WO1995002697A1 - Defective adenovirus vectors and use thereof in gene therapy - Google Patents

Defective adenovirus vectors and use thereof in gene therapy Download PDF

Info

Publication number
WO1995002697A1
WO1995002697A1 PCT/FR1994/000851 FR9400851W WO9502697A1 WO 1995002697 A1 WO1995002697 A1 WO 1995002697A1 FR 9400851 W FR9400851 W FR 9400851W WO 9502697 A1 WO9502697 A1 WO 9502697A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
adenovirus
genes
plasmid
adenoviruses
Prior art date
Application number
PCT/FR1994/000851
Other languages
French (fr)
Inventor
Michel Perricaudet
Emmanuelle Vigne
Patrice Yeh
Original Assignee
Rhone-Poulenc Rorer S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9308596A external-priority patent/FR2707664B1/en
Priority claimed from FR9404590A external-priority patent/FR2718749B1/en
Priority to DE69435108T priority Critical patent/DE69435108D1/en
Priority to SK312-95A priority patent/SK282843B6/en
Priority to AU72646/94A priority patent/AU7264694A/en
Priority to DK94922889T priority patent/DK0667912T3/en
Priority to BR9405507A priority patent/BR9405507A/en
Priority to PL94308122A priority patent/PL179877B1/en
Application filed by Rhone-Poulenc Rorer S.A. filed Critical Rhone-Poulenc Rorer S.A.
Priority to JP50436895A priority patent/JP4190028B2/en
Priority to EP94922889A priority patent/EP0667912B1/en
Priority to UA95038233A priority patent/UA65516C2/en
Publication of WO1995002697A1 publication Critical patent/WO1995002697A1/en
Priority to NO19950939A priority patent/NO321309B1/en
Priority to FI951138A priority patent/FI951138A/en
Priority to US10/301,085 priority patent/US20030096787A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/01DNA viruses
    • C07K14/075Adenoviridae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10322New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10323Virus like particles [VLP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10351Methods of production or purification of viral material
    • C12N2710/10352Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10361Methods of inactivation or attenuation
    • C12N2710/10362Methods of inactivation or attenuation by genetic engineering
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/002Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor

Definitions

  • the present invention relates to new viral vectors, their preparation and their use in gene therapy. It also relates to pharmaceutical compositions containing said viral vectors. More particularly, the present invention relates to recombinant adenoviruses as vectors for gene therapy.
  • Gene therapy consists of correcting a deficiency or an abnormality (mutation, aberrant expression, etc.) by introducing genetic information into the affected cell or organ.
  • This genetic information can be introduced either in vitro into a cell extracted from the organ, the modified cell then being reintroduced into the organism, or directly in vivo into the appropriate tissue.
  • different techniques exist, among which various transfection techniques involving complexes of DNA and DEAE-dextran (Pagano et al., J. Virol.
  • adenoviruses have certain properties of interest for use in gene therapy. In particular, they have a fairly broad host spectrum, are capable of infecting quiescent cells, do not integrate into the genome of the infected cell, and have not been associated to date with significant pathologies in man.
  • Adenoviruses are linear double-stranded DNA viruses approximately 36 kb in size. Their genome includes in particular a repeated inverted sequence (ITR) at their end, an encapsidation sequence, early genes and late genes (see FIG. 1). The main early genes are the El (Ela and Elb), E2, E3 and
  • the main late genes are the L1 to L5 genes.
  • adenoviruses Given the properties of the adenoviruses mentioned above, these have already been used for gene transfer in vivo. To this end, different vectors derived from adenoviruses have been prepared, incorporating different genes ( ⁇ -gal, OTC, ⁇ -1AT, cytokines, etc.). In each of these constructions, the adenovirus was modified so as to render it incapable of replication in the infected cell.
  • the constructs described in the prior art are adenoviruses deleted from the El (Ela and / or Elb) and possibly E3 regions into which the heterologous DNA sequences are inserted (Levrero et al., Gene 101 (1991) 195 ; Gosh-Choudhuiy et al., Gene 50 (1986) 161).
  • the vectors described in the prior art have many drawbacks which limit their use in gene therapy. In particular, all of these vectors contain numerous viral genes whose expression in vivo is undesirable in the context of gene therapy. In addition, these vectors do not allow the incorporation of very large DNA fragments, which may be necessary for certain applications.
  • the present invention overcomes these drawbacks.
  • the present invention indeed describes recombinant adenoviruses for gene therapy, capable of efficiently transferring DNA (up to 30 kb) in vivo, of expressing this DNA at high levels and in a stable manner in vivo, limiting any risk of viral protein production, virus transmission, pathogenicity, etc.
  • it has been found that it is possible to considerably reduce the size of the adenovirus genome, without preventing the formation of an encapsidated viral particle. This is surprising since it has been observed in the case of other viruses, for example retroviruses, that certain sequences distributed along the genome were necessary for efficient packaging of the viral particles. As a result, the production of vectors having large internal deletions was greatly limited.
  • the present invention also shows that the deletion of most of the viral genes does not prevent the formation of such a viral particle either.
  • the recombinant adenoviruses thus obtained retain, despite significant modifications to their genomic structure, their advantageous properties of high infectivity, stability in vivo, etc.
  • the vectors of the invention are particularly advantageous since they allow the incorporation of very large desired DNA sequences. It is thus possible to insert a gene with a length greater than 30 kb. This is particularly interesting for certain pathologies whose treatment requires the co-expression of several genes, or the expression of very large genes. So by example, in the case of muscular dystrophy, it was not possible until now to transfer the cDNA corresponding to the native gene responsible for this pathology (dystrophin gene) due to its large size (14 kb).
  • the vectors of the invention are also very advantageous since they have very few functional viral regions and because, therefore, the risks inherent in the use of viruses as vectors in gene therapy such as immunogenicity, pathogenicity, transmission, replication, recombination, etc. are greatly reduced or even eliminated.
  • the present invention thus provides viral vectors particularly suitable for the transfer and expression in vivo of desired DNA sequences.
  • a first object of the present invention therefore relates to a defective recombinant adenovirus comprising:
  • the term “defective adenovirus” designates an adenovirus incapable of replicating autonomously in the target cell.
  • the genome of the defective adenoviruses according to the present invention is therefore devoid of at least the sequences necessary for replication of said virus in the infected cell. These regions can be either eliminated (in whole or in part), or made non-functional, or substituted by other sequences and in particular by the heterologous DNA sequence.
  • the inverted repeat sequences constitute the origin of replication of adenoviruses. They are located at the 3 ′ and 5 ′ ends of the viral genome (cf. FIG. 1), from which they can be easily isolated according to the conventional techniques of molecular biology known to those skilled in the art.
  • the nucleotide sequence of the ITR sequences of human adenoviruses (in particular the Ad2 and Ad5 serotypes) is described in the literature, as well as canine adenoviruses (in particular CAV1 and CAV2).
