WO1994026185A1 - Laser treatment of tissue using optical radiation - Google Patents

Laser treatment of tissue using optical radiation Download PDF

Info

Publication number
WO1994026185A1
WO1994026185A1 PCT/US1994/005261 US9405261W WO9426185A1 WO 1994026185 A1 WO1994026185 A1 WO 1994026185A1 US 9405261 W US9405261 W US 9405261W WO 9426185 A1 WO9426185 A1 WO 9426185A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
fiber
catheter
fluid
optic
Prior art date
Application number
PCT/US1994/005261
Other languages
French (fr)
Inventor
Charles D. Lennox
Stephen P. Beaudet
Original Assignee
Boston Scientific Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Corporation filed Critical Boston Scientific Corporation
Publication of WO1994026185A1 publication Critical patent/WO1994026185A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00274Prostate operation, e.g. prostatectomy, turp, bhp treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22062Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation to be filled with liquid
    • A61B2017/22064Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation to be filled with liquid transparent liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • A61B2018/00035Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open with return means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00547Prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2272Optical elements at the distal end of probe tips with reflective or refractive surfaces for deflecting the beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/033Abutting means, stops, e.g. abutting on tissue or skin
    • A61B2090/036Abutting means, stops, e.g. abutting on tissue or skin abutting on tissue or skin

Abstract

The invention features a treatment method of deeply seated tissue and a corresponding medical instrument. The instrument includes a light guide (15) adapted to transmit light energy of a selected wavelength from a light source to tissue, and a conduit (74) constructed to deliver a flow of coolant from a source to the tissue. The irradiation and cooling is governed by a control means (102) adapted to regulate the intensity of the light energy in respect of the flow of coolant delivered to the tissue.

