WO1994024358A2 - Process for coating yarns and fibres in textile objects - Google Patents

Process for coating yarns and fibres in textile objects Download PDF

Info

Publication number
WO1994024358A2
WO1994024358A2 PCT/DE1994/000439 DE9400439W WO9424358A2 WO 1994024358 A2 WO1994024358 A2 WO 1994024358A2 DE 9400439 W DE9400439 W DE 9400439W WO 9424358 A2 WO9424358 A2 WO 9424358A2
Authority
WO
WIPO (PCT)
Prior art keywords
textile
coating
plasma
fibers
filaments
Prior art date
Application number
PCT/DE1994/000439
Other languages
German (de)
French (fr)
Other versions
WO1994024358A3 (en
Inventor
Friedrich Roell
Werner Schmitz
Original Assignee
Tecnit Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4205330&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1994024358(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tecnit Ag filed Critical Tecnit Ag
Priority to EP94912475A priority Critical patent/EP0695384B2/en
Priority to DE59410093T priority patent/DE59410093D1/en
Publication of WO1994024358A2 publication Critical patent/WO1994024358A2/en
Publication of WO1994024358A3 publication Critical patent/WO1994024358A3/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • D06M10/10Macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/005Applying monomolecular films on textile products like fibres, threads or fabrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/20Treatment influencing the crease behaviour, the wrinkle resistance, the crease recovery or the ironing ease
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/25Resistance to light or sun, i.e. protection of the textile itself as well as UV shielding materials or treatment compositions therefor; Anti-yellowing treatments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/35Abrasion, pilling or fibrillation resistance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions

Definitions

  • the present invention relates to the coating of the surfaces of textile structures, in particular threads, and fibrils in textile articles.
  • the generally customary technique of surface treatment in the field of the manufacture of textiles is that the filaments or threads are coated prior to further processing or that the surface is modified by a chemical or physical process. To a limited extent, these processes can also be applied to textile intermediate or end products.
  • chemical treatment and coating the usual methods are the application of the coating material or the chemical reagent by brushing, spraying, etc. onto the textile material or immersing the textile material in a liquid treatment medium.
  • An object of the present invention is to provide a method which allows a qualitatively improved surface treatment of the components, such as yarns or fibrils, of a textile structure.
  • a textile structure is understood to mean everything that is made from textile material, in particular from filaments or fibers or ribbons, by one of the processes common in the textile industry, in particular weaving, knitting and knitting, i.e. everything from the thread to the textile end product such as also nonwovens, for example.
  • the fibers or filaments themselves are not considered to be textile structures.
  • Threads or yarns are generally linear textile structures, in particular all made from fibers or filaments.
  • Textile material is the material from which the textile structures can consist, i.e. in addition to fibers or filaments made of natural or synthetic fibers, also metal threads, stone fibers, glass fibers etc.
  • the invention is based on the surprising finding that the coating processes known from the gas phase for coating solid objects made of plastic or metal can be applied to threads or filaments and fibers in a textile structure, and lead to products with properties which have not hitherto or were only available with disproportionately high expenditure.
  • the treatment medium is in the process by chemical (CVD) (Römpp Chemie Lexikon, 9th edition (1990), Volume 2) or physical (PVD) processes (Römpp Chemie Lexikon,
  • the high mobility of the reactive gas particles produced means that in textile structures each individual thread or each fiber is reliably subjected to its entire surface and that the individual fibers are also coated during the treatment of twists or multifilament yarns. Coatings produced with the method according to the invention adhere much more firmly than conventional layers and can be produced as a non-porous covering of the textile material. This makes it possible to use threads made of materials, the mechanical properties of which are desirable, but which on the surface have undesirable reactions with the environment. Examples are moisture-sensitive or allergy-triggering materials.
  • latt It can e.g. B. metal layers are applied to maintain electrical conductivity or to influence the visual impression. Polymerization can be carried out directly on the surface of each fibril of the substrate if the treatment is carried out with a gaseous monomer. It is also possible, in preparation of the coating, to first carry out intensive cleaning or preparation of the surfaces using the same methods, such as, for example, B. the dry removal of a finishing agent, whereby the adhesion or treatment intensity, which is already significantly better than that of the known methods, can be increased again. Depending on the process conditions, continuous or discontinuous layers can be produced.
  • the method according to the invention does not require any solvents or other liquid carriers and that no drying processes have to be carried out, as a result of which the energy consumption is significantly reduced. Because of the high quality of the conversion, it is also possible to reduce the total amount of the coating or reaction material, since the treatment from the gas phase ensures an extremely uniform action on the surfaces to be treated.
  • the treatment of sensitive materials with highly reactive substances for the chemical modification of the surface which usually required high temperatures in the known processes or were not possible at all, can be carried out by the process according to the invention, since the thermal load on the person to be treated Object can be reduced or avoided by setting suitable process parameters.
  • the ions of the plasma have a room temperature in a low-pressure plasma treatment.
  • E-rsc zbiatö The present method is also very suitable for the impregnation of volume-containing or three-dimensionally shaped textile bodies such as B. spacer fabric, spacer mesh or fleece.
  • the impregnation or the layer structure also takes place in volume and coats all fibers in the interior of the structure.
  • a preferred embodiment of the method according to the invention is to bring a textile body into a conventional chamber for the PVD coating using the low-temperature plasma method.
  • the textile body In order to achieve uniform access to the treatment gas, the textile body is held by a support frame or a tenter frame so that the surfaces are as freely accessible as possible.
  • the process parameters according to the planned coating are set, i.e. vacuum, gas entry and temperature.
  • a permanent inflow of the monomer gas is set for a surface polymerization of a gaseous monomer.
  • Treatment agents to be evaporated are introduced into the treatment chamber as a solid or as a powder or granulate, as is customary in this process.
  • Noble gases for example argon, but also nitrogen and oxygen can be used as the gas in the treatment atmosphere. The selection is based on the properties of the particular substrate to be coated and the coating material.
  • a plasma is generated in the chamber by applying an alternating electromagnetic field.
  • an alternating electromagnetic field instead of or in addition to the alternating field, direct current glow discharge, microwaves or other excitation techniques known per se can also be used to generate the plasma.
  • the plasma particles hit u. a. on the treatment agent in the solid form and lead to its evaporation.
  • Gaseous treatment agent such as. B. monomer gas, can be used to generate the plasma.
  • Sa t z D iatt be activated neither directly by the action of the excitation energy or indirectly by the plasma of the carrier gases, e.g. B. by formation of radicals.
  • An ionic interaction between the separating particles and the surface, i. H. the substrate leads to particularly firmly adhering and very stable layers.
  • a particularly firm connection between the layer and the substrate occurs if chemical bonds are formed between the substrate and the layer in the course of the deposition, e.g. B. by grafting.
  • Very stable layers are obtained if the polymerization leads to cross-linked, in particular three-dimensionally cross-linked structures.
  • a cleaning process is often observed before the deposition, which can also be enforced or promoted by appropriate process parameters, as a result of which a thorough cleaning of the surfaces of the textile body to be treated and thus a high quality of the coating is achieved.
  • An advantage of a coating by surface polymerization according to the present invention is that the activated monomer particles, despite their excitation, e.g. B. ionization, have only a little elevated temperature and thus polymerization can also take place on temperature-sensitive materials such as thermoplastics. It is also possible to use non-polymerizable substances in the usual chemical way, such as. B. alkanes, since under the action of a glow discharge such molecules break into bonds or cleavage of fragments into reactive forms.
  • textile bodies made of polyethylene threads were coated with PTFE,
  • rsaizDlatl which combined the high tensile strength of the polyethylene with the anti-adhesive effect of the PTFE.
  • Carbon fibers can be protected against the oxygen in the air by an appropriate coating.
  • the deposited layers can be made resistant to cleaning, washing and even boiling and (steam) sterilization.
  • the textile material can be introduced into the treatment chamber on rolls and can be rolled during the treatment period, or the textile material can be drawn through the chamber from air to air, for which purpose the chamber has entrance and exit locks, etc.
  • a textile body can be endowed with new surface-related properties.
  • the surface treatment is carried out intensively and, because of the treatment from the gas phase, very evenly even in already woven or meshed material, and the layers applied can be kept very thin because of the high quality, eg. B. thinner than 1% of the fiber diameter or only a few hundred atom or molecular layers thick, so that a noticeable increase in volume can be avoided by the coating.
  • the following surface properties can be set by choosing the appropriate treatment agent (s): antibacterial finish, washable and boil-resistant; fungicidal properties; Wettability; UV-IR absorption; Radiation, in particular IR, UV, light reflection; Lubricity; Crease-resistant shafts; Flammability; Antipilling; electrical conductivity; etc.
  • the layers adhere very well to the surface
  • Replacement blade feii Chen of the textile material and are well formed even in the finest spaces.
  • the method according to the invention can also be used to carry out sheathing with materials whose use according to the known methods was too expensive, since only small amounts are required in the invention and the importance of the material cost factor is thus generally reduced.
  • the so-called low-temperature plasma technology which is practically carried out at room temperatures, is advantageous for carrying out the process according to the invention. It is advantageous to use particularly high-energy plasma, for example pulse plasma.
  • the "free radicals” that arise when molecules are broken down under the influence of plasma set off rapid reactions, for example plasma polymerization. They can penetrate into the smallest gaps and also penetrate material. Accordingly, reactions in undercuts and through the material can be triggered. It is therefore possible that the fibers can be coated all around within the finished textile. All fibers get their very densely networked thinnest layer all around, even in thread covers.
  • the fiber sheathing provided by the invention can be implemented as a process step in existing systems and coating processes.
  • the invention uses a technology in the textile sector which has hitherto only been used in other technical fields, e.g. in metal treatment for surface hardening and in printed circuit boards for CFC-free, reliable cleaning, even in the finest drill holes.
  • This technology is made accessible for flat and spatial textiles. There are two different plasma techniques,
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • a thin thermoset layer is deposited on the substrate from monomeric gases (eg ethylene or propylene).
  • monomeric gases eg ethylene or propylene.
  • the molecules of the monomer are excited by collision with the energy-rich particles, the electrons present in the gas discharge, and to a large extent also fragmented, ie broken down into pieces of molecules.
  • the monomers and fragments in the gas space can react with one another on all surfaces. These reactions are the actual basis of plasma polymerization.
  • the plasma that stimulates these processes is an ionized gas, which consists of ions, electrons, light quanta, atoms and molecules.
  • ionized gas which consists of ions, electrons, light quanta, atoms and molecules.
  • thermoplastics e.g. polyethylene or polypropylene
  • the resulting layers are highly cross-linked in three dimensions and have excellent adhesion to the substrate.
  • Removal processes are also possible with one and the same system. For example, a "cold combustion" is generated by the ignition of an oxygen plasma. Here, organic or greasy impurities are removed without chemical that is harmful to the environment. Only an ash-like residue remains.
  • Both processes, the removal and application, can be carried out by the corresponding control of the parameters in one operation, i.e. expire at a reactor feed. This can ensure that a coating matrix is only applied to an absolutely clean substrate.
  • Another aspect of the application and ablation plasma technology is the 100% sterilizing effect of the plasma
  • Spare sheet (destructive effect on organisms). All bacteria can also be reliably killed through the packaging of, for example, dressing material.
  • the plasma technology coating process is a very economical and therefore environmentally friendly technology.
  • the electrical energy consumption is very low.
  • the layers that can be applied with plasma support have completely new properties due to the high degree of crosslinking, which differ fundamentally from those of a polymer conventionally produced from monomers.
  • the polymer is always a thermoset, is very temperature-resistant and, even in a small layer thickness, is free of pinholes (smallest uncovered areas) and is hardly attackable by any solvent.
  • the energetic particles excited in the plasma therefore trigger intense and profound effects on the monomer (gas).
  • the cold plasma provides high energies in a chemically very effective form at room temperature. Similar reactions are e.g. not feasible in the hot flame. Virtually all organic compounds can be formed to form a layer.
  • each fibril of a thread is encased in the special plasma within the textile surface.
  • the discharge thus also reaches parts of very complex shapes, undercuts and also detects the non-exposed contact areas of the fibers.
  • the volume properties of the coated textile are not noticeably or visibly influenced.
  • the textile is in a vacuum vessel during the treatment. Any excess or waste gases that are produced are sucked off by a vacuum pump and can be collected without problems or returned to the reaction as a cycle. In principle, an uncontrolled distribution of substances of concern is not to be expected in the plasma process.
  • the plasma can be applied either as a DC voltage plasma or as an AC voltage plasma.
  • direct voltage plasma the resistive coupling of the energy with plate electrodes located in the reactor is the only way of energy transfer. Discharges in the KHz or MHz range are common here.
  • the reactor for coating the textile substrate can either be designed as a bell reactor, in which the monomer is supplied from above.
  • the substrate is located in the vicinity of the cathode or in the cathode drop area, since the degree of ionization of the coating monomer is high there.
  • the flow form is a radial overflow of the substrate.
  • Spare sheet A tube reactor in which the electrodes are arranged parallel to the tube axis can also be used.
  • the monomer flows over the substrate in parallel.
  • AC plasmas are excited with frequencies between 50 Hz and several 10 MHz.
  • the capacitive coupling at high frequencies is used in this frequency range.
  • the electrodes are no longer in the plasma, but outside the reactor. Coating of the electrode, which would lead to a shielding of the electric field, during plasma polymerization is thus ruled out.
  • Frequencies which are as high as possible are required in the case of AC plasma.
  • the wall resistance of the reactor must be overcome.
  • the AC voltage resistance decreases proportionally to the frequency of the applied field and is negligible in the MHz range. Either a bell-type reactor or a tubular reactor can also be used in the case of AC plasma.
  • the plasma reactor can e.g. be designed as a tubular reactor, which can be surrounded by a coil for inductive coupling.
  • the inductive coupling can likewise only be used at very high frequencies, preferably in the MHz range.
  • microwave range gigahertz range
  • AC voltage a AC voltage
  • One group includes the so-called “slow wave structures", in which microwaves are generated by a generator and by a
  • the frequency of the microwaves is set at 2.45 GHz, a frequency that is approved by the Deutsche Bundespost for industrial applications.
  • the microwave waveguide On its lower broad side, the microwave waveguide has rectangular perforated apertures, the center points of which are arranged at intervals of half a waveguide wavelength of the microwaves. A certain part of the microwave energy present in each case is extracted from the waveguide through the perforated apertures and coupled into the plasma through a quartz window which can be penetrated without microwave loss.
  • the second group of microwave couplings is formed by so-called resonator couplings.
  • the microwaves are coupled into a microwave resonator, and the plasma reactor is guided through the resonator in a suitable manner in such a way that maximum power coupling is possible.
  • a quartz tube is preferably used as the plasma reactor, which is preferably arranged symmetrically in a cylinder resonator.
  • the plasma polymerization can be divided into five steps, some of which run in parallel.
  • monomers are activated or radicalized in the gas phase by electron impact.
  • monomers adsorbed on the substrate surface are excited by electron, ion or photon bombardment to react with other monomers.
  • a second step, the adsorption describes the adsorption of monomers and of radical species on the substrate surface.
  • the chain growth is described in a third step. Reactions can occur between radicals and monomers in the gas phase, adsorbed radicals and gaseous monomers, and adsorbed radicals and adsorbed monomers.
  • a ⁇ zD- The fourth step, termination, leads to the formation of polymeric structures.
  • the reaction of longer-chain radicals in the gas phase can produce polymers in the gas phase.
  • the reaction of radicals from the gas phase with adsorbed radicals or between adsorbed radicals results in polymers which are adsorbed on the substrate.
  • a fifth step, the reinitiation describes on the one hand the repeated fragmentation of the already formed polymer in the gas phase by the action of the plasma and on the other hand the process of three-dimensional crosslinking of the polymer on the substrate surface by the action of ions, electrons and photons.
  • the plasma polymerization is carried out in a pressure range between 0.01 mbar and 10 mbar. At low pressures the achievable deposition rates become too low, while at higher pressures no transparent continuous layers with the desired properties can be produced.
  • Adhesive functional layers which influence the following properties: printability, paintability, metallizability, adhesiveness, wettability, hydrophilization, hydrophobization, antiadhesion, layer composite strength, particle composite strength and fiber composite strength.
  • Optical functional layers which influence the following properties: color stability, refractive index, antireflection effect, anti-fog effect, anti-reflective effect, adsorption coefficient.
  • Biomedical functional layers that can be used for textiles in the medical field. These influence e.g. following properties: organofiltration, biocompatibility, immunobiological behavior, antitoxicity.
  • Permeable functional layers for controlling e.g. Porosity and permeability.
  • Each coating monomer has its own polymerization kinetics because of its chemical composition and structure, and because of the necessary process parameters.
  • the rate of polymerization and thus the rate of growth of layers of different monomers differ considerably.
  • the coating rates are generally higher, since larger low-molecular fragmentation products can form and accumulate.
  • several monomers can be applied to the textile substrate simultaneously or in succession by means of plasma technology.

Abstract

Textile bodies may be coated by physical or chemical vapour deposition in the gaseous phase. The layers deposited on the fibres or filaments have a high quality. It is thus possible to coat filaments or fibres without leaving any pores even with very thin layers, which cause however an imperceptible increase of the total volume of the textile object. Because of the high mobility of the coating material particles, even critical spots, such as the chaining spots in meshed or woven goods, are reliably coated. The same is valid also for complex designed, three-dimensional textile shaped bodies. Besides coatings by simple deposition, surface polymerisations may also be carried out, forming impenetrable layers on the textile material, which either protects it against the environment (allergy, sensitivity to air or light) or confer new properties to it (electric conductivity, antiadhesive coating). Coating in the gaseous phase also prevents in many cases the textile body to be processed from drying out.

Description

VERFAHREN ZUR UMMΛNTELUNG VON GARNEN UND FASERN IN METHOD FOR COATING YARNS AND FIBERS IN
TEXTILEN GEGENSTÄNDENTEXTILE ITEMS
Die vorliegende Erfindung bezieht sich auf die Beschichtung der Oberflächen von textilen Gebilden, insbesondere Fäden, und Fibrillen in textilen Gegenstänen.The present invention relates to the coating of the surfaces of textile structures, in particular threads, and fibrils in textile articles.
Die allgemein übliche Technik der Oberflächenbehandlung im Bereich der Herstellung von Textilien besteht darin, dass die Filamente oder Fäden vor der weiteren Verarbeitung be¬ schichtet oder durch ein chemisches oder physikalisches Verfahren oberflächlich modifiziert werden. In begrenztem Umfang sind diese Verfahren auch auf textile Zwischen- oder Endprodukte anwendbar. Bei der chemischen Behandlung und der Beschichtung sind die üblichen Verfahren das Aufbringen des Beschichtungsmaterials bzw. des chemischen Reagenz durch Aufstreichen, Aufsprühen usw. auf das textile Materi¬ al oder das Eintauchen des textilen Materials in ein flüs¬ siges Behandlungsmedium.The generally customary technique of surface treatment in the field of the manufacture of textiles is that the filaments or threads are coated prior to further processing or that the surface is modified by a chemical or physical process. To a limited extent, these processes can also be applied to textile intermediate or end products. In chemical treatment and coating, the usual methods are the application of the coating material or the chemical reagent by brushing, spraying, etc. onto the textile material or immersing the textile material in a liquid treatment medium.
Probleme ergaben sich bei diesen bekannten Verfahren immer dann, wenn sich eine Behandlung der Fäden vor der Verarbei¬ tung verbot, z. B. wenn die behandelten Fäden nicht mehr problemlos versponnen oder verstrickt werden konnten und daher ein textiler Gegenstand, sei es ein Halbfabrikat oder ein Endprodukt, behandelt werden musste. Insbesondere konn¬ te nicht sichergestellt werden, dass bei den genannten Be¬ handlungsmethoden auch die einzelnen Fäden lückenlos und zuverlässig beschichtet bzw. behandelt wurden. Problempunk- te stellten dabei z.B. die Ueberkreuzungspunkte der Fäden in Web- oder Maschenware dar. Aehnliche Probleme stellten sich bei erhöhten Ansprüchen an die Behandlung der Filamen¬ te in Multifilamentgarnen bzw. -zwirnen.Problems arose with these known methods whenever treatment of the threads before processing, e.g. B. if the treated threads could no longer be easily spun or knitted and therefore a textile object, be it a semi-finished product or an end product, had to be treated. In particular, it could not be ensured that the individual threads were coated and treated consistently and reliably in the treatment methods mentioned. Problem points were e.g. the crossover points of the threads in woven or knitted goods. Similar problems arose with increased demands on the treatment of the filaments in multifilament yarns or twists.
Mit der zunehmenden Bedeutung ökologischer Gesichtspunkte trat auch der Nachteil der bekannten Verfahren in den Vor-With the increasing importance of ecological aspects, the disadvantage of the known methods also
Ersatzblatt dergrund, dass verbrauchte Behandlungsmedien wegen der da¬ rin enthaltenen Lösungsmittel oder anderen Komponenten als Sonderabfall zu entsorgen waren.Spare sheet the reason that used treatment media had to be disposed of as special waste because of the solvents or other components contained therein.
Eine Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren anzugeben, das eine qualitativ verbesserte Ober¬ flächenbehandlung der Komponenten, wie beispielsweise Garne oder Fibrillen, eines textilen Gebildes erlaubt.An object of the present invention is to provide a method which allows a qualitatively improved surface treatment of the components, such as yarns or fibrils, of a textile structure.
Ein solches Verfahren ist im Anspruch 1 angegeben. Bevor¬ zugte Ausführungen und Anwendungen sowie Produkte sind Gegenstand der weiteren Ansprüche. Unter textilem Gebilde ist dabei alles zu verstehen, was aus textilem Material, insbesondere aus Filamenten oder Fasern oder Bändchen, durch eines der in der Textilindustrie üblichen Verfahren, insbesondere Weben, Stricken und Wirken, hergestellt ist, also alles vom Faden bis zum textilen Endprodukt wie auch beispielsweise Vliese. Nicht als textiles Gebilde gelten jedoch die Fasern oder Filamente selbst. Fäden oder Garne sind allgemein linienformige textile Gebilde, insbesondere alle aus Fasern oder Filamenten hergestellten. Textiles Material ist das Material, aus dem die textilen Gebilde bestehen können, also neben Fasern oder Filamenten aus Natur- oder Kunstfaser auch Metallfäden, Steinfasern, Glasfasern usw.Such a method is specified in claim 1. Preferred embodiments and applications as well as products are the subject of the further claims. A textile structure is understood to mean everything that is made from textile material, in particular from filaments or fibers or ribbons, by one of the processes common in the textile industry, in particular weaving, knitting and knitting, i.e. everything from the thread to the textile end product such as also nonwovens, for example. However, the fibers or filaments themselves are not considered to be textile structures. Threads or yarns are generally linear textile structures, in particular all made from fibers or filaments. Textile material is the material from which the textile structures can consist, i.e. in addition to fibers or filaments made of natural or synthetic fibers, also metal threads, stone fibers, glass fibers etc.
Der Erfindung liegt die überraschende Erkenntnis zugrunde, dass die zur Beschichtung von massiven Gegenständen aus Kunststoff oder Metall bekannten Beschichtungsverfahren aus der Gasphase auf Fäden bzw. Filamente und Fasern in einem textilen Gebilde angewandt werden können, und zu Produkten mit Eigenschaften führen, die bisher nicht oder nur mit un- verhältnissmässig hohem Aufwand erhältich waren. Das Behandlungsmedium wird in dem Verfahren durch chemische (CVD) (Römpp Chemie Lexikon, 9. Auflage (1990), Band 2) oder physikalische (PVD) Verfahren (Römpp Chemie Lexikon,The invention is based on the surprising finding that the coating processes known from the gas phase for coating solid objects made of plastic or metal can be applied to threads or filaments and fibers in a textile structure, and lead to products with properties which have not hitherto or were only available with disproportionately high expenditure. The treatment medium is in the process by chemical (CVD) (Römpp Chemie Lexikon, 9th edition (1990), Volume 2) or physical (PVD) processes (Römpp Chemie Lexikon,
Ersatzblatt 9. Auflage (1992), Band 5) erzeugt. Vorversuche zur Modi¬ fizierung der chemischen oder physikalischen Eigenschaften textiler Materialien nach einem PVD-Verfahren, dem Nieder¬ temperatur-Plasma-Verfahren, sind bekannt (Y. Rogister, J. Knott, L. Ruys, M. Van Lancker, Etüde de 1' Influence de Nouvelles Techniques de Traitement de Surface sur les Proprietes des Fibres, Techtextil-Symposium 1992). In die¬ sen Versuchen wurde eine Anlage zur Behandlung von Kunst¬ stoffolien eingesetzt, die das Plasma durch elektromag- netische Anregung erzeugte. Es wurde in dieser Anlage wäh¬ rend der Behandlung ein Unterdruck bis 10~2 Torr erzeugt und der Einfluss des Plasmas auf das Textil untersucht, wo¬ bei Änderungen in der Benetzbarkeit, der Oberflächenstruk¬ tur und auch den mechanischen Eigenschaften beobachtet wur- den und im wesentlichen abtragende Effekte im Vordergrund standen. Überraschend wurde nun gefunden, dass derartige Techniken auch zum Aufbringen von Schichten auf textiles Material genutzt werden können.Spare sheet 9th edition (1992), volume 5). Preliminary tests for modifying the chemical or physical properties of textile materials using a PVD process, the low-temperature plasma process, are known (Y. Rogister, J. Knott, L. Ruys, M. Van Lancker, Etüde de 1 'Influence de Nouvelles Techniques de Traitement de Surface sur les Proprietes des Fibers, Techtextil Symposium 1992). In these experiments, a plant for treating plastic films was used, which generated the plasma by means of electromagnetic excitation. It was in this complex wäh¬ end of the treatment a negative pressure to 10 -2 Torr generated, and the influence of the plasma assayed for the textile, the Oberflächenstruk¬ being possible for changes in the wettability, structure and mechanical properties wur- observed and the the main focus was on erosion effects. Surprisingly, it has now been found that such techniques can also be used to apply layers to textile material.
Die hohe Mobilität der erzeugten reaktiven Gasteilchen führt dazu, dass in textilen Gebilden jeder einzelne Faden bzw. jede Faser zuverlässig in seiner Gesamtheit oberfläch¬ lich beaufschlagt wird und dass bei der Behandlung von Zwirnen oder Multifilamentgarnen auch die einzelnen Fasern beschichtet werden. Mit dem erfindungsgemässen Verfahren hergestellte Beschichtungen haften wesentlich fester als herkömmliche Schichten und können als porenfreie Umhüllung des textilen Materials hergestellt werden. Dadurch wird es möglich, Fäden aus Materialien zu verwenden, deren mecha- nische Eigenschaften zwar wünschenswert sind, die jedoch oberflächlich unerwünschte Reaktionen mit der Umgebung ein¬ gehen. Als Beispiele seien feuchtigkeitsempfindliche oder allergieauslösende Materialien genannt.The high mobility of the reactive gas particles produced means that in textile structures each individual thread or each fiber is reliably subjected to its entire surface and that the individual fibers are also coated during the treatment of twists or multifilament yarns. Coatings produced with the method according to the invention adhere much more firmly than conventional layers and can be produced as a non-porous covering of the textile material. This makes it possible to use threads made of materials, the mechanical properties of which are desirable, but which on the surface have undesirable reactions with the environment. Examples are moisture-sensitive or allergy-triggering materials.
Durch das erfindungsgemässe Verfahren wird auch das Spek¬ trum möglicher Oberflächenbeschichtungen stark erweitert.The range of possible surface coatings is also greatly expanded by the method according to the invention.
latt Es können z. B. Metallschichten aufgebracht werden, um eine elektrische Leitfähigkeit zu erhalten oder den optischen Eindruck zu beeinflussen. Es kann direkt auf der Oberfläche jeder Fibrille des Substrats eine Polymerisation durch- geführt werden, wenn die Behandlung mit einem gasförmigen Monomer durchgeführt wird. Es ist auch möglich, in Vorbe¬ reitung der Beschichtung zunächst mit den gleichen Verfah¬ ren eine intensive Reinigung bzw. Präparierung der Oberflä¬ chen durchzuführen, wie z. B. die trockene Abtragung einer Avivage, wodurch die gegenüber den bekannten Verfahren be¬ reits deutlich bessere Haftung bzw. Behandlungsintensität nochmals gesteigert werden kann. Es können je nach Verfah¬ rensbedingungen kontinuierliche oder diskontinuierliche Schichten erzeugt werden.latt It can e.g. B. metal layers are applied to maintain electrical conductivity or to influence the visual impression. Polymerization can be carried out directly on the surface of each fibril of the substrate if the treatment is carried out with a gaseous monomer. It is also possible, in preparation of the coating, to first carry out intensive cleaning or preparation of the surfaces using the same methods, such as, for example, B. the dry removal of a finishing agent, whereby the adhesion or treatment intensity, which is already significantly better than that of the known methods, can be increased again. Depending on the process conditions, continuous or discontinuous layers can be produced.
Bezüglich der Umweltproblematik ist noch hervorzuheben, dass das erfindungsgemässe Verfahren keine Lösungsmittel oder andere flüssige Träger benötigt und auch keine Trock¬ nungsvorgänge durchgeführt werden müssen, wodurch der Ener- gieverbrauch wesentlich gesenkt wird. Wegen der hohen Qua¬ lität der Umwandlung ist es auch möglich, die Gesamtmenge des Beschichtungs- bzw. Reaktionsmaterials zu senken, da die Behandlung aus der Gasphase eine extrem gleichmässige Einwirkung auf die zu behandelnden Oberflächen gewährlei- stet.With regard to the environmental problems, it should also be emphasized that the method according to the invention does not require any solvents or other liquid carriers and that no drying processes have to be carried out, as a result of which the energy consumption is significantly reduced. Because of the high quality of the conversion, it is also possible to reduce the total amount of the coating or reaction material, since the treatment from the gas phase ensures an extremely uniform action on the surfaces to be treated.
Auch die Behandlung von empfindlichen Materialien mit hoch¬ reaktiven Substanzen zur chemischen Modifizierung der Ober¬ fläche, die bei den bekannten Verfahren meist hohe Tempera- turen voraussetzten oder überhaupt nicht möglich waren, sind nach dem erfindungsgemässen Verfahren durchführbar, da die thermische Belastung des zu behandelnden Gegenstandes durch Einstellen geeigneter Prozessparameter reduziert oder vermieden werden kann. Insbesondere haben die Ionen des Plasmas in einer Niederdruck-Plasmabehandlung etwa Zimmer¬ temperatur.The treatment of sensitive materials with highly reactive substances for the chemical modification of the surface, which usually required high temperatures in the known processes or were not possible at all, can be carried out by the process according to the invention, since the thermal load on the person to be treated Object can be reduced or avoided by setting suitable process parameters. In particular, the ions of the plasma have a room temperature in a low-pressure plasma treatment.
E-rsc zbiatö Das vorliegende Verfahren eignet sich auch sehr gut zur Imprägnierung volumenhaltiger bzw. dreidimensional geform¬ ter Textilkörper wie z. B. Abstandgewebe, Abstandsmaschen- wäre oder Faservliese. Die Imprägnierung bzw. der Schicht¬ aufbau findet auch im Volumen statt und beschichtet im In¬ nern der Konstruktion alle Fasern.E-rsc zbiatö The present method is also very suitable for the impregnation of volume-containing or three-dimensionally shaped textile bodies such as B. spacer fabric, spacer mesh or fleece. The impregnation or the layer structure also takes place in volume and coats all fibers in the interior of the structure.
Eine bevorzugte Ausführungsart des erfindungsgemässen Ver- fahrens besteht darin, einen textilen Körper in eine her¬ kömmliche Kammer für die PVD-Beschichtung nach dem Nieder¬ temperatur-Plasma-Verfahren zu bringen. Um einen gleich- massigen Zutritt des Behandlungsgases zu erreichen, wird der textile Körper durch ein Stützgestell oder einen Spannrahmen so gehalten, dass die Oberflächen möglichst frei zugänglich sind. Die Prozessparameter gemäss der geplanten Beschichtung werden eingestellt, also Vakuum, Gaseintrag und Temperatur. Für eine oberflächliche Polyme- risierung eines gasförmigen Monomers wird ein permanenter Zustrom des Monomergases eingestellt. Zu verdampfende Behandlungsmittel werden wie in diesem Verfahren üblich als Festkörper oder auch als Pulver oder Granulat, in die Behandlungskammer eingebracht. Als Gas der Behandlungs¬ atmosphäre kommen Edelgase, beispielsweise Argon, aber auch Stickstoff und Sauerstoff in Frage. Die Auswahl richtet sich nach den Eigenschaften des jeweiligen zu beschich¬ tenden Substrat und dem Beschichtungsmaterial .A preferred embodiment of the method according to the invention is to bring a textile body into a conventional chamber for the PVD coating using the low-temperature plasma method. In order to achieve uniform access to the treatment gas, the textile body is held by a support frame or a tenter frame so that the surfaces are as freely accessible as possible. The process parameters according to the planned coating are set, i.e. vacuum, gas entry and temperature. A permanent inflow of the monomer gas is set for a surface polymerization of a gaseous monomer. Treatment agents to be evaporated are introduced into the treatment chamber as a solid or as a powder or granulate, as is customary in this process. Noble gases, for example argon, but also nitrogen and oxygen can be used as the gas in the treatment atmosphere. The selection is based on the properties of the particular substrate to be coated and the coating material.
Durch Anlegen eines elektromagnetischen Wechselfelds wird ein Plasma in der Kammer erzeugt. Anstatt oder in Ergänzung des Wechselfelds können auch eine Gleichstrom-Glimmentla¬ dung, Mikrowellen oder andere, an sich bekannte Anregungs¬ techniken zur Erzeugung des Plasmas benutzt werden. Die Plasmateilchen treffen u. a. auf das Behandlungsmittel in der festen Form und führen zu seiner Verdampfung. Gasför¬ miges Behandlungsmittel, wie z. B. Monomergas, kann ent-A plasma is generated in the chamber by applying an alternating electromagnetic field. Instead of or in addition to the alternating field, direct current glow discharge, microwaves or other excitation techniques known per se can also be used to generate the plasma. The plasma particles hit u. a. on the treatment agent in the solid form and lead to its evaporation. Gaseous treatment agent, such as. B. monomer gas, can
ErsatzDiatt weder direkt durch die Wirkung der Anregungsenergie oder indirekt durch das Plasma der Trägergase aktiviert werden, z. B. durch Bildung von Radikalen. Denkbar sind auch ande¬ re, an sich aus der CVD- und PVD-Technologie bekannte Tech- niken zur Darstellung des gasförmigen Behandlungsmittels, wie Lichtbogenverdampfung, Erhitzen usw.Sa t z D iatt be activated neither directly by the action of the excitation energy or indirectly by the plasma of the carrier gases, e.g. B. by formation of radicals. Other techniques known per se from CVD and PVD technology for representing the gaseous treatment agent, such as arc evaporation, heating, etc., are also conceivable.
Eine ionische Wechselwirkung zwischen den sich abschei¬ denden Teilchen und der Oberfläche, d. h. dem Substrat, führt zu besonders festhaftenden und sehr stabilen Schich¬ ten. Eine besonders feste Verbindung zwischen Schicht und Substrat tritt auf, wenn im Verlauf der Abscheidung chemi¬ sche Bindungen zwischen Substrat und Schicht ausgebildet werden, z. B. durch Propfung. Sehr stabile Schichten werden erhalten, wenn die Polymerisation zu vernetzten, insbeson¬ dere dreidimensional vernetzten Strukturen führt. Oft wird vor der Abscheidung noch ein Reinigungsprozess beobachtet, der auch durch entsprechende Prozessparameter erzwungen oder gefördert werden kann, wodurch eine tiefgreifende Rei- nigung der zu behandelnden Oberflächen des textilen Körpers und damit eine hohe Qualität der Beschichtung erzielt wird.An ionic interaction between the separating particles and the surface, i. H. the substrate leads to particularly firmly adhering and very stable layers. A particularly firm connection between the layer and the substrate occurs if chemical bonds are formed between the substrate and the layer in the course of the deposition, e.g. B. by grafting. Very stable layers are obtained if the polymerization leads to cross-linked, in particular three-dimensionally cross-linked structures. A cleaning process is often observed before the deposition, which can also be enforced or promoted by appropriate process parameters, as a result of which a thorough cleaning of the surfaces of the textile body to be treated and thus a high quality of the coating is achieved.
Vorteilhaft an einer Beschichtung durch oberflächliche Polymerisation gemäss der vorliegenden Erfindung ist, dass die aktivierten Monomerteilchen trotz ihrer Anregung, z. B. Ionisierung, nur wenig erhöhte Temperatur aufweisen und da¬ mit eine Polymerisierung auch auf temperaturempfindlichen Materialien wie beispielsweise Thermoplasten erfolgen kann. Es ist auch möglich, auf übliche, chemische Art nicht poly- merisierbare Stoffe einzusetzen, wie z. B. Alkane, da unter der Einwirkung einer Glimmentladung derartige Moleküle un¬ ter Bruch von Bindungen oder Abspaltung von Fragmenten in reaktive Formen übergehen.An advantage of a coating by surface polymerization according to the present invention is that the activated monomer particles, despite their excitation, e.g. B. ionization, have only a little elevated temperature and thus polymerization can also take place on temperature-sensitive materials such as thermoplastics. It is also possible to use non-polymerizable substances in the usual chemical way, such as. B. alkanes, since under the action of a glow discharge such molecules break into bonds or cleavage of fragments into reactive forms.
Mit dem erfindungsgemassen Verfahren wurden zum Beispiel textile Körper aus Polyethylenfäden mit PTFE beschichtet,With the method according to the invention, for example, textile bodies made of polyethylene threads were coated with PTFE,
rsaizDlatl wodurch die hohe Reissfestigkeit des Polyethylen mit der Antihaf wirkung des PTFE kombiniert werden konnte. Kohle¬ fasern können durch eine entsprechende Beschichtung gegen den Sauerstoff der Luft geschützt werden. Die abgeschie- denen Schichten können reinigungs-, wasch- und sogar koch- und (dampf-)sterilisationsbeständig ausgeführt werden.rsaizDlatl which combined the high tensile strength of the polyethylene with the anti-adhesive effect of the PTFE. Carbon fibers can be protected against the oxygen in the air by an appropriate coating. The deposited layers can be made resistant to cleaning, washing and even boiling and (steam) sterilization.
Es ist auch möglich, Bahnen von Textümaterial zu behan¬ deln. Dazu kann das Textümaterial auf Rollen in die Be- handlungskammer eingebracht und in dieser während der Be- handlungszeit umgerollt werden, oder das Textümaterial kann von Luft zu Luft durch die Kammer durchgezogen werden, wozu die Kammer Eingangs- und Ausgangsschleusen aufweisen uss .It is also possible to treat webs of textile material. For this purpose, the textile material can be introduced into the treatment chamber on rolls and can be rolled during the treatment period, or the textile material can be drawn through the chamber from air to air, for which purpose the chamber has entrance and exit locks, etc.
Zusammenfassend kann also nach dem erfindungsgemassen Ver¬ fahren durch die Anwendung der CVD- oder PVD-Technik zur Oberflächenbehandlung, insbesondere intensiver Oberflächen¬ reinigung, Beschichtung oder Oberflächenpolymerisation, ein textiler Körper ganzheitlich mit neuen oberflächenbedingten Eigenschaften ausgestattet werden. Die Oberflächenbehand¬ lung erfolgt dabei intensiv und wegen der Behandlung aus der Gasphase sehr gleichmässig auch in bereits verwobenem oder vermaschten Material, und die aufgebrachten Schichten können wegen der hohen Qualität sehr dünn gehalten werden, z. B. dünner als 1 % des Faserdurchmessers oder nur einige hundert Atom- bzw. Molekülschichten dick, so dass eine merkliche Volumenzunahme durch die Beschichtung vermieden werden kann. Unter anderem können folgende Oberflächen- eigenschaften durch Wahl des oder der entsprechenden Be¬ handlungsmittel eingestellt werden: antibakterielle Aus¬ rüstung, wasch- und kochbeständig; fungizide Eigenschaften; Benetzbarkeit; UV-IR-Absorption; Strahlungs-, insbesondere IR-, UV-, Lichtreflexion; Gleitfähigkeit; Knittereigen- Schäften; Brennbarkeit; Antipilling; elektrische Leitfähig¬ keit; usw. Die Schichten haften sehr gut auf den Oberflä-In summary, according to the method according to the invention, by using CVD or PVD technology for surface treatment, in particular intensive surface cleaning, coating or surface polymerization, a textile body can be endowed with new surface-related properties. The surface treatment is carried out intensively and, because of the treatment from the gas phase, very evenly even in already woven or meshed material, and the layers applied can be kept very thin because of the high quality, eg. B. thinner than 1% of the fiber diameter or only a few hundred atom or molecular layers thick, so that a noticeable increase in volume can be avoided by the coating. Among other things, the following surface properties can be set by choosing the appropriate treatment agent (s): antibacterial finish, washable and boil-resistant; fungicidal properties; Wettability; UV-IR absorption; Radiation, in particular IR, UV, light reflection; Lubricity; Crease-resistant shafts; Flammability; Antipilling; electrical conductivity; etc. The layers adhere very well to the surface
Ersafcblat feii. chen des Textil aterials und sind auch in feinsten Zwischenräu¬ men gut ausgebildet. Damit ist vorteilhaft auch eine durchdrin¬ gende Behandlung von voluminösen Textilstrukturen möglich, wie Abstandsgeweben, -gestricken, Vliesen und Filzen. Mit dem er¬ findungsgemäßen Verfahren können auch Ummantelungen mit Mate¬ rialien durchgeführt werden, deren Verwendung nach den bekann¬ ten Verfahren zu teuer kam, da bei der Erfindung nur geringe Mengen nötig sind und damit auch die Bedeutung des Materialko¬ stenfaktors generell zurückgedrängt wird.Replacement blade feii. Chen of the textile material and are well formed even in the finest spaces. A penetrating treatment of voluminous textile structures, such as spacer fabrics, knitted spacers, nonwovens and felts, is thus advantageously also possible. The method according to the invention can also be used to carry out sheathing with materials whose use according to the known methods was too expensive, since only small amounts are required in the invention and the importance of the material cost factor is thus generally reduced.
Vorteilhaft für die Durchführung des erfindungsgemäßen Verfah¬ rens ist die sogenannte Niedrigtemperatur-Plasmatechnologie, die praktisch bei Raumtemperaturen durchgeführt wird. Vorteil¬ haft ist die Verwendung besonders energiereichen Plasmas, z.B. des Pulsplasmas. Die "freien Radikalen", die bei der Zerschla¬ gung von Molekülen unter Plasmaeinwirkung entstehen, setzen rasch ablaufende Reaktionen, z.B. eine Plasmapolymerisation, in Gang. Sie können in Kleinstlücken eindringen und ebenfalls Ma¬ terial durchdringen. Es können demnach Reaktionen in Hinter- schneidungen und durch das Material hindurch ausgelöst werden. Es ist daher möglich, daß die Fasern innerhalb des fertigen Textils rundum beschichtet werden können. Alle Fasern bekommen auch in Fadenüberdeckungen rundherum ihre sehr dicht vernetzte dünnste Schicht. Es ist somit eine Ummantelung möglich, die Textilmodifikationen bzw. Veredelungen erlaubt, ohne H2O als Träger für die Chemikalien zu verwenden, denn viel besser als Wasser dringen die plasmaangeregten Monomere in und zwischen die Fäden und Fibrillen ein. Die durch die Erfindung bereitge¬ stellte Faserummantelung ist als Verfahrensstufe bei vorhande¬ nen Anlagen und Beschichtungsverfahren implementierbar.The so-called low-temperature plasma technology, which is practically carried out at room temperatures, is advantageous for carrying out the process according to the invention. It is advantageous to use particularly high-energy plasma, for example pulse plasma. The "free radicals" that arise when molecules are broken down under the influence of plasma set off rapid reactions, for example plasma polymerization. They can penetrate into the smallest gaps and also penetrate material. Accordingly, reactions in undercuts and through the material can be triggered. It is therefore possible that the fibers can be coated all around within the finished textile. All fibers get their very densely networked thinnest layer all around, even in thread covers. It is therefore possible to use a sheathing that allows textile modifications or refinements without using H 2 O as a carrier for the chemicals, because the plasma-excited monomers penetrate into and between the threads and fibrils much better than water. The fiber sheathing provided by the invention can be implemented as a process step in existing systems and coating processes.
Durch die Erfindung wird eine Technologie im Textilbereich an¬ gewandt, die bisher nur in anderen technischen Bereichen, z.B. bei der Metallbehandlung für die Oberflächenhärtung und bei Leiterplatten zur FCKW-freien zuverlässigen Reinigung auch in allerfeinsten Bohrlöchern angewandt worden ist. Diese Technologie wird für flächige und räumliche Textilien zugäng¬ lich gemacht. Es werden zwei unterschiedliche Plasmatechniken,The invention uses a technology in the textile sector which has hitherto only been used in other technical fields, e.g. in metal treatment for surface hardening and in printed circuit boards for CFC-free, reliable cleaning, even in the finest drill holes. This technology is made accessible for flat and spatial textiles. There are two different plasma techniques,
Ersatzblatt das PVD- und das CVD-Verfahren angewandt. Beim PVD (Physical Vapour Deposition)-Verfahren wird Materie vom Target auf das Substrat übertragen. Dies wird auch als Sputtern bezeichnet. Beim CVD (Chemical Vapour Deposition)-Verfahren wird aus mono- meren Gasen (z.B. Ethylen oder Propylen) eine sich auf dem Substrat niederschlagende Duromer-Dünnschicht erzeugt. Die Mo¬ leküle des Monomers werden durch Zusammenstoß mit den energie¬ reichen Partikeln, den in der Gasentladung vorhandenen Elektro¬ nen, angeregt und zu einem erheblichen Teil auch fragmentiert, d.h. zu Molekülstücken zerschlagen. Dadurch können die Monomere und Fragmente im Gasraum an allen Oberflächen miteinander rea¬ gieren. Diese Reaktionen sind die eigentliche Basis der Plas¬ mapolymerisation.Spare sheet the PVD and CVD processes are used. In the PVD (Physical Vapor Deposition) process, matter is transferred from the target to the substrate. This is also known as sputtering. In the CVD (Chemical Vapor Deposition) process, a thin thermoset layer is deposited on the substrate from monomeric gases (eg ethylene or propylene). The molecules of the monomer are excited by collision with the energy-rich particles, the electrons present in the gas discharge, and to a large extent also fragmented, ie broken down into pieces of molecules. As a result, the monomers and fragments in the gas space can react with one another on all surfaces. These reactions are the actual basis of plasma polymerization.
Das Plasma, das diese Vorgänge anregt, ist ein ionisiertes Gas, das aus Ionen, Elektronen, Lichtquanten, Atomen und Molekülen besteht. Durch die Möglichkeit der Niedertemperaturbeschichtung ist es möglich, im Vakuum bei Zimmertemperatur zu beschichten. Dadurch können sogar Thermoplaste (z.B. Polyethylen oder Poly¬ propylen) beschichtet werden. Die entstehenden Schichten sind dreidimensional hochvernetzt und haben eine hervorragende Haf¬ tung auf dem Substrat.The plasma that stimulates these processes is an ionized gas, which consists of ions, electrons, light quanta, atoms and molecules. The possibility of low-temperature coating makes it possible to coat in a vacuum at room temperature. This means that even thermoplastics (e.g. polyethylene or polypropylene) can be coated. The resulting layers are highly cross-linked in three dimensions and have excellent adhesion to the substrate.
Mit ein und derselben Anlage sind aber auch abtragende Prozesse möglich. So kann z.B. durch das Zünden eines Sauerstoffplasmas eine "kalte Verbrennung" erzeugt werden. Hierbei werden organi¬ sche oder fettige Verunreinigungen ohne umweltbedenkliche Che- mikalie abgetragen. Es bleibt lediglich ein aschartiger Rest übrig.Removal processes are also possible with one and the same system. For example, a "cold combustion" is generated by the ignition of an oxygen plasma. Here, organic or greasy impurities are removed without chemical that is harmful to the environment. Only an ash-like residue remains.
Beide Vorgänge, das Ab- und Auftragen können durch die entspre¬ chende Steuerung der Parameter in einem Arbeitsgang, d.h. bei einer Reaktorbeschickung ablaufen. Dadurch kann gewährleistet werden, daß eine Beschichtungsmatrix nur auf ein absolut saube¬ res Substrat aufgebracht wird.Both processes, the removal and application, can be carried out by the corresponding control of the parameters in one operation, i.e. expire at a reactor feed. This can ensure that a coating matrix is only applied to an absolutely clean substrate.
Ein weiterer Aspekt der auf- und abtragenden Plasma-Technologie ist die hundertprozentig sterilisierende Wirkung des PlasmasAnother aspect of the application and ablation plasma technology is the 100% sterilizing effect of the plasma
Ersatzblatt (zerstörende Wirkung auf Organismen) . Auch durch die Verpackung von z.B. Verbandsmaterial hindurch lassen sich sämtliche Bakte¬ rien zuverlässig abtöten.Spare sheet (destructive effect on organisms). All bacteria can also be reliably killed through the packaging of, for example, dressing material.
Das Beschichtungsverfahren der Plasmatechnologie ist eine sehr sparsame und damit auch umweltfreundliche Technologie. Der elektrische Energieverbrauch ist sehr gering. Dies alles sind Vorteile gegenüber den bekannten Naßverfahren, die bezüglich der Verfahrensschritte sowohl zeit- als auch energie- und ko¬ stenaufwendig sind, da die Flotte (Wasser) aufgeheizt und auf Temperatur gehalten werden muß. Anschließend ist wiederum ein hoher Energieverbrauch beim Trocknen notwendig. Diese Verfah¬ rensschritte fallen weg. Weiterhin entfällt die Entsorgung der bisher üblichen Chemikalienreste beim Naßverfahren.The plasma technology coating process is a very economical and therefore environmentally friendly technology. The electrical energy consumption is very low. These are all advantages over the known wet processes, which are time-consuming as well as energy and cost-intensive in terms of the process steps, since the liquor (water) must be heated and kept at temperature. Subsequently, a high energy consumption during drying is necessary. These process steps are omitted. Furthermore, there is no need to dispose of the chemical residues commonly used in the wet process.
Die Schichten, die plasmagestützt aufgetragen werden können, haben wegen der hohen Vernetzung ganz neue Eigenschaften, die sich grundsätzlich von denen eines konventionell aus Monomeren hergestellten Polymers unterscheiden. Das Polymerisat ist stets ein Duromer, ist sehr temperaturbeständig und schon in geringer Schichtdicke frei von Pinholds (kleinste unbedeckte Bereiche) und ist fast von keinem Lösungsmittel angreifbar.The layers that can be applied with plasma support have completely new properties due to the high degree of crosslinking, which differ fundamentally from those of a polymer conventionally produced from monomers. The polymer is always a thermoset, is very temperature-resistant and, even in a small layer thickness, is free of pinholes (smallest uncovered areas) and is hardly attackable by any solvent.
Die im Plasma angeregten energiereichen Partikel lösen daher beim Monomer (Gas) intensive und tiefgehende Effekte aus. Das kalte Plasma stellt hohe Energien in chemisch sehr wirksamer Form bei Raumtemperatur bereit. Ähnliche Reaktionen sind z.B. in der heißen Flamme nicht realisierbar. Es können praktisch alle organischen Verbindungen zur Schichtbildung gebracht wer¬ den.The energetic particles excited in the plasma therefore trigger intense and profound effects on the monomer (gas). The cold plasma provides high energies in a chemically very effective form at room temperature. Similar reactions are e.g. not feasible in the hot flame. Virtually all organic compounds can be formed to form a layer.
Erfindungsgemäß wird im speziellen Plasma innerhalb der Textil- flache jede Fibrille eines Fadens ummantelt. Die Entladung er¬ reicht somit auch sehr kompliziert geformte Teile, Hinter- schneidungen und erfaßt auch die nicht freiliegenden Kontaktbe¬ reiche der Fasern. Die Volumeneigenschaften des beschichteten Textils werden hierbei nicht spür- oder sichtbar beeinflußt.According to the invention, each fibril of a thread is encased in the special plasma within the textile surface. The discharge thus also reaches parts of very complex shapes, undercuts and also detects the non-exposed contact areas of the fibers. The volume properties of the coated textile are not noticeably or visibly influenced.
Ers Uϊ&y Das Textil befindet sich während der Behandlung in einem Unter¬ druckkessel. Die eventuell entstehenden Überschuß- oder Abfall¬ gase werden von einer Vakuumpumpe abgesaugt und können problem¬ los aufgefangen oder als Kreislauf wieder zur Reaktion zurück¬ geführt werden. Vom Prinzip her ist beim Plasmaverfahren eine unkontrollierte Verteilung von bedenklichen Stoffen nicht zu erwarten.Ers Uϊ & y The textile is in a vacuum vessel during the treatment. Any excess or waste gases that are produced are sucked off by a vacuum pump and can be collected without problems or returned to the reaction as a cycle. In principle, an uncontrolled distribution of substances of concern is not to be expected in the plasma process.
Wegen der sehr dünnen Schichten sind die Materialkosten sehr gering.Because of the very thin layers, the material costs are very low.
Abschließend sollen noch einige mit Niedertemperaturplasma er¬ zielende Effekte aufgeführt werden:Finally, some effects that can be achieved with low-temperature plasma are listed:
Beeinflussung der Oberfläche durch Abtragung Beeinflussung der Oberfläche durch Beschichtung Einstellung der Benetzbarkeit (hydrophil) Steigerung/Verminderung der Haftbereitschaft (hierdurch problemlose Färbung)Influencing the surface by abrasion Influencing the surface by coating Adjusting the wettability (hydrophilic) Increasing / reducing the readiness for adhesion (thereby problem-free coloring)
Erzeugung elektrisch isolierender/leitfähiger Schichten Einstellung der Permeationsdaten für Gase und Flüssigkei¬ tenGeneration of electrically insulating / conductive layers. Setting the permeation data for gases and liquids
Steigerung der AbrasionsbeständigkeitIncreased abrasion resistance
Änderung des Reflexionsverhaltens (UV- und IR-Schutz)Change in reflection behavior (UV and IR protection)
Änderung des Gleitverhaltens.Change in gliding behavior.
Das Plasma kann entweder als Gleichspannungsplasma oder als Wechselspannungsplasma aufgebracht werden. Beim Gleichspan¬ nungsplasma ist die resistive Einkopplung der Energie mit in dem Reaktor liegenden Plattenelektroden die einzige Möglichkeit der Energieübertragung. Hier sind Entladungen im KHz- oder MHz- Bereich üblich. Der Reaktor zur Beschichtung des textilen Substrats kann entweder als Glockenreaktor ausgebildet sein, bei dem die Monomerzufuhr von oben erfolgt. Das Substrat befin¬ det sich in der Nähe der Kathode bzw. im Kathodenfallgebiet, da dort der Ionisierungsgrad des Beschichtungsmonomers hoch ist. Als Strömungsform ergibt sich eine radiale Überströmung des Substrats.The plasma can be applied either as a DC voltage plasma or as an AC voltage plasma. In the case of direct voltage plasma, the resistive coupling of the energy with plate electrodes located in the reactor is the only way of energy transfer. Discharges in the KHz or MHz range are common here. The reactor for coating the textile substrate can either be designed as a bell reactor, in which the monomer is supplied from above. The substrate is located in the vicinity of the cathode or in the cathode drop area, since the degree of ionization of the coating monomer is high there. The flow form is a radial overflow of the substrate.
Ersatzblatt Es kann auch ein Rohrreaktor verwendet werden, bei dem die Elektroden parallel zur Rohrachse angeordnet sind. Das Substrat wird hier vom Monomer parallel überströmt.Spare sheet A tube reactor in which the electrodes are arranged parallel to the tube axis can also be used. The monomer flows over the substrate in parallel.
Wechselspannungsplasmen werden mit Frequenzen zwischen 50 Hz und einigen 10 MHz angeregt. Neben der resistiven Einkopplung der Energie wird in diesem Frequenzbereich die kapazitive Ein¬ kopplung bei hohen Frequenzen eingesetzt. Hierbei befinden sich die Elektroden nicht mehr im Plasma, sondern außerhalb des Re¬ aktors. Somit ist ein Beschichten der Elektrode, das zu einer Abschirmung des elektrischen Feldes führen würde, während der Plasmapolymerisation ausgeschlossen. Beim Wechselspannungsplas¬ ma werden möglichst hohe Frequenzen erforderlich. Bei Frequen¬ zen im KHz-Bereich muß der Wandwiderstand des Reaktors überwun¬ den werden. Der Wechselspannungswiderstand nimmt umgekehrt pro¬ portional zur Frequenz des angelegten Feldes ab und ist im MHz- Bereich vernachlässigbar. Auch beim Wechselspannungsplasma kann entweder ein Glockenreaktor oder ein Rohrreaktor verwendet wer¬ den. Beim Wechselspannungsplasma ist ebenfalls eine Energiean- kopplung über externe Magnetfelder (induktive Ankopplung) denk¬ bar. Der Plasmareaktor kann z.B. als Rohrreaktor ausgebildet sein, der mit einer Spule für die induktive Ankopplung umgeben sein kann. Die induktive Kopplung kann ebenfalls nur bei sehr hohen Frequenzen, vorzugsweise im MHz-Bereich, eingesetzt wer¬ den.AC plasmas are excited with frequencies between 50 Hz and several 10 MHz. In addition to the resistive coupling of the energy, the capacitive coupling at high frequencies is used in this frequency range. In this case, the electrodes are no longer in the plasma, but outside the reactor. Coating of the electrode, which would lead to a shielding of the electric field, during plasma polymerization is thus ruled out. Frequencies which are as high as possible are required in the case of AC plasma. At frequencies in the KHz range, the wall resistance of the reactor must be overcome. The AC voltage resistance decreases proportionally to the frequency of the applied field and is negligible in the MHz range. Either a bell-type reactor or a tubular reactor can also be used in the case of AC plasma. In the case of AC plasma, energy coupling via external magnetic fields (inductive coupling) is also conceivable. The plasma reactor can e.g. be designed as a tubular reactor, which can be surrounded by a coil for inductive coupling. The inductive coupling can likewise only be used at very high frequencies, preferably in the MHz range.
Bei der induktiven Ankopplung, vorzugsweise in Verbindung mit dem Rohrreaktor, sind bei einer parallelen Strömung des Be¬ schichtungsmonomers hohe Energiedichten erreichbar, die zu ei¬ ner starken Fragmentierung der Plasmagase führen.In the case of inductive coupling, preferably in conjunction with the tubular reactor, high energy densities can be achieved with a parallel flow of the coating monomer, which lead to severe fragmentation of the plasma gases.
Unter dem Wechselspannungsplas a ist die Technik im Mikrowel- lenbereich (Gigaherz-Bereich) noch erwähnbar. Hier werden zwei Gruppen unterschieden.The technology in the microwave range (gigahertz range) can still be mentioned under AC voltage a. A distinction is made between two groups.
Eine Gruppe umfaßt die sogenannten "slow wave structures", bei denen Mikrowellen von einem Generator erzeugt und durch einenOne group includes the so-called "slow wave structures", in which microwaves are generated by a generator and by a
Ersatzblatt Mikrowellen-Hohlleiter übertragen werden. Die Frequenz der Mi¬ krowellen ist mit 2,45 GHz festgelegt, einer Frequenz, die von der Deutschen Bundespost für industrielle Anwendungen freigege¬ ben ist. Der Mikrowellen-Hohlleiter weist auf seiner unteren Breitseite rechteckige Lochblenden auf, deren Mittelpunkte in Abständen einer halben Hohlleiter-Wellenlänge der Mikrowellen angeordnet sind. Durch die Lochblenden wird ein bestimmter Teil der jeweils vorhandenen Mikrowellenenergie aus dem Hohlleiter aus- und durch ein Quarzfenster, welches mikrowellenverlustfrei durchdrungen werden kann, in das Plasma eingekoppelt.Spare sheet Microwave waveguide can be transmitted. The frequency of the microwaves is set at 2.45 GHz, a frequency that is approved by the Deutsche Bundespost for industrial applications. On its lower broad side, the microwave waveguide has rectangular perforated apertures, the center points of which are arranged at intervals of half a waveguide wavelength of the microwaves. A certain part of the microwave energy present in each case is extracted from the waveguide through the perforated apertures and coupled into the plasma through a quartz window which can be penetrated without microwave loss.
Die zweite Gruppe der Mikrowellen-Einkopplungen wird gebildet durch sogenannte Resonator-Einkopplungen. Hierbei werden die Mikrowellen in einen Mikrowellenresonator eingekoppelt, der Plasmareaktor wird in geeigneter Weise so durch den Resonator geführt, das eine maximale Leistungseinkopplung möglich wird. Vorzugsweise wird als Plasmareaktor ein Quarzrohr verwendet, das bevorzugt symmetrisch in einem Zylinderresonator angeordnet wird.The second group of microwave couplings is formed by so-called resonator couplings. Here, the microwaves are coupled into a microwave resonator, and the plasma reactor is guided through the resonator in a suitable manner in such a way that maximum power coupling is possible. A quartz tube is preferably used as the plasma reactor, which is preferably arranged symmetrically in a cylinder resonator.
Die Plasmapolymerisation kann in fünf Schritte gegliedert wer¬ den, die teilweise parallel ablaufen.The plasma polymerization can be divided into five steps, some of which run in parallel.
Im ersten Schritt, der Initiierung, werden Monomere in der Gas¬ phase durch Elektronenstoß aktiviert bzw. radikalisiert. Außer¬ dem werden auf der Substratoberfläche adsorbierte Monomere durch Elektronen-, Ionen- oder Photonenbeschuß zur Reaktion mit anderen Monomeren angeregt.In the first step, initiation, monomers are activated or radicalized in the gas phase by electron impact. In addition, monomers adsorbed on the substrate surface are excited by electron, ion or photon bombardment to react with other monomers.
Ein zweiter Schritt, die Adsorption, beschreibt die Adsorption von Monomeren und von radikalen Spezies auf der Substratober¬ fläche. Das Kettenwachstum wird in einem dritten Schritt be¬ schrieben. Hierbei können Reaktionen auftreten zwischen Radika¬ len und Monomeren in der Gasphase, adsorbierten Radikalen und gasförmigen Monomeren, sowie adsorbierten Radikalen und adsor¬ bierten Monomeren.A second step, the adsorption, describes the adsorption of monomers and of radical species on the substrate surface. The chain growth is described in a third step. Reactions can occur between radicals and monomers in the gas phase, adsorbed radicals and gaseous monomers, and adsorbed radicals and adsorbed monomers.
aτzD- Der vierte Schritt, die Termination, führt zur Bildung von po- lymeren Gebilden. Durch Reaktion längerkettiger Radikaler in der Gasphase können Polymere in der Gasphase entstehen. Durch die Reaktion von Radikalen aus der Gasphase mit adsorbierten Radikalen bzw. von adsorbierten Radikalen untereinander, ent¬ stehen Polymere, die auf dem Substrat adsorbiert sind.aτzD- The fourth step, termination, leads to the formation of polymeric structures. The reaction of longer-chain radicals in the gas phase can produce polymers in the gas phase. The reaction of radicals from the gas phase with adsorbed radicals or between adsorbed radicals results in polymers which are adsorbed on the substrate.
Ein fünfter Schritt, die Reinitiierung, beschreibt zum einen die nochmalige Fragmentierung des bereits gebildeten Polymers in der Gasphase durch Einwirkung des Plasmas und zum anderen den Prozeß der dreidimensionalen Vernetzung des Polymers auf der Substratoberfläche durch Einwirkung von Ionen, Elektronen und Photonen.A fifth step, the reinitiation, describes on the one hand the repeated fragmentation of the already formed polymer in the gas phase by the action of the plasma and on the other hand the process of three-dimensional crosslinking of the polymer on the substrate surface by the action of ions, electrons and photons.
Die Plasmapolymerisation wird in einem Druckbereich zwischen 0,01 mbar und 10 mbar durchgeführt. Bei niedrigen Drücken wer¬ den die erzielbaren Abscheideraten zu gering, während bei höhe¬ ren Drücken sich keine transpartenten durchgehenden Schichten mit den erwünschten Eigenschaften herstellen lassen.The plasma polymerization is carried out in a pressure range between 0.01 mbar and 10 mbar. At low pressures the achievable deposition rates become too low, while at higher pressures no transparent continuous layers with the desired properties can be produced.
Unter den durch die Plasmatechnologie auf die Textilien auf¬ bringenden Funktionsschichten lassen sich neun Gruppen unter¬ scheiden:Nine groups can be distinguished from the functional layers applied to the textiles by plasma technology:
1) Adhäsive Funktionsschichten, die folgende Eigenschaften beeinflussen: Bedruckbarkeit, Lackierbarkeit, Metallisierbar- keit Klebbarkeit, Benetzbarkeit, Hydrophilisierung, Hydropho- bisierung, Antiadhäsivierung, Schichtverbundfestigkeit, Teil¬ chenverbundfestigkeit und Faserverbundfestigkeit.1) Adhesive functional layers which influence the following properties: printability, paintability, metallizability, adhesiveness, wettability, hydrophilization, hydrophobization, antiadhesion, layer composite strength, particle composite strength and fiber composite strength.
2) Optische Funktionsschichten, die folgende Eigenschaften beeinflussen: Farbstabilität, Brechungsindex, Antireflexions- wirkung, Antibeschlagwirkung, Entspiegelungswirkung, Adsorpti¬ onskoeffizient.2) Optical functional layers which influence the following properties: color stability, refractive index, antireflection effect, anti-fog effect, anti-reflective effect, adsorption coefficient.
3) Textile Funktionsschichten, die folgende Eigenschaften be¬ einflussen: Festigkeit, Formbeständigkeit, Bedruckbarkeit, Farbbarkeit, Farbechtheit, Farbhaftung, Klebbarkeit, Flammfe-3) Textile functional layers which influence the following properties: strength, dimensional stability, printability, colorability, color fastness, color adhesion, adhesiveness, flame resistance
Ersatzb stigkeit, statische Aufladbarkeit, Schmutzempfindlichkeit, Was¬ seraufnahmevermögen, Antifilzwirkung.Replacement b stability, static chargeability, sensitivity to dirt, water absorption, anti-felt effect.
4) Biomedizinische Funktionsschichten, die für Textilien im medizinischen Bereich eingesetzt werden können. Diese beein¬ flussen z.B. folgende Eigenschaften: Organofilierung, Biokompa- tibiltät, immunbiologisches Verhalten, Antitoxizität.4) Biomedical functional layers that can be used for textiles in the medical field. These influence e.g. following properties: organofiltration, biocompatibility, immunobiological behavior, antitoxicity.
5) Elektrische Funktionsschichten, die die elektrischen Ei¬ genschaften der Fasern beeinflussen: Dielektrizitätskonstante, Isolationswiderstand, antistatisches Verhalten, Leitfähigkeit.5) Electrical functional layers which influence the electrical properties of the fibers: dielectric constant, insulation resistance, antistatic behavior, conductivity.
6) Chemische Funktionsschichten zur Beeinflussung der folgen¬ den Fasereigenschaften: Migrationsschutz, Diffusionsschutz, Korrosionsschutz, Lösungsmittelresistenz.6) Chemical functional layers for influencing the following fiber properties: migration protection, diffusion protection, corrosion protection, solvent resistance.
7) Mechanische Funktionsschichten zur Steuerung der folgenden Eigenschaften: Verschleißverhalten, Abrasionsschutz, Reibungs¬ koeffizient.7) Mechanical functional layers for controlling the following properties: wear behavior, abrasion protection, coefficient of friction.
8) Permeable Funktionsschichten zur Steuerung von z.B. Poro¬ sität und Permeabilität.8) Permeable functional layers for controlling e.g. Porosity and permeability.
9) Thermische Funktionsschichten zur Beeinflussung der Form¬ beständigkeit, Haftfähigkeit und Wärmereflektion der textilen Fasern.9) Thermal functional layers to influence the dimensional stability, adhesiveness and heat reflection of the textile fibers.
Jedes Beschichtungsmonomer hat wegen seiner chemischen Zusam¬ mensetzung und Struktur sowie aufgrund der erforderlichen Pro¬ zeßparameter eine eigene Polymerisationskinetik. Die Polymeri¬ sationsgeschwindigkeit und damit die Wachstumsgeschwindigkeit von Schichten unterschiedlicher Monomere differieren erheblich. So sind z.B. bei Monomeren mit hohen Molekulargewichten die Be- schichtungsraten in der Regel höher, da sich größere niedermo¬ lekulare Fragmentationsprodukte bilden und anlagern können. Es können zur Erzielung unterschiedlicher gewünschter Eigenschaf¬ ten mehrere Monomere gleichzeitig oder in Abfolge durch Plasma¬ technik auf das Textilsubstrat aufgebracht werden.Each coating monomer has its own polymerization kinetics because of its chemical composition and structure, and because of the necessary process parameters. The rate of polymerization and thus the rate of growth of layers of different monomers differ considerably. For example, in the case of monomers with high molecular weights, the coating rates are generally higher, since larger low-molecular fragmentation products can form and accumulate. To achieve different desired properties, several monomers can be applied to the textile substrate simultaneously or in succession by means of plasma technology.
Ersai DiatS Ersai DiatS

Claims

PATENTANSPRÜCHE: PATENT CLAIMS:
1. Verfahren zur Behandlung der Oberfläche von Fäden, die aus einem oder mehreren Filamenten aufgebaut sind, und Fasern in textilen Gebilden, dadurch gekennzeichnet, daß mindestens ein gas- oder plasmaförmiges Behandlungs ittel eingesetzt und auf der Oberfläche der Fasern und/oder Filamente als kontinuierli¬ che oder diskontinuierliche Schicht abgeschieden wird.1. A method for treating the surface of threads which are composed of one or more filaments and fibers in textile structures, characterized in that at least one gaseous or plasma-shaped treatment agent is used and on the surface of the fibers and / or filaments as continuous ¬ che or discontinuous layer is deposited.
2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass die Behandlung unter einem Gasgesamtdruck von höch¬ stens etwa 10 kPa durchgeführt wird.2. The method according to claim 1, characterized in that the treatment is carried out under a total gas pressure of at most about 10 kPa.
3. Verfahren gemäss einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Behandlungsmittel durch Verdampfen eines Festkörpers aus einem Beschichtungsmaterial bereit¬ gestellt wird.3. The method according to any one of claims 1 or 2, characterized in that the treatment agent is made available by evaporating a solid from a coating material.
4. Verfahren gemäss einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Behandlungsmittel im gasförmigen Zustand durch eine elektrische Entladung oder Wechselwir¬ kung mit Plasmateilchen der Umgebung, die durch Energie¬ einstrahlung, insbesondere durch elektromagnetische Felder erzeugt werden, in einen chemisch reaktiven Zustand über¬ führt wird.4. The method according to any one of claims 1 to 3, characterized in that the treatment agent in the gaseous state by an electrical discharge or interaction with plasma particles in the environment, which are generated by energy radiation, in particular by electromagnetic fields, in a chemically reactive Condition is transferred.
5. Verfahren gemäss einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Behandlungsmittel durch Strah- lungs- und/oder Wärmeeinwirkung in einen Zustand überführt wird, in dem das Behandlungsmittel fähig ist, sich auf der zu beschichtenden Oberfläche abzuscheiden.5. The method according to any one of claims 1 to 3, characterized in that the treatment agent is converted by radiation and / or heat into a state in which the treatment agent is able to deposit on the surface to be coated.
6. Verfahren gemäss Anspruch 4 oder 5, dadurch gekenn- zeichnet, dass das Behandlungsmittel polymerisationsfähig ist und indirekt über in der Atmosphäre des Behandlungsrau- mes gebildete angeregte oder reaktive Teilchen oder direkt zur Polymerisation angeregt wird.6. The method according to claim 4 or 5, characterized in that the treatment agent is capable of polymerization and indirectly via in the atmosphere of the treatment room. mes formed excited or reactive particles or directly excited for polymerization.
7. Verfahren gemäss einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das zu beschichtende Gebilde durch7. The method according to any one of claims 1 to 6, characterized in that the structure to be coated by
Mikrowellen erwärmt wird.Microwaves is heated.
8. Anwendung des Verfahrens gemäss einem der Ansprüche 1 bis 7 zum Beschichten von textilem Material und aus solchem zumindest teilweise bestehenden Gebilden, dadurch gekenn¬ zeichnet, dass die Fasern oder Filamente des textilen Mate¬ rials gleich ässig mit einer Schicht ummantelt werden, die vom Behandlungsmittel durch oberflächliche Abscheidung oder Polymerisation erzeugt wird.8. Application of the method according to any one of claims 1 to 7 for coating textile material and such at least partially existing structures, characterized gekenn¬ characterized in that the fibers or filaments of the textile material are coated uniformly with a layer that from Treatment agent is generated by surface deposition or polymerization.
9. Anwendung des Verfahrens gemäss einem der Ansprüche 1 bis 7 zum Beschichten von textilem Material, dadurch ge¬ kennzeichnet, dass die Fasern oder Filamente des textilen Gebildes gleichmässig mit einer Oberfläche versehen werden, die eine oder mehrere der folgenden Eigenschaften aufweist: elektrisch leitend, elektrisch isolierend, metallisch, gas¬ undurchlässig, strahlungsreflektierend, lichtreflektierend, antibakteriell, fungizid, reinigungsbeständig, sterilisati¬ onsbeständig.9. Application of the method according to one of claims 1 to 7 for coating textile material, characterized ge indicates that the fibers or filaments of the textile structure are evenly provided with a surface which has one or more of the following properties: electrically conductive, electrically insulating, metallic, gas-impermeable, radiation-reflecting, light-reflecting, antibacterial, fungicidal, cleaning-resistant, sterilization-resistant.
10. Textiles Gebilde, gemäss einem der Ansprüche 1 bis 7 behandelt und dadurch gekennzeichnet, dass die Fasern oder Filamente eine Beschichtung aufweisen, deren Dicke im Mit¬ tel höchstens 1 % des mittleren Faser- bzw. Filamentdurch- messers ausmacht, bevorzugt wenige hundert Molekül- oder Atomschichten übereinander umfasst und im Mittel dicker als 5 nm ist. 10. Textile structure, treated according to one of claims 1 to 7 and characterized in that the fibers or filaments have a coating, the thickness of which is at most 1% of the average fiber or filament diameter, preferably a few hundred molecules - or atomic layers on top of one another and on average thicker than 5 nm.
11. Gebilde, zumindest teilweise aus textilem Material, insbesondere aus Garn oder Fasern bestehend und nach einem der Ansprüche 1 bis 7 behandelt, dadurch gekennzeichnet, dass die Filamente oder Fasern des textilen Materials mit einer Schicht versehen sind, die die chemische Natur des Textilmaterials gegenüber der Umwelt abschirmt.11. A structure, at least partially made of textile material, in particular yarn or fibers and treated according to any one of claims 1 to 7, characterized in that the filaments or fibers of the textile material are provided with a layer that opposes the chemical nature of the textile material shields the environment.
12. Gebilde gemäss Anspruch 11 aus textilem Material, da¬ durch gekennzeichnet, dass die Beschichtung reinigungsbe- ständig, dampfsterilisationsbeständig, antiallergisch, feuchtigkeitsundurchlässig, gasundurchlässig, lichtabwei- send, pilling-verhindernd, Knitterneigung verringernd und/oder strahlungsabweisend ist.12. A structure according to claim 11 made of textile material, characterized in that the coating is cleaning-resistant, steam-sterilization-resistant, anti-allergic, moisture-impermeable, gas-impermeable, light-repellent, pilling-preventing, creasing tendency-reducing and / or radiation-repellent.
13. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß eine Plasmabeschichtung bei Raumtemperatur erfolgt.13. The method according to any one of claims 1 to 7, characterized in that a plasma coating is carried out at room temperature.
1 . Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Plasmabeschichtung im PVD- oder CVD-Verfahren erfolgt. 1 . A method according to claim 13, characterized in that the plasma coating takes place in the PVD or CVD method.
PCT/DE1994/000439 1993-04-21 1994-04-21 Process for coating yarns and fibres in textile objects WO1994024358A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP94912475A EP0695384B2 (en) 1993-04-21 1994-04-21 Process for coating yarns and fibres in textile objects
DE59410093T DE59410093D1 (en) 1993-04-21 1994-04-21 METHOD FOR COATING YARNS AND FIBERS IN TEXTILE ITEMS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1221/93-5 1993-04-21
CH122193 1993-04-21

Publications (2)

Publication Number Publication Date
WO1994024358A2 true WO1994024358A2 (en) 1994-10-27
WO1994024358A3 WO1994024358A3 (en) 1994-12-08

Family

ID=4205330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/000439 WO1994024358A2 (en) 1993-04-21 1994-04-21 Process for coating yarns and fibres in textile objects

Country Status (3)

Country Link
EP (1) EP0695384B2 (en)
DE (1) DE59410093D1 (en)
WO (1) WO1994024358A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2775488A1 (en) * 1998-02-27 1999-09-03 Nylstar Sa Modifying the surface properties of articles made from or containing polyamide fibers or yarn by exposure to a gas plasma of unsaturated organic hydrocarbon
WO1999058756A1 (en) * 1998-05-08 1999-11-18 Asten, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
WO1999058755A1 (en) * 1998-05-08 1999-11-18 Asten, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
WO1999058757A1 (en) * 1998-05-08 1999-11-18 Asten, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
US6146462A (en) * 1998-05-08 2000-11-14 Astenjohnson, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
DE10019816A1 (en) * 2000-04-20 2001-10-31 Asten Ag Eupen Process for coating a yarn and textile fabric produced thereby
CN112131757A (en) * 2020-10-13 2020-12-25 天津工业大学 Numerical simulation method for solvent diffusion process in coating textile material curing process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1510883A (en) * 1965-10-14 1968-01-26 Radiation Res Corp Surface treatment to improve adhesion to other materials
FR1598055A (en) * 1968-12-23 1970-06-29
EP0492649A2 (en) * 1990-12-27 1992-07-01 Amann & Söhne GmbH & Co. Method of modifying the properties of a textile substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3674667A (en) * 1969-07-23 1972-07-04 Allis Chalmers Mfg Co Process for increasing water repellency of cotton cloth
US4188426A (en) * 1977-12-12 1980-02-12 Lord Corporation Cold plasma modification of organic and inorganic surfaces
US4605539A (en) * 1984-11-16 1986-08-12 Ethyl Corporation Phosphonitrilic chloride trimer purification
US4632842A (en) * 1985-06-20 1986-12-30 Atrium Medical Corporation Glow discharge process for producing implantable devices
JP2990608B2 (en) * 1989-12-13 1999-12-13 株式会社ブリヂストン Surface treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1510883A (en) * 1965-10-14 1968-01-26 Radiation Res Corp Surface treatment to improve adhesion to other materials
FR1598055A (en) * 1968-12-23 1970-06-29
EP0492649A2 (en) * 1990-12-27 1992-07-01 Amann & Söhne GmbH & Co. Method of modifying the properties of a textile substrate
EP0496117A2 (en) * 1990-12-27 1992-07-29 Amann & Söhne GmbH & Co. Process for the production of a sewing thread with a finishing agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0695384A1 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2775488A1 (en) * 1998-02-27 1999-09-03 Nylstar Sa Modifying the surface properties of articles made from or containing polyamide fibers or yarn by exposure to a gas plasma of unsaturated organic hydrocarbon
WO1999058756A1 (en) * 1998-05-08 1999-11-18 Asten, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
WO1999058755A1 (en) * 1998-05-08 1999-11-18 Asten, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
WO1999058757A1 (en) * 1998-05-08 1999-11-18 Asten, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
US6146462A (en) * 1998-05-08 2000-11-14 Astenjohnson, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
US6287687B1 (en) 1998-05-08 2001-09-11 Asten, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
DE10019816A1 (en) * 2000-04-20 2001-10-31 Asten Ag Eupen Process for coating a yarn and textile fabric produced thereby
CN112131757A (en) * 2020-10-13 2020-12-25 天津工业大学 Numerical simulation method for solvent diffusion process in coating textile material curing process

Also Published As

Publication number Publication date
EP0695384A1 (en) 1996-02-07
WO1994024358A3 (en) 1994-12-08
DE59410093D1 (en) 2002-05-08
EP0695384B2 (en) 2006-04-26
EP0695384B1 (en) 2002-04-03

Similar Documents

Publication Publication Date Title
Shahidi et al. A review-application of physical vapor deposition (PVD) and related methods in the textile industry
Gorjanc et al. Creating cellulose fibres with excellent UV protective properties using moist CF 4 plasma and ZnO nanoparticles
SK732005A3 (en) Method of arrangement fabric bracing materials, with a view to increase adhesion into rubber mixture
EP1325509B1 (en) Method and device for treating surfaces using a glow discharge plasma
Shahidi et al. New advances in plasma technology for textile
JP4664282B2 (en) Porous material functionalized by vacuum deposition
EP0778089A1 (en) Device for producing a polymer coating inside hollow plastic articles
EP2084320A2 (en) Treatment of fibrous materials using atmospheric pressure plasma polymerization
Shahidi et al. Comparison between oxygen and nitrogen plasma treatment on adhesion properties and antibacterial activity of metal coated polypropylene fabrics
Shah et al. Innovative plasma technology in textile processing: a step towards green environment
Samanta et al. Hydrophobic functionalization of cellulosic substrate by tetrafluoroethane dielectric barrier discharge plasma at atmospheric pressure
El-Sayed et al. Recent advances in the application of plasma in textile finishing (A Review)
WO1994024358A2 (en) Process for coating yarns and fibres in textile objects
Saleem et al. Functionality and applications of non-thermal plasma activated textiles: A review
DE102008064134B4 (en) Process for coating objects by means of a low-pressure plasma
DE3922601C2 (en) Method and device for low-temperature plasma treatment of textile substrates
Šimor et al. The influence of surface DBD plasma treatment on the adhesion of coatings to high-tech textiles
Shahidi et al. Plasma-enhanced vapor deposition process for the modification of textile materials
DE19517210B4 (en) Molded part and method for its production
EP0815283B1 (en) Deposition of diffusion blocking layers within a low pressure plasma chamber
EP3259396B1 (en) Process to increase the adhesion between a reinforcing element and an elastomerix matrix
DE19823203A1 (en) Production of flexible strip useful as wrapping material, abrasive or polishing tape or functional finish
US8632860B2 (en) Method of preparation of multifunctional technical textile by plasma-treatment
DE10201492B4 (en) Optical layer system
EP1024222A2 (en) Process for the treatment of textile materials

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CZ JP SK US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): CZ JP SK US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1994912475

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994912475

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994912475

Country of ref document: EP