  • the left ITR sequence corresponds to the region comprising nucleotides 1 to 103 of the genome.
  • the packaging sequence (also called Psi sequence) is necessary for the packaging of viral DNA. This region must therefore be present to allow the preparation of defective recombinant adenoviruses according to the invention.
  • the packaging sequence is located in the genome of the adenoviruses, between the left 1TTR (5 ′) and the El gene (see FIG. 1). It can be isolated or artificially synthesized by conventional molecular biology techniques.
  • the nucleotide sequence of the packaging sequence of human adenoviruses (in particular the Ad2 and Ad5 serotypes) is described in the literature, as well as canine adenoviruses (in particular CAV1 and CAV2).
  • the packaging sequence corresponds to the region comprising nucleotides 194 to 358 of the genome.
  • adenovirus There are different serotypes of adenovirus, the structure and properties of which vary somewhat. However, these viruses have a comparable genetic organization, and the lessons described in the present application can be easily reproduced by a person skilled in the art for any type of adenovirus.
  • the adenoviruses of the invention can be of human, animal, or mixed (human and animal) origin. Concerning adenoviruses of human origin, it is preferred to use those classified in group C. More preferably, among the various serotypes of human adenovirus, it is preferred to use, within the framework of the present invention, adenoviruses of type 2 or 5 (Ad 2 or Ad 5).
  • the adenoviruses of the invention can also be of animal origin, or contain sequences derived from adenoviruses of animal origin.
  • the Applicant has indeed shown that adenoviruses of animal origin are capable of infecting human cells with great efficiency, and that they are unable to propagate in the human cells in which they have been tested (see request FR 93 05954).
  • the Applicant has also shown that adenoviruses of animal origin are in no way trans-complemented by adenoviruses of human origin, which eliminates any risk of recombination and of propagation in vivo, in the presence of a human adenovirus, which can lead to the formation of an infectious particle.
  • the use of adenoviruses or adenovirus regions of animal origin is therefore particularly advantageous since the risks inherent in the use of viruses as vectors in gene therapy are even lower.
  • the adenoviruses of animal origin which can be used in the context of the present invention can be of canine, bovine, murine origin (example: Mavl, Beard et al., Virology 75 (1990) 81), ovine, porcine, avian or else simienne (example: after-sales service).
  • serotypes 1 to 10 accessible to ATCC such as for example the strains Phelps (ATCC VR-432), Fontes (ATCC VR-280), P7-A (ATCC VR- 827), IBH-2A (ATCC VR-828), J2-A (ATCC VR-829), T8-A (ATCC VR-830), K-ll (ATCC VR-921) or the strains referenced ATCC VR- 831 to 835.
  • bovine adenoviruses it is possible to use the various known serotypes, and in particular those available at ATCC (types 1 to 8) under the references ATCC VR-313, 314, 639-642, 768 and 769. It is possible to use also mention the murine adenoviruses FL (ATCC VR-550) and E20308 (ATCC VR-528), the sheep adenovirus type 5 (ATCC VR-1343), or type 6 (ATCC VR-1340); porcine adenovirus 5359), or simian adenoviruses such as in particular adenoviruses referenced in the ATCC under the numbers VR-591-594, 941-943, 195-203, etc.
  • adenoviruses or adenovirus regions of canine origin are used in the context of the invention, and in particular all the strains of the CAV2 adenoviruses [Manhattan strain or
  • A26 / 61 (ATCC VR-800) for example].
  • Canine adenoviruses have been the subject of
  • the adenoviruses of the present invention comprise a heterologous DNA sequence.
  • the heterologous DNA sequence designates any DNA sequence introduced into the recombinant virus, the transfer and / or expression of which in the target cell is sought.
  • the heterologous DNA sequence may contain one or more therapeutic genes and / or one or more genes coding for antigenic peptides.
  • the therapeutic genes which can thus be transferred are any gene whose transcription and possibly translation into the target cell generate products having a therapeutic effect.
  • the protein product thus coded can be a protein, a peptide, an amino acid, etc.
  • This protein product can be homologous with respect to the target cell (that is to say a product which is normally expressed in the target cell when the latter presents no pathology).
  • the expression of a protein makes it possible, for example, to compensate for an insufficient expression in the cell or the expression of an inactive or weakly active protein due to modification, or even to overexpress said protein.
  • the therapeutic gene can also code for a mutant of a cellular protein, having increased stability, modified activity, etc.
  • the protein product can also be heterologous towards the target cell.
  • an expressed protein can for example supplement or provide a deficient activity in the cell allowing it to fight against a pathology.
  • trophic factors BDNF, CNTF, NGF, IGF, GMF, aFGF, bFGF, NT3, NT5, etc; apolipoproteins: ApoAI, ApoAIV, ApoE, etc (FR 93 05125), dystrophin or a minidystrophin (FR 9111947), tumor suppressor genes: p53, Rb, Rapl A, DCC, k-rev, etc (FR 93 04745 ), genes coding for factors involved in coagulation: Vu Factors, VO, IX, etc.
  • the therapeutic gene can also be an antisense gene or sequence, the expression of which in the target cell makes it possible to control the expression of genes or the transcription of cellular mRNAs.
  • Such sequences can for example be transcribed, in the target cell, into RNAs complementary to cellular mRNAs and thus block their translation into protein, according to the technique described in patent EP 140308.
  • the heterologous DNA sequence may also contain one or more genes coding for an antigenic peptide capable of generating an immune response in humans.
  • the invention therefore makes it possible to produce vaccines making it possible to immunize humans, especially against microorganisms or viruses.
  • These may in particular be antigenic peptides specific for the epstein barr virus, the HIN virus, the hepatitis B virus (EP 185 573), the pseudo-rabies virus, or even specific for tumors (EP 259 212).
  • the heterologous DNA sequence also comprises sequences allowing the expression of the therapeutic gene and / or of the gene coding for the antigenic peptide in the infected cell.
  • These may be sequences which are naturally responsible for the expression of the gene considered when these sequences are capable of functioning in the infected cell. It can also be sequences of different origin (responsible for the expression of other proteins, or even synthetic).
  • they may be promoter sequences of eukaryotic or viral genes.
  • they may be promoter sequences originating from the genome of the cell which it is desired to infect.
  • they may be promoter sequences originating from the genome of a virus, including the adenovirus used.
  • heterologous DNA sequence may also comprise, in particular upstream of the therapeutic gene, a signal sequence directing the therapeutic product synthesized in the secretory pathways of the target cell. This signal sequence may be the natural signal sequence of the therapeutic product, but it may also be any other functional signal sequence, or an artificial signal sequence.
  • the vectors of the invention have at least one of the non-functional E2, E4, L1-L5 genes.
  • the viral gene considered can be made non-functional by any technique known to a person skilled in the art, and in particular by deletion, substitution, deletion, or addition of one or more bases in the gene or genes considered. Such modifications can be obtained in vitro (on isolated DNA) or in situ, for example, using genetic engineering techniques, or alternatively by treatment with mutagenic agents.
  • deletion is meant within the meaning of the invention any deletion of the gene considered. It may especially be all or part of the coding region of said gene, and / or all or part of the region promoting the transcription of said gene.
  • the deletion can be carried out by digestion using appropriate restriction enzymes, then ligation, according to standard molecular biology techniques, as illustrated in the examples.
  • Genetic modifications can also be obtained by gene disruption, for example according to the protocol initially described by Rothstein [Meth. Enzymol. Q ⁇ (1983) 202]. In this case, all or part of the coding sequence is preferably disturbed to allow replacement, by homologous recombination, of the genomic sequence with a non-functional or mutant sequence.
  • the said genetic modification (s) may be located in the coding part of the gene concerned, or outside the coding region, and for example in the regions responsible for the expression and / or transcriptional regulation of said genes.
  • the non-functional character of said genes can therefore be manifested by the production of an inactive protein due to structural or conformational modifications, by the absence of production, by the production of a protein having an altered activity, or by the production of the natural protein at an attenuated level or according to a desired mode of regulation.
  • certain alterations such as point mutations are by their nature capable of being corrected or attenuated by cellular mechanisms. Such genetic alterations are therefore of limited interest at the industrial level. It is therefore particularly preferred that the non-functional character be perfectly stable segregationally and / or non-reversible. .
  • the gene is non-functional due to a partial or total deletion.
  • the defective recombinant adenoviruses of the invention are devoid of late adenovirus genes.
  • a particularly advantageous embodiment of the invention consists of a defective recombinant adenovirus comprising: - ITR sequences,
  • Another particularly advantageous embodiment of the invention consists of a defective recombinant adenovirus comprising:
  • the vectors of the invention also have a functional E3 gene under the control of a heterologous promoter. More preferably, the vectors have a part of the E3 gene allowing the expression of the protein gpl9K.
  • the defective recombinant adenoviruses according to the invention can be prepared in different ways.
  • a first method consists in transfecting the DNA of the defective recombinant virus prepared in vitro (either by ligation or in the form of a plasmid) in a competent cell line, that is to say carrying in trans all the functions necessary for complementation of the defective virus. These functions are preferably integrated into the genome of the cell, which makes it possible to avoid the risks of recombination, and confers increased stability on the cell line.
  • the preparation of such cell lines is described in the examples.
  • a second approach consists in co-transfecting into a suitable cell line the DNA of the defective recombinant virus prepared in vitro (either by ligation or in the form of a plasmid) and the DNA of a helper virus.
  • a competent cell line capable of complementing all the defective functions of the recombinant adenovirus. Part of these functions is indeed complemented by the helper virus.
  • This helper virus must itself be defective and the cell line carries in trans the functions necessary for its complementation.
  • the preparation of defective recombinant adenoviruses of the invention according to this method is also illustrated in the examples.
  • the cell lines which can be used in the context of this second approach there may be mentioned in particular the human embryonic kidney line 293, KB cells, Hela cells, MDCK, GHK, etc. (cf. examples).
  • the vectors which have multiplied are recovered, purified and amplified according to conventional techniques of molecular biology.
  • the present invention therefore also relates to cell lines infectable by adenoviruses, comprising, integrated into their genome, the functions necessary for the complementation of a defective recombinant adenovirus as described above.
  • cell lines comprising, integrated into their genome, the E1 and E2 regions (in particular the region coding for the protein 72K), and or E4 and / or the glucocorticoid receptor gene.
  • these lines are obtained from line 293 or gm DBP6.
  • the present invention also relates to any pharmaceutical composition comprising one or more defective recombinant adenoviruses as described above.
  • the pharmaceutical compositions of the invention can be formulated for topical, oral, parenteral, intranasal, intravenous, intramuscular, subcutaneous, intraocular, transdermal, etc. administration.
  • the pharmaceutical composition contains pharmaceutically acceptable vehicles for an injectable formulation.
  • H can be, in particular, saline solutions (monosodium phosphate, disodium, sodium chloride, potassium, calcium or magnesium, etc., or mixtures of such salts), sterile, isotonic, or dry compositions, in particular lyophilized, which , by addition, as appropriate, of sterilized water or physiological saline, allow the constitution of injectable solutes.
  • the doses of virus used for the injection can be adapted according to various parameters, and in particular according to the mode of administration used, the pathology concerned, the gene to be expressed, or even the duration of the treatment sought.
  • the recombinant adenoviruses according to the invention are formulated and administered in the form of doses of between 10 4 and 10 14 pfu / ml, and preferably 10 6 to 10 10 pfu / ml.
  • the term pfu (“plaque forming unit”) corresponds to the infectious power of a virus solution, and is determined by infection of an appropriate cell culture, and measures, generally after 5 days, the number of ranges of infected cells. The techniques for determining the pfu titer of a viral solution are well documented in the literature.
  • the adenoviruses of the invention can be used for the treatment or prevention of many pathologies, including genetic diseases (dystrophy, cystic fibrosis, etc.), neurogenerative diseases (alzheimer, parkinson, ALS , etc.), cancers, pathologies linked to coagulation disorders or dyslipoproteinemias, pathologies linked to viral infections (hepatitis, AIDS, etc.), etc.
  • genetic diseases distrophy, cystic fibrosis, etc.
  • neurogenerative diseases alzheimer, parkinson, ALS , etc.
  • cancers pathologies linked to coagulation disorders or dyslipoproteinemias
  • pathologies linked to viral infections hepatitis, AIDS, etc.
  • FIG 1 Genetic organization of the Ad5 adenovirus. The complete sequence of Ad5 is available on the database and allows those skilled in the art to select or create any restriction site, and thus to isolate any region of the genome.
  • Figure 2 Restriction map of the CAV2 adenovirus strain Manhattan (from
  • Figure 3 Construction of defective viruses of the invention by ligation.
  • Figure 4 Construction of a recombinant virus carrying the E4 gene.
  • Figure 5 Construction of a recombinant virus carrying the E2 gene.
  • Figure 6 Construction and representation of the plasmid pPY32.
  • Figure 7 Representation of the plasmid pPY55.
  • Figure 8 Representation of the plasmid p2.
  • Figure 9 Representation of the intermediate plasmid used for the construction of the plasmid pITRL5-E4.
  • Figure 10 Representation of the plasmid pITRL5-E4.
  • the pBR322, pUC and phage plasmids of the M13 series are of commercial origin (Bethesda Research Laboratories).
  • the DNA fragments can be separated according to their size by electrophoresis in agarose or acrylamide gels, extracted with phenol or with a phenol / chloroform mixture, precipitated with ethanol and then incubated in the presence of the DNA ligase from phage T4 (Biolabs) according to the supplier's recommendations.
  • the filling of the protruding 5 ′ ends can be carried out by the Klenow fragment of DNA Polymerase I of E. coli (Biolabs) according to the supplier's specifications.
  • the destruction of the protruding 3 ′ ends is carried out in the presence of the DNA polymerase of phage T4 (Biolabs) used according to the manufacturer's recommendations.
  • the destruction of the protruding 5 ′ ends is carried out by gentle treatment with nuclease SI.
  • Mutagenesis directed in vitro by synthetic oligodeoxynucleotides can be carried out according to the method developed by Taylor et al. [Nucleic Acids Res. 12 (1985) 8749-8764] using the kit distributed by Amersham.
  • Verification of the nucleotide sequences can be carried out by the method developed by Sanger et al. [Proc. Natl. Acad. Sci. USA, 74 (1977) 5463-5467] using the kit distributed by Amersham.
  • - Human embryonic kidney line 293 (Graham et al., J. Gen. Virol. 36 (1977) 59). This line contains in particular, integrated into its genome, the left part of the genome of the human adenovirus Ad5 (12%).
  • - Human cell line KB From a human epidermal carcinoma, this line is accessible to the ATCC (ref. CCL17) as well as the conditions allowing its culture.
  • Hela Human cell line Hela: From a carcinoma of the human epithelium, this line is accessible to the ATCC (ref. CCL2) as well as the conditions allowing its culture.
  • MDCK canine cell line The culture conditions for MDCK cells have been described in particular by Macatney et al., Science 44 (1988) 9.
  • DBP6 cell line (Brough et al., Virology 190 (1992) 624). This line consists of Hela cells carrying the E2 gene of adenovirus under the control of the LTR of MMTV.
  • This example demonstrates the feasibility of a recombinant adenovirus lacking most of the viral genes.
  • a series of deletion mutants in the adenovirus was constructed by in vitro ligation, and each of these mutants was co-transfected with a helper virus in the KB cells. These cells do not allow the propagation of viruses defective for E1, the transcomplementation relates to the E1 region.
  • the various deletion mutants were prepared from the adenovirus
  • Ad5 by digestion then ligation in vitro.
  • the Ad5 viral DNA is isolated according to the technique described by Lipp et al. (J. Virol. 63 (1989) 5133), subjected to digestion in the presence of different restriction enzymes (cf. FIG. 3), then the digestion product is ligated in the presence of T4 DNA ligase. The size of the various deletion mutants is then checked on 0.8% SDS agarose gel. These mutants are then mapped (see FIG. 3).
  • mtl Ligation between the fragments of Ad5 0-20642 (SauI) and (SauI) 33797-35935
  • mt2 Ligation between the fragments of Ad5 0-19549 (NdeI) and (Ndel) 31089 -35935
  • mt3 Ligation between Ad5 fragments 0-10754 (AatII) and (AatII) 25915-35935
  • mt4 Ligation between Ad5 fragments 0-1131 l (MluI) and (MluI) 24392-35935
  • mt5 Ligation between Ad5 fragments 0-9462 (SalI) and (XhoI) 29791-35935
  • mt6 Ligation between Ad5 fragments 0-5788 (XhoI) and (XhoI) 29791-35935
  • mt7 Ligation between Ad5 fragments 0-3665 (SphI) and (Sphl) 31224-35935
  • a second series of deletion mutants in the adenovirus was constructed by in vitro ligation according to the same methodology. These different mutants include the following regions: mt8: Ligation between fragments 0-4623 (Apal) of Ad RSVBGal and (Apal) 31909- 35935 of Ad5. mt9: Ligation between fragments 0-10178 (BglII) of Ad RSV ⁇ Gal and (BamHI) 21562- 35935 of "Ad5.
  • This example describes the preparation of defective recombinant adenoviruses according to the invention by co-transfection, with a helper virus, of the DNA of the recombinant virus incorporated into a plasmid.
  • plasmid carrying the adjoining ITRs of Ad5 the packaging sequence, the E4 gene under the control of its own promoter and, as a heterologous gene, the LacZ gene under the control of the LTR promoter of the RSV virus was constructed ( figure 4).
  • This plasmid, designated pE4Gal was obtained by cloning and ligation of the following fragments (see FIG. 4): - HindIII-SacII fragment from the plasmid pFG144 (Graham et al, EMBO J. 8 (1989) 2077).
  • This fragment carries the ITR sequences of Ad5 head-to-tail and the packaging sequence: Hindi ⁇ fragment (34920) -SacII (352).
  • This plasmid was obtained by cloning of the different fragments in the regions indicated of the plasmid pSP 72. It is understood that equivalent fragments can be obtained by a person skilled in the art from other sources.
  • the plasmid pE4Gal is then co-transfected with the DNA of the H2dl808 virus in the 293 cells in the presence of calcium phosphate.
  • the recombinant virus is then prepared as described in Example 1.
  • This virus carries, as the only viral gene, the E4 gene of the adenovirus * Ad5 (FIG. 4). Its genome is approximately 12 kb in size, which allows the insertion of very large heterologous DNA (up to 20 kb).
  • a person skilled in the art can easily replace the LacZ gene with any other therapeutic gene such as those mentioned above.
  • this virus contains certain sequences originating from the plasmid pSP 72, which can be eliminated by conventional molecular biology techniques if necessary.
  • This example describes the preparation of another defective recombinant adenovirus according to the invention by co-transfection, with a helper virus, of the DNA of the recombinant virus incorporated into a plasmid.
  • plasmid carrying the adjoining ITRs of Ad5 the packaging sequence, the E2 gene of Ad2 under the control of its own promoter and, as heterologous gene, the LacZ gene under the control of the LTR promoter of the RSV virus was constructed (FIG. 5).
  • HindIII-SacII fragment from the plasmid pFG144 (Graham et al, EMBO J. 8 (1989) 2077). This fragment carries the ITR sequences of Ad5 head to tail and the packaging sequence: HindIII fragment (34920) -SacII (352). It was cloned, with the following fragment, at the HindIII (16) - PstI (32) sites of the plasmid pSP 72.
  • This plasmid was obtained by cloning of the different fragments in the regions indicated of the plasmid pSP 72. It is understood that equivalent fragments can be obtained by a person skilled in the art from other sources.
  • the pE2Gal plasmid is then co-transfected with the DNA of the H2dl802 virus lacking the E2 region (Rice et al. J. Virol. 56 (1985) 767) in 293 cells, in the presence of calcium phosphate.
  • the recombinant virus is then prepared as described in Example 1.
  • This virus carries, as the only viral gene, the E2 gene of the adenovirus Ad2 (FIG. 5). Its genome is approximately 12 kb in size, which allows the insertion of very large heterologous DNA (up to 20 kb).
  • this virus contains certain sequences from the intermediate plasmid, which can be eliminated by conventional molecular biology techniques if necessary.
  • This example describes the construction of complementary cell lines for the E1, E2 and / or E4 regions of the adenoviruses. These lines allow the construction of recombinant adenoviruses according to the invention deleted for these regions, without using a helper virus. These viruses are obtained by recombination in vivo, and can contain important heterologous sequences.
  • the potentially cytotoxic E2 and E4 regions are placed under the control of an inducible promoter: the LTR of MMTV (Pharmacia), which is induced by dexamethasone, either native or the minimal form described in PNAS 90 (1993) 5603; or the system repressible by tetracycline described by Gossen and B ⁇ jard (PNAS 89 (1992) 5547).
  • an inducible promoter the LTR of MMTV (Pharmacia), which is induced by dexamethasone, either native or the minimal form described in PNAS 90 (1993) 5603; or the system repressible by tetracycline described by Gossen and B ⁇ jard (PNAS 89 (1992) 5547).
  • MMTV inducible promoter
  • other promoters can be used, and in particular variants of the LTR of MMTV carrying, for example, heterologous regulatory regions ("enhancer" region in particular).
  • the lines of the invention were constructed by transfection of the corresponding cells, in the presence of calcium phosphate, with a DNA fragment carrying the indicated genes (adenovirus regions and / or glucocorticoid receptor gene) under the control of 'a transcription promoter and a terminator (polyadenylation site).
  • the terminator can be either the natural terminator of the transfected gene, or a different terminator, for example the terminator of the SV40 virus early messenger.
  • the DNA fragment also carries a gene allowing the selection of transformed cells, and for example the gene for resistance to geneticin.
  • the resistance gene can also be carried by a different DNA fragment, co-transfected with the first. After transfection, the transformed cells are selected and their DNA is analyzed to verify the integration of the DNA fragment into the genome. This technique makes it possible to obtain the following cell lines:
  • This example describes the preparation of defective recombinant adenoviruses according to the invention, the genome of which is deleted from the El, E3 and E4 genes.
  • the genome of the recombinant adenoviruses of the invention is modified so that the genes E1 and E4 at least are non-functional.
  • such adenoviruses have a significant capacity for incorporating heterologous genes.
  • these vectors exhibit high security due to the deletion of the E4 region, which is involved in the regulation of the expression of late genes, in the stability of late nuclear RNAs, in the extinction of the expression of host cell proteins and in the efficiency of viral DNA replication. These vectors therefore have very reduced transcription background noise and expression of viral genes.
  • these vectors can be produced in titles comparable to wild adenoviruses.
  • adenoviruses were prepared from the plasmid pPY55, carrying the modified right part of the genome of the adenovirus Ad5, either by co-transfection with a helper plasmid (see also examples 1, 2 and 3), or by means of a complementary line (example 4).
  • An interesting characteristic of this plasmid is that the Xbal and ClaI sites originating from the cloning multisite of the vector pIC20H are located next to the EcoRV / Hael ⁇ junction resulting from the cloning. In addition, this junction modifies the nucleotide context immediately adjacent to the Clal site which has now become methylable in a dam + context.
  • the Xbal (30470) - MaeII (32811) fragment of the Ad5 adenovirus genome was then cloned between the Xbal and ClaI sites of the plasmid pPY29 prepared from a dam context, which generates the plasmid pPY30.
  • the SstI fragment of the plasmid pPY30 which corresponds to the genome sequence of the Ad5 adenovirus from the SstI site at position 30556 to the right end, was finally cloned between the SstI sites of the vector pIC20H, which generates the plasmid pPY31 , a restriction map of the insert located between the HindIII sites is given in Figure 6.
  • Plasmid pPY32 was obtained after partial digestion of plasmid pPY31 with BglII, followed by total digestion with BamHI, then religation.
  • the plasmid pPY32 therefore corresponds to the deletion of the genome of the Ad5 adenovirus located between the BamHI site of the plasmid pPY31 and the BglII site located at position 30818.
  • a restriction map of the HindIII fragment of the plasmid pPY32 is given in FIG. 6.
  • a characteristic of the plasmid pPY32 is that it has unique SalI and Xbal sites.
  • the BamHI (21562) -XbaI (28592) fragment of the Ad5 adenovirus genome was first of all cloned between the BamHI and Xbal sites of the vector plC19H prepared from a dam context, which generates the plasmid pPY17. .
  • This plasmid therefore contains a HindIII (26328) -BglII (28133) fragment of the genome of the adenovirus Ad5, which can be cloned between the HindIII and BglII sites of the vector pIC20R, to generate the plasmid pPY34.
  • a characteristic of this plasmid is that the BamHI site originating from the cloning multisite is located in the immediate vicinity of the HindIII site (26328) of the genome of the Ad5 adenovirus.
  • the BamffI (21562) -Hindm (26328) fragment of the genome of the Ad5 adenovirus originating from the plasmid pPY17 was then cloned between the BamHI and HindIII sites of the plasmid pPY34, which generates the plasmid pPY39.
  • This plasmid is directly usable for obtaining recombinant adenoviruses at least deleted for the E3 region (deletion between the BglII sites located at positions 28133 and 30818 of the genome of the Ad5 adenovirus) and for the E4 region in its entirety (deletion between the Mae ⁇ (32811) and Haem (35614) sites of the Ad5 adenovirus genome (FIG. 7).
  • adenoviruses comprising at least one deletion in the E4 region, and preferably at least in the E1 and E4 regions.
  • Strategies (i) and (ii) make it possible to generate a recombinant adenovirus deleted for the El, E3 and E4 regions; strategies (iii) and (iv) make it possible to generate a recombinant adenovirus deleted for the E3 and E4 regions.
  • the DNA of a recombinant virus deleted for the E1 region but expressing any transgene can be used in place of the DNA of the Ad-dl324 virus according to strategies (i) or (ii), for the purpose generate a recombinant virus deleted for the El, E3 and E4 regions and expressing said transgene.
  • the principle here is based on the fact that a cell line derived from a line expressing the E1 region, for example line 293, and also expressing at least the open phases ORF6 and ORF6 / 7 of the E4 region of the adenovirus Ad5 under the control of a promoter, for example inducible, is capable of transcomplementing for both the E1 and E4 regions of the adenovirus Ad5.
  • a promoter for example inducible
  • a recombinant virus deleted for the E1, E3 and E4 regions can therefore be obtained by in vitro ligation or by in vivo recombination according to the protocols described above.
  • a cytopathic effect (indicating the production of recombinant viruses) was observed after transfection in the cells used.
  • the cells were then harvested, disrupted by three freeze-thaw cycles in their supernatant, then centrifuged at 4000 rpm for 10 minutes. The supernatant thus obtained was then amplified on fresh cell culture (293 cells for protocols a) and 293 cells expressing the E4 region. for protocol b)).
  • the viruses were then purified from plaques and their DNA is analyzed according to the Hirt method (cited above). Virus stocks are then prepared on a cesium chloride gradient.
  • This example describes the preparation of defective recombinant adenoviruses according to the invention, the genome of which is deleted from the El, E3, L5 and E4 genes. These vectors are particularly advantageous since the L5 region codes for fiber, which is an extremely toxic protein for the cell.
  • These adenoviruses were prepared from the plasmid p2, carrying the modified right part of the genome of the adenovirus Ad5, by co-transfection with different helper plasmids. They can also be prepared using a complementing line.
  • This plasmid contains the entire right region of the genome of the Ad5 adenovirus, starting from the BamHI site (21562), from which the fragment between the Xbal (28592) and April (35463) sites carrying the E3 genes has been deleted, L5 and E4.
  • the plasmid p2 was obtained by cloning and ligation of the following fragments in the plasmid pIC19R linearized with BamHI and dephosphorylated (see FIG. 8):
  • helper plasmid (pITRL5-E4) carrying the L5 gene
  • the helper plasmid pITRL5-E4 provides the E4 and L5 genes in trans. It corresponds to the plasmid pE4Gal described in Example 2, additionally containing the L5 region coding for the fiber under the control of the MLP promoter of the adenovirus Ad2,
  • the plasmid pITRL5-E4 was constructed as follows (FIGS. 9 and 10 ):
  • a 58 bp oligonucleotide containing, in the 5'-3 'direction, a HindIII site, the fiber ATG and the fiber coding sequence up to the NdeI site at position 31089 of the Ad5 adenovirus genome was synthesized.
  • the sequence of this oligonucleotide is given below, in the 5'-3 'orientation: AAGCTTATGAAGCGCGCAAGACCGTCTGAAGATACCTTCAACCCCGTGTATCCATATG
  • the principle is based on the transcomplementation between a "mini-virus” (helper virus) expressing the L5 region or the E4 and L5 regions and a recombinant virus deleted at least for E3, E4 and L5.
  • mini-virus helper virus
  • viruses were obtained either by in vitro ligation, or after in vivo recombination, according to the following strategies:
  • DNA of a recombinant virus deleted for the E1 region but expressing any transgene can be used in place of the DNA of the Ad-dl324 virus according to strategies (i) or (ii), for the purpose generate a recombinant virus deleted for the El, E3, L5 and E4 regions and expressing said transgene.
  • the protocols described above can also be implemented with a helper virus carrying only the L5 region, using a cell line capable of expressing the E1 and E4 regions of the adenovirus, as described in Example 4 .

Abstract

Novel adenovirus-derived viral vectors, the preparation thereof, and the use thereof in gene therapy, are disclosed.

Description

VECTEURS ADENOVIRAUX DEFECTIFS ET UTILISATION EN THERAPIE GENIQUE DEFECTIVE ADENOVIRAL VECTORS AND USE IN GENE THERAPY
La présente invention concerne de nouveaux vecteurs viraux, leur préparation et leur utilisation en thérapie génique. Elle concerne également les compositions pharmaceutiques contenant lesdits vecteurs viraux. Plus particulièrement, la présente invention concerne des adénovirus recombinants comme vecteurs pour la thérapie génique.The present invention relates to new viral vectors, their preparation and their use in gene therapy. It also relates to pharmaceutical compositions containing said viral vectors. More particularly, the present invention relates to recombinant adenoviruses as vectors for gene therapy.
La thérapie génique consiste à corriger une déficience ou une anormalité (mutation, expression aberrante, etc) par introduction d'une information génétique dans la cellule ou l'organe affecté. Cette information génétique peut être introduite soit in vitro dans une cellule extraite de l'organe, la cellule modifiée étant alors réintroduite dans l'organisme, soit directement in vivo dans le tissu approprié. Dans ce second cas, différentes techniques existent, parmi lesquelles des techniques diverses de transfection impliquant des complexes d'ADN et de DEAE-dextran (Pagano et al., J.Virol. 1 (1967) 891), d'ADN et de protéines nucléaires (Kaneda et al., Science 243 (1989) 375), d'ADN et de lipides (Felgner et al., PNAS 84 (1987) 7413), l'emploi de liposomes (Fraley et al., J.Biol.Chem. 255 (1980) 10431), etc. Plus récemment, l'emploi de virus comme vecteurs pour le transfert de gènes est apparu comme une alternative prometteuse à ces techniques physiques de transfection. A cet égard, différents virus ont été testés pour leur capacité à infecter certaines populations cellulaires. En particulier, les rétrovirus (RSV, HMS, MMS, etc), le virus HSV, les virus adéno-associés, et les adénovirus.Gene therapy consists of correcting a deficiency or an abnormality (mutation, aberrant expression, etc.) by introducing genetic information into the affected cell or organ. This genetic information can be introduced either in vitro into a cell extracted from the organ, the modified cell then being reintroduced into the organism, or directly in vivo into the appropriate tissue. In this second case, different techniques exist, among which various transfection techniques involving complexes of DNA and DEAE-dextran (Pagano et al., J. Virol. 1 (1967) 891), of DNA and proteins nuclear (Kaneda et al., Science 243 (1989) 375), DNA and lipids (Felgner et al., PNAS 84 (1987) 7413), the use of liposomes (Fraley et al., J. Biol. Chem. 255 (1980) 10431), etc. More recently, the use of viruses as vectors for gene transfer has emerged as a promising alternative to these physical transfection techniques. In this regard, different viruses have been tested for their ability to infect certain cell populations. In particular, retroviruses (RSV, HMS, MMS, etc.), the HSV virus, adeno-associated viruses, and adenoviruses.
Parmi ces virus, les adénovirus présentent certaines propriétés intéressantes pour une utilisation en thérapie génique. Notamment, ils ont un spectre d'hôte assez large, sont capables d'infecter des cellules quiescentes, ne s'intègrent pas au génome de la cellule infectée, et n'ont pas été associés à ce jour à des pathologies importantes chez l'homme.Among these viruses, adenoviruses have certain properties of interest for use in gene therapy. In particular, they have a fairly broad host spectrum, are capable of infecting quiescent cells, do not integrate into the genome of the infected cell, and have not been associated to date with significant pathologies in man.
Les adénovirus sont des virus à ADN double brin linéaire d'une taille de 36 kb environ. Leur génome comprend notamment une séquence inversée répétée (ITR) à leur extrémité, une séquence d'encapsidation, des gènes précoces et des gènes tardifs (Cf figure 1). Les principaux gènes précoces sont les gènes El (Ela et Elb), E2, E3 etAdenoviruses are linear double-stranded DNA viruses approximately 36 kb in size. Their genome includes in particular a repeated inverted sequence (ITR) at their end, an encapsidation sequence, early genes and late genes (see FIG. 1). The main early genes are the El (Ela and Elb), E2, E3 and
E4. Les principaux gènes tardifs sont les gènes Ll à L5.E4. The main late genes are the L1 to L5 genes.
Compte tenu des propriétés des adénovirus mentionnées ci-dessus, ceux-ci ont déjà été utilisés pour le transfert de gènes in vivo. A cet effet, différents vecteurs dérivés des adénovirus ont été préparés, incorporant différents gènes (β-gal, OTC, α- 1AT, cytokines, etc). Dans chacune de ces constructions, l'adénovirus a été modifié de manière à le rendre incapable de réplication dans la cellule infectée. Ainsi, les constructions décrites dans l'art antérieur sont des adénovirus délétés des régions El (Ela et/ou Elb) et éventuellement E3 au niveau desquelles sont insérées les séquences d'ADN hétérologue (Levrero et al., Gène 101 (1991) 195; Gosh-Choudhuiy et al., Gène 50 (1986) 161). Néanmoins, les vecteurs décrits dans l'art antérieur présentent de nombreux inconvénients qui limitent leur exploitation en thérapie génique. En particulier, tous ces vecteurs comportent de nombreux gènes viraux dont l'expression in vivo n'est pas souhaitable dans le cadre d'une thérapie génique. De plus, ces vecteurs ne permettent pas l'incorporation de fragments d'ADN de très grande taille, qui peuvent être nécessaires pour certaines applications.Given the properties of the adenoviruses mentioned above, these have already been used for gene transfer in vivo. To this end, different vectors derived from adenoviruses have been prepared, incorporating different genes (β-gal, OTC, α-1AT, cytokines, etc.). In each of these constructions, the adenovirus was modified so as to render it incapable of replication in the infected cell. Thus, the constructs described in the prior art are adenoviruses deleted from the El (Ela and / or Elb) and possibly E3 regions into which the heterologous DNA sequences are inserted (Levrero et al., Gene 101 (1991) 195 ; Gosh-Choudhuiy et al., Gene 50 (1986) 161). However, the vectors described in the prior art have many drawbacks which limit their use in gene therapy. In particular, all of these vectors contain numerous viral genes whose expression in vivo is undesirable in the context of gene therapy. In addition, these vectors do not allow the incorporation of very large DNA fragments, which may be necessary for certain applications.
La présente invention permet de remédier à ces inconvénients. La présente invention décrit en effet des adénovirus recombinants pour la thérapie génique, capables de transférer de manière efficace de l'ADN (jusqu'à 30 kb) in vivo, d'exprimer à des niveaux élevés et de manière stable cet ADN in vivo, en limitant tout risque de production de protéines virales, de transmission du virus, de pathogénicité, etc. En particulier, il a été trouvé qu'il est possible de réduire considérablement la taille du génome de l'adénovirus, sans empêcher la formation d'une particule virale encapsidée. Ceci est surprenant dans la mesure où il avait été observé dans le cas d'autres virus, par exemple des rétrovirus, que certaines séquences distribuées le long du génome étaient nécessaires pour une encapsidation efficace des particules virales. De ce fait, la réalisation de vecteurs possédant d'importantes délétions internes était fortement limitée. La présente invention montre également que la suppression de l'essentiel des gènes viraux n'empêche pas non plus la formation d'une telle particule virale. De plus, les adénovirus recombinants ainsi obtenus conservent, en dépit des modifications importantes de leur structure génomique, leurs propriétés avantageuses de fort pouvoir infectieux, de stabilité in vivo, etc.The present invention overcomes these drawbacks. The present invention indeed describes recombinant adenoviruses for gene therapy, capable of efficiently transferring DNA (up to 30 kb) in vivo, of expressing this DNA at high levels and in a stable manner in vivo, limiting any risk of viral protein production, virus transmission, pathogenicity, etc. In particular, it has been found that it is possible to considerably reduce the size of the adenovirus genome, without preventing the formation of an encapsidated viral particle. This is surprising since it has been observed in the case of other viruses, for example retroviruses, that certain sequences distributed along the genome were necessary for efficient packaging of the viral particles. As a result, the production of vectors having large internal deletions was greatly limited. The present invention also shows that the deletion of most of the viral genes does not prevent the formation of such a viral particle either. In addition, the recombinant adenoviruses thus obtained retain, despite significant modifications to their genomic structure, their advantageous properties of high infectivity, stability in vivo, etc.
Les vecteurs de l'invention sont particulièrement avantageux puisqu'ils permettent l'incorporation de séquences d'ADN désirées de très grande taille. Il est ainsi possible d'insérer un gène d'une longueur supérieure à 30 kb. Ceci est particulièrement intéressant pour certaines pathologies dont le traitement nécessite la co-expression de plusieurs gènes, ou l'expression de très grands gènes. Ainsi par exemple, dans le cas de la dystrophie musculaire, il n'était pas possible jusqu'à présent de transférer l'ADNc correspondant au gène natif responsable de cette pathologie (gène de la dystrophine) en raison de sa grande taille (14 kb).The vectors of the invention are particularly advantageous since they allow the incorporation of very large desired DNA sequences. It is thus possible to insert a gene with a length greater than 30 kb. This is particularly interesting for certain pathologies whose treatment requires the co-expression of several genes, or the expression of very large genes. So by example, in the case of muscular dystrophy, it was not possible until now to transfer the cDNA corresponding to the native gene responsible for this pathology (dystrophin gene) due to its large size (14 kb).
Les vecteurs de l'invention sont également très avantageux puisqu'ils possèdent très peu de régions virales fonctionnelles et que, de ce fait, les risques inhérents à l'utilisation de virus comme vecteurs en thérapie génique tels que l'immunogénicité, la pathogénicité, la transmission, la réplication, la recombinaison, etc sont fortement réduits voire supprimés.The vectors of the invention are also very advantageous since they have very few functional viral regions and because, therefore, the risks inherent in the use of viruses as vectors in gene therapy such as immunogenicity, pathogenicity, transmission, replication, recombination, etc. are greatly reduced or even eliminated.
La présente invention fournit ainsi des vecteurs viraux particulièrement adaptés au transfert et à l'expression in vivo de séquences d'ADN désirées.The present invention thus provides viral vectors particularly suitable for the transfer and expression in vivo of desired DNA sequences.
Un premier objet de la présente invention concerne donc un adénovirus recombinant défectif comprenant :A first object of the present invention therefore relates to a defective recombinant adenovirus comprising:
- les séquences ITR,- ITR sequences,
- une séquence permettant l'encapsidation, - une séquence d'ADN hétérologue, et dans lequel :- a sequence allowing the encapsidation, - a heterologous DNA sequence, and in which:
- le gène El est non fonctionnel et- the El gene is non-functional and
- au moins un des gènes E2, E4, L1-L5 est non fonctionnel.- at least one of the E2, E4, L1-L5 genes is non-functional.
Au sens de la présente invention, le terme "adénovirus défectif' désigne un adénovirus incapable de se répliquer de façon autonome dans la cellule cible. Généralement, le génome des adénovirus défectifs selon la présente invention est donc dépourvu au moins des séquences nécessaires à la réplication dudit virus dans la cellule infectée. Ces régions peuvent être soit éliminées (en tout ou en partie), soit rendues non-fonctionnelles, soit substituées par d'autres séquences et notamment par la séquence d'ADN hétérologue.Within the meaning of the present invention, the term “defective adenovirus” designates an adenovirus incapable of replicating autonomously in the target cell. Generally, the genome of the defective adenoviruses according to the present invention is therefore devoid of at least the sequences necessary for replication of said virus in the infected cell. These regions can be either eliminated (in whole or in part), or made non-functional, or substituted by other sequences and in particular by the heterologous DNA sequence.
Les séquences inversées répétées (ITR) constituent l'origine de réplication des adénovirus. Elles sont localisées aux extrémités 3' et 5' du génome viral (Cf figure 1), d'où elles peuvent être isolées aisément selon les techniques classiques de biologie moléculaire connues de l'homme du métier. La séquence nucléotidique des séquences ITR des adénovirus humains (en particulier des sérotypes Ad2 et Ad5) est décrite dans la littérature, ainsi que des adénovirus canins (notamment CAV1 et CAV2). Concernant l'adénovirus Ad5 par exemple, la séquence ITR gauche correspond à la région comprenant les nucléotides 1 à 103 du génome.The inverted repeat sequences (ITR) constitute the origin of replication of adenoviruses. They are located at the 3 ′ and 5 ′ ends of the viral genome (cf. FIG. 1), from which they can be easily isolated according to the conventional techniques of molecular biology known to those skilled in the art. The nucleotide sequence of the ITR sequences of human adenoviruses (in particular the Ad2 and Ad5 serotypes) is described in the literature, as well as canine adenoviruses (in particular CAV1 and CAV2). As regards the Ad5 adenovirus, for example, the left ITR sequence corresponds to the region comprising nucleotides 1 to 103 of the genome.
La séquence d'encapsidation (également désignée séquence Psi) est nécessaire à l'encapsidation de l'ADN viral. Cette région doit donc être présente pour permettre la préparation d'adenovirus recombinants défectifs selon l'invention. La séquence d'encapsidation est localisée dans le génome des adénovirus, entre 1TTR gauche (5') et le gène El (Cf figure 1). Elle peut être isolée ou synthétisée artificiellement par les techniques classiques de biologie moléculaire. La séquence nucléotidiques de la séquence d'encapsidation des adénovirus humains (en particulier des sérotypes Ad2 et Ad5) est décrite dans la littérature, ainsi que des adénovirus canins (notamment CAV1 et CAV2). Concernant l'adénovirus Ad5 par exemple, la séquence d'encapsidation correspond à la région comprenant les nucléotides 194 à 358 du génome.The packaging sequence (also called Psi sequence) is necessary for the packaging of viral DNA. This region must therefore be present to allow the preparation of defective recombinant adenoviruses according to the invention. The packaging sequence is located in the genome of the adenoviruses, between the left 1TTR (5 ′) and the El gene (see FIG. 1). It can be isolated or artificially synthesized by conventional molecular biology techniques. The nucleotide sequence of the packaging sequence of human adenoviruses (in particular the Ad2 and Ad5 serotypes) is described in the literature, as well as canine adenoviruses (in particular CAV1 and CAV2). With regard to the Ad5 adenovirus, for example, the packaging sequence corresponds to the region comprising nucleotides 194 to 358 of the genome.
Il existe différents sérotypes d'adenovirus, dont la structure et les propriétés varient quelque peu. Néanmoins, ces virus présentent une organisation génétique comparable, et les enseignements décrits dans la présente demande peuvent être aisément reproduits par l'homme du métier pour tout type d'adenovirus.There are different serotypes of adenovirus, the structure and properties of which vary somewhat. However, these viruses have a comparable genetic organization, and the lessons described in the present application can be easily reproduced by a person skilled in the art for any type of adenovirus.
Les adénovirus de l'invention peuvent être d'origine humaine, animale, ou mixte (humaine et animale). Concernant les adénovirus d'origine humaine, on préfère utiliser ceux classés dans le groupe C. Plus préférentiellement, parmi les différents sérotypes d'adenovirus humain, on préfère utiliser dans le cadre de la présente invention les adénovirus de type 2 ou 5 (Ad 2 ou Ad 5).The adenoviruses of the invention can be of human, animal, or mixed (human and animal) origin. Concerning adenoviruses of human origin, it is preferred to use those classified in group C. More preferably, among the various serotypes of human adenovirus, it is preferred to use, within the framework of the present invention, adenoviruses of type 2 or 5 (Ad 2 or Ad 5).
Comme indiqué plus haut, les adénovirus de l'invention peuvent également être d'origine animale, ou comporter des séquences issues d'adenovirus d'origine animale. La demanderesse a en effet montré que les adénovirus d'origine animale sont capables d'infecter avec une grande efficacité les cellules humaines, et qu'ils sont incapables de se propager dans les cellules humaines dans lesquelles ils ont été testés (Cf demande FR 93 05954). La demanderesse a également montré que les adénovirus d'origine animale ne sont nullement trans-complémentés par des adénovirus d'origine humaine, ce qui élimine tout risque de recombinaison et de propagation in vivo, en présence d'un adénovirus humain, pouvant conduire à la formation d'une particule infectieuse. L'utilisation d'adenovirus ou de régions d'adenovirus d'origine animale est donc particulièrement avantageuse puisque les risques inhérents à l'utilisation de virus comme vecteurs en thérapie génique sont encore plus faibles.As indicated above, the adenoviruses of the invention can also be of animal origin, or contain sequences derived from adenoviruses of animal origin. The Applicant has indeed shown that adenoviruses of animal origin are capable of infecting human cells with great efficiency, and that they are unable to propagate in the human cells in which they have been tested (see request FR 93 05954). The Applicant has also shown that adenoviruses of animal origin are in no way trans-complemented by adenoviruses of human origin, which eliminates any risk of recombination and of propagation in vivo, in the presence of a human adenovirus, which can lead to the formation of an infectious particle. The use of adenoviruses or adenovirus regions of animal origin is therefore particularly advantageous since the risks inherent in the use of viruses as vectors in gene therapy are even lower.
Les adénovirus d'origine animale utilisables dans le cadre de la présente invention peuvent être d'origine canine, bovine, murine, (exemple : Mavl, Beard et al., Virology 75 (1990) 81), ovine, porcine, aviaire ou encore simienne (exemple : SAV). Plus particulièrement, parmi les adénovirus aviaires, on peut