Description

LASER TREATMENT OF TISSUE USING OPTICAL RADIATION
Background of the Invention This invention relates to medical treatment of relatively deeply seated tissue using optical radiation. Laser radiation has been widely used in medicine for performing surgical procedures or treating tissue. Laser radiation has been applied both extra-corporeally, to treat skin tissue, and intra-corporeally to treat venous or arterial walls, walls in the gastro-intestinal tract, or for the removal of plaque located on the arterial walls. The laser light has been used also for coagulation of surface wounds. Advantages of the laser light arise from the ability of delivering specific energy to the targeted, localized tissue.
Depending on the wave length of the radiation, a large amount of radiation can penetrate deeper into the tissue, but still a significant portion of the radiation is absorbed by the surface layers of the tissue. The surface absorption limits the intensity of radiation used in the tissue treatment due to the thermal damage to the surface tissue at high intensities.
Selective delivery of the laser radiation is also used as a catalyst for photochemical reactions such as in photodynamic therapy. In photodynamic therapy, a patient is injected with a drug that is designed to selectively treat certain tissues such as cancerous tissue. The drug is delivered in an inert state and is activated by light of a certain wavelength. The activated drug is limited only to the irradiated tissue which substantially eliminates possible adverse affects on other non-targeted tissue.
Laser radiation has also been used for ablating and removing specific tissue. In treatment of benign prostatic hyperplasia, the ablation process removes a portion of an enlarged prostate; this relieves the obstructive symptoms associated with the enlarged prostate. In the treatment process, the laser light heats the tissue to about 100°C until the irradiated tissue is destroyed, and the destroyed tissue is later discharged from the body.
In treatment of ventricular tachycardia (i.e., disorder of electrical control signals within the heart) , the laser light is used to target and destroy specific myocardial tissue in order to remedy the irregularity of the electrical signals. Based on detailed electro- physiological mapping of the myocardial tissue, by destroying the tissue that carries the abnormal electrical signals, the normal rhythm is restored.
In the above-described procedures, named as some examples, it is necessary to irradiate, with a sufficient dose of light, tissue located below surface accessible by external laser radiation. Due to relatively large doses of light needed for the treatment, in many cases the treatment of the below surface tissue has been difficult since the surface tissue is damaged in the process.
Summary of the Invention The invention enables treatment of deeply lying tissue using UV, visible or infra-red radiation while preventing substantial damage to the surface tissue. While the radiation is applied, the surface tissue is cooled with a stream of fluid that prevents excessive tissue heating and related undesirable radiation damage. For example, in photodynamic therapy, the surface cooling enables higher radiation power to be applied to a targeted tissue region located below the tissue surface. In treatment of the benign prostatic hyperplasia, the higher optical powers enable treatment and ablation of the deeper seated tissue. In the photocoagulation treatment, the invention enables coagulation of tissue seated deeper than the surface layers while substantially preserving the surface tissue. The same advantages are observed in the treatment of ventricular tachycardia or other medical conditions. In addition to preserving the surface tissue, the cooling fluid may cool the optical fiber, optical elements and the tip of the laser delivery system. The invention features a laser irradiation instrument having a forward irradiation embodiment, which emits light in forward direction from a catheter tip, or a side irradiation embodiment that utilizes a mirror, a prism or other optical elements for side emission. The mirror may be a convex mirror, a concave mirror, or a flat mirror adapted to form and deliver a laser beam of a selected size to the targeted tissue.
The invention includes a wet cooling field, wherein the coolant is directly in contact with the tissue surface, or a dry cooling field, wherein the laser tip is located in a balloon with its wall pressed against the surface of the targeted tissue. The cooling fluid circulates inside of the balloon pressed against the surface tissue to cause both, cooling of the balloon and the surface tissue cooling. In addition, the balloon may provide a medium that effectively matches the refractive index of the tissue; this reduces the amount of reflected light from the tissue surface.
In another aspect, the invention features a medical instrument for irradiating tissue including a light guide adapted to transmit light energy of a selected wavelength from a light source to a selected volume of tissue; a conduit constructed to deliver a flow of coolant from a source of the coolant to a surface of the selected tissue volume through which the light energy passes in reaching the volume; and control means adapted to regulate intensity of the light energy in respect of the flow of coolant delivered to the surface to prevent substantial damage of surface tissue while irradiating the tissue volume.
Preferred embodiments of this aspect of the invention may include one or more of the following features.
The light guide of the medical instrument includes an optical fiber located within a catheter that comprises a flexible catheter body having proximal and distal ends and being capable of introduction into a lumen of a human body, the conduit located within the catheter body, a proximal connector, connected to the proximal end, adapted to introduce the coolant to the conduit and the light to the optical fiber, and a distal assembly, located near the distal end, adapted to introduce the coolant to the surface tissue and the light from the fiber to the irradiated tissue volume. The catheter further includes a balloon located around the distal assembly and, when inflated, adapted to press its wall against the surface. The balloon is constructed to cool the surface tissue while the coolant directed toward the surface being contained within the balloon.
The catheter may be introduced to a body lumen directly or by using a guiding catheter or an endoscope.
The conduit is located coaxially around the optical fiber within the catheter body to enable cooling of the optical fiber.
The distal assembly of the instrument includes a coolant port connected to the conduit, adapted to stream the coolant toward the tissue surface to increase a cooling rate of the surface. The coolant port is further adapted to provide a turbulent convective cooling at the tissue surface and may also cool the distal assembly.
The light guide further includes an optical element, located in the distal assembly, adapted to orient the light beam to a desired direction. The coolant port is further adapted to cool the optical element.
The optical element may be a flat mirror, a convex mirror, a concave mirror or a prism.
The coolant is liquid or gas such as water, saline, and gaseous or liquid nitrogen, oxygen, carbon dioxide.
The medical instrument uses a laser or other light source of the wavelength in the ultra-violet range, visible range or infra-red range.
In another aspect the invention features a method of treating tissue by optical radiation including the steps of: (a) providing a source of light energy of a selected wavelength and a source of coolant;
(b) transmitting the light energy from the light source to a selected volume of tissue;
(c) delivering a flow of coolant from the coolant source to a surface of the selected tissue volume through which the light energy passes in reaching the volume; and
(d) controlling intensity of the light transmitted to the tissue in respect to the flow of coolant delivered to the surface to prevent substantial damage of surface tissue while irradiating the tissue volume.
This method may be practiced by the above- described medical instrument for irradiating tissue or by any other instrument capable of performing the above- listed steps. The method may be, for example, used for photodynamic treatment, for therapeutic destruction of relatively deeply seated tissue, for photo-coagulation treatment. In another aspect, the invention features a device for directing laser light from an optical fiber onto target tissue deep within a patient. The device includes an elongated catheter body constructed to be delivered from outside the patient along a narrow pathway to the target tissue inside the patient. The catheter body is constructed for high torsional rigidity and includes an inner lumen constructed to receive an optical fiber. A light directing optic is connected near the distal end of the catheter body to rotate with the catheter body. The directing optic is constructed to receive laser light from the optical fiber and direct it with respect to the fiber in dependence on the relative rotational orientation of the fiber and the optic. A coupler is connected to the proximal end of the catheter body. The coupler includes a lumen constructed to receive the fiber such that the fiber may extend through the coupler and into the catheter body. The coupler includes a locking structure to hold the fiber rotationally stationary with respect to the coupler. The coupler also includes a freely rotating attachment to the catheter body so that the catheter body and light directing optic can be rotated with respect to the fiber to vary the relative orientation of the optic and fiber to direct the laser light from the optical fiber onto target tissue. Embodiments may include one or more of the following features. The device is constructed to direct fluid through the catheter body onto the optic by including a port on the coupler for receiving the fluid from a source and directing it into the catheter body. The catheter body includes a flow aperture in alignment with the optic for directing the fluid onto the aperture. The catheter is a single-lumen catheter and the fluid flow follows a path parallel to the fiber through the lumen. The device has a fiber alignment element near the distal end of the catheter and rotatable within the catheter, including support surfaces that align the fiber with the optic. The fiber alignment element includes fluid flow directing surfaces that direct fluid onto the optic. The optic is a mirror positioned beyond the end of the fiber. The fluid flow directing surface directs the fluid to create a flow substantially parallel to the surface of the mirror. The mirror is a flat mirror. The mirror is oriented to direct the laser light through a window in the side of the device. The window is an opening and the mirror directs the fluid through the opening. The locking structure friction-fits against the fiber to form a seal that prevents fluid from leaking from the coupler.
In another aspect, the invention features a method of treating benign prostatic hyperplasia by optical radiation by:
(a) providing a source of light energy in the form of a Nd:YAG laser that emits at a wavelength of about 1.064 μm and a source of liquid coolant which is substantially transparent at the wavelength;
(b) transmitting the light energy from the light source to a selected volume of tissue in the urethra;
(c) delivering a flow of coolant from the coolant source to a region near the selected tissue volume where the flow creates turbulent flow patterns in ambient fluids in contact with the surface; and
(d) controlling intensity of the light transmitted to the tissue in the range of about 60-100 watts in respect to the flow of coolant delivered to the surface to prevent substantial damage of surface tissue while irradiating the tissue volume to denature cells below the surface.
Brief Description of the Drawing FIGS. 1 and 1A depict a laser catheter system adapted for a side illumination in accordance with the present invention.
FIGS. 2 and 2A depict the distal end of the laser catheter system of FIG. 1 further including means for visualizing the treated tissue. FIGS. 3A, 3B, 3C depict the laser catheter system of FIG. l adapted to deliver laser beam of different beam sizes.
FIG. 4 depicts the laser catheter system of FIG. 1 further adapted for use in a dry cooling field. FIG. 5 depicts a laser catheter system adapted for a forward illumination in accordance with the present invention.
FIG. 6 depicts the laser catheter system of FIG. 5 adapted for use in a dry cooling field. FIG. 7-7a illustrate a use of an embodiment of the invention.
Description of the Preferred Embodiments Referring to FIG. 1, the invention features a laser catheter system that includes a catheter tip assembly 12, catheter body 14 and a proximal Y-connector 16. An optical fiber 15 located inside of the catheter body extends from the proximal end to distal end of catheter 10. Located at the proximal end, Y adapter 16 includes a flush connector 18 and a touhy borst fitting 20 used for sealing optical fiber 15 in a feed-through arrangement. The proximal Y connector further includes a thumb screw that tightens a rubber cylinder around the fiber for a tight seal. An external fluid source is attached to flash connector 18 so that the introduced fluid flows inside catheter body 14 along the entire length of optical fiber 15 to provide cooling for the fiber. Catheter tip assembly 12 includes mirror assembly 24, made of stainless steal, with a gold plated mirror surface 26. A fiber guide 28 located inside catheter tip 12 (shown in a cross-sectional view in FIG. 1A) , is used for centering optical fiber 15 and for defining at least two port holes (27) adapted to deliver a stream of water to the irradiated surface tissue. Catheter tip assembly 12 is bonded to body 14 of the catheter using a cyanoacrylate adhesive. The catheter has a torque catheter design, i.e., catheter body 14 has a laminate construction of nylon, a braided stainless steel mesh, and an outer layer of nylon to increase its torsional rigidity and provide good flexibility. At the proximal end of the catheter body, a female lure fitting 22 is used for connection to the distal end of Y connector 16. The catheter size is 7F; however, the whole assembly could be fitted to a 5F catheter.
The invention envisions the use of different types of laser radiation, e.g., the photodynamic therapy uses a 680 nm Ar+ pump dye laser or Nd YAG laser, photo- coagulation is also performed with an In YAG laser. Other longer wave lengths (e.g.. Ho YAG laser of about 2.1 μm radiation or Er YAG laser of about 2.8 μm radiation) may be used, but at the longer wavelengths there is a significant water absorption. The preferred embodiment uses water for cooling but, in general, different types of coolants such as saline, liquid nitrogen or C02 may be used, wherein the cooling system of the catheter is adapted for the particular coolant. Referring to FIG.2, an imaging system may be incorporated into the laser catheter system of FIG.l. The imaging system includes two additional optical fibers 32 and 34 for illumination and visualization of the treated tissue, respectively. Light of a selected wave length conducted via fiber 32 illuminates the tissue surface and the light reflected from the tissue is collected by mirror 26 (or other optical system) and conducted by optical fiber bundle 34 to an optical imaging system. All three optical fibers are located in a compact design. Mirror surface 26 is again used for delivering of the treatment radiation that, in general, has a different wave length than the imaging radiation. Additional imaging optics may also be used. The proximal end of the imaging fiber is connected to a T.V. camera or a charged coupled device (CCD) . The entire device is configured in a small package of about 8 to 9 F. Optical fibers 15, 32 and 34 are about 0.032" in diameter.
Referring to FIGS. 3A, 3B and 3C, mirror surface 26 is shaped to create different sizes of the irradiation beam at the tissue surface. Referring to Fig. 3A, a flat mirror that provides no change in the distribution angle is positioned at about 45° to direct light beam 37 to tissue surface 40. Mirror 26 is also used to deliver cooling fluid 40 (e.g., water, saline) to tissue surface 42; in this arrangement cooling fluid 40 cools both mirror 26 and surface 42. It is preferable to achieve a turbulent flow at surface 42 to ensure sufficient heat conduction away from the tissue surface. Depending on the wavelength of the laser light, deeply seated tissue 44 is irradiated with a selected dose that may be increased if the amount of cooling fluid is increased. A convex mirror 26a, shown in FIG. 3B, has the effect of spreading beam 38 and reducing the energy density delivered to the tissue. Conversely, a concave mirror 26b, shown in FIG. 3C, reduces the beam size and increases the energy density of beam 39. Thus the light dose is controlled by the intensity of the introduced light and the size of the beam correlated to the size of the treated tissue, while the depth of the treated tissue is controlled by the selected wavelength of the radiation. The amount of cooling fluid 40 delivered to the tissue surface is adjusted to achieve the desired cooling effect. Catheter assembly 10 may also include an additional lumen adapted to carry away excess cooling fluid 40.
Referring to FIG.4, a balloon 46 located on catheter shaft 48 is used to create a dry cooling environment. Catheter shaft 48 includes an radiation port 50, coolant port 51 and a fluid return port 52.
Balloon wall 47 is adapted to form an optical window for delivering the laser light. After insertion and positioning, balloon 46 is inflated so that wall 47 is in direct contact with surface 42 of the treated tissue. The cooling fluid, also used for inflation of balloon 46, protects the balloon walls from overheating that, in turn, cool the tissue. Return port 52 is connected to a return lumen located inside of catheter shaft 48 and is adapted to circulate the cooling fluid. The flow rate of the cooling fluid is adjusted to obtain a pre-determined pressure inside of balloon 46 and a desired cooling rate at surface 42. Balloon 46 is made of either PET or silicon rubber. PET forms a non-elastic balloon which assumes the pre-determined geometry, while the silicon rubber balloon is elastic and assumes the geometry of the surface it is pressed against.
In another preferred embodiment, the invention is a forward illumination system that includes a catheter 60 having proximal and distal ends. The proximal portion of catheter 60 is substantially identical with the proximal portion of catheter 10 of FIG. 1. The distal portion 67 of catheter 60, shown in FIG. 5, includes a catheter tip assembly 67 and a catheter body 62 enclosing an optical fiber 64, adapted to transmit the treatment light, and conduit 66 formed between fiber 64 and body 62 adapted to deliver cooling fluid to catheter tip 68. A proper distance between catheter tip 68 and tissue surface 78 is maintained by an adjustable standoff 70. Catheter tip 68 includes a radiation port 72, located at the distal end of optical fiber 64, and fluid delivery ports 74 adapted to direct a stream of water 76 to tissue surface 78. Radiation port 72 may be simply formed by a polished end of optical fiber 64 or may also include a beam modifying optics. The size and location of deep seated tissue 80 is targeted by selecting a suitable radiation wavelength, by properly adjusting the length of standoff 70 beyond tip 68 and by shaping the light beam at radiation port 72. The shape of delivery ports 74 and the amount of water supplied to them is adjusted to create a turbulent water flow for optimal cooling of tissue surface 78.
The laser catheter system of FIG. 5 may be adapted for a dry cooling field using a balloon 82, as shown in FIG. 6. Balloon 82 made of a non-elastic material, such as PET, or elastic material such as silicon rubber, is pressed against tissue surface 78 when inflated. Water stream 76 is continuously introduced to the front wall 83 of balloon 82 to provide efficient cooling of balloon wall 83 and tissue surface 78. Catheter 60 also includes an additional lumen connected to a return water port 84 and adapted to circulate the water inside balloon 82 for proper cooling.
It is worthwhile to point out that while some damage to the surface tissue may occur during the treatment, the invention prevents serious tissue damages such as charring of the tissue.
The following procedure may be followed to treat benign prostate hyperplasia. Referring to FIGS. 7 and 7a, the following equipment is used for the procedure: a rigid or flexible cystoscope 90 (outer diameter 23F) with an 8 French working channel and a viewing channel 92 including a viewing scope 94; a laser fiber 15 having a diameter of up to about 600 microns and adapted to transmit Nd:YAG laser light; a Nd:YAG laser source 100 that emits laser light at 1.064 micron; a source 98 of saline solution, such as a sterile saline IV bag with an air trap and a pressure cuff; a subsuprabic and Foley catheter may also be provided at the physician's discretion. Finally, a system as described with respect to FIG. 1, above, is provided including a catheter 14 (about 45 cm long, about 7 French in diameter, 5 French inner diameter) with tip assembly 12 and fiber guide 28 (lumen for fiber, diameter 0.75 mm, port hole radius 0.38 mm) , and a y-connector (available from Medical Profile Inc., Livonia, Michigan). The connector 16 has Tuohy- Borst fitting 20, fluid-source arm 18, and female luer fitting 22. The luer fitting 22 is connected to the y- connector by a swivel coupling so the catheter and the tip assembly can be rotated while the fiber 15 is held rotationally stationary by the Tuohy-Borst connector. (The diameter of the fiber-lumen of the fiber guide is larger than the diameter of the fiber, so the catheter and tip assembly freely rotate about the fiber.) As discussed, the catheter has high rotational fidelity. The catheter 14 (wall thickness 0.013" or 0.033 mm), is formed of a laminated nylon 12/elastomer blend-braided stainless steel mesh structure, and the attached tip assembly 12 is gold-plated stainless steel. This allows rotational forces applied to the proximal end of the catheter to be transmitted to the distal end of the catheter and tip assembly, for an easy and accurate aiming of the beam on desired target tissue. The mirror is a flat mirror at a 45° angle with respect to the fiber axis.
To perform the procedure, the laser system and fiber are prepared for delivery of laser energy as indicated in the operation manual for the particular laser system that is used. Typically, the laser fiber is prepared by cutting the cladding back about 2-5 millimeters from the distal tip. (This step may be unnecessary if the fiber manufacturer supplies the fiber prepared for use.) The laser fiber is inserted through the channel of the Tuohy-Borst fitting 20 of the Y- connector, through the catheter and into the fiber guide 28 such that the distal tip of the fiber is approximately even, axially, with the edge of the exit aperture of the fiber-lumen of the guide. The Tuohy-Borst is then tightened (clockwise) , which forms a fluid-tight seal and holds the fiber rotationally stationary. The operator can check to be sure the fiber is secure by pulling on the fiber. The laser system's aiming beam is turned on and the beam aimed at a non-metallic surface to confirm proper alignment of the distal end of the fiber with the mirror 26. The saline IV bag is connected to the arm 18 of the Y-connector. The pressure cuff is placed around the IV bag.
Referring particularly to FIG. 7, the cystoscope 90 is positioned inside the urethra 91 and fluid (e.g. saline) is introduced through the cystoscope using standard techniques, to fill the area to be treated with fluid. The catheter 14 is then threaded through the working channel 96 of the cystoscope. The cuff on the saline IV bag is pressurized to about 200-300 mmHg, which is typically maintained throughout the lasing period. As illustrated, the flow of saline through the catheter is directed by the port holes 27 so a flow 106 is created substantially across and parallel to the surface of mirror 26. The port holes are permanently aligned to flow the saline across substantially the entire mirror surface. Further, since the tip assembly rotates with the catheter, the alignment of the port holes and mirror is maintained as the catheter is rotated to expose different portions of tissue by changing the orientation of the mirror. After flowing off the end of the mirror, the saline may directly cool the tissue that is exposed to the beam to a greater or less extent, depending in part on the rate of flow and on how close the device is positioned to the tissue surface. (In a typical case, the tip assembly stands off from the tissue surface during most of the operation; the distance is about one- half or one-third the width of the cystoscope, e.g.
4mm/12F) . In the mode of operation illustrated in FIG. 7, the flow 106 does not substantially directly flush the surface of the irradiated tissue. However, turbulent back flows 107, created in the ambient fluid by the force of flow 106, may affect cooling of the tissue surface and the distal end of the fiber. This mode of fluid flow is preferred in some cases, since the tissue is not subject to a high velocity fluid stream, yet the mirror, the fiber, and the tissue can still be cooled by fluid flows. The catheter is oriented so that the mirror 26 reflects the beam 104 at a desired target area 93, which is an area occluding the urethra. To assure proper orientation, the laser is activated to transmit a visible aiming beam, which is viewed through the cystoscope. The orientation can be adjusted by rotating the catheter by gripping the proximal end of the catheter that is outside the body or gripping the swivel portion of the y- connector that couples to the catheter (arrow 109, Fig. 7a) . After properly orienting the mirror, the treatment beam is then activated and the tissue is exposed for a prescribed amount of time and energy. In embodiments, with a flowing saline solution cooling the mirror and helping to cool the tissue surface, the power at the end of the fiber can be quite high, for example, about 60, and in some cases up to about 100 watts. The target tissue is typically exposed for only about 90 seconds and denaturation occurs to a maximum depth of about 1 cm without substantial charring of the surface.
Referring to FIG. 7a, after the target area 93 has been exposed, another portion of the lumen, for example, area 95, directly opposite the first portion, can be exposed by rotating the y-connector swivel coupling to the catheter (arrow 109) , to orient the mirror 26 such that the beam is directed onto tissue area 95. After suitable exposure of the desired target areas, the system and cystoscope are removed from the body. Over time, the cells in the target areas that were denatured by the laser light are sloughed from the surface and exit the body leaving a wider lumen.
The system can also be used to treat aflictions such as urethral bleeding, clot retention, urethral strictures, incontinence, local and/or systemic infection, bladder spasms, perforation of the bladder wall or urethra, retrograde ejaculation, impotence, and damage to strictures surrounding the urinary tract. The laser power and flow of the saline cooling solution can be controlled manually by the physician as the procedure is observed through a cystoscope. Alternatively, as illustrated in FIGS. 7 and 7a, the system may also include a controller 102, e.g. a computer programmed and interfaced to automatically control the flow (e.g. bag pressure) of fluid and the laser power output to maintain cooling of the mirror and/or avoid charring of the target tissue.
Other embodiments are within the scope of the following claims:

Claims

1. A device for directing laser light from an optical fiber onto target tissue deep within a patient comprising: an elongated catheter body constructed to be delivered from outside the patient along a narrow pathway to said target tissue inside the patient, said catheter body being constructed for high torsional rigidity and including an inner lumen constructed to receive an optical fiber, a light directing optic connected near the distal end of said catheter body to rotate with said catheter body, said directing optic constructed to receive laser light from said optical fiber and direct it with respect to said fiber in dependence on the relative rotational orientation of said fiber and said optic, and a coupler connected to the proximal end of said catheter body, said coupler including a lumen constructed to receive said fiber such that said fiber may extend through said coupler and into said catheter body, said coupler including a locking structure to hold said fiber rotationally stationary with respect to said coupler and, said coupler including a freely rotating attachment to said catheter body so that said catheter body and light directing optic can be rotated with respect to said fiber to vary the relative orientation of the optic and fiber to direct said laser light from the optical fiber onto target tissue.
2. The device of claim 1 wherein said device is constructed to direct fluid through said catheter body onto said optic by including a port on said coupler for receiving said fluid from a source and directing it into said catheter body, and said catheter body includes a flow aperture in alignment with said optic for directing said fluid onto said aperture.
3. The device of claim 2 wherein said catheter is a single-lumen catheter and said fluid flow follows a path parallel to said fiber through said lumen.
4. The device of claim 1 including a fiber alignment element near the distal end of said catheter and rotatable within said catheter, including support surfaces that align said fiber with said optic.
5. The device of claim 4 wherein said fiber alignment element includes fluid flow directing surfaces that direct fluid onto said optic.
6. The device of claim 5 wherein said optic is a mirror positioned beyond the end of said fiber.
7. The device of claim 6 wherein said fluid flow directing surface direct said fluid to create a flow substantially parallel to the surface of said mirror.
8. The device of claim 7 wherein said mirror is a flat mirror.
9. The device of claim 7 wherein said mirror is oriented to direct said laser light through a window in the side of said device.
10. The device of claim 9 wherein said window is an opening and said mirror directs said fluid through said opening.
11. The device of claim 2 wherein said locking structure friction-fits against said fiber to form a seal that prevents fluid from leaking from said coupler.
12. A method of treating benign prostatic hyperplasia by optical radiation comprising the steps of: (a) providing a source of light energy in the form of a Nd:YAG laser that emits at a wavelength of about 1.064 μm and a source of liquid coolant which is substantially transparent at said wavelength; (b) transmitting said light energy from said light source to a selected volume of tissue in the urethra;
(c) delivering a flow of coolant from said coolant source to a region near said selected tissue volume where said flow creates turbulent flow patterns in ambient fluids in contact with said surface; and
(d) controlling intensity of said light transmitted to said tissue in the range of about 60-100 watts in respect to said flow of coolant delivered to said surface to prevent substantial damage of surface tissue while irradiating said tissue volume to denature cells below said surface.
PCT/US1994/005261 1993-05-14 1994-05-12 Laser treatment of tissue using optical radiation WO1994026185A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US6265693A 1993-05-14 1993-05-14
US08/062,656 1993-05-14
US08/175,787 1993-12-30
US08/175,787 US5454807A (en) 1993-05-14 1993-12-30 Medical treatment of deeply seated tissue using optical radiation

Publications (1)

Publication Number Publication Date
WO1994026185A1 true WO1994026185A1 (en) 1994-11-24

Family

ID=26742533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/005261 WO1994026185A1 (en) 1993-05-14 1994-05-12 Laser treatment of tissue using optical radiation

Country Status (2)

Country Link
US (1) US5454807A (en)
WO (1) WO1994026185A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938871A3 (en) * 1998-02-27 2001-03-07 ECLIPSE SURGICAL TECHNOLOGIES, Inc. Surgical apparatus
US6258083B1 (en) 1996-03-29 2001-07-10 Eclipse Surgical Technologies, Inc. Viewing surgical scope for minimally invasive procedures
EP1038505A3 (en) * 1999-03-23 2004-02-04 PlasmaPhotonics GmbH Irradiation device, especially for photothermolysis
WO2014124186A3 (en) * 2013-02-07 2015-01-08 Rocomp Global, Llc Electromagnetic radiation targeting devices, assemblies, systems and methods
EP2259742B1 (en) * 2008-03-06 2020-01-01 AquaBeam LLC Tissue ablation and cautery with optical energy carried in fluid stream
US11350964B2 (en) 2007-01-02 2022-06-07 Aquabeam, Llc Minimally invasive treatment device for tissue resection
US11464536B2 (en) 2012-02-29 2022-10-11 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment

Families Citing this family (233)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807395A (en) * 1993-08-27 1998-09-15 Medtronic, Inc. Method and apparatus for RF ablation and hyperthermia
US5431649A (en) * 1993-08-27 1995-07-11 Medtronic, Inc. Method and apparatus for R-F ablation
US5980516A (en) * 1993-08-27 1999-11-09 Medtronic, Inc. Method and apparatus for R-F ablation
US6641580B1 (en) * 1993-11-08 2003-11-04 Rita Medical Systems, Inc. Infusion array ablation apparatus
US6569159B1 (en) 1993-11-08 2003-05-27 Rita Medical Systems, Inc. Cell necrosis apparatus
US5536267A (en) 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US6632221B1 (en) 1993-11-08 2003-10-14 Rita Medical Systems, Inc. Method of creating a lesion in tissue with infusion
CA2189004A1 (en) * 1994-04-29 1995-11-09 Charles D. Lennox Resecting coagulated tissue
US20080167649A1 (en) * 1994-08-12 2008-07-10 Angiodynamics, Inc. Ablation apparatus and method
US6302878B1 (en) * 1995-06-27 2001-10-16 S.L.T. Japan Co., Ltd. System for laser light irradiation to living body
US6059780A (en) 1995-08-15 2000-05-09 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method with cooling element
US5836999A (en) * 1995-09-28 1998-11-17 Esc Medical Systems Ltd. Method and apparatus for treating psoriasis using pulsed electromagnetic radiation
US5823941A (en) * 1995-10-23 1998-10-20 Shaunnessey; Jerome Apparatus for directing the movement of an endoscopic surgical laser especially for use in vaporizing brain tumors
US5836939A (en) * 1995-10-25 1998-11-17 Plc Medical Systems, Inc. Surgical laser handpiece
US5749894A (en) * 1996-01-18 1998-05-12 Target Therapeutics, Inc. Aneurysm closure method
AU5279898A (en) * 1996-03-29 1998-03-26 Eclipse Surgical Technologies, Inc. Minimally invasive method and apparatus for forming revascularization channels
US5725523A (en) * 1996-03-29 1998-03-10 Mueller; Richard L. Lateral-and posterior-aspect method and apparatus for laser-assisted transmyocardial revascularization and other surgical applications
US6146409A (en) * 1996-05-20 2000-11-14 Bergein F. Overholt Therapeutic methods and devices for irradiating columnar environments
US5672170A (en) * 1996-06-20 1997-09-30 Cynosure, Inc. Laser transmyocardial revascularization arrangement
US5785704A (en) * 1996-07-29 1998-07-28 Mrc Systems Gmbh Method for performing stereotactic laser surgery
US8353908B2 (en) 1996-09-20 2013-01-15 Novasys Medical, Inc. Treatment of tissue in sphincters, sinuses, and orifices
US5827268A (en) * 1996-10-30 1998-10-27 Hearten Medical, Inc. Device for the treatment of patent ductus arteriosus and method of using the device
EP0984727A4 (en) * 1996-11-08 2000-05-24 Thomas J Fogarty Transvascular tmr device and method
JP2001505100A (en) * 1996-11-21 2001-04-17 ボストン サイエンティフィック コーポレイション Mucosal detachment using light
US6273884B1 (en) 1997-05-15 2001-08-14 Palomar Medical Technologies, Inc. Method and apparatus for dermatology treatment
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
US6071303A (en) * 1996-12-08 2000-06-06 Hearten Medical, Inc. Device for the treatment of infarcted tissue and method of treating infarcted tissue
US5989284A (en) * 1997-02-18 1999-11-23 Hearten Medical, Inc. Method and device for soft tissue modification
US5868735A (en) * 1997-03-06 1999-02-09 Scimed Life Systems, Inc. Cryoplasty device and method
US7220257B1 (en) 2000-07-25 2007-05-22 Scimed Life Systems, Inc. Cryotreatment device and method
US9023031B2 (en) 1997-08-13 2015-05-05 Verathon Inc. Noninvasive devices, methods, and systems for modifying tissues
US5964757A (en) * 1997-09-05 1999-10-12 Cordis Webster, Inc. Steerable direct myocardial revascularization catheter
US5885275A (en) * 1998-01-15 1999-03-23 Diomed, Inc. Medical spacing guide
US6368318B1 (en) 1998-01-23 2002-04-09 The Regents Of The University Of California Opto-acoustic recanilization delivery system
AU3450799A (en) 1998-03-12 1999-09-27 Palomar Medical Technologies, Inc. System for electromagnetic radiation of the skin
US7494488B2 (en) * 1998-05-28 2009-02-24 Pearl Technology Holdings, Llc Facial tissue strengthening and tightening device and methods
US6157854A (en) * 1999-01-13 2000-12-05 Bales Scientific Inc. Photon irradiation human pain treatment monitored by thermal imaging
US6409723B1 (en) * 1999-04-02 2002-06-25 Stuart D. Edwards Treating body tissue by applying energy and substances
US6577902B1 (en) * 1999-04-16 2003-06-10 Tony R. Brown Device for shaping infarcted heart tissue and method of using the device
US8285393B2 (en) * 1999-04-16 2012-10-09 Laufer Michael D Device for shaping infarcted heart tissue and method of using the device
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
DE60044531D1 (en) * 1999-06-25 2010-07-22 Vahid Saadat TISSUE TREATMENT DEVICE
US20040147911A1 (en) * 1999-08-25 2004-07-29 Cardiofocus, Inc. Surgical ablation instruments for forming an encircling lesion
US6406474B1 (en) * 1999-09-30 2002-06-18 Ceramoptec Ind Inc Device and method for application of radiation
US6355054B1 (en) 1999-11-05 2002-03-12 Ceramoptec Industries, Inc. Laser system for improved transbarrier therapeutic radiation delivery
EP1244390B1 (en) * 1999-12-30 2006-08-16 Pearl Technology Holdings, LLC Face-lifting device
US6599237B1 (en) 2000-01-10 2003-07-29 Errol O. Singh Instrument and method for facilitating endoscopic examination and surgical procedures
EP1361828A1 (en) * 2000-04-14 2003-11-19 American Medical Systems, Inc. Method and apparatus for coagulation of superficial blood vessels in bladder and proximal urethra
US8256430B2 (en) * 2001-06-15 2012-09-04 Monteris Medical, Inc. Hyperthermia treatment and probe therefor
US6418337B1 (en) * 2000-06-15 2002-07-09 Autolitt Inc. MRI guided hyperthermia surgery
JP2002017877A (en) * 2000-07-03 2002-01-22 Terumo Corp Medical energy irradiator
US7306591B2 (en) 2000-10-02 2007-12-11 Novasys Medical, Inc. Apparatus and methods for treating female urinary incontinence
US6932517B2 (en) 2000-10-27 2005-08-23 Ethicon Endo-Surgery, Inc. Connector incorporating a contact pad surface on a plane parallel to a longitudinal axis
WO2002036015A1 (en) 2000-10-30 2002-05-10 The General Hospital Corporation Optical methods and systems for tissue analysis
US9295391B1 (en) * 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
US20020087151A1 (en) * 2000-12-29 2002-07-04 Afx, Inc. Tissue ablation apparatus with a sliding ablation instrument and method
US20030083654A1 (en) * 2000-12-29 2003-05-01 Afx, Inc. Tissue ablation system with a sliding ablating device and method
US6666858B2 (en) 2001-04-12 2003-12-23 Scimed Life Systems, Inc. Cryo balloon for atrial ablation
JP2004528111A (en) 2001-04-30 2004-09-16 ザ・ジェネラル・ホスピタル・コーポレイション Method and apparatus for improving image clarity and sensitivity in optical interference tomography using dynamic feedback to control focus characteristics and coherence gate
DE10297689B4 (en) 2001-05-01 2007-10-18 The General Hospital Corp., Boston Method and device for the determination of atherosclerotic coating by measurement of optical tissue properties
US6579221B1 (en) 2001-05-31 2003-06-17 Advanced Cardiovascular Systems, Inc. Proximal catheter shaft design and catheters incorporating the proximal shaft design
US7150710B2 (en) * 2001-06-26 2006-12-19 Photomed Technologies, Inc. Therapeutic methods using electromagnetic radiation
WO2003011160A2 (en) * 2001-07-30 2003-02-13 Biotex, Inc. Cooled tip laser catheter for sensing and ablation of cardiac tissue
US6607525B2 (en) 2001-08-01 2003-08-19 Nicolas Franco Apparatus and method for treating urinary stress incontinence
CN100450456C (en) * 2001-09-28 2009-01-14 锐达医疗系统公司 Impedance controlled tissue ablation apparatus and method
WO2003041603A1 (en) * 2001-11-14 2003-05-22 Latis, Inc. Improved catheters for clot removal
US7354448B2 (en) 2001-11-29 2008-04-08 Palomar Medical Technologies, Inc. Dental phototherapy methods and compositions
MXPA04005792A (en) * 2001-12-14 2005-03-31 Monteris Medical Inc Hyperthermia treatment and probe therefor.
US6709431B2 (en) 2001-12-18 2004-03-23 Scimed Life Systems, Inc. Cryo-temperature monitoring
US7099717B2 (en) * 2002-01-03 2006-08-29 Afx Inc. Catheter having improved steering
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US6989009B2 (en) 2002-04-19 2006-01-24 Scimed Life Systems, Inc. Cryo balloon
US7306588B2 (en) * 2002-04-22 2007-12-11 Trimedyne, Inc. Devices and methods for directed, interstitial ablation of tissue
US7008979B2 (en) 2002-04-30 2006-03-07 Hydromer, Inc. Coating composition for multiple hydrophilic applications
KR20050026404A (en) 2002-06-19 2005-03-15 팔로마 메디칼 테크놀로지스, 인코포레이티드 Method and apparatus for photothermal treatment of tissue at depth
EP2522294A2 (en) * 2002-10-23 2012-11-14 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
US6953458B2 (en) * 2002-12-20 2005-10-11 Trimedyne, Inc. Device and method for delivery of long wavelength laser energy to a tissue site
EP1596716B1 (en) 2003-01-24 2014-04-30 The General Hospital Corporation System and method for identifying tissue using low-coherence interferometry
US8054468B2 (en) 2003-01-24 2011-11-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US8021359B2 (en) 2003-02-13 2011-09-20 Coaptus Medical Corporation Transseptal closure of a patent foramen ovale and other cardiac defects
US7257450B2 (en) 2003-02-13 2007-08-14 Coaptus Medical Corporation Systems and methods for securing cardiovascular tissue
CA2519937C (en) 2003-03-31 2012-11-20 Guillermo J. Tearney Speckle reduction in optical coherence tomography by path length encoded angular compounding
EP2008579B1 (en) 2003-06-06 2016-11-09 The General Hospital Corporation Process and apparatus for a wavelength tuned light source
EP3009815B1 (en) 2003-10-27 2022-09-07 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
US7270656B2 (en) * 2003-11-07 2007-09-18 Visualase, Inc. Cooled laser fiber for improved thermal therapy
WO2005054780A1 (en) 2003-11-28 2005-06-16 The General Hospital Corporation Method and apparatus for three-dimensional spectrally encoded imaging
US20050167438A1 (en) * 2004-02-02 2005-08-04 Max Minyayev Secure spill-proof configuration for child training cup
US7157213B2 (en) * 2004-03-01 2007-01-02 Think Laboratory Co., Ltd. Developer agent for positive type photosensitive compound
US7976539B2 (en) 2004-03-05 2011-07-12 Hansen Medical, Inc. System and method for denaturing and fixing collagenous tissue
AU2005231443B2 (en) 2004-04-01 2012-02-23 The General Hospital Corporation Method and apparatus for dermatological treatment and tissue reshaping
WO2005117534A2 (en) 2004-05-29 2005-12-15 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (oct) imaging
WO2006014392A1 (en) 2004-07-02 2006-02-09 The General Hospital Corporation Endoscopic imaging probe comprising dual clad fibre
JP5053845B2 (en) 2004-08-06 2012-10-24 ザ ジェネラル ホスピタル コーポレイション Method, system and software apparatus for determining at least one position in a sample using optical coherence tomography
ATE538714T1 (en) 2004-08-24 2012-01-15 Gen Hospital Corp METHOD, SYSTEM AND SOFTWARE ARRANGEMENT FOR DETERMINING THE ELASTIC MODULE
WO2006024015A1 (en) 2004-08-24 2006-03-02 The General Hospital Corporation Method and apparatus for imaging of vessel segments
EP1787105A2 (en) 2004-09-10 2007-05-23 The General Hospital Corporation System and method for optical coherence imaging
WO2006037132A1 (en) 2004-09-29 2006-04-06 The General Hospital Corporation System and method for optical coherence imaging
US7473252B2 (en) 2004-10-07 2009-01-06 Coaptus Medical Corporation Systems and methods for shrinking and/or securing cardiovascular tissue
EP1807722B1 (en) 2004-11-02 2022-08-10 The General Hospital Corporation Fiber-optic rotational device, optical system for imaging a sample
US7274847B2 (en) * 2004-11-16 2007-09-25 Biotex, Inc. Light diffusing tip
EP1825214A1 (en) 2004-11-24 2007-08-29 The General Hospital Corporation Common-path interferometer for endoscopic oct
EP1816949A1 (en) 2004-11-29 2007-08-15 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
US20070156210A1 (en) * 2005-01-14 2007-07-05 Co-Repair, Inc., A California Corporation Method for the treatment of heart tissue
US7455670B2 (en) * 2005-01-14 2008-11-25 Co-Repair, Inc. System and method for the treatment of heart tissue
US7856985B2 (en) 2005-04-22 2010-12-28 Cynosure, Inc. Method of treatment body tissue using a non-uniform laser beam
EP2085929A1 (en) 2005-04-28 2009-08-05 The General Hospital Corporation Evaluating optical coherence tomography information for an anatomical structure
SE0501077L (en) * 2005-05-12 2006-11-13 Spectracure Ab Device for photodynamic diagnosis or treatment
US8357146B2 (en) * 2005-05-18 2013-01-22 Cooltouch Incorporated Treatment of cellulite and adipose tissue with mid-infrared radiation
EP1887926B1 (en) 2005-05-31 2014-07-30 The General Hospital Corporation System and method which use spectral encoding heterodyne interferometry techniques for imaging
US20060293644A1 (en) * 2005-06-21 2006-12-28 Donald Umstadter System and methods for laser-generated ionizing radiation
EP2207008A1 (en) 2005-08-09 2010-07-14 The General Hospital Corporation Apparatus and method for performing polarization-based quadrature demodulation in optical coherence tomography
CA2622560A1 (en) 2005-09-15 2007-03-29 Palomar Medical Technologies, Inc. Skin optical characterization device
EP1928306B1 (en) 2005-09-29 2021-01-13 General Hospital Corporation Optical coherence tomography systems and methods including fluorescence microscopic imaging of one or more biological structures
WO2007047690A1 (en) 2005-10-14 2007-04-26 The General Hospital Corporation Spectral- and frequency- encoded fluorescence imaging
US7632308B2 (en) 2005-11-23 2009-12-15 Didier Loulmet Methods, devices, and kits for treating mitral valve prolapse
US20070142884A1 (en) * 2005-12-16 2007-06-21 Acoustx Corporation Methods and apparatuses for treating an esophageal disorder such as gastroesophageal reflux disease
US20070142699A1 (en) * 2005-12-16 2007-06-21 Acoustx Corporation Methods and implantable apparatuses for treating an esophageal disorder such as gastroesophageal reflux disease
JP5680826B2 (en) 2006-01-10 2015-03-04 ザ ジェネラル ホスピタル コーポレイション Data generation system using endoscopic technology for encoding one or more spectra
US8145018B2 (en) 2006-01-19 2012-03-27 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements
EP2289398A3 (en) 2006-01-19 2011-04-06 The General Hospital Corporation Methods and systems for optical imaging of epithelial luminal organs by beam scanning thereof
JP2009537024A (en) 2006-02-01 2009-10-22 ザ ジェネラル ホスピタル コーポレイション Apparatus for controlling at least one of at least two sites of at least one fiber
JP5524487B2 (en) 2006-02-01 2014-06-18 ザ ジェネラル ホスピタル コーポレイション A method and system for emitting electromagnetic radiation to at least a portion of a sample using a conformal laser treatment procedure.
EP2659851A3 (en) 2006-02-01 2014-01-15 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
EP1988825B1 (en) 2006-02-08 2016-12-21 The General Hospital Corporation Arrangements and systems for obtaining information associated with an anatomical sample using optical microscopy
EP1987318B1 (en) 2006-02-24 2015-08-12 The General Hospital Corporation Methods and systems for performing angle-resolved fourier-domain optical coherence tomography
CN101466298B (en) 2006-04-05 2011-08-31 通用医疗公司 Methods arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample
US7349618B2 (en) * 2006-04-26 2008-03-25 Medtronic, Inc. Optical feedthrough assembly for use in implantable medical device
EP3150110B1 (en) 2006-05-10 2020-09-02 The General Hospital Corporation Processes, arrangements and systems for providing frequency domain imaging of a sample
US7782464B2 (en) 2006-05-12 2010-08-24 The General Hospital Corporation Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images
US7586957B2 (en) 2006-08-02 2009-09-08 Cynosure, Inc Picosecond laser apparatus and methods for its operation and use
CN101589301B (en) 2006-08-25 2012-11-07 通用医疗公司 Apparatus and methods for enhancing optical coherence tomography imaging using volumetric filtering techniques
ES2533580T3 (en) * 2006-08-28 2015-04-13 The Regents Of The University Of California Dynamic cooling of human skin using a non-toxic cryogenic agent without ozone depletion and minimal global warming potential
US7680373B2 (en) 2006-09-13 2010-03-16 University Of Washington Temperature adjustment in scanning beam devices
WO2008049118A2 (en) 2006-10-19 2008-04-24 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample and effecting such portion(s)
US7738762B2 (en) 2006-12-15 2010-06-15 University Of Washington Attaching optical fibers to actuator tubes with beads acting as spacers and adhesives
US8305432B2 (en) 2007-01-10 2012-11-06 University Of Washington Scanning beam device calibration
EP2102583A2 (en) 2007-01-19 2009-09-23 The General Hospital Corporation Apparatus and method for controlling ranging depth in optical frequency domain imaging
US7949019B2 (en) 2007-01-19 2011-05-24 The General Hospital Wavelength tuning source based on a rotatable reflector
WO2008118781A2 (en) 2007-03-23 2008-10-02 The General Hospital Corporation Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
US7583872B2 (en) * 2007-04-05 2009-09-01 University Of Washington Compact scanning fiber device
US8045177B2 (en) 2007-04-17 2011-10-25 The General Hospital Corporation Apparatus and methods for measuring vibrations using spectrally-encoded endoscopy
US7608842B2 (en) * 2007-04-26 2009-10-27 University Of Washington Driving scanning fiber devices with variable frequency drive signals
US8115919B2 (en) 2007-05-04 2012-02-14 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with a sample using optical microscopy
US20080281305A1 (en) * 2007-05-10 2008-11-13 Cardiac Pacemakers, Inc. Method and apparatus for relieving angina symptoms using light
US8212884B2 (en) 2007-05-22 2012-07-03 University Of Washington Scanning beam device having different image acquisition modes
US9403029B2 (en) 2007-07-18 2016-08-02 Visualase, Inc. Systems and methods for thermal therapy
US8437587B2 (en) 2007-07-25 2013-05-07 University Of Washington Actuating an optical fiber with a piezoelectric actuator and detecting voltages generated by the piezoelectric actuator
US9375158B2 (en) 2007-07-31 2016-06-28 The General Hospital Corporation Systems and methods for providing beam scan patterns for high speed doppler optical frequency domain imaging
JP5536650B2 (en) 2007-08-31 2014-07-02 ザ ジェネラル ホスピタル コーポレイション System and method for self-interfering fluorescence microscopy and associated computer-accessible media
US7522813B1 (en) * 2007-10-04 2009-04-21 University Of Washington Reducing distortion in scanning fiber devices
EP2209517A4 (en) 2007-10-05 2011-03-30 Maquet Cardiovascular Llc Devices and methods for minimally-invasive surgical procedures
WO2009059034A1 (en) 2007-10-30 2009-05-07 The General Hospital Corporation System and method for cladding mode detection
US8411922B2 (en) 2007-11-30 2013-04-02 University Of Washington Reducing noise in images acquired with a scanning beam device
US9198726B2 (en) * 2007-12-31 2015-12-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Photodynamic-based cardiac ablation device and method via the esophagus
US20090177042A1 (en) * 2008-01-09 2009-07-09 University Of Washington Color image acquisition with scanning laser beam devices
US11123047B2 (en) 2008-01-28 2021-09-21 The General Hospital Corporation Hybrid systems and methods for multi-modal acquisition of intravascular imaging data and counteracting the effects of signal absorption in blood
US9332942B2 (en) 2008-01-28 2016-05-10 The General Hospital Corporation Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging
WO2009137701A2 (en) 2008-05-07 2009-11-12 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
WO2009155536A2 (en) 2008-06-20 2009-12-23 The General Hospital Corporation Fused fiber optic coupler arrangement and method for use thereof
US20090318757A1 (en) * 2008-06-23 2009-12-24 Percuvision, Llc Flexible visually directed medical intubation instrument and method
US20090318798A1 (en) * 2008-06-23 2009-12-24 Errol Singh Flexible visually directed medical intubation instrument and method
EP2309923B1 (en) 2008-07-14 2020-11-25 The General Hospital Corporation Apparatus and methods for color endoscopy
US8728092B2 (en) 2008-08-14 2014-05-20 Monteris Medical Corporation Stereotactic drive system
US8747418B2 (en) 2008-08-15 2014-06-10 Monteris Medical Corporation Trajectory guide
DE102008046825B4 (en) * 2008-09-11 2010-11-25 Starmedtec Gmbh Laser handpiece
US8937724B2 (en) 2008-12-10 2015-01-20 The General Hospital Corporation Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
JP2012515930A (en) 2009-01-26 2012-07-12 ザ ジェネラル ホスピタル コーポレーション System, method and computer-accessible medium for providing a wide-field super-resolution microscope
CN104134928A (en) 2009-02-04 2014-11-05 通用医疗公司 Apparatus and method for utilization of a high-speed optical wavelength tuning source
WO2010105197A2 (en) 2009-03-12 2010-09-16 The General Hospital Corporation Non-contact optical system, computer-accessible medium and method for measuring at least one mechanical property of tissue using coherent speckle techniques(s)
WO2011008646A1 (en) 2009-07-14 2011-01-20 Brian Cisel Laser surgery device and method
CN102469943A (en) 2009-07-14 2012-05-23 通用医疗公司 Apparatus, systems and methods for measuring flow and pressure within a vessel
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
US9149335B2 (en) * 2009-12-01 2015-10-06 Biolitec Pharma Marketing Ltd Contact free and perforation safe endoluminal laser treatment device and method
PT2542154T (en) 2010-03-05 2020-11-25 Massachusetts Gen Hospital Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
WO2011150069A2 (en) 2010-05-25 2011-12-01 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
WO2011149972A2 (en) 2010-05-25 2011-12-01 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
WO2011148264A2 (en) * 2010-05-26 2011-12-01 Lumenis Ltd Tissue treatment apparatus with interchangeable instrument/accessories
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
EP2632324A4 (en) 2010-10-27 2015-04-22 Gen Hospital Corp Apparatus, systems and methods for measuring blood pressure within at least one vessel
JP6240064B2 (en) 2011-04-29 2017-11-29 ザ ジェネラル ホスピタル コーポレイション Method for determining depth-resolved physical and / or optical properties of a scattering medium
WO2013013049A1 (en) 2011-07-19 2013-01-24 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US10241028B2 (en) 2011-08-25 2019-03-26 The General Hospital Corporation Methods, systems, arrangements and computer-accessible medium for providing micro-optical coherence tomography procedures
WO2013066631A1 (en) 2011-10-18 2013-05-10 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
EP2833776A4 (en) 2012-03-30 2015-12-09 Gen Hospital Corp Imaging system, method and distal attachment for multidirectional field of view endoscopy
KR102183581B1 (en) 2012-04-18 2020-11-27 싸이노슈어, 엘엘씨 Picosecond laser apparatus and methods for treating target tissues with same
EP2849671B1 (en) * 2012-05-14 2021-04-07 Convergent Dental, Inc. Apparatus for laser based dental treatment with controlled fluid cooling
WO2013177154A1 (en) 2012-05-21 2013-11-28 The General Hospital Corporation Apparatus, device and method for capsule microscopy
CN104602638B (en) 2012-06-27 2017-12-19 曼特瑞斯医药有限责任公司 System for influenceing to treat tissue
EP2888616A4 (en) 2012-08-22 2016-04-27 Gen Hospital Corp System, method, and computer-accessible medium for fabrication minature endoscope using soft lithography
US10492876B2 (en) * 2012-09-17 2019-12-03 Omniguide, Inc. Devices and methods for laser surgery
WO2014120791A1 (en) 2013-01-29 2014-08-07 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
WO2014121082A1 (en) 2013-02-01 2014-08-07 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US20140228830A1 (en) * 2013-02-12 2014-08-14 Jay Eunjae Kim Apparatus And Method For Sealing Of Tissue In Uncontrollable Bleeding Situations During Surgery
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
EP2973894A2 (en) 2013-03-15 2016-01-20 Cynosure, Inc. Picosecond optical radiation systems and methods of use
WO2014186353A1 (en) 2013-05-13 2014-11-20 The General Hospital Corporation Detecting self-interefering fluorescence phase and amplitude
EP4349242A2 (en) 2013-07-19 2024-04-10 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
WO2015013651A2 (en) 2013-07-26 2015-01-29 The General Hospital Corporation System, apparatus and method utilizing optical dispersion for fourier-domain optical coherence tomography
CN110420057B (en) * 2013-10-15 2022-10-14 尼普洛株式会社 Ablation system and ablation device
US10631930B1 (en) 2013-10-15 2020-04-28 Nipro Corporation Ablation system and ablation device
WO2015105870A1 (en) 2014-01-08 2015-07-16 The General Hospital Corporation Method and apparatus for microscopic imaging
WO2015116986A2 (en) 2014-01-31 2015-08-06 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10675113B2 (en) 2014-03-18 2020-06-09 Monteris Medical Corporation Automated therapy of a three-dimensional tissue region
US20150265353A1 (en) 2014-03-18 2015-09-24 Monteris Medical Corporation Image-guided therapy of a tissue
US9486170B2 (en) 2014-03-18 2016-11-08 Monteris Medical Corporation Image-guided therapy of a tissue
WO2015153982A1 (en) 2014-04-04 2015-10-08 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US9231049B1 (en) 2014-06-20 2016-01-05 Infineon Technologies Austria Ag Semiconductor switching device with different local cell geometry
ES2907287T3 (en) 2014-07-25 2022-04-22 Massachusetts Gen Hospital Apparatus for imaging and in vivo diagnosis
US10327830B2 (en) 2015-04-01 2019-06-25 Monteris Medical Corporation Cryotherapy, thermal therapy, temperature modulation therapy, and probe apparatus therefor
US20160367120A1 (en) * 2015-06-19 2016-12-22 Children's Medical Center Corporation Optically Guided Surgical Devices
US9662173B1 (en) 2015-12-24 2017-05-30 Cyclone Biosciences LLC Lateral delivery device with active cooling
US11172821B2 (en) 2016-04-28 2021-11-16 Medtronic Navigation, Inc. Navigation and local thermometry
US9678275B1 (en) 2016-05-23 2017-06-13 InnovaQuartz LLC Efficient coupling of infrared radiation to renal calculi
WO2018195264A1 (en) 2017-04-19 2018-10-25 Joe Brown Side-fire laser system with stand-off catheter and method to achieve tissue vaporization and coagulation
CA3092248A1 (en) 2018-02-26 2019-08-29 Mirko Mirkov Q-switched cavity dumped sub-nanosecond laser
US11547276B2 (en) 2018-03-09 2023-01-10 The Children's Medical Center Corporation Optical bulb for surgical instrument port
US11284788B2 (en) 2018-03-09 2022-03-29 The Children's Medical Center Corporation Instrument port with fluid flush system
US11213316B2 (en) 2018-03-09 2022-01-04 The Children's Medical Center Corporation Gasket with multi-leaflet valve for surgical port apparatus
US11324555B2 (en) 2018-03-09 2022-05-10 The Children's Medical Center Corporation Instrument port including optical bulb secured to port body
CA3150788A1 (en) 2019-08-12 2021-02-18 Bard Access Systems, Inc. Shape-sensing systems and methods for medical devices
EP4061272A4 (en) 2019-11-25 2023-11-22 Bard Access Systems, Inc. Shape-sensing systems with filters and methods thereof
US11850338B2 (en) 2019-11-25 2023-12-26 Bard Access Systems, Inc. Optical tip-tracking systems and methods thereof
EP4110175A1 (en) * 2020-02-28 2023-01-04 Bard Access Systems, Inc. Optical connection systems and methods thereof
WO2021202589A1 (en) 2020-03-30 2021-10-07 Bard Access Systems, Inc. Optical and electrical diagnostic systems and methods thereof
CN113842536A (en) 2020-06-26 2021-12-28 巴德阿克塞斯系统股份有限公司 Dislocation detection system
CN113926050A (en) 2020-06-29 2022-01-14 巴德阿克塞斯系统股份有限公司 Automatic dimensional reference system for optical fibers
CN216317552U (en) 2020-07-10 2022-04-19 巴德阿克塞斯系统股份有限公司 Medical device system for detecting damage and potential damage to optical fiber technology of medical devices
EP4188212A1 (en) 2020-08-03 2023-06-07 Bard Access Systems, Inc. Bragg grated fiber optic fluctuation sensing and monitoring system
CN216985791U (en) 2020-10-13 2022-07-19 巴德阿克塞斯系统股份有限公司 Disinfection cover for optical fiber connector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163935A (en) * 1991-02-20 1992-11-17 Reliant Laser Corporation Surgical laser endoscopic focusing guide with an optical fiber link
US5242438A (en) * 1991-04-22 1993-09-07 Trimedyne, Inc. Method and apparatus for treating a body site with laterally directed laser radiation
US5257991A (en) * 1990-11-15 1993-11-02 Laserscope Instrumentation for directing light at an angle

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3327712A (en) * 1961-09-15 1967-06-27 Ira H Kaufman Photocoagulation type fiber optical surgical device
US3471215A (en) * 1965-07-16 1969-10-07 American Optical Corp Fiber laser device provided with long flexible energy-directing probe-like structure
US3866599A (en) * 1972-01-21 1975-02-18 Univ Washington Fiberoptic catheter
US3858577A (en) * 1974-04-05 1975-01-07 Univ Southern California Fiber optic laser light delivery system
US4273109A (en) * 1976-07-06 1981-06-16 Cavitron Corporation Fiber optic light delivery apparatus and medical instrument utilizing same
DE2826383A1 (en) * 1978-06-16 1979-12-20 Eichler Juergen Probe for laser surgery - is tubular and placed against or inserted in tissue, with or without heated end
US4313431A (en) * 1978-12-06 1982-02-02 Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung Endoscopic apparatus with a laser light conductor
JPS5689231A (en) * 1979-12-21 1981-07-20 Olympus Optical Co Endoscope
DE3169553D1 (en) * 1980-09-22 1985-05-02 Olympus Optical Co A laser device for an endoscope
JPS57168656A (en) * 1981-04-10 1982-10-18 Medos Kenkyusho Kk Endoscope laser coagulator
US4418688A (en) * 1981-07-06 1983-12-06 Laserscope, Inc. Microcatheter having directable laser and expandable walls
JPS6041928Y2 (en) * 1981-09-04 1985-12-21 株式会社モリタ製作所 Contra-angle handpiece for dental treatment using laser light
US4445892A (en) * 1982-05-06 1984-05-01 Laserscope, Inc. Dual balloon catheter device
US4489722A (en) * 1982-09-27 1984-12-25 Medical Engineering Corporation Laser resistant endotracheal tube
US4519390A (en) * 1982-10-15 1985-05-28 Hgm, Inc. Fiber optic laser catheter
US4537193A (en) * 1982-10-28 1985-08-27 Hgm, Inc. Laser endocoagulator apparatus
US4512762A (en) * 1982-11-23 1985-04-23 The Beth Israel Hospital Association Method of treatment of atherosclerosis and a balloon catheter for same
US4646737A (en) * 1983-06-13 1987-03-03 Laserscope, Inc. Localized heat applying medical device
US4773413A (en) * 1983-06-13 1988-09-27 Trimedyne Laser Systems, Inc. Localized heat applying medical device
DE3335696A1 (en) * 1983-09-30 1985-04-18 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn HAND APPLICATOR FOR LASER SURGERY
DE3335584A1 (en) * 1983-09-30 1985-04-18 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn HAND APPLICATOR FOR LASER SURGERY
US4854320A (en) * 1983-10-06 1989-08-08 Laser Surgery Software, Inc. Laser healing method and apparatus
US4608980A (en) * 1984-04-13 1986-09-02 Osada Electric Co., Ltd. Laser hand piece
IL75998A0 (en) * 1984-08-07 1985-12-31 Medical Laser Research & Dev C Laser system for providing target tissue specific energy deposition
US5019075A (en) * 1984-10-24 1991-05-28 The Beth Israel Hospital Method and apparatus for angioplasty
JPS61185260A (en) * 1985-02-12 1986-08-18 旭光学工業株式会社 Laser knife apparatus
US4862886A (en) * 1985-05-08 1989-09-05 Summit Technology Inc. Laser angioplasty
US4850351A (en) * 1985-05-22 1989-07-25 C. R. Bard, Inc. Wire guided laser catheter
US4768858A (en) * 1985-07-08 1988-09-06 Trimedyne, Inc. Hollow fiberoptic
FR2597744A1 (en) * 1986-04-29 1987-10-30 Boussignac Georges CARDIO-VASCULAR CATHETER FOR LASER SHOOTING
US4760840A (en) * 1986-12-16 1988-08-02 The Regents Of The University Of California Endoscopic laser instrument
US4784133A (en) * 1987-01-28 1988-11-15 Mackin Robert A Working well balloon angioscope and method
US5057099A (en) * 1987-02-27 1991-10-15 Xintec Corporation Method for laser surgery
US4819630A (en) * 1987-03-20 1989-04-11 Laser Photonics, Inc. Flexible light transmissive apparatus and method
US4808164A (en) * 1987-08-24 1989-02-28 Progressive Angioplasty Systems, Inc. Catheter for balloon angioplasty
US4917083A (en) * 1988-03-04 1990-04-17 Heraeus Lasersonics, Inc. Delivery arrangement for a laser medical system
US5242437A (en) * 1988-06-10 1993-09-07 Trimedyne Laser Systems, Inc. Medical device applying localized high intensity light and heat, particularly for destruction of the endometrium
EP0374243B1 (en) * 1988-06-10 1996-04-10 Trimedyne Laser Systems, Inc. Medical device applying localized high intensity light and heat, particularly for destruction of the endometrium
US5151098A (en) * 1990-07-23 1992-09-29 Hanspeter Loertscher Apparatus for controlled tissue ablation
DE69027678T2 (en) * 1989-05-03 1997-02-20 Medical Technologies Inc Enter INSTRUMENT FOR INTRALUMINAL RELIEF OF STENOSES
US5057104A (en) * 1989-05-30 1991-10-15 Cyrus Chess Method and apparatus for treating cutaneous vascular lesions
US5061265A (en) * 1989-06-20 1991-10-29 University Of Florida Laser treatment apparatus and method
US5129896A (en) * 1989-11-13 1992-07-14 Hasson Harrith M Holder to facilitate use of a laser in surgical procedures
US5169396A (en) * 1990-06-08 1992-12-08 Kambiz Dowlatshahi Method for interstitial laser therapy
US5190540A (en) * 1990-06-08 1993-03-02 Cardiovascular & Interventional Research Consultants, Inc. Thermal balloon angioplasty
US5188634A (en) * 1990-07-13 1993-02-23 Trimedyne, Inc. Rotatable laser probe with beveled tip
US5304171A (en) * 1990-10-18 1994-04-19 Gregory Kenton W Catheter devices and methods for delivering
US5190538A (en) * 1991-04-22 1993-03-02 Trimedyne, Inc. Method and apparatus for subjecting a body site to a movable beam of laterally directed laser radiation
US5217455A (en) * 1991-08-12 1993-06-08 Tan Oon T Laser treatment method for removing pigmentations, lesions, and abnormalities from the skin of a living human
US5370649A (en) * 1991-08-16 1994-12-06 Myriadlase, Inc. Laterally reflecting tip for laser transmitting fiber
JP3465230B2 (en) * 1991-08-16 2003-11-10 ミリアドレイズ インコーポレイテツド Side reflection tip for laser transmission fiber
US5275151A (en) * 1991-12-11 1994-01-04 Clarus Medical Systems, Inc. Handle for deflectable catheter
US5246436A (en) * 1991-12-18 1993-09-21 Alcon Surgical, Inc. Midinfrared laser tissue ablater
US5437660A (en) * 1991-12-30 1995-08-01 Trimedyne, Inc. Tissue ablation and a lateral-lasing fiber optic device therefor
JPH06511181A (en) * 1992-03-18 1994-12-15 ザ・スペクトラネティックス・コーポレーション Fiber optic catheter with flexible tip
US5246437A (en) * 1992-04-10 1993-09-21 Abela George S Cell treatment apparatus and method
US5322507A (en) * 1992-08-11 1994-06-21 Myriadlase, Inc. Endoscope for treatment of prostate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257991A (en) * 1990-11-15 1993-11-02 Laserscope Instrumentation for directing light at an angle
US5163935A (en) * 1991-02-20 1992-11-17 Reliant Laser Corporation Surgical laser endoscopic focusing guide with an optical fiber link
US5242438A (en) * 1991-04-22 1993-09-07 Trimedyne, Inc. Method and apparatus for treating a body site with laterally directed laser radiation

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258083B1 (en) 1996-03-29 2001-07-10 Eclipse Surgical Technologies, Inc. Viewing surgical scope for minimally invasive procedures
EP0938871A3 (en) * 1998-02-27 2001-03-07 ECLIPSE SURGICAL TECHNOLOGIES, Inc. Surgical apparatus
EP1038505A3 (en) * 1999-03-23 2004-02-04 PlasmaPhotonics GmbH Irradiation device, especially for photothermolysis
US11478269B2 (en) 2007-01-02 2022-10-25 Aquabeam, Llc Minimally invasive methods for multi-fluid tissue ablation
US11350964B2 (en) 2007-01-02 2022-06-07 Aquabeam, Llc Minimally invasive treatment device for tissue resection
EP3622910A1 (en) * 2008-03-06 2020-03-18 AquaBeam LLC Tissue ablation and cautery with optical energy carried in fluid stream
US11759258B2 (en) 2008-03-06 2023-09-19 Aquabeam, Llc Controlled ablation with laser energy
US11172986B2 (en) 2008-03-06 2021-11-16 Aquabeam Llc Ablation with energy carried in fluid stream
US11033330B2 (en) 2008-03-06 2021-06-15 Aquabeam, Llc Tissue ablation and cautery with optical energy carried in fluid stream
EP2259742B1 (en) * 2008-03-06 2020-01-01 AquaBeam LLC Tissue ablation and cautery with optical energy carried in fluid stream
US11464536B2 (en) 2012-02-29 2022-10-11 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
US11737776B2 (en) 2012-02-29 2023-08-29 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
US10688313B2 (en) 2013-02-07 2020-06-23 Rocomp Global, L.L.C. Electromagnetic radiation targeting devices, assemblies, systems and methods
GB2525109B (en) * 2013-02-07 2019-07-24 Rocomp Global Llc Electromagnetic radiation targeting devices, assemblies, systems and methods
US9814902B1 (en) 2013-02-07 2017-11-14 Rocomp Global, L.L.C. Electromagnetic radiation targeting devices, assemblies, systems and methods
US9814901B1 (en) 2013-02-07 2017-11-14 Rocomp Global, L.L.C. Electromagnetic radiation targeting devices, assemblies, systems and methods
US9717927B2 (en) 2013-02-07 2017-08-01 Rocomp Global, L.L.C. Electromagnetic radiation targeting devices, assemblies, systems and methods
GB2525109A (en) * 2013-02-07 2015-10-14 Rocomp Global Llc Electromagnetic radiation targeting devices, assemblies, system and methods
US11491344B2 (en) 2013-02-07 2022-11-08 Rocomp Global, L.L.C. Electromagnetic radiation targeting devices, assemblies, systems and methods
US11491345B2 (en) 2013-02-07 2022-11-08 Rocomp Global, Llc Electromagnetic radiation targeting devices, assemblies, systems and methods
US11638832B2 (en) 2013-02-07 2023-05-02 Rocomp Global, L.L.C. Electromagnetic radiation targeting devices, assemblies, systems and methods
WO2014124186A3 (en) * 2013-02-07 2015-01-08 Rocomp Global, Llc Electromagnetic radiation targeting devices, assemblies, systems and methods

Also Published As

Publication number Publication date
US5454807A (en) 1995-10-03

Similar Documents

Publication Publication Date Title
US5454807A (en) Medical treatment of deeply seated tissue using optical radiation
US5409483A (en) Direct visualization surgical probe
US5957917A (en) Transluminal hyperthermia catheter and method for use
US5487740A (en) Laser device for ablation of human tissue
US5672171A (en) Apparatus and method for interstitial laser treatment
US6579285B2 (en) Photoablation with infrared radiation
US8257347B2 (en) Vein treatment device and method
US8876810B2 (en) Benign prostatic hyperplasia treatment method and device
US10342615B2 (en) Tissue ablation and cautery with optical energy carried in fluid stream
US20040167503A1 (en) Malleable surgical ablation instruments
US6676656B2 (en) Surgical ablation with radiant energy
US20040147913A1 (en) Surgical ablation instruments with irrigation features
US20080195085A1 (en) Economical, two component, thermal energy delivery and surface cooling apparatus and its method of use
EP1301139A1 (en) Cardiac photoablation instruments
JPH07505065A (en) Tissue removal method and lateral laser/optical fiber device therefor
KR102566620B1 (en) Light therapy apparatus
JPH0910222A (en) System for irradiating living body with laser beam
Okada et al. Balloon cystoscopy with neodymium: YAG laser
Sam et al. Medical applications of medium-to high-power diode lasers
AU4717000A (en) Device and method for causing tissue necrosis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA