WO1994028790A1 - Verfahren un vorrichtung zur messung der molmasse von gasen oder gasgemischen - Google Patents

Verfahren un vorrichtung zur messung der molmasse von gasen oder gasgemischen Download PDF

Info

Publication number
WO1994028790A1
WO1994028790A1 PCT/EP1994/001629 EP9401629W WO9428790A1 WO 1994028790 A1 WO1994028790 A1 WO 1994028790A1 EP 9401629 W EP9401629 W EP 9401629W WO 9428790 A1 WO9428790 A1 WO 9428790A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sound
measuring
holder
determined
Prior art date
Application number
PCT/EP1994/001629
Other languages
English (en)
French (fr)
Inventor
Karl Harnoncourt
Dieter Pätzold
Walter GUGGENBÜHL
Christian Buess
Original Assignee
Ndd Medizintechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ndd Medizintechnik Gmbh filed Critical Ndd Medizintechnik Gmbh
Priority to JP50123995A priority Critical patent/JP3612332B2/ja
Priority to DE59409875T priority patent/DE59409875D1/de
Priority to EP94918345A priority patent/EP0653919B1/de
Priority to AT94918345T priority patent/ATE206028T1/de
Priority to US08/379,465 priority patent/US5645071A/en
Publication of WO1994028790A1 publication Critical patent/WO1994028790A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise
    • G01N29/326Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise compensating for temperature variations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • G01D3/036Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves
    • G01D3/0365Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves the undesired influence being measured using a separate sensor, which produces an influence related signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/021Gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02836Flow rate, liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver

Definitions

  • the invention relates to a method for measuring the molar mass of gases or gas mixtures and an apparatus for performing this method.
  • Mass spectrometers are agile devices that enable very precise gas analysis.
  • the sensors for measuring the concentration of specific gases are usually simpler devices which, using certain physical or chemical properties of a certain gas, for example an absorption line in the spectrum or a paramagnetic property of the gas, determine the concentration of the gas calculate certain gas.
  • the object of the invention is to determine the molar mass of a gas or gas mixture in a free mounting cross section, that is to say without any disturbance of a flow geometry.
  • the gas or gas mixture to be examined is passed through at least one holder, on which at least one sound or ultrasound transmitting or receiving cell is arranged as a measuring section, preferably at an angle to the pipe axis.
  • the sound or ultrasound de-receiving cells emit a pulsed sound signal.
  • the transit times of the sound pulses over the measuring section are recorded.
  • the temperature can be estimated.
  • the gas temperature profile can also be determined over at least one sound transmission path using at least one temperature probe.
  • the molecular weight is determined from the transit time of the sound pulses and the temperature.
  • Ultrasonic sensors such as those used for the solution according to the invention, are fundamentally already known from ultrasonic spirometry for another purpose.
  • ultrasonic spirometers are known in which a pair of transmitter / receiver cells is arranged in a measuring section at an angle to the measuring tube axis.
  • the flow rate is determined by means of ultrasound running time measurement.
  • the method according to the invention described above can be used in particular in the diagnosis of pulmonary function, since the results of the flow measurement as well as those from ongoing gas analyzes are of interest.
  • the gas analyzes were carried out by means of several sensors specific for the respective gas components.
  • measurements were carried out in the secondary flow via these sensors, ie a partial flow of the gas composition to be measured was branched off and determined in this branch by means of the sensors.
  • These previously known measuring methods are complex and, due to the necessary branching of a partial gas flow, also falsified.
  • a lung function diagnosis can be carried out in real time and on-line.
  • the measurements can be carried out with an ultrasonic sensor and only one additional sensor, which saves on the outlay on equipment.
  • the following parameters can be determined in a simple manner with the method:
  • the lung volumes including FRC, the N2 washout curve or the helium washout curve, the molar mass profile of the expiratory alveolar gas curve.
  • the combination of an ultrasound sensor with a further gas sensor mentioned above also allows the oxygen uptake and CO2 emission and the respiratory quotient (V CO2 / V O2) to be determined.
  • a device for carrying out the method according to the invention consists of at least one sound or ultrasound transmitting receiving cell, which is arranged obliquely to the mounting axis. Furthermore, at least one temperature probe can be arranged along the at least one measuring section formed thereby. The obliquely entering the measuring channel chamber openings of the chamber, in which the sound or ultrasound transmitter-receiver cells are arranged, can be closed with sound-permeable networks to avoid eddies in the gas flow.
  • a replaceable breathing tube can also be inserted into the holder, which has measuring windows at the transition to the measuring section in such a way that inserts are used in corresponding openings, which are permeable to sound waves but largely impermeable to germs and dirt.
  • This idea is already the subject of the unpublished German patent application P 42 22 286.
  • the provision of the interchangeable breathing tube provides the possibility of a hygienically perfect spirometry.
  • damping elements can be provided, preferably a sound-absorbing surface of a tube forming the holder or of the exchangeable breathing tube being provided.
  • Elements for swirling in or outflowing gases or gas mixtures can be present at the flow inlets and outlets.
  • a heater can also be provided in the device to set a predetermined temperature and to prevent condensation.
  • cavities can be accommodated in accordance with an advantageously compact embodiment be provided by electronic switching components. Further advantageous embodiments result from the subclaims.
  • the invention further relates to a device for determining the functional residual volume (FRC) of the lungs in the lungs, functional diagnostics, and preferably has features of the device described above.
  • a switch-on device can be used on the holder or the breathing tube, which has a pipe branch, at one end of which a low-inertia bag that can be filled with O2 or a gas mixture can be attached.
  • An inhalation valve is arranged at the end of the pipe branch at which the bag is attached.
  • An exhalation valve is arranged at the other, free end of the pipe branch.
  • the pipe branch is formed in one piece with the easily exchangeable breathing pipe.
  • the pipe branch with the correspondingly used valves can be connected to the breathing tube or the easily exchangeable breathing tube via a docking mechanism.
  • a filling nozzle for filling with the gas to be inhaled can be provided on the low-inertia bag.
  • a device for the external gas connection which can be attached directly to the holder or to the easily exchangeable breathing tube, which serves as a disposable hygienic breathing tube, is implemented.
  • the gas inflow or outflow volumes can be used by means of appropriate software from the density and flow parameters to determine the functional residual volume (FRC) of the lung.
  • connection device is designed such that during an expiration phase it docks a gas container, ie the low-inertia bag, in such a way that the inhalation This gas container then takes place while the exhalation is directed outside.
  • the provision of the two valves now ensures that inspiration via contaminated parts is impossible.
  • the additional parts of the device explained above can optionally be designed as disposable parts.
  • the software for the simultaneous evaluation of the flow and density signals can take into account all influences, which are given the gas temperature, the gas humidity and the mass of the gas components.
  • the functional residual volume (FRC) of the lungs is calculated, for example, according to the known rules of the N2 flushing method or by analogous methods.
  • a further embodiment of the invention relates to a device for measuring the molar mass of gases or gas mixtures for determining various exhalation parameters in lung function diagnostics, which preferably includes features of the aforementioned embodiment variants, in which, in addition to the sound or ultrasound Transmitting and / or receiving cell pair ent either a C ⁇ 2 ⁇ sensor based on infrared or a 02 ⁇ sensor existing.
  • the hygienic ultrasound spirometry includes the easily replaceable breathing tubes. According to a geous embodiment, two optically transparent windows must be arranged at the points where the infrared light source and the infrared sensor are arranged.
  • the infrared light source and the infrared sensor can be arranged in parallel at one point in the housing.
  • only one window is provided in the holder, the a mirror is arranged opposite.
  • an opening can be provided in the easily exchangeable inner tube which can be inserted in the holder and is closed with a thin 02 permeable but light-impermeable membrane, a 02 sensitive fluorescent indicator being applied to the outside .
  • the respiratory tube used is located at a corresponding point on the device, i.e. inside the spirometer head, a hole which can be equipped with an optical connection (for example glass fiber connection) for the optical system. In a manner known per se, this can consist of a light source for the excitation light and a sensor for the signal pulses.
  • An electronic evaluation is provided for each of the variants described above, which takes into account the effects of temperature and humidity and, from the mass and gas signal in combination with spirometric values derived from the flow signals, the known data of the spiro Ergometry determined.
  • Corresponding additional sensors can be integrated in the device for moisture measurement.
  • FIG. 1 shows a block diagram of a first embodiment of the invention
  • FIG. 2 a schematic sectional view through part of the device shown in FIG. 1, Fig. 3 u. 4: Different exemplary embodiments of interchangeable breathing tubes with branching pieces and attachable gas containers and
  • Fig. 5 u. 6 schematic partial sectional views of the holder with additionally arranged sensors and interchangeable breathing tubes.
  • FIG. 1 shows the flow meter for determining physiologically relevant lung function parameters as a block diagram.
  • a sensor unit I is followed by a control unit II and a data processing system III.
  • the sensor head is shown schematically, which has chambers 1 and 2 ultrasonic transmission-reception elements S1 and S2. These are, for example, condenser microphones which are suitable both for the transmission and for the reception operation of ultrasound signals.
  • the cells S1, S2 attached obliquely to a tubular holder 5 through which flow flows send the sound via the radiation openings 3, 4 to the opposite cell.
  • Electrically insulating lateral guide elements, and also electrically insulating diffusers (facing nets 5) position the main cells firmly in chambers 1 and 2. Connection bores lead from these chambers a preprocessing electronics attached to the side of the holder 5. This is mainly used for preamplification of the received signals and the signal conditioning of the temperature measuring points.
  • a cable not shown in FIG. 2, which exits the sensor head through a cable screw connection 8, connects the sensor to the associated control unit II (cf. FIG. 1).
  • the chamber 9 contains a device for lowering a thermocouple into the measuring tube 5. With the aid of a screw 11, an electrically non-conductive part 10, in which the thermocouple is embedded, is lowered into the holder 5. In the retracted position, the holder can be cleaned by mechanical means without the thermocouple being destroyed.
  • thermocouple is used to determine the gas temperature in the chambers 3, 4 in front of the transmitting / receiving elements S1, S2. It is positioned in the chamber 4 via a further lateral bore 12.
  • the holder 5 When the thermocouple holder 10 is lowered, the holder 5 has a constant circular cross section over the entire length.
  • the radiation openings 3 and 4 are closed with nets, so that the circular cross section of the tubular holder 5 is retained even in these areas.
  • these nets can also be mounted on an interchangeable breathing tube.
  • Two different, interchangeable end pieces are available for the measuring channel: the short version 6 is used to achieve the smallest possible measuring volume of the sensor, the longer version 7 is designed so that a mouthpiece or adapter piece suitable for medical use is inserted can.
  • Additional heating elements which bring the sensor head to a temperature which is higher than the ambient temperature, can be accommodated directly in the chambers which are provided for the preprocessing for electronics at the side, or in bores leading away from these chambers.
  • a slight heating of the sensor has the advantage that condensation of water vapor on the surfaces of the holder 5 can be avoided during the expiration phase. In medical applications, heating of the sensor will be inevitable in most cases due to the water vapor-saturated expiration air.
  • the temperature signals necessary for determining the molar mass are also fed to the control unit after an electronic preprocessing of the thermocouple signals in the sensor head itself.
  • the mean gas temperature T along the sound transmission path which is listed in the formulas according to claims 2 and 3 is determined as follows: It is assumed that the thermocouple introduced into the holder determines the mean temperature along the section in the holder. The thermocouple positioned in the bore 12 laterally in front of the cell S1 determines the average temperature of the two sections in the radiation opening 3 and 4. In the described embodiment variants of the sensor head it is thus assumed in a simplified manner that both the gas temperature and the gas composition in the both chambers 3 and 4 are the same. The average gas temperature T becomes determined by means of the percentages of sections of flowed and non-flowed sound transmission sections.
  • the processor of the control unit uses the measured sound propagation times and temperatures to calculate the molar mass, gas velocity and quantities derived therefrom.
  • the formulas listed in claims 4, 5, 6 and 7 are used in the calculation.
  • the quantities calculated by the processor of the control unit can be transmitted to the computer via a serial interface.
  • this computer can carry out further calculations of the CO2 or 02 concentration. Suitable CO sensors are used to determine the CO 2 content and / or the 02 content in the breathing air in a manner not shown here.
  • a measuring cycle of the device thus consists of 4 phases: sending the sound impulses, receiving them at the opposite transmitting / receiving cell, processing the resulting data, data output and data transmission to the connected computer.
  • a measuring cycle takes approximately 3 ms. Since only one sound propagation time is measured during a measuring cycle, 2-4 measuring cycles are necessary, depending on the formula used, while determining a complete data set.
  • the connected computer can be used to evaluate the flow and molar mass data. With the help of the computer, for example, wash-out tests can be evaluated to determine the absolute lung volume.
  • 3 and 4 device components are shown, which are used for a defined gas supply.
  • 3 and 4 each have the easily replaceable breathing tube, which is inserted into the holder 5, shown. Openings closed with suitable nets or membranes 16 are provided in the breathing tube, which come to lie in the region of the radiation openings 3 and 4 when the breathing tube is in the inserted state.
  • the branching part 17 comes to lie outside the breathing tube 5.
  • the embodiments according to FIGS. 3 and 4 differ in that in the embodiment according to FIG. 3 the branching part 17 is formed in one piece with the inner tube 15.
  • the branching part 17 is connected to the inner tube 15 via a docking mechanism (not shown in more detail).
  • a low-inertia bag 18 that can be filled with O2 or a gas mixture is attached to the branching part 17.
  • This bag 18 has a filler neck 19, which can be closed with a valve, for filling with the corresponding gas or gas mixture.
  • the pipe branch or the branching part 17 has an inhalation valve, not shown here, at the end at which the bag 18 is attached. At the free pipe end, the branching part 17 has an exhalation valve.
  • a white light or infrared light source 20 is additionally integrated in the holder 5.
  • An infrared sensor 21 is arranged opposite this.
  • the easily exchangeable breathing tube 15 inserted in the holder has optically transparent windows 22 at the area opposite the infrared light source or the infrared sensor when installed. With the infrared sensor or the infrared light source, the CO 2 content can be measured simultaneously using ultrasound to measure the flow or determine the molar mass.
  • a glass fiber cable 23 is integrated in the holder 5, via which excitation light for an analysis is introduced into the holder. On the other hand, recorded signal pulses are forwarded to a corresponding sensor.
  • the exchangeable breathing tube 15 has a thin, 02-permeable, but opaque membrane 24, on the outside of which a 02 sensitive fluorescence indicator is applied.
  • the oxygen content in the sensor head can be measured simultaneously with the flow measurement or molecular weight determination by means of ultrasound.
  • the entire range of spiro-ergometry can be recorded using hygienic ultrasound spirometry and a relatively inexpensive gas-analytical additive.
  • this has the great advantage that the measurements are carried out on-line and real-time.

Abstract

Die Erfindung betrifft ein Verfahren zur Messung der Molmasse von Gasen oder Gasgemischen und eine Vorrichtung zur Durchführung des Verfahrens. Das zu untersuchende Gas oder Gasgemisch wird durch mindestens eine Halterung (5) geleitet, an der mindestens eine Schall- bzw. Ultraschall-Sende- bzw. Empfangszelle (S1, S2) als Meßstrecke, vorzugsweise schräg zur Rohrachse angeordnet ist. Die Schall- bzw. Ultraschall-Sende-Empfangselemente (S1, S2) strahlen ein gepulstes Schallsignal ab, das die Laufzeiten der Schallimpulse über die Meßstrecke erfaßt. Über beispielsweise eine Temperatursonde wird der Gastemperaturverlauf entlang der mindestens einen Schallübertragungsstrecke bestimmt. Aus der Laufzeit der Schallimpulse und der gemessenen oder angenommenen Temperatur wird die Molmasse bestimmt. Die erfindungsgemäße Vorrichtung läßt sich vorteilhaft in der Lungenfunktionsdiagnostik einsetzen.

Description

VERFAHREN UND VORRICHTUNG ZUR MESSUNG DER MOLMASSE VON GASEN ODER GASGEMISCHEN
Die Erfindung betrifft ein Verfahren zur Messung der Molmasse von Gasen oder Gasgemischen und eine Vorrichtung zum Durchführen dieses Verfahrens.
Zur Bestimmung der Zusammensetzung von Gasen oder Gasgemischen werden im allgemeinen Massenspektrometer oder spezifische Gassen soren eingesetzt. Bei Massenspektrometern handelt es sich um auf wendige Geräte, welche eine sehr exakte Gasanalyse ermöglichen. Bei den Sensoren zur Konzentrationsmessung spezifischer Gase hin gegen handelt es sich meist um einfachere Geräte, welche unter Ausnützung bestimmter physikalischer oder chemischer Eigenschaf¬ ten eines bestimmten Gases, beispielsweise einer Absorptionsli¬ nie im Spektrum oder einer paramagnetischen Eigenschaft des Ga¬ ses, die Konzentration dieses bestimmten Gases berechnen.
Aufgabe der Erfindung ist es, in einem freien Halterungsquer¬ schnitt, also ohne jegliche Störung einer Strömungsgeometrie, die Molmasse eines Gases oder Gasgemisches zu bestimmen.
Erfindungsgemäß wird diese Aufgabe durch die Merkmale des kenn¬ zeichnenden Teils des Anspruchs 1 gelöst. Demnach wird das zu untersuchende Gas oder Gasgemisch durch mindestens eine Halte- rung geleitet, an der mindestens eine Schall- bzw. Ultraschall- Sende- bzw. Empfangszelle als Meßstrecke, vorzugsweise schräg zur Rohrachse angeordnet ist. Die Schall- bzw. Ultraschall-Sen- de-Empfangszellen strahlen ein gepulstes Schallsignal ab. Die Laufzeiten der Schallimpulse über die Meßstrecke werden erfaßt. Die Temperatur kann geschätzt werden. Über mindestens eine Temp ratursonde kann der Gastemperaturverlauf über mindestens eine Schallübertragungsstrecke aber auch bestimmt werden. Aus der Laufzeit der Schallimpulse und der Temperatur wird die Molmasse bestimmt.
Bevorzugte Ausgestaltungen des Verfahrens sind in den sich an¬ schließenden Unteransprüchen 2-7 enthalten.
Ultraschall-Sensoren, wie sie zur erfindungsgemäßen Lösung hera gezogen werden, sind grundsätzlich bereits aus der Ultraschall- Spirometrie zu einem anderen Zweck bekannt. Beispielsweise in der JP 60-117149 A und aus der CH 669 463 A5 sind Ultra- schall-Spirometer bekannt, bei denen ein Sender-/Empfangszellen¬ paar in einer Meßstrecke schräg zur Meßrohrachse angeordnet ist. Bei diesen bekannten Ultraschall-Spirometern wird die Strömungs¬ geschwindigkeit über Ultraschall-LaufZeitmessung ermittelt.
Dieser an sich bekannte Effekt kann gemäß dem Unteranspruch 8 i dem erfindungsgemäßen Verfahren dadurch genutzt werden, daß die Laufzeiten der Schallimpulse ebenfalls zur Berechnung der Strö¬ mungsgeschwindigkeiten der Gase oder Gasgemische, deren Molmass bestimmt werden, verwendet werden. Dabei können Linearitätsfeh- ler der Strömungsgeschwindigkeitsberechnung vorteilhaft mittels der nachgeschalteten elektronischen Schaltung korrigiert werden.
Das zuvor beschriebene erfindungsgemäße Verfahren läßt sich ins¬ besondere in der Lungenfunktionsdiagnostik einsetzen, da dort sowohl Ergebnisse der Strömungsmessung, wie auch solche von fort laufenden Gasanalysen interessieren. Bei den bislang in der Lungenfunktionsdiagnostik angewandten Ver fahren wurden die Gasanalysen mittels mehrerer für die jeweili¬ gen Gaskomponenten spezifischen Sensoren durchgeführt. In der Regel ist über diese Sensoren im Nebenstrom gemessen worden, d.h. es wurde ein Teilstrom der zu messenden Gaszusaπunensetzung abgezweigt und in dieser Abzweigung mittels der Sensoren be¬ stimmt. Diese vorbekannten Meßverfahren sind aufwendig und auf¬ grund der notwendigen Abzweigung eines Gasteilstroms auch ver¬ fälscht. Mittels des erfindungsgemäßen Verfahrens nach Anspruch 8 und den sich anschließenden Verfahrensansprüchen 9-11 läßt sich eine Lungenfunktionsdiagnostik in Echtzeit und on-line durchführen. Die Messungen können dabei mit einem Ultraschallsen sor und nur einem zusätzlichen Sensor durchgeführt werden, was eine Ersparnis des apparativen Aufwandes mit sich bringt. Insbe¬ sondere lassen sich mit dem Verfahren in einfacher Weise folgen¬ de Parameter bestimmen:
Die Lungenvolumina einschließlich FRC, die N2~Auschwaschkurve bzw. die Helium-Einwaschkurve, das Molmassenprofil der expirato¬ rischen Alveolargaskurve. Durch die zuvor angesprochene Kombina¬ tion eines Ultraschallsensors mit einem weiteren Gassensor las¬ sen sich auch die Sauerstoffaufnähme und CO2-Abgabe und der re- spiratorische Quotient (V CO2/V O2) bestimmen.
Darüber hinaus ist es durch kontinuierliche Molmassenmessungen möglich, falls diese gleichzeitig mit der Volumenmessung kombi¬ niert sind, bei der Sauerstoffaufnähme die aerobe/anaerobe Schwelle approximativ festzustellen, um beispielsweise Trainings effekte zu überwachen.
Eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfah¬ rens besteht aus mindestens einer Schall- bzw. Ultraschall-Sende Empfangszelle, die schräg zur Halterungsachse angeordnet ist. Weiterhin kann mindestens eine Temperatursonde entlang der da¬ durch gebildeten mindestens einen Meßstrecke angeordnet sein. Die schräg in den Meßkanal einlaufenden Kammer-Öffnungen der Kam mern, in denen die Schall- bzw. Ultraschall-Sende-Empfangszellen jeweils angeordnet sind, können zur Vermeidung von Wirbeln in der Gasströmung mit schalldurchlässigen Netzen verschlossen sein.
In die Halterung kann auch ein auswechselbares Atemrohr einsteck bar sein, das am Übergang zur Meßstrecke Meßfenster in der Art aufweist, daß in entsprechenden Öffnungen Einsätze eingesetzt sind, die durchlässig für Schallwellen, aber weitgehend undurch¬ lässig für Keime und Verschmutzungen sind. Dieser Gedanke ist auch schon Gegenstand der nicht vorveröffentlichten deutschen Patentanmeldung P 42 22 286. Durch das Vorsehen des auswechselba ren Atemrohres ist die Möglichkeit einer hygienisch einwandfeien Spirometrie gegeben.
Zur Vermeidung von störenden Schallreflexionen im Schallkanal können Dämpfungselemente vorgesehen sein, wobei vorzugsweise eine schallabsorbierende Oberfläche eines die Halterung bilden¬ den Rohres bzw. des auswechselbaren Atemrohres vorgesehen sind.
An den Strömungsein- bzw. -ausgängen können Elemente zur Verwir- belung ein- bzw. ausströmender Gase bzw. Gasgemische vorhanden sein.
Zur Einstellung einer vorbestimmten Temperatur sowie zur Verhin¬ derung von Kondensation kann in der Vorrichtung zusätzlich eine Heizung vorgesehen sein.
Außer dem die Halterung bildenden Rohr können gemäß einer vor¬ teilhaft kompakten Ausführungsform Hohlräume zur Unterbringung von elektronischen Schaltbauteilen vorgesehen sein. Weitere vor¬ teilhafte Ausführungsformen ergeben sich aus den Unteransprü¬ chen.
Die Erfindung betrifft weiterhin eine Vorrichtung zur Bestimmung des funktioneilen Residualvolumens (FRC) der Lunge in der Lungen funktionsdiagnostik und weist vorzugsweise Merkmale der zuvor beschriebenen Vorrichtung auf. Bei dieser erfindungsgemäßen Vor¬ richtung ist an die Halterung oder das Atemrohr eine Zuschaltein richtung einsetzbar, die eine Rohrverzweigung aufweist, an deren einen Ende ein mit O2 oder einem Gasgemisch befüllbarer träg¬ heitsarmer Beutel ansetzbar ist. An dem Ende der Rohrverzwei¬ gung, an dem der Beutel angesetzt wird, ist ein Einatmungsventil angeordnet. An dem anderen, freien Ende der Rohrverzweigung ist ein Ausatmungsventil angeordnet.
Gemäß einer Ausführungsform dieser erfindungsgemäßen Vorrichtung ist die Rohrverzweigung mit dem leicht austauschbaren Atemrohr einstückig ausgebildet. Eine andere Ausführungsform beinhaltet, daß die Rohrverzweigung mit den entsprechend eingesetzten Venti¬ len über einen Andockmechanismus mit dem Atemrohr oder dem leicht austauschbaren Atemrohr verbindbar ist. An dem trägheits¬ armen Beutel kann ein Füllstutzen zur Befüllung mit dem einzuat¬ menden Gas vorhanden sein. In dieser Lösung ist eine Einrichtung für die Fremdgaszuschaltung, die unmittelbar an die Halterung oder an das leicht austauschbare Atemrohr, das als hygienisches Atmungs-Wegwerfrohr dient, angesetzt werden kann, verwirklicht. Die Gasein- bzw. Gasausschwemmungsvolumina können mittels einer entsprechenden Software aus dem Dichte- und Strömungsparametern zur Bestimmung des funktioneilen Residualvolumens (FRC) der Lun¬ ge herangezogen werden. Die Zuschalteinrichtung ist dabei so ge¬ staltet, daß sie während einer Expirationsphase einen Gasbehäl¬ ter, d.h. den trägheitsarmen Beutel, so andockt, daß die Einat- mung in der Folge aus diesem Gasbehälter erfolgt, während die Ausatmung nach außen geleitet wird. Durch das Vorsehen der bei¬ den Ventile ist nun gewährleistet, daß eine Inspiration über kon taminierte Teile unmöglich ist. Die zusätzlichen Teile der zuvor erläuterten Vorrichtung können gegebenenfalls als Wegwerfteile ausgestaltet werden. Die Software für die simultane Auswertung der Strömungs- und Dichtesignale kann alle Einflüsse, die sei¬ tens der Gastemperatur, der Gasfeuchtigkeit und der Masse der Gaskomponenten gegeben sind, berücksichtigen. Die Berechnung des funktioneilen Residualvolumens (FRC) der Lunge erfolgt beispiels weise nach den an sich bekannten Regeln der N2-Ausschwemmethode oder nach analogen Methoden.
Eine weitere erfindungsgemäße Ausführung der Erfindung betrifft eine Vorrichtung zur Messung der Molmasse von Gasen oder Gasge¬ mischen zur Bestimmung diverser Ausatmungsparameter in der Lun¬ genfunktionsdiagnostik, die vorzugsweise Merkmale der vorgenann¬ ten Ausführungsvarianten beinhaltet, bei der zusätzlich zu dem Schall- bzw. Ultraschall-Sende- und/oder -Empfangszellenpaar ent weder ein Cθ2~Sensor auf Infrarotbasis oder ein 02~Sensor vorhan den ist.
Bei der Integration eines Cθ2-Sensors ist eine simultane on-line Infrarotanalyse auf CO2 bei der hygienischen Ultraschall-Spiro- metr-ie möglich. Die hygienische Ultraschall-Spirometrie umfaßt die leicht austauschbaren Atemrohre. Hier müssen gemäß einer vor teilhaften Ausgestaltung zwei optisch durchlässige Fenster an den Stellen angeordnet sein, an denen die Infrarotlichtquelle und der Infrarotsensor angeordnet sind.
Alternativ dazu können im Gehäuse die Infrarotlichtquelle und der Infrarotsensor an einer Stelle parallel angeordnet sein. In diesem Fall ist nur ein Fenster in der Halterung vorgesehen, dem gegenüberliegend ein Spiegel angeordnet ist.
Bei Integration eines 02~Sensors kann in dem in der Halterung einsetzbaren leicht austauschbaren Innenrohr eine Öffnung vorge¬ sehen sein, die mit einer dünnen 02~permeablen, aber lichtun¬ durchlässigen Membran verschlossen ist, wobei an der Außenseite ein 02~sensitiver Fluoreszenzindikator aufgebracht ist. Bei dem eingesetzten Atemrohr befindet sich an korrespondierender Stelle der Vorrichtung, d.h. innerhalb des Spirometerkopfes, eine Boh¬ rung, die mit einem optischen Anschluß (beispielsweise Glasfaser anschluß) für das optische System bestückt werden kann. Dieses kann in an sich bekannter Weise aus einer Lichtquelle für das Anregungslicht und einem Sensor für die Signalimpulse bestehen.
Für jede der zuvor beschriebenen Varianten ist eine elektroni¬ sche Auswertung vorgesehen, welche die Temperatur- und Feuchtig¬ keitseinflüsse berücksichtigt und aus dem Masse- und Gassignal in Kombination mit spirometrischen Werten, die von den Strömungs signalen abgeleitet werden, die bekannten Daten der Spiro-Ergome trie ermittelt.
Für die Feuchtigkeitsmessung können entsprechende zusätzliche Meßfühler in der Vorrichtung integriert sein.
Weitere Einzelheiten und Vorteile der vorliegenden Erfindung wer den anhand mehrerer in der Zeichnung dargestellter Ausführungs¬ beispiele näher erläutert. Es zeigen:
Fig. 1: ein Blockdiagramm einer ersten Ausführungsform der Erfindung,
Fig. 2: eine schematische Schnittdarstellung durch ein Teil der in Fig. 1 dargestellten Vorrichtung, Fig. 3 u. 4: verschiedene Ausführungsbeispiele von aus¬ tauschbaren Atemrohren mit Verzweigungsstücken und ansetzbaren Gasbehältern und
Fig. 5 u. 6: schematische Teilschnittdarstellungen der Hal¬ terung mit zusätzlich angeordneten Sensoren und eingesetzen austauschbaren Atemrohren.
In Fig. 1 ist als Blockdiagramm das Durchflußmeßgerät zur Be¬ stimmung physiologisch relevanter Lungenfunktionsparameter dar¬ gestellt. Einem Sensorkopf I ist eine Kontrolleinheit II und eine Datenverarbeitungsanlage III nachgeschaltet. In Fig. 2 ist der Sensorkopf schematisch dargestellt, der in den Kammern 1 und 2 Ultraschall-Sende-Empfangselemente Sl und S2 aufweist. Dabei handelt es sich beispielsweise um Kondensatormikrophone, welche sich sowohl für den Sende- als auch für den Emfpangsbe- trieb von Ultraschallsignalen eignen. Die schräg zu einer durch¬ strömten rohrförmigen Halterung 5 angebrachten Zellen Sl, S2 senden den Schall über die Abstrahlöffnungen 3,4 zu der gegen¬ überliegenden Zelle. Elektrisch isolierende seitliche Führungs¬ elemente, und ebenfalls elektrisch isolierende und zur Halte¬ rung 5 gewandte Diffusoren (in der vorliegenden Ausführungsvari- ante bestehend aus Netzen), positionieren die Hauptzellen fest in den Kammern 1 und 2. Von diesen Kammern führen Verbindungs¬ bohrungen zu einer seitlich von der Halterung 5 angebrachten Vorverarbeitungselektronik. Diese dient hauptsächlich zur Vor¬ verstärkung der Empfangssignale, sowie der Signalkonditionie- rung der Temperaturmeßstellen.
Ein in der Fig. 2 nicht gezeigtes Kabel, welches durch eine Ka- belverschraubung 8 aus dem Sensorkopf austritt, verbindet den Sensor mit der zugehörigen Kontrolleinheit II (vgl. Fig. 1). In der beschriebenen Ausführungsvariante enthält die Kammer 9 eine Vorrichtung zur Absenkung eines Thermoelementes in das Me߬ rohr 5. Mit Hilfe einer Schraube 11 wird ein elektrisch nicht leitendes Teil 10, in welches das Thermoelement eingelassen ist, in die Halterung 5 abgesenkt. In der zurückgezogenen Posi¬ tion kann die Halterung mit mechanischen Mitteln gereinigt wer¬ den, ohne daß das Thermoelement zerstört wird.
Ein weiteres Thermoelement dient zur Bestimmung der Gastempera¬ tur in den Kammern 3, 4 vor den Sende-/Empfangselementen Sl, S2. Es ist über eine weitere seitliche Bohrung 12 in der Kammer 4 positioniert.
Bei abgesenkter Thermoelementhalterung 10 weist die Halterung 5 über die gesamte Länge einen gleichbleibenden kreisförmigen Querschnitt auf. Die Abstrahlöffnungen 3 und 4 sind mit Netzen verschlossen, so daß auch in diesen Bereichen der kreisförmige Querschnitt der rohrförmigen Halterung 5 erhalten bleibt. Zur besseren Reinigung bzw. Sterilisation der Halterung 5 können diese Netze auch auf einem auswechselbaren Atemrohr montiert sein. Für den Meßkanal stehen zwei verschiedene, auswechselbare Abschlußstücke zur Verfügung: die kurze Version 6 dient zur Er¬ zielung eines möglichst kleinen Meßvolumens des Sensors, die längere Version 7 ist so gestaltet, daß ein für medizinische Anwendung geeignetes Mund- oder Adapterstück eingeschoben wer¬ den kann.
Zusätzliche Heizungselemente, welche den Sensorkopf auf eine gegenüber der Umgebung erhöhte Temperatur bringen, können di¬ rekt in den seitlich die Vorverarbeitung für Elektronik vorhan¬ denen Kammern, oder in von diesen Kammern wegführenden Bohrun¬ gen, untergebracht sein. Ein geringfügiges Heizen des Sensors hat den Vorteil, daß während der Expirationsphase Kondensation von Wasserdampf auf den Oberflächen der Halterung 5 vermieden werden kann. In medizinischen Anwendungen wird wegen der wasser dampfgesättigten Expirationsluft ein Heizen des Sensors in den meisten Fällen unumgänglich sein.
Die Funktionsweise des dargestellten Geräts wird anhand der Fig. 1 erläutert. Zu Beginn des Meßzyklus regt der Sender der Kontrolleinheit II alternierend eine der Sende-/Empfangszellen
51 oder S2 an. Von der angeregten Zelle wird ein Ultraschallsig nal abgestrahlt, welches über die Meßstrecke zur gegenüberlie¬ genden Sende-/Empfangszelle wandert. Die im Sensor selbst vor¬ verstärkten Empfangssignale gelangen zurück zur Kontrollein¬ heit. Dort wird das Signal der empfangenden Sende-/Empfangszel- le weiter verstärkt und einer elektronischen Schaltung zur Be¬ stimmung der Ultraschall-Laufzeit zugeführt. Auf diese Weise können, mittels auf bekannte Weise kaskadierter elektronischer Zähler, hintereinander die Ultraschall-Laufzeiten von Sl nach
52 und von S2 nach Sl bestimmt werden. Die zur Bestimmung der Molmasse notwendigen TemperaturSignale werden, nach einer elek¬ tronischen Vorverarbeitung der Thermoelementsignale im Sensor¬ kopf selbst, ebenfalls der Kontrolleinheit zugeführt. Die in den Formeln gemäß der Patentansprüche 2 und 3 aufgeführte mitt¬ lere Gastemperatur T entlang der Schallübertragungsstrecke wird folgendermaßen bestimmt: Es wird angenommen, daß das in die Hal terung eingeführte Thermoelement die mittlere Temperatur ent¬ lang der Teilstrecke in der Halterung bestimmt. Das in der Boh¬ rung 12 seitlich vor der Zelle Sl positionierte Thermoelement bestimmt die mittlere Temperatur der beiden Teilstrecken in der Abstrahlöffnung 3 und 4. In der beschriebenen Ausführungsvarian te des Sensorkopfs wird somit vereinfachend angenommen, daß so¬ wohl Gastemperatur als auch Gaszusammensetzung in den beiden Kammern 3 und 4 gleich sind. Die mittlere Gastemperatur T wird mittels der prozentualen Streckenanteile, von durchströmten und nicht durchströmten Schallübertragungsteilstrecken, bestimmt.
Unter Verwendung der gemessenen Schall-Laufzeiten und Temperatu¬ ren berechnet der Prozessor der Kontrolleinheit Molmasse, Gasge¬ schwindigkeit und davon abgeleitete Größen. Bei der Berechnung gelangen die in den Patentansprüchen 4, 5, 6 und 7 aufgeführten Formeln zur Anwendung. Die vom Prozessor der Kontrolleinheit berechneten Größen können über eine serielle Schnittstelle an den Computer übertragen werden. Zur Durchführung physiologi¬ scher Lungenfunktionsuntersuchungen kann dieser Computer wei¬ terführende Berechnungen der CO2- bzw. 02-Konzentration durch¬ führen. Dabei wird mittels geeigneter Sensoren in hier nicht dargestellter Weise simulatan der Cθ2~Anteil und/oder der 02-An- teil in der Atemluft bestimmt.
Ein Meßzyklus des Gerätes besteht somit aus 4 Phasen: Senden der Schallimpulse, Empfangen derselben an der gegenüberliegen¬ den Sende-/Empfangszelle, Verarbeiten der anfallenden Daten, Datenausgabe und Datenübertragung an den angeschlossenen Compu¬ ter. In der vorliegenden Ausführungsvariante der Vorrichtung dauert ein solcher Meßzyklus ca. 3 ms. Da während eines Meßzy¬ klus nur eine Schall-Laufzeit gemessen wird, sind unter Bestim¬ mung eines vollständigen Datensatzes je nach verwendeter Formel 2-4 Meßzyklen notwendig. Wird das Gerät in der Lungenfunktions¬ diagnostik verwendet, kann der angeschlossene Computer zur Aus¬ wertung der Strömungs- und Molmassedaten verwendet werden. Mit Hilfe des Computers können beispielsweise Wash-Out-Tests zur Bestimmung des absoluten Lungenvolumens ausgewertet werden.
In den Fig. 3 und 4 sind Vorrichtungsbestandteile gezeigt, die zu einer definierten Gaszuführung verwendet werden. Mit 15 ist in den Fig. 3 und 4 jeweils das leicht austauschbare Atemrohr, das in die Halterung 5 eingesetzt wird, dargestellt. In dem Atemrohr sind mit geeigneten Netzen bzw. Membranen 16 verschlos¬ sene Öffnungen vorgesehen, die im eingesetzten Zustand des Atem¬ rohres im Bereich der Abstrahlöffnungen 3 und 4 zu liegen kom¬ men.
Das Verzweigungsteil 17 kommt außerhalb des Atemrohres 5 zu lie¬ gen. Die Ausführungsformen gemäß der Fig. 3 und 4 unterscheiden sich dadurch, daß in der Ausführungsform gemäß Fig. 3 das Ver¬ zweigungsteil 17 einstückig mit dem Innenrohr 15 ausgebildet ist. In der Ausführungsform gemäß Fig. 4 wird das Verzweigungs¬ teil 17 über einen nicht näher dargestellten Andockmechanismus mit dem Innenrohr 15 verbunden. An das Verzweigungsteil 17 wird ein mit O2 oder mit einem Gasgemisch befüllbarer trägheitsarmer Beutel 18 angesetzt. Dieser Beutel 18 weist einen mit einem Ven¬ til verschließbaren Füllstutzen 19 zur Befüllung mit dem ent¬ sprechenden Gas bzw. Gasgemisch auf. Die Rohrverzweigung bzw. das Verzweigungsteil 17 weist an dem Ende, an dem der Beutel 18 angesetzt wird, ein hier nicht näher dargestelltes Einatmungs¬ ventil auf. An dem freien Rohrende weist das Verzweigungsteil 17 ein Ausatemventil auf.
In der schematischen Darstellung gemäß Fig. 5 ist in der Halte¬ rung 5 zusätzlich eine Weißlicht- oder Infrarotlichtquelle 20 integriert. Dieser gegenüberliegend ist ein Infrarotsensor 21 angeordnet. Das in der Halterung eingesetzte leicht austauschba¬ re Atemrohr 15 weist an der im eingebauten Zustand der Infrarot¬ lichtquelle bzw. dem Infrarotsensor gegenüberliegenden Bereich optisch durchlässige Fenster 22 auf. Mit dem Infrarotsensor bzw. der Infrarotlichtquelle kann simultan zur Strömungsmessung bzw. zur Molmassenbestimmung über Ultraschall der Cθ2-Gehalt gemessen werden. In der Ausführungsform gemäß Fig. 6 ist in der Halterung 5 ein Glasfaserkabel 23 integriert, über das einerseits Anregungs¬ licht für eine 02~Analyse in die Halterung eingeleitet wird. Andererseits werden aufgenommene Signalimpulse an einen entspre¬ chenden Sensor weitergeleitet.
Im Bereich der Einmündung des optischen Glasfaseranschlusses in der Halterung 5 weist das austauschbare Atemrohr 15 eine dünne, 02-permeable, aber lichtundurchlässige Membran 24 auf, an deren Außenseite ein 02~sensitiver Fluoreszenzindikator aufgebracht ist. Mittels dieser Anordnung läßt sich parallel zu der Strö¬ mungsmessung bzw. Molmassenbestimmung mittels Ultraschall der Sauerstoffgehalt im Sensorkopf simultan messen.
Gemäß der vorliegenden Erfindung kann mittels der hygienischen Ultraschall-Spirometrie und einem relativ wenig aufwendigen gas¬ analytischen Zusatz das gesamte Programm der Spiro-Ergometrie aufgenommen werden. Im Vergleich zu vorher bekannten Systemen hat dies den großen Vorzug, daß die Messungen on-line und real-time erfolgen. Weiterhin sind hier keine beweglichen Teile im System vorhanden, die zur Störung der Messung führen können. Damit ist eine sehr hohe Genauigkeit und eine minimale Fehler¬ möglichkeit verwirklicht.

Claims

Verfahren zur Messung der Molmasse von Gasen oder Gasgemischen und Vorrichtung zur Durchführung dieses VerfahrensPatentansprüche
Verfahren zur Messung der Molmasse von Gasen oder Gasgemi¬ schen,
dadurch gekennzeichnet,
daß das zu untersuchende Gas oder Gasgemisch durch minde¬ stens eine Halterung geleitet wird, an der eine oder mehre¬ re Schall- bzw. Ultraschall-Sende- bzw. Empfangszellen als Meßstrecken, vorzugsweise schräg zur Halterungsachse ange¬ ordnet sind,
daß die Schall- bzw. Ultraschall-Sende-Empfangselemente ein gepulstes Schallsignal abstrahlen,
daß die Laufzeiten der Schallimpulse über die Meßstrecke erfaßt werden, daß eine Temperaturkompensation erfolgt und daß aus der Laufzeit der Schallimpulse unter Berücksichtigung der Tempe¬ raturkompensation die Molmasse bestimmt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Temperaturkompensation dadurch erfolgt, daß über mindestens eine Temperatursonde der Gastemperaturverlauf entlang der Meßstrecke bestimmt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Temperaturen zur Temperaturkompensation aufgrund physiologi¬ scher Annahmen als Schätzwerte eingesetzt werden.
4. Verfahren nach einem der Ansprüche 1-3, dadurch gekennzeich¬ net, daß die Molmasse M mit Hilfe der Formel
*ι - *2 2 M = ki k^ T i + t2
bestimmt wird, wobei ki eine dimensionsbehaftete Konstante, /^ eine dimensionslose Konstante zur Adiabatenexponentkor- rektur, T die mittlere Temperatur entlang der entsprechen¬ den Meßstrecke, gegebenenfalls ermittelt aus den entlang dieser Meßstrecke positionierten Temperatursensoren, und ti und t2 die um aufbau- und meßbedingte Verzögerungen redu¬ zierten Laufzeiten entlang dieser Meßstrecke darstellen.
5. Verfahren nach einem der Ansprüche 1-4, dadurch gekennzeich¬ net, daß die Molmasse M mit Hilfe der Formel
(ti - tg) (t? - tΛ ) M = k2 • kA • T- 2
(tx + t2 - t3 - t4)
bestimmt wird, wobei 2 eine dimensionsbehaftete Konstante, kA eine dimensionslose Konstante zur Adiabatenexponentkor- rektur, T die mittlere Temperatur entlang des im Strömungs¬ kanal liegenden Teils der entsprechenden Meßstrecke, gegebe¬ nenfalls ermittelt aus einem der mehreren Temperatursenso¬ ren entlang dieser Meßstrecke, tj und t2 die um aufbau- und meßbedingte Verzögerungen reduzierten Laufzeiten der Schall¬ impulse entlang der gesamten Meßstrecke, t3 und t4 die um aufbau- und meßbedingte Verzögerungen reduzierten Laufzei¬ ten der Schallimpulse entlang der nicht im Strömungskanal liegenden Teile der Meßstrecke darstellen.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß in der Formel gemäß Anspruch 5 t3 und t4 gleichgesetzt werden.
7. Verfahren nach einem der Ansprüche 1-6, dadurch gekennzeich¬ net, daß die Laufzeiten t r t2, t3, t^ der Schallimpulse durch elektronische Zählungen bestimmt werden.
8. Verfahren nach einem der Ansprüche 1-7, dadurch gekennzeich¬ net, daß die Laufzeiten der Schallimpulse ebenfalls zur Be¬ rechnung der Strömungsgeschwindigkeit der Gase oder Gasgemi¬ sche verwendet werden.
9. Verfahren nach einem der Ansprüche 1-8, dadurch gekennzeich¬ net, daß Linearitätsfehler der Strömungsgeschwindigkeitsbe¬ rechnung mittels nachgeschalteter elektrischer Schaltungen korrigiert werden.
10. Verfahren nach einem der Ansprüche 1-9, dadurch gekennzeich¬ net, daß zur Bestimmung diverser Atmungsparameter die Mol¬ masse zur Berechnung der CO2- und O2- Konzentrationsverläu¬ fe der Atemströmung verwendet wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die gemessenen Molmassenwerte und gemessenen Durchflußwerte als Ausgangsbasis für Lungenvolumenberechnungen verwendet wer¬ den und daß Lungenvolumina mittels Gasauswachmethoden be¬ stimmt werden.
12. Vorrichtung zur Durchführung eines der Verfahren nach einem der Ansprüche 1-11, dadurch gekennzeichnet, daß mindestens eine Schall- bzw. Ultraschall-Sende-Empfangszellenpaar schräg zur Halterungsachse angeordnet ist und daß wahlweise mindestens eine Temperatursonde entlang der mindestens einen Meßstrecke angeordnet ist.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß in der Halterung eine Meßstrecke integriert ist, die schräg zur Strömungsrichtung angeordnet ist und deren Öffnungen zur Vermeidung von Wirbeln in der Gasströmung mit schall¬ durchlässigen Netzen oder schallübertragendem Materialien verschlossen sind.
14. Vorrichtung nach Anspruch 12 oder 13, dadurch gekennzeich¬ net, daß in die Halterung ein auswechselbares Atemrohr ein¬ steckbar ist, das am Übergang zur Meßstrecke Fenster in der Art aufweist, daß in entsprechenden Öffnungen Einsätze ein¬ gesetzt sind, die durchlässig für Schallwellen, aber weitge¬ hend undurchlässig für Keime und Verschmutzungen sind.
15. Vorrichtung nach einem der Ansprüche 12-14, dadurch gekenn¬ zeichnet, daß die Meßstrecke in einem Meßkanal liegt, daß der Meßkanal dicht an der als Rohr ausgebildeten Halterung anschließt und daß das Atemrohr dicht in der als Rohr ausge¬ bildeten Halterung angeordnet ist.
16. Vorrichtung nach einem der Ansprüche 12-15, dadurch gekenn¬ zeichnet, daß die Sensoren, der Meßkanal und das Atemrohr einstückig als Wegwerfteil ausgebildet sind.
17. Vorrichtung nach einem der Ansprüche 12-16, dadurch gekenn¬ zeichnet, daß Dämpfungselemente zur Vermeidung von stören¬ den Schallreflexionen vorhanden sind, wobei vorzugsweise eine schallabsorbierende Oberfläche des die Halterung bil¬ denden Rohres bzw. des auswechselbaren Atemrohres vorgese¬ hen ist.
18. Vorrichtung nach einem der Ansprüche 12-17 dadurch gekenn¬ zeichnet, daß an den Strömungsein- bzw. -ausgängen Elemente zur Verwirbelung ein- bzw. ausströmenden Gase bzw. Gasge¬ mische vorhanden sind.
19. Vorrichtung nach einem der Ansprüche 12-18, dadurch gekenn¬ zeichnet, daß zusätzlich eine Thermostatisierung der Halte¬ rung vorgesehen ist.
20. Vorrichtung nach einem der Ansprüche 12-19, dadurch gekenn¬ zeichnet, daß außer dem die Halterung bildenden Rohr Hohl¬ räume zur Unterbringung von elektronischen Schaltbauteilen vorgesehen sind.
21. Vorrichtung zur Bestimmung des funktioneilen Residualvolu¬ mens (FRC) der Lunge in der Lungenfunktionsdiagnostik, vor¬ zugsweise nach einem der Ansprüche 12-20, dadurch gekenn¬ zeichnet, daß an die Halterung oder das Atemrohr eine Zu¬ schalteinrichtung ansetzbar ist, die eine Rohrverzweigung aufweist, an deren einen Ende ein mit O2 oder einem Gasge¬ misch befüllbares möglichst druckfreies Gasreservoir ansetz¬ bar ist, und daß an dem Ende der Rohrverzweigung, an dem der Beutel angesetzt wird, ein Einatmungsventil und daß an dem anderen Ende der Rohrverzweigung ein Ausatmungsventil angeordnet ist.
22. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, daß die Rohrverzweigung mit dem leicht austauschbaren Atemrohr einstückig ausgebildet ist.
23. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, daß die Rohrverzweigung mit den entsprechend eingesetzten Venti¬ len über einen Andockmechanismus mit der Halterung oder dem leicht austauschbaren Innenrohr verbindbar ist.
24. Vorrichtung nach einem der Ansprüche 21-23, dadurch gekenn¬ zeichnet, daß an dem möglichst druckfreien Gasreservoir ein Füllstutzen zur Befüllung mit dem einzuatmenden Gas vorhan¬ den ist.
25. Vorrichtung zur Messung der Molmasse und Konzentrationen von Gasen oder Gasgemischen zur Bestimmung diverser Atmungs- parameter in der Lungenfunktionsdiagnostik, vorzugsweise nach einem der Ansprüche 10-20, dadurch gekennzeichnet, daß sie einen Gasbestimmungssensor, beispielsweise auf Infrarot¬ basis oder auf der Basis einer fluoreszenzoptischen Messung umfaßt.
26. Vorrichtung nach Anspruch 25, dadurch gekennzeichnet, daß in dem in der Halterung einsetzbaren leicht austauschbaren Atemrohr zwei optisch durchlässige Fenster an den Stellen angeordnet sind, an denen die Lichtquelle und der Infrarot¬ sensor angeordnet sind.
27. Vorrichtung nach Anspruch 25, dadurch gekennzeichnet, daß in dem in der Halterung einsetzbaren leicht austauschbaren Atemrohr ein Fenster und ein diesem gegenüberliegender Spie gel angeordnet sind.
28. Vorrichtung nach Anspruch 25, dadurch gekennzeichnet, daß in dem in der Halterung einsetzbaren leicht austauschbaren Atemrohr eine Öffnung vorgesehen ist, die mit einer dünnen 02-permeablen, aber lichtundurchlässigen Membran verschlos¬ sen ist und daß an der Außenseite ein 02~sensitiver Fluores zenzindikator aufgebracht ist.
29. Vorrichtung nach einem der Ansprüche 12-28, dadurch gekenn¬ zeichnet, daß zusätzlich Meßfühler für die Feuchtigkeitsmes sung integriert sind.
PCT/EP1994/001629 1993-06-04 1994-05-19 Verfahren un vorrichtung zur messung der molmasse von gasen oder gasgemischen WO1994028790A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP50123995A JP3612332B2 (ja) 1993-06-04 1994-05-19 ガス又はガス混合物のモル質量の測定方法
DE59409875T DE59409875D1 (de) 1993-06-04 1994-05-19 Verfahren und vorrichtung zur messung der molmasse von gasen oder gasgemischen
EP94918345A EP0653919B1 (de) 1993-06-04 1994-05-19 Verfahren und vorrichtung zur messung der molmasse von gasen oder gasgemischen
AT94918345T ATE206028T1 (de) 1993-06-04 1994-05-19 Verfahren und vorrichtung zur messung der molmasse von gasen oder gasgemischen
US08/379,465 US5645071A (en) 1993-06-04 1994-05-19 Method for the measurement of the molar mass of gases or gas mixtures and an apparatus for the performance of the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4318690.4 1993-06-04
DE4318690A DE4318690A1 (de) 1993-06-04 1993-06-04 Verfahren zur Messung der Molmasse von Gasen oder Gasgemischen und Vorrichtung zur Durchführung dieses Verfahrens

Publications (1)

Publication Number Publication Date
WO1994028790A1 true WO1994028790A1 (de) 1994-12-22

Family

ID=6489695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/001629 WO1994028790A1 (de) 1993-06-04 1994-05-19 Verfahren un vorrichtung zur messung der molmasse von gasen oder gasgemischen

Country Status (7)

Country Link
US (1) US5645071A (de)
EP (1) EP0653919B1 (de)
JP (1) JP3612332B2 (de)
AT (1) ATE206028T1 (de)
DE (2) DE4318690A1 (de)
ES (1) ES2164707T3 (de)
WO (1) WO1994028790A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058786A (en) * 1998-03-25 2000-05-09 Siemens Elema Ab Device for measuring a gas flow
US6098467A (en) * 1998-01-15 2000-08-08 Siemens Elema Ab Acoustic flow meter wherein false readings are identified dependent on upstream and downstream acoustic transit times
US6634240B1 (en) 1998-08-19 2003-10-21 Siemens-Elema Ab Zero crossing detector and method of determining a zero crossing point
DE102006030964A1 (de) * 2006-07-03 2008-01-10 Endress + Hauser Flowtec Ag Vorrichtung und Verfahren zur Bestimmung der Konzentrationen von Komponenten eines Gasgemisches

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6553327B2 (en) * 1998-09-16 2003-04-22 Yeda Research & Development Co., Ltd. Apparatus for monitoring a system with time in space and method therefor
US6353803B1 (en) * 1996-01-18 2002-03-05 Yeda Research And Development Co., Ltd. At The Welzmann Institute Of Science Apparatus for monitoring a system in which a fluid flows
US6790178B1 (en) 1999-09-24 2004-09-14 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US6309360B1 (en) 1997-03-17 2001-10-30 James R. Mault Respiratory calorimeter
US6572561B2 (en) 1998-01-16 2003-06-03 Healthetech, Inc. Respiratory calorimeter
WO1999039637A1 (en) 1998-02-05 1999-08-12 Mault James R Metabolic calorimeter employing respiratory gas analysis
US20040186389A1 (en) * 1998-02-05 2004-09-23 Mault James R Apparatus and method for determining a respiratory quotient
SE9801430D0 (sv) * 1998-04-23 1998-04-23 Siemens Elema Ab Ultraljudsflödesmätare
CA2338998A1 (en) 1998-08-03 2000-02-17 James R. Mault Method and apparatus for respiratory gas analysis employing measurement of expired gas mass
US6406435B1 (en) * 1998-11-17 2002-06-18 James R. Mault Method and apparatus for the non-invasive determination of cardiac output
AU1733200A (en) * 1998-11-17 2000-06-05 James R. Mault Method and apparatus for the non-invasive determination of cardiac output
DE19911762A1 (de) * 1999-03-16 2000-09-21 Peter Ganshorn Verfahren zur Bestimmung der Strömungsgeschwindigkeit und/oder der Molmasse von flüssigen oder gasförmigen Medien
WO2000067634A2 (en) 1999-05-10 2000-11-16 Mault James R Airway-based cardiac output monitor and methods for using same
US6468222B1 (en) 1999-08-02 2002-10-22 Healthetech, Inc. Metabolic calorimeter employing respiratory gas analysis
WO2001028495A2 (en) 1999-10-08 2001-04-26 Healthetech, Inc. Indirect calorimeter for weight control
US6612306B1 (en) 1999-10-13 2003-09-02 Healthetech, Inc. Respiratory nitric oxide meter
DE19960257C1 (de) * 1999-11-16 2001-08-16 Cortex Biophysik Gmbh Ergospirometriesystem für Tiere, insbesondere Pferde, Kamele oder dergleichen
US6629934B2 (en) 2000-02-02 2003-10-07 Healthetech, Inc. Indirect calorimeter for medical applications
US6482158B2 (en) 2000-05-19 2002-11-19 Healthetech, Inc. System and method of ultrasonic mammography
US20040254501A1 (en) * 2000-08-11 2004-12-16 Mault James R. Achieving a relaxed state
WO2002026112A2 (en) 2000-09-29 2002-04-04 Healthetech, Inc. Indirect calorimetry system
US6607387B2 (en) 2000-10-30 2003-08-19 Healthetech, Inc. Sensor system for diagnosing dental conditions
WO2002071017A2 (en) * 2001-03-02 2002-09-12 Healthetech, Inc. A system and method of metabolic rate measurement
JP4612218B2 (ja) * 2001-04-16 2011-01-12 帝人株式会社 酸素濃縮装置
EP1279368A3 (de) * 2001-07-17 2004-09-15 ndd Medizintechnik AG Vorrichtung zur Messung der Strömungsgeschwindigkeit und/oder der Molmasse von Gasen- oder Gasgemischen
SE0200184D0 (sv) * 2002-01-24 2002-01-24 Siemens Elema Ab Acoustic Gas Meter
WO2003084395A1 (en) * 2002-04-01 2003-10-16 Healthetech, Inc. System and method of determining an individualized drug administration dosage
USD478660S1 (en) 2002-07-01 2003-08-19 Healthetech, Inc. Disposable mask with sanitation insert for a respiratory analyzer
US7108659B2 (en) * 2002-08-01 2006-09-19 Healthetech, Inc. Respiratory analyzer for exercise use
US20030126593A1 (en) * 2002-11-04 2003-07-03 Mault James R. Interactive physiological monitoring system
SE0300160D0 (sv) * 2003-01-23 2003-01-23 Siemens Elema Ab Apparatus for and Method of Mintoring a Gas Supply
SE0300848D0 (sv) * 2003-03-26 2003-03-26 Siemens Elema Ab Acoustic Analysis of Gas Mixtures
SE0301226D0 (sv) * 2003-04-28 2003-04-28 Siemens Elema Ab Acoustic Determination of Moisture Content of a Gas Mixture
AT6511U3 (de) * 2003-07-16 2004-09-27 Avl List Gmbh Ultraschall-gasdurchflusssensor sowie vorrichtung zur messung von abgas-strömungen von verbrennungskraftmaschinen sowie ein verfahren zur ermittlung des durchflusses von gasen
GB0326403D0 (en) * 2003-11-13 2003-12-17 Vandagraph Ltd Adaptor means
SE0400946D0 (sv) * 2004-04-08 2004-04-08 Maquet Critical Care Ab Förfarande och anordning för bestämning av en volym relaterad till lungorna hos en patient
EP1632178A1 (de) * 2004-09-03 2006-03-08 ndd Medizintechnik AG Verfahren zur nichtkooperativen Ultraschall-Lungendiagnose
US7152490B1 (en) 2005-08-15 2006-12-26 Daniel Measurement And Control, Inc. Methods for determining transducer delay time and transducer separation in ultrasonic flow meters
JP2007083033A (ja) * 2005-09-16 2007-04-05 Ndd Medizintechnik Ag 肺拡散能(DLco)測定装置
US20100198095A1 (en) * 2007-09-07 2010-08-05 Eco Medics Ag Device,gas mixture and method for lung diagnosis
DE102008060922A1 (de) 2008-12-06 2010-06-10 Ganshorn Medizin Electronic Gmbh Lungendiagnosegerät mit zwei Ultraschallmessstrecken
DE102008063503A1 (de) 2008-12-17 2010-08-05 Ganshorn Medizin Electronic Gmbh Lungendiagnosegerät mit vier Ultraschallelementen
DE102008055165A1 (de) * 2008-12-29 2010-07-01 Endress + Hauser Flowtec Ag Messrohr eines Messsystems zur Bestimmung und/oder Überwachung des Durchflusses eines Messmediums durch das Messrohr mittels Ultraschall
US9671389B2 (en) * 2009-11-03 2017-06-06 Koninklijke Philips N.V. Apparatus for measuring a level of a specific gas in exhaled breath
DK2322917T3 (da) 2009-11-17 2012-05-29 Ndd Medizintechnik Ag Fremgangsmåde til signallineariseringen af et gassensorudgangssignal
DE102009055320B4 (de) * 2009-12-24 2011-09-01 Humedics Gmbh Messvorrichtung und Verfahren zur Untersuchung eines Probegases mittels Infrarot-Absorptionsspektroskopie
US8752544B2 (en) 2011-03-21 2014-06-17 General Electric Company Medical vaporizer and method of monitoring of a medical vaporizer
EP2568263B1 (de) * 2011-09-12 2018-01-31 Hydrosonic b.v. Portables Ultraschallduchflussmesssystem
US9310237B2 (en) * 2012-09-07 2016-04-12 Daniel Measurement And Control, Inc. Ultrasonic flow metering using compensated computed temperature
US9289573B2 (en) 2012-12-28 2016-03-22 Covidien Lp Ventilator pressure oscillation filter
EP2948046B1 (de) 2013-01-22 2019-05-15 Arizona Board of Regents on behalf of Arizona State University Tragbarer stoffwechselanalysator
DE102014004765B3 (de) 2014-04-01 2015-07-09 Ndd Medizintechnik Ag Gerät für die Messung und Analyse des Multiple-Breath-Stickstoff-Auswaschverfahrens
GB2527759A (en) * 2014-06-30 2016-01-06 Mobrey Ltd Improvements in or relating to level detection
US9557238B2 (en) 2014-07-25 2017-01-31 Ams International Ag Pressure sensor with geter embedded in membrane
DE102014111366A1 (de) 2014-08-08 2016-02-11 Peter Ganshorn Verfahren und Vorrichtung zur Bestimmung des Anteils an molekularem Sauerstoff in einem Atemgas
US9778238B2 (en) 2014-09-09 2017-10-03 Ams International Ag Resonant CO2 sensing with mitigation of cross-sensitivities
USD775350S1 (en) * 2014-12-23 2016-12-27 Ndd Medizintechnik Ag Breathing tube for lung diagnostics
JP6198882B1 (ja) * 2016-04-05 2017-09-20 日本精密測器株式会社 呼気検査装置
US10946160B2 (en) 2017-03-23 2021-03-16 General Electric Company Medical vaporizer with carrier gas characterization, measurement, and/or compensation
US10610659B2 (en) 2017-03-23 2020-04-07 General Electric Company Gas mixer incorporating sensors for measuring flow and concentration
CN113295344B (zh) * 2021-04-28 2023-03-24 成都秦川物联网科技股份有限公司 一种超声波检测燃气泄露的方法
WO2023070559A1 (zh) * 2021-10-29 2023-05-04 深圳迈瑞生物医疗电子股份有限公司 一种医疗设备及其氧浓度测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0017162A1 (de) * 1979-03-29 1980-10-15 Siemens Aktiengesellschaft Gerät zur Lungenfunktionsanalyse
JPS60117149A (ja) * 1983-11-30 1985-06-24 Toshiba Corp 成分流量測定装置
JPS60181616A (ja) * 1984-02-29 1985-09-17 Toshiba Corp 流量測定管
CH669463A5 (en) * 1985-03-21 1989-03-15 Walter Guggenbuehl Prof Dr Gas flow and temp. measuring device - uses ultrasonic pulses transmitted simultaneously in opposite directions at angle to gas flow
WO1992002177A1 (en) * 1990-08-07 1992-02-20 Critikon, Incorporated Disposable airway adapter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018005B2 (ja) * 1979-12-16 1985-05-08 株式会社荏原製作所 透過形測定モ−ドと反射形測定モ−ドとを自動切換可能な超音波流速流量計
JPS5777914A (en) * 1980-10-31 1982-05-15 Toshiba Corp Fluid measuring apparatus
JPS60117131A (ja) * 1983-11-30 1985-06-24 Toshiba Corp 流体の流量・濃度同時測定用測定管
NO161882C (no) * 1987-04-24 1989-10-04 Norske Stats Oljeselskap Med ultralyd arbeidende transduseranordning for maaling avstroemningshastigheten til et fluidum i et roer.
US4850371A (en) * 1988-06-13 1989-07-25 Broadhurst John H Novel endotracheal tube and mass spectrometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0017162A1 (de) * 1979-03-29 1980-10-15 Siemens Aktiengesellschaft Gerät zur Lungenfunktionsanalyse
JPS60117149A (ja) * 1983-11-30 1985-06-24 Toshiba Corp 成分流量測定装置
JPS60181616A (ja) * 1984-02-29 1985-09-17 Toshiba Corp 流量測定管
CH669463A5 (en) * 1985-03-21 1989-03-15 Walter Guggenbuehl Prof Dr Gas flow and temp. measuring device - uses ultrasonic pulses transmitted simultaneously in opposite directions at angle to gas flow
WO1992002177A1 (en) * 1990-08-07 1992-02-20 Critikon, Incorporated Disposable airway adapter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BUESS ET AL.: "Ultrasonic respiration analysis", PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, vol. 13, no. 4/5, October 1991 (1991-10-01), US, pages 1597 - 1598 *
PATENT ABSTRACTS OF JAPAN vol. 10, no. 30 (P - 426) 5 February 1986 (1986-02-05) *
PATENT ABSTRACTS OF JAPAN vol. 9, no. 269 (P - 400) 26 October 1985 (1985-10-26) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6098467A (en) * 1998-01-15 2000-08-08 Siemens Elema Ab Acoustic flow meter wherein false readings are identified dependent on upstream and downstream acoustic transit times
US6058786A (en) * 1998-03-25 2000-05-09 Siemens Elema Ab Device for measuring a gas flow
US6634240B1 (en) 1998-08-19 2003-10-21 Siemens-Elema Ab Zero crossing detector and method of determining a zero crossing point
DE102006030964A1 (de) * 2006-07-03 2008-01-10 Endress + Hauser Flowtec Ag Vorrichtung und Verfahren zur Bestimmung der Konzentrationen von Komponenten eines Gasgemisches

Also Published As

Publication number Publication date
ES2164707T3 (es) 2002-03-01
JPH08500043A (ja) 1996-01-09
US5645071A (en) 1997-07-08
JP3612332B2 (ja) 2005-01-19
DE59409875D1 (de) 2001-10-31
EP0653919A1 (de) 1995-05-24
ATE206028T1 (de) 2001-10-15
DE4318690A1 (de) 1995-01-05
EP0653919B1 (de) 2001-09-26

Similar Documents

Publication Publication Date Title
WO1994028790A1 (de) Verfahren un vorrichtung zur messung der molmasse von gasen oder gasgemischen
DE4222286C1 (de) Ultraschall-Spirometer
AU2019204455B2 (en) Neonatal carbon dioxide measurement system
DE102014004765B3 (de) Gerät für die Messung und Analyse des Multiple-Breath-Stickstoff-Auswaschverfahrens
US6506608B2 (en) Method and apparatus for respiratory gas analysis employing measurement of expired gas mass
US4370986A (en) Method and apparatus for determining the deposition of particles in the respiratory tract and/or for checking the function of the respiratory tract
EP1279368A2 (de) Vorrichtung zur Messung der Strömungsgeschwindigkeit und/oder der Molmasse von Gasen- oder Gasgemischen
Fuchs et al. Multiple breath washout with a sidestream ultrasonic flow sensor and mass spectrometry: a comparative study
EP1764035B1 (de) Gerät zur Messung der Diffusionskapazität der Lunge für einen Atemzug mittels Ultraschallmessung der molaren Masse
EP2322917B1 (de) Verfahren zur Signallinearisierung eines Gassensorausgangssignals
EP1764036A1 (de) Verfahren zur Zeitverzögerungsmessung zwischen einen Ultraschallhauptströmungsmessgerät und einen Seitenstromgasanalysator
DE10228497A1 (de) Verfahren und Vorrichtung zum Ermitteln eines Anteils eines für die Stoffwechselfunktion eines atmenden Lebewesens charakteristischen Bestandteils in der von dem Lebewesen ausgeatmeten Luft
EP3111207B1 (de) Verfahren und vorrichtung zur bestimmung des anteils an molekularem sauerstoff in einem atemgas mittels schall
DE102008056279B4 (de) Einrichtung zur Erfassung des Gehalts an Sauerstoff und Kohlenstoffdioxid eines Gasgemisches
EP1359834B1 (de) Vorrichtung und methode zur messung des respiratorischen sauerstoffverbrauchs
DE4409589A1 (de) Vorrichtung zur Messung von Atemgasparametern
WO2002024070A1 (de) Gerät zur schnellen bestimmung der diffusionskapazität einer lunge
WO1996000375A1 (de) Ultraschall-durchflussmesser mit kontinuierlicher nullfluss-kalibrierung
DE102008054257A1 (de) Verfahren zur Bestimmung der Strömungsgeschwindigkeit eines Atemgases
JPS60117149A (ja) 成分流量測定装置
DE2541691B2 (de) Gerät zur Messung von funktioneilen Atemvolumina

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1994918345

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08379465

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994918345

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994918345

Country of ref document: EP