the user during certain system operating conditions; wherein said central processing means is operative for accumulating said force sensed by at least one of said multiplicity of individual force sensors and for comparing the accumulated force to a predetermined threshold force and for causing said annunciator means to audibly indicate an accumulated force that exceeds said predetermined threshold force.
8. The system as claimed in claim 5, further comprising wireless data transmitter means for coupling said central processing means to a remotely located computer to enable the transfer of selected information, including said force data, between said central processing means and said external computer.
9. A force sensor array comprising:
(a) top and bottom electrode layers, said top and bottom electrode layers including corresponding pluralities of substantially vertically coincident individual sensor electrodes, the pluralities of individual sensor electrodes of each of said top and bottom electrode layers being arranged to form lines of sensor electrodes, the individual sensor electrodes of a given line of sensor electrodes being electrically serially connected by a conductive trace that follows a substantially nonlinear path;
(b) at least one partially conductive pressure sensitive coating sandwiched between said top and bottom electrode layers;
(c) top and bottom substrate layers overlying said top and bottom electrode layers, respectively, each of said top and bottom substrate layers comprising a plurality of cutouts in areas not directly overlying said pluralities of individual sensor electrodes, said cutouts allowing the force sensor array to stretch and flex in multiple horizontal directions simultaneously and to conform to the shape of the pressure-applying object when pressure is applied; and
(d) top and bottom conductive trace layers overlying said top and bottom electrode layers, respectively, each of said top and bottom conductive trace layers including a plurality of conductive traces, each of said conductive traces being electrically connected through a corresponding one of said top and bottom substrate layers to a particular one of the said lines of sensor electrodes of a corresponding one of said top and bottom electrode layers.
10. The system as claimed in claim 9, wherein said individual sensor electrodes are spaced horizontally equidistant apart.
11. The system as claimed in claim 9, wherein the pluralities of said individual sensor electrodes of each of said top and bottom electrode layers are arranged to form substantially parallel equidistant lines of sensor electrodes positioned diagonally with respect to a longitudinal axis of said shoe.
12. The system as claimed in claim 9, wherein each of said top and bottom substrate layers comprises a dielectric film.
13. The system as claimed in claim 9, wherein each of said top and bottom substrate layers comprises a partially conductive pressure sensitive coating.
14. The system as claimed in claim 9, wherein each one of said plurality of cutouts in each of said top and bottom substrate layers is hexagonal in shape.
15. The system as claimed in claim 9, wherein each one of said plurality of cutouts in each of said top and bottom substrate layers is a modified hourglass configuration.
16. A self-contained system for measuring forces applied by the foot of a user, said system comprising:
(a) a force sensor array positioned for contact with the bottom of a user's foot, said force sensor array comprising a multiplicity of individual force sensors arranged in a wrinkle resistant pattern that covers a substantial area of contact of the user's foot such that said force sensor array operatively conforms to the user's foot where force is applied; (b) said force sensors comprising:
(i) top and bottom electrode layers, said top and bottom electrode layers including corresponding pluralities of substantially vertically coincident spaced individual sensor electrodes, the pluralities of individual sensor electrodes of each of said top and bottom electrode layers being arranged to form substantially parallel equidistant lines of sensor electrodes positioned diagonally with respect to a longitudinal axis of said shoe, the individual sensor electrodes of a given diagonal line of sensor electrodes being electrically serially connected by a conductive trace that follows a nonlinear path;
(ii) at least one partially conductive pressure sensitive coating sandwiched between said top and bottom electrode layers; (iϋ) top and bottom substrate layers overlying said top and bottom electrode layers, respectively, each of said top and bottom substrate layers comprising a lattice structure having a plurality of cutouts in areas not directly overlying said pluralities of individual sensor electrodes, said cutouts allowing the force sensor array to stretch and flex in multiple horizontal directions simultaneously and to conform to the user's foot when pressure is applied; and
(iv) top and bottom conductive trace layers overlying said top and bottom electrode layers, respectively, each of said top and bottom conductive trace layers including a plurality of conductive traces, each of said conductive traces being electrically connected through a corresponding one of said top and bottom substrate layers to a particular one of the said diagonal lines of sensor electrodes of a corresponding one of said top and bottom electrode layers; and (c) force analysis means for measuring a force applied to said force sensor array, adapted for attachment to foot related apparel; and
(d) interconnection means for transferring one or more signals related to the force from said sensor array to said force analysis means, said force analysis means being operative for substantially continuously monitoring signals from said force sensor array to obtain information indicative of force sensed by said multiplicity of individual force sensors comprising said force sensor array.
17. A force sensor array, comprising: (a) a first signal conducting plurality of spaced apart pressure sensing signaling devices so that a signal from each said devices relates to a force applied thereto; (b) a second signal conducting plurality of spaced apart pressure sensing signaling devices so that a first signal between a first device from said first plurality and a second device from said second plurality uniquely determines a force applied to said first and second devices; wherein said first and second signal conducting pluralities are each arranged in diagonal rows in relation to a longitudinal axis of the array so that the devices in each row are electrically serially connected by a different conductive trace for transmission of a signal related to a force applied thereto;
(c) a partially conductive pressure sensitive means conducting the first signal between said first and second devices; (d) substrate means attached to said first and second signal conducting pluralities, said substrate having a plurality of shaped cutouts allowing said force sensor array to smoothly conform to a pressure-applying object when pressure is applied, said substrate contacting said first and second signal conducting pluralities in a manner capable of conducting a force to said first and second devices; wherein said conductive traces traverse a thickness of said substrate; and wherein each first said conductive trace connected to a first row of said first signal conducting plurality is capable of transmitting an electrical signal to a second said conductive trace connected to a second row of said second signal conducting plurality through a unique pair of said pressure sensing devices, one said pressure sensing device of said pair from said first row and one said pressure sensing device of said pair from said second row.
18. A force sensor array as claimed in claim 17, wherein said diagonal rows for said first signal conducting plurality are directed in a first direction and said diagonal rows for said second signal conducting plurality are directed in a second direction, said first and second directions substantially different.
PCT/US1994/000536 1993-01-14 1994-01-14 System for continuously measuring forces applied by the foot WO1994015530A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP94908597A EP0700270A1 (en) 1993-01-14 1994-01-14 System for continuously measuring forces applied by the foot
AU61629/94A AU684749B2 (en) 1993-01-14 1994-01-14 System for continuously measuring forces applied by the foot
US08/481,457 US5678448A (en) 1994-01-14 1994-01-14 System for continuously measuring forces applied by the foot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US004,732 1993-01-14
US08/004,732 US5323650A (en) 1993-01-14 1993-01-14 System for continuously measuring forces applied to the foot

Publications (1)

Publication Number Publication Date
WO1994015530A1 true WO1994015530A1 (en) 1994-07-21

Family

ID=21712244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/000536 WO1994015530A1 (en) 1993-01-14 1994-01-14 System for continuously measuring forces applied by the foot

Country Status (4)

Country Link
US (1) US5323650A (en)
EP (1) EP0700270A1 (en)
AU (1) AU684749B2 (en)
WO (1) WO1994015530A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004054220A1 (en) * 2004-11-02 2006-05-11 Hasomed Hard- und Software für die Medizin GmbH Patient shoe inertial sensor attachment system has holder on U shaped stirrup held round heel by tensioned straps
US9836118B2 (en) 2015-06-16 2017-12-05 Wilson Steele Method and system for analyzing a movement of a person
US20220031241A1 (en) * 2020-07-28 2022-02-03 Xsensor Technology Corporation Foot sensor and other sensor pads

Families Citing this family (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449002A (en) * 1992-07-01 1995-09-12 Goldman; Robert J. Capacitive biofeedback sensor with resilient polyurethane dielectric for rehabilitation
US5678448A (en) * 1994-01-14 1997-10-21 Fullen Systems, Inc. System for continuously measuring forces applied by the foot
US5485402A (en) * 1994-03-21 1996-01-16 Prosthetics Research Study Gait activity monitor
US6230501B1 (en) 1994-04-14 2001-05-15 Promxd Technology, Inc. Ergonomic systems and methods providing intelligent adaptive surfaces and temperature control
US5586557A (en) * 1994-05-31 1996-12-24 Bcam International, Inc. Functional ambulation performance scoring device
US5524637A (en) * 1994-06-29 1996-06-11 Erickson; Jon W. Interactive system for measuring physiological exertion
US5720200A (en) * 1995-01-06 1998-02-24 Anderson; Kenneth J. Performance measuring footwear
US5566479A (en) * 1995-03-21 1996-10-22 Gray; Frank B. Shoe contruction for use by diabetic persons
US5619186A (en) * 1995-04-03 1997-04-08 Cleveland Medical Devices Inc. Foot weight alarm
US5722287A (en) * 1995-05-31 1998-03-03 Forstein; Micah Aaron Video pedobarograph system
FI109652B (en) * 1995-06-06 2002-09-30 Finn Biomechanics Innovation O Method and apparatus for recording and analyzing forces affecting a body part
US6029358A (en) * 1995-09-11 2000-02-29 Dwayne L. Mason Solid state digital electronic shoe sizer
US5729905A (en) * 1995-09-11 1998-03-24 Dwayne L. Mason Foot measuring apparatus and circuitry to eliminate multiplexes and demultiplexers
US5678566A (en) * 1995-09-13 1997-10-21 Diagnostic Thermographics, Inc. Method and apparatus of thermographic evaluation of the plantar surface of feet
US5808433A (en) * 1995-09-29 1998-09-15 Honda Giken Kogyo Kabushiki Kaisha Method of generating gait of legged walking robot and system for controlling its locomotion
US6216545B1 (en) * 1995-11-14 2001-04-17 Geoffrey L. Taylor Piezoresistive foot pressure measurement
US5813142A (en) * 1996-02-09 1998-09-29 Demon; Ronald S. Shoe sole with an adjustable support pattern
US5736656A (en) * 1996-05-22 1998-04-07 Fullen Systems, Inc. Apparatus and method for measuring the magnitude and distribution of forces on the foot of a quadruped
IT1289231B1 (en) * 1996-12-04 1998-09-29 Ist Superiore Sanita EQUIPMENT FOR TELEMETRY OF FOOT-GROUND INTERACTION FORCES IN A WALKING SUBJECT.
US5878378A (en) * 1996-12-05 1999-03-02 Mountain Dynamics, Inc. Boot balance training device
US6031463A (en) * 1997-08-08 2000-02-29 Sanostep Gesellschaft Fur Innovative Gesundheitstechnik Mbh Load signaling device for a patient's foot
US5914659A (en) * 1997-08-27 1999-06-22 Herman; Edie Child's shoe fit sensor
US6001023A (en) * 1997-09-23 1999-12-14 Richard D. Sanchez Angle activated training device for golfers
US6611789B1 (en) 1997-10-02 2003-08-26 Personal Electric Devices, Inc. Monitoring activity of a user in locomotion on foot
US6882955B1 (en) 1997-10-02 2005-04-19 Fitsense Technology, Inc. Monitoring activity of a user in locomotion on foot
US6018705A (en) * 1997-10-02 2000-01-25 Personal Electronic Devices, Inc. Measuring foot contact time and foot loft time of a person in locomotion
US6298314B1 (en) 1997-10-02 2001-10-02 Personal Electronic Devices, Inc. Detecting the starting and stopping of movement of a person on foot
US6560903B1 (en) 2000-03-07 2003-05-13 Personal Electronic Devices, Inc. Ambulatory foot pod
US6122340A (en) 1998-10-01 2000-09-19 Personal Electronic Devices, Inc. Detachable foot mount for electronic device
US6876947B1 (en) 1997-10-02 2005-04-05 Fitsense Technology, Inc. Monitoring activity of a user in locomotion on foot
US6493652B1 (en) 1997-10-02 2002-12-10 Personal Electronic Devices, Inc. Monitoring activity of a user in locomotion on foot
US6077222A (en) * 1997-10-28 2000-06-20 Alere Incorporated Method and device for detecting edema
US5957867A (en) 1997-10-28 1999-09-28 Alere Incorporated Method and device for detecting edema
US5915386A (en) * 1997-10-28 1999-06-29 Alere Medical Incorporated Method and device for detecting edema
US6080106A (en) * 1997-10-28 2000-06-27 Alere Incorporated Patient interface system with a scale
US5875571A (en) * 1997-11-06 1999-03-02 Huang; Tien-Tsai Insole pad having step-counting device
LU90200B1 (en) 1998-01-21 1999-07-22 Iee Sarl Switching element in foil construction
LU90209B1 (en) * 1998-01-30 1999-08-02 Iee Sarl Pressure sensitive area sensor
US5945911A (en) * 1998-03-13 1999-08-31 Converse Inc. Footwear with multilevel activity meter
EP0970657B1 (en) * 1998-07-10 2004-06-09 RSscan Apparatus and method for measuring the pressure distribution generated by a three-dimensional object
US6517503B1 (en) 1998-09-18 2003-02-11 Becker Orthopedic Appliance Company Orthosis knee joint
US7410471B1 (en) 1998-09-18 2008-08-12 Becker Orthopedic Appliance Company Orthosis knee joint and sensor
US6287253B1 (en) 1999-06-25 2001-09-11 Sabolich Research & Development Pressure ulcer condition sensing and monitoring
US6195921B1 (en) * 1999-09-28 2001-03-06 Vinncente Hoa Gia Truong Virtual intelligence shoe with a podiatric analysis system
US6273863B1 (en) 1999-10-26 2001-08-14 Andante Medical Devices, Ltd. Adaptive weight bearing monitoring system for rehabilitation of injuries to the lower extremities
US6804571B2 (en) 2000-03-13 2004-10-12 Fullen Systems, Llc Method for computer aided orthotic inlay fabrication
US6413145B1 (en) * 2000-04-05 2002-07-02 Applied Materials, Inc. System for polishing and cleaning substrates
AU2002255568B8 (en) 2001-02-20 2014-01-09 Adidas Ag Modular personal network systems and methods
GB0128528D0 (en) * 2001-11-29 2002-01-23 Koninkl Philips Electronics Nv Shoe based force sensor and equipment for use with the same
AT412254B (en) * 2002-06-19 2004-12-27 Heimo Dr Clar DEVICE FOR MEASURING AND MONITORING THE PARTIAL LOAD OF ORTHOPEDIC AND ACCIDENTAL SURGERY PATIENTS
AU2003251983A1 (en) * 2002-07-08 2004-01-23 Ossur Engineering, Inc. Socket liner incorporating sensors to monitor amputee progress
US7736394B2 (en) 2002-08-22 2010-06-15 Victhom Human Bionics Inc. Actuated prosthesis for amputees
JP4808026B2 (en) 2002-08-22 2011-11-02 ヴィクソム ヒューマン バイオニクス インコーポレーテッド Prosthetic leg with drive source for patients with upper limb amputation
US8111165B2 (en) 2002-10-02 2012-02-07 Orthocare Innovations Llc Active on-patient sensor, method and system
US7186270B2 (en) * 2002-10-15 2007-03-06 Jeffrey Elkins 2002 Corporate Trust Foot-operated controller
CA2525530A1 (en) * 2003-05-14 2004-11-25 Tekscan, Inc. High temperature pressure sensitive device and method thereof
GB2405571B (en) * 2003-09-02 2006-10-25 Tariq Mirza A shoe and accessories therefor
US7815689B2 (en) 2003-11-18 2010-10-19 Victhom Human Bionics Inc. Instrumented prosthetic foot
US20050107889A1 (en) 2003-11-18 2005-05-19 Stephane Bedard Instrumented prosthetic foot
US6964205B2 (en) * 2003-12-30 2005-11-15 Tekscan Incorporated Sensor with plurality of sensor elements arranged with respect to a substrate
US20050171456A1 (en) * 2004-01-29 2005-08-04 Hirschman Gordon B. Foot pressure and shear data visualization system
US7896927B2 (en) 2004-02-12 2011-03-01 össur hf. Systems and methods for actuating a prosthetic ankle based on a relaxed position
US8057550B2 (en) 2004-02-12 2011-11-15 össur hf. Transfemoral prosthetic systems and methods for operating the same
US7355519B2 (en) * 2004-02-24 2008-04-08 Kevin Grold Body force alarming apparatus and method
US7526954B2 (en) * 2004-07-24 2009-05-05 Instep Usa, Llc Gait assistive system and methods for using same
US6993954B1 (en) * 2004-07-27 2006-02-07 Tekscan, Incorporated Sensor equilibration and calibration system and method
US20060116557A1 (en) * 2004-11-30 2006-06-01 Alere Medical Incorporated Methods and systems for evaluating patient data
CN101128167B (en) * 2004-12-22 2011-05-18 奥瑟Hf公司 Systems and methods for processing limb motion
US7277021B2 (en) * 2005-01-11 2007-10-02 Wisconsin Alumni Research Foundation Device and method for alerting a runner when a new pair of running shoes is needed
EP2340789B1 (en) 2005-02-02 2013-05-01 Ossur HF Methods and systems for gathering information regarding a prosthetic foot
US8801802B2 (en) 2005-02-16 2014-08-12 össur hf System and method for data communication with a mechatronic device
SE528516C2 (en) 2005-04-19 2006-12-05 Lisa Gramnaes Combined active and passive leg prosthesis system and a method for performing a movement cycle with such a system
CN101453964B (en) 2005-09-01 2013-06-12 奥瑟Hf公司 System and method for determining terrain transitions
US7632239B2 (en) * 2005-11-16 2009-12-15 Bioness Neuromodulation Ltd. Sensor device for gait enhancement
US8972017B2 (en) 2005-11-16 2015-03-03 Bioness Neuromodulation Ltd. Gait modulation system and method
US7899556B2 (en) 2005-11-16 2011-03-01 Bioness Neuromodulation Ltd. Orthosis for a gait modulation system
US8209022B2 (en) 2005-11-16 2012-06-26 Bioness Neuromodulation Ltd. Gait modulation system and method
EP1955259A1 (en) * 2005-11-28 2008-08-13 Samsung Electronics Co., Ltd. Exercise management function providing system and method
US10466667B2 (en) 2006-04-21 2019-11-05 Donald Spector Method for creating custom orthopedic supports from computerized data inputs
US11259951B2 (en) 2006-04-21 2022-03-01 Donald Spector Method for creating custom orthopedic supports from computerized data inputs
US8583272B2 (en) * 2006-04-21 2013-11-12 Donald Spector Orthopods and equipment to generate orthopedic supports from computerized data inputs
US9910425B2 (en) 2006-04-21 2018-03-06 Donald Spector Method for creating custom orthopedic supports from computerized data inputs
US7597668B2 (en) * 2006-05-31 2009-10-06 Medisim Ltd. Non-invasive temperature measurement
US20080018066A1 (en) * 2006-07-20 2008-01-24 Kehau Pickford Footwear contact indication system
US8924248B2 (en) 2006-09-26 2014-12-30 Fitbit, Inc. System and method for activating a device based on a record of physical activity
US7726206B2 (en) * 2006-11-02 2010-06-01 The Regents Of The University Of California Foot pressure alert and sensing system
US20080108913A1 (en) * 2006-11-06 2008-05-08 Colorado Seminary, Which Owns And Operates The University Of Denver Smart apparatus for gait monitoring and fall prevention
US7716005B2 (en) * 2006-11-06 2010-05-11 Colorado Seminary, Which Owns And Operates The University Of Denver Smart insole for diabetic patients
US20080216593A1 (en) * 2007-02-22 2008-09-11 Jacobsen Stephen C Device for promoting toe-off during gait
US20080254944A1 (en) * 2007-04-14 2008-10-16 Muri John I Monitoring of a Wearable Athletic Device
EP2185070A1 (en) 2007-08-22 2010-05-19 Commonwealth Scientific And Industrial Research Organisation A system, garment and method
US8161826B1 (en) * 2009-03-05 2012-04-24 Stryker Corporation Elastically stretchable fabric force sensor arrays and methods of making
US7921716B2 (en) * 2008-03-20 2011-04-12 University Of Utah Research Foundation Method and system for measuring energy expenditure and foot incline in individuals
US9591993B2 (en) * 2008-03-20 2017-03-14 University Of Utah Research Foundation Method and system for analyzing gait and providing real-time feedback on gait asymmetry
US8384551B2 (en) * 2008-05-28 2013-02-26 MedHab, LLC Sensor device and method for monitoring physical stresses placed on a user
US8185341B2 (en) 2008-05-30 2012-05-22 Medisim Ltd. Surface temperature profile
US9549585B2 (en) 2008-06-13 2017-01-24 Nike, Inc. Footwear having sensor system
US9002680B2 (en) * 2008-06-13 2015-04-07 Nike, Inc. Foot gestures for computer input and interface control
US10070680B2 (en) 2008-06-13 2018-09-11 Nike, Inc. Footwear having sensor system
US9297709B2 (en) 2013-03-15 2016-03-29 Nike, Inc. System and method for analyzing athletic activity
WO2009152456A2 (en) 2008-06-13 2009-12-17 Nike, Inc. Footwear having sensor system
US20100312083A1 (en) * 2009-04-20 2010-12-09 Phil Southerland System for Monitoring Glucose and Measuring Wattage
US8998829B1 (en) * 2009-09-18 2015-04-07 Orthocare Innovations Llc System to assess amputee patient function
US8812259B2 (en) 2010-09-30 2014-08-19 Fitbit, Inc. Alarm setting and interfacing with gesture contact interfacing controls
US8738323B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for metrics analysis and interactive rendering, including events having combined activity and location information
US8620617B2 (en) 2010-09-30 2013-12-31 Fitbit, Inc. Methods and systems for interactive goal setting and recommender using events having combined activity and location information
US8954290B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Motion-activated display of messages on an activity monitoring device
US9241635B2 (en) 2010-09-30 2016-01-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
US8694282B2 (en) 2010-09-30 2014-04-08 Fitbit, Inc. Methods and systems for geo-location optimized tracking and updating for events having combined activity and location information
US8615377B1 (en) 2010-09-30 2013-12-24 Fitbit, Inc. Methods and systems for processing social interactive data and sharing of tracked activity associated with locations
US8744804B2 (en) 2010-09-30 2014-06-03 Fitbit, Inc. Methods, systems and devices for automatic linking of activity tracking devices to user devices
US8849610B2 (en) 2010-09-30 2014-09-30 Fitbit, Inc. Tracking user physical activity with multiple devices
US11243093B2 (en) 2010-09-30 2022-02-08 Fitbit, Inc. Methods, systems and devices for generating real-time activity data updates to display devices
US8744803B2 (en) 2010-09-30 2014-06-03 Fitbit, Inc. Methods, systems and devices for activity tracking device data synchronization with computing devices
US8805646B2 (en) 2010-09-30 2014-08-12 Fitbit, Inc. Methods, systems and devices for linking user devices to activity tracking devices
US8712724B2 (en) 2010-09-30 2014-04-29 Fitbit, Inc. Calendar integration methods and systems for presentation of events having combined activity and location information
US9310909B2 (en) 2010-09-30 2016-04-12 Fitbit, Inc. Methods, systems and devices for physical contact activated display and navigation
US10004406B2 (en) 2010-09-30 2018-06-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
US8762101B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for identification of event data having combined activity and location information of portable monitoring devices
US9188460B2 (en) 2010-09-30 2015-11-17 Fitbit, Inc. Methods, systems and devices for generating real-time activity data updates to display devices
US8781791B2 (en) 2010-09-30 2014-07-15 Fitbit, Inc. Touchscreen with dynamically-defined areas having different scanning modes
US9148483B1 (en) 2010-09-30 2015-09-29 Fitbit, Inc. Tracking user physical activity with multiple devices
US9253168B2 (en) 2012-04-26 2016-02-02 Fitbit, Inc. Secure pairing of devices via pairing facilitator-intermediary device
US8751194B2 (en) 2010-09-30 2014-06-10 Fitbit, Inc. Power consumption management of display in portable device based on prediction of user input
US9167991B2 (en) 2010-09-30 2015-10-27 Fitbit, Inc. Portable monitoring devices and methods of operating same
US9390427B2 (en) 2010-09-30 2016-07-12 Fitbit, Inc. Methods, systems and devices for automatic linking of activity tracking devices to user devices
US8954291B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Alarm setting and interfacing with gesture contact interfacing controls
US8738321B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for classification of geographic locations for tracked activity
US8775120B2 (en) 2010-09-30 2014-07-08 Fitbit, Inc. Method of data synthesis
US10983945B2 (en) 2010-09-30 2021-04-20 Fitbit, Inc. Method of data synthesis
US8762102B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for generation and rendering interactive events having combined activity and location information
US8768648B2 (en) 2010-09-30 2014-07-01 Fitbit, Inc. Selection of display power mode based on sensor data
CN103443795B (en) 2010-11-10 2016-10-26 耐克创新有限合伙公司 Measure for time-based motor activity and the system and method for display
US8475367B1 (en) 2011-01-09 2013-07-02 Fitbit, Inc. Biometric monitoring device having a body weight sensor, and methods of operating same
US9202111B2 (en) 2011-01-09 2015-12-01 Fitbit, Inc. Fitness monitoring device with user engagement metric functionality
US10363453B2 (en) 2011-02-07 2019-07-30 New Balance Athletics, Inc. Systems and methods for monitoring athletic and physiological performance
CN106418870B (en) 2011-02-07 2019-10-22 新平衡运动公司 System and method for monitoring athletic performance
CN103476335B (en) 2011-02-17 2017-06-09 耐克创新有限合伙公司 Footwear with sensing system
JP6061869B2 (en) 2011-02-17 2017-01-18 ナイキ イノベイト シーブイ Location mapping
KR101608480B1 (en) 2011-02-17 2016-04-01 나이키 이노베이트 씨.브이. Footwear having sensor system
US9381420B2 (en) 2011-02-17 2016-07-05 Nike, Inc. Workout user experience
US10004946B2 (en) 2011-03-24 2018-06-26 MedHab, LLC System and method for monitoring power applied to a bicycle
US9453772B2 (en) 2011-03-24 2016-09-27 MedHab, LLC Method of manufacturing a sensor insole
US9993181B2 (en) 2011-03-24 2018-06-12 Med Hab, LLC System and method for monitoring a runner'S gait
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US8738925B1 (en) 2013-01-07 2014-05-27 Fitbit, Inc. Wireless portable biometric device syncing
US10307104B2 (en) 2011-07-05 2019-06-04 Saudi Arabian Oil Company Chair pad system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US10108783B2 (en) 2011-07-05 2018-10-23 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring health of employees using mobile devices
US9492120B2 (en) 2011-07-05 2016-11-15 Saudi Arabian Oil Company Workstation for monitoring and improving health and productivity of employees
CN103781408B (en) 2011-07-05 2017-02-08 沙特阿拉伯石油公司 Floor mat system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9615746B2 (en) 2011-07-05 2017-04-11 Saudi Arabian Oil Company Floor mat system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9844344B2 (en) 2011-07-05 2017-12-19 Saudi Arabian Oil Company Systems and method to monitor health of employee when positioned in association with a workstation
US8609973B2 (en) 2011-11-16 2013-12-17 CleanStage LLC Audio effects controller for musicians
US9339691B2 (en) 2012-01-05 2016-05-17 Icon Health & Fitness, Inc. System and method for controlling an exercise device
US20130213146A1 (en) 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
US11071344B2 (en) 2012-02-22 2021-07-27 Nike, Inc. Motorized shoe with gesture control
US11684111B2 (en) 2012-02-22 2023-06-27 Nike, Inc. Motorized shoe with gesture control
US20130213147A1 (en) 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
US9641239B2 (en) 2012-06-22 2017-05-02 Fitbit, Inc. Adaptive data transfer using bluetooth
GB201212299D0 (en) * 2012-07-11 2012-08-22 Brim Brothers Ltd Device and method for measuring forces applied by a cycling shoe
DE102012106715A1 (en) * 2012-07-24 2014-01-30 Fachhochschule Münster Device for measuring the load on a biological system
WO2014089331A1 (en) 2012-12-06 2014-06-12 Ossur Hf Electrical stimulation for orthopedic devices
WO2014108948A1 (en) * 2013-01-11 2014-07-17 テルモ株式会社 Measurement device, footwear, and information processing device
US9728059B2 (en) 2013-01-15 2017-08-08 Fitbit, Inc. Sedentary period detection utilizing a wearable electronic device
US9039614B2 (en) 2013-01-15 2015-05-26 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US8827906B2 (en) 2013-01-15 2014-09-09 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US10926133B2 (en) 2013-02-01 2021-02-23 Nike, Inc. System and method for analyzing athletic activity
US11006690B2 (en) 2013-02-01 2021-05-18 Nike, Inc. System and method for analyzing athletic activity
US9743861B2 (en) 2013-02-01 2017-08-29 Nike, Inc. System and method for analyzing athletic activity
US9561118B2 (en) 2013-02-26 2017-02-07 össur hf Prosthetic foot with enhanced stability and elastic energy return
EP2969058B1 (en) 2013-03-14 2020-05-13 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
EP2973766B1 (en) 2013-03-15 2019-11-27 Nano Composite Products, Inc. Composite material used as a strain gauge
US10260968B2 (en) 2013-03-15 2019-04-16 Nano Composite Products, Inc. Polymeric foam deformation gauge
US10589121B2 (en) * 2013-05-13 2020-03-17 Color Seven. Co., Ltd. Therapy device for edema and neuropathy
US9063164B1 (en) 2013-10-02 2015-06-23 Fitbit, Inc. Collaborative activity-data acquisition
EP3974036A1 (en) 2013-12-26 2022-03-30 iFIT Inc. Magnetic resistance mechanism in a cable machine
US9031812B2 (en) 2014-02-27 2015-05-12 Fitbit, Inc. Notifications on a user device based on activity detected by an activity monitoring device
WO2015138339A1 (en) 2014-03-10 2015-09-17 Icon Health & Fitness, Inc. Pressure sensor to quantify work
US9867985B2 (en) 2014-03-24 2018-01-16 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US9449409B2 (en) 2014-04-11 2016-09-20 Fitbit, Inc. Graphical indicators in analog clock format
US9449365B2 (en) 2014-04-11 2016-09-20 Fitbit, Inc. Personalized scaling of graphical indicators
KR102170500B1 (en) * 2014-04-22 2020-10-28 삼성전자주식회사 Wearable device
US9288298B2 (en) 2014-05-06 2016-03-15 Fitbit, Inc. Notifications regarding interesting or unusual activity detected from an activity monitoring device
US9568381B2 (en) 2014-05-15 2017-02-14 Henry J. Daniecki Lower limb force sensing system
US10426989B2 (en) 2014-06-09 2019-10-01 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
WO2015195965A1 (en) 2014-06-20 2015-12-23 Icon Health & Fitness, Inc. Post workout massage device
US20150101107A1 (en) * 2014-08-18 2015-04-16 Nicolas Chavando Attachable-detachable mobile computing & sound producing shoe accessory
US20160174899A1 (en) 2014-12-19 2016-06-23 Withings Wireless Connected Indoors Slipper and Wireless Connected Footwear and Associated Detection Methods
US10405779B2 (en) 2015-01-07 2019-09-10 Nano Composite Products, Inc. Shoe-based analysis system
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
US9677928B2 (en) 2015-04-26 2017-06-13 Samuel Lightstone Method, device and system for fitness tracking
DE102015007106B4 (en) * 2015-06-01 2017-07-06 NWTN-Berlin GmbH Shoe sole and shoe insole for measuring body weight
US10446054B2 (en) 2015-06-15 2019-10-15 Mark Lamoncha System and method for tracking the weight and food consumption of a user
US9889311B2 (en) 2015-12-04 2018-02-13 Saudi Arabian Oil Company Systems, protective casings for smartphones, and associated methods to enhance use of an automated external defibrillator (AED) device
US10475351B2 (en) 2015-12-04 2019-11-12 Saudi Arabian Oil Company Systems, computer medium and methods for management training systems
US10642955B2 (en) 2015-12-04 2020-05-05 Saudi Arabian Oil Company Devices, methods, and computer medium to provide real time 3D visualization bio-feedback
US10628770B2 (en) 2015-12-14 2020-04-21 Saudi Arabian Oil Company Systems and methods for acquiring and employing resiliency data for leadership development
DK3399911T3 (en) 2016-01-08 2020-06-02 Nordic Neurostim Aps Method and apparatus for detecting gait
CA3010880A1 (en) 2016-01-11 2017-07-20 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US10080530B2 (en) 2016-02-19 2018-09-25 Fitbit, Inc. Periodic inactivity alerts and achievement messages
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
EP3235428B1 (en) * 2016-04-20 2020-07-29 Feetme Flexible pressure mapping device and system for monitoring pressure
US10772536B2 (en) 2016-08-14 2020-09-15 Michael L. Mathiasmeier Capacitance measuring and imaging sensor system
JP6972523B2 (en) * 2016-09-13 2021-11-24 セイコーエプソン株式会社 Electronics
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
TWI648081B (en) 2016-12-05 2019-01-21 美商愛康運動與健康公司 Pull rope resistance mechanism in treadmill
US10619296B2 (en) 2017-01-06 2020-04-14 Under Armour, Inc. Articles with embroidered sequins and methods of making
US10831320B2 (en) * 2017-11-30 2020-11-10 Synaptics Incorporated Self-referenced capacitive force sensor
US10824132B2 (en) 2017-12-07 2020-11-03 Saudi Arabian Oil Company Intelligent personal protective equipment
US11920996B2 (en) * 2018-03-09 2024-03-05 Case Western Reserve University Customizable pressure sensor array
US10653204B2 (en) * 2018-05-29 2020-05-19 Matmarket, LLC High performance footbed and method of manufacturing same
WO2020056463A1 (en) * 2018-09-19 2020-03-26 Swinburne University Of Technology Sensor array and sensor array system
EP3886639B1 (en) * 2018-11-30 2023-09-13 NIKE Innovate C.V. Autolacing footwear motor having force-directing supports
GB201902477D0 (en) 2019-02-22 2019-04-10 Tangi0 Ltd Pressure sensing device and method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791375A (en) * 1971-09-29 1974-02-12 E Pfeiffer Device for sensing and warning of excessive ambulation force
US3974491A (en) * 1974-07-22 1976-08-10 Smithkline Corporation Load signaling device for a patient's foot
DE2656864A1 (en) * 1976-11-10 1978-05-11 Straumann Inst Ag Instrument for measuring weight carried by foot - has sensor which fits as insole into ordinary shoe
US4647918A (en) * 1985-01-16 1987-03-03 Goforth William P Multi-event notification system for monitoring critical pressure points on persons with diminished sensation of the feet
US4734034A (en) * 1985-03-29 1988-03-29 Sentek, Incorporated Contact sensor for measuring dental occlusion
DE3631923A1 (en) * 1986-09-19 1988-03-31 Hanno Ernst Device for measuring compressive forces
US4745930A (en) * 1986-10-16 1988-05-24 Chattanooga Corporation Force sensing insole for electro-goniometer
US4813436A (en) * 1987-07-30 1989-03-21 Human Performance Technologies, Inc. Motion analysis system employing various operating modes
US4856993A (en) * 1985-03-29 1989-08-15 Tekscan, Inc. Pressure and contact sensor system for measuring dental occlusion
US4862743A (en) * 1987-02-16 1989-09-05 Peter Seitz Device for measuring the areal distribution of compressive forces
US5033291A (en) * 1989-12-11 1991-07-23 Tekscan, Inc. Flexible tactile sensor for measuring foot pressure distributions and for gaskets
US5079949A (en) * 1990-07-06 1992-01-14 Enix Corporation Surface pressure distribution detecting element
US5253656A (en) * 1991-05-23 1993-10-19 Rincoe Richard G Apparatus and method for monitoring contact pressure between body parts and contact surfaces

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8703416D0 (en) * 1987-09-02 1987-09-02 Nyberg Karl Erik DISPLAY DEVICES

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791375A (en) * 1971-09-29 1974-02-12 E Pfeiffer Device for sensing and warning of excessive ambulation force
US3974491A (en) * 1974-07-22 1976-08-10 Smithkline Corporation Load signaling device for a patient's foot
DE2656864A1 (en) * 1976-11-10 1978-05-11 Straumann Inst Ag Instrument for measuring weight carried by foot - has sensor which fits as insole into ordinary shoe
US4647918A (en) * 1985-01-16 1987-03-03 Goforth William P Multi-event notification system for monitoring critical pressure points on persons with diminished sensation of the feet
US4856993A (en) * 1985-03-29 1989-08-15 Tekscan, Inc. Pressure and contact sensor system for measuring dental occlusion
US4734034A (en) * 1985-03-29 1988-03-29 Sentek, Incorporated Contact sensor for measuring dental occlusion
DE3631923A1 (en) * 1986-09-19 1988-03-31 Hanno Ernst Device for measuring compressive forces
US4745930A (en) * 1986-10-16 1988-05-24 Chattanooga Corporation Force sensing insole for electro-goniometer
US4862743A (en) * 1987-02-16 1989-09-05 Peter Seitz Device for measuring the areal distribution of compressive forces
US4813436A (en) * 1987-07-30 1989-03-21 Human Performance Technologies, Inc. Motion analysis system employing various operating modes
US5033291A (en) * 1989-12-11 1991-07-23 Tekscan, Inc. Flexible tactile sensor for measuring foot pressure distributions and for gaskets
US5079949A (en) * 1990-07-06 1992-01-14 Enix Corporation Surface pressure distribution detecting element
US5253656A (en) * 1991-05-23 1993-10-19 Rincoe Richard G Apparatus and method for monitoring contact pressure between body parts and contact surfaces

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DONALD ENDICOTT et al., "Leg Load Warning System for the Orthopedically Handicapped", Medical and Biological Engineering and Computing (May 1974). *
G.A. SPOLEK et al., "An Instrumented Shoe-A Portable Force Measuring Device", J. Biomechanics (Great Britain, June 1976). *
JOHN A. PURBRICK, "A Force Transducer Employing Conductive Silicon Rubber", First Robot Vision and Sensors Conferences, Stratford-on-Avon, England (April 1981). *
S. MIYAZAKI et al., "Foot-Force Measuring Device for Clinical Assessment of Pathological Gait", Medical and Biological Engineering and Computing (July 1978). *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004054220A1 (en) * 2004-11-02 2006-05-11 Hasomed Hard- und Software für die Medizin GmbH Patient shoe inertial sensor attachment system has holder on U shaped stirrup held round heel by tensioned straps
US9836118B2 (en) 2015-06-16 2017-12-05 Wilson Steele Method and system for analyzing a movement of a person
US20220031241A1 (en) * 2020-07-28 2022-02-03 Xsensor Technology Corporation Foot sensor and other sensor pads

Also Published As

Publication number Publication date
EP0700270A4 (en) 1996-03-20
AU684749B2 (en) 1998-01-08
EP0700270A1 (en) 1996-03-13
US5323650A (en) 1994-06-28
AU6162994A (en) 1994-08-15

Similar Documents

Publication Publication Date Title
AU684749B2 (en) System for continuously measuring forces applied by the foot
US5678448A (en) System for continuously measuring forces applied by the foot
EP3185757B1 (en) Elastic sensor
US6122846A (en) Force monitoring shoe
US7878990B2 (en) Gait training device and method
Howell et al. Kinetic gait analysis using a low-cost insole
US9131873B2 (en) Foot pad device and method of obtaining weight data
US5827209A (en) Intelligent body support
US20080167580A1 (en) Rehabilitation System
Zhu et al. An umbilical data-acquisition system for measuring pressures between the foot and shoe
Abu-Faraj et al. A Holter-type, microprocessor-based, rehabilitation instrument for acquisition and storage of plantar pressure data
US6447425B1 (en) Range of motion device
Oubre et al. Estimating ground reaction force and center of pressure using low-cost wearable devices
Chen et al. Comparison of F-Scan in-sole and AMTI forceplate system in measuring vertical ground reaction force during gait
US7431703B2 (en) Apparatus and method for measuring and monitoring range of motion of the lumbar spine
Abu-Faraj et al. Evaluation of a rehabilitative pedorthic: plantar pressure alterations with scaphoid pad application
GB2329243A (en) Optical force sensor for forces applied to the body
RU2504350C1 (en) Interactive device of person's carriage correction and method of carriage correction
Ranu Miniature load cells for the measurement of foot-ground reaction forces and centre of foot pressure during gait
CN112911994A (en) Wearable footwear sensor array for detecting cardiovascular pulse physiological activity, body motion, and muscle action
Howell Insole-based gait analysis
CN114305390A (en) Device and method for detecting plantar pressure and calibrating slippage
Burnie et al. Commercially available pressure sensors for sport and health applications: A comparative review
CN111110246A (en) Gait analysis system based on high-deformation strain type sensor
Ranu An evaluation of the centre of pressure for successive steps with miniature triaxial load cells

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994908597

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08481457

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994908597

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994908597

Country of ref document: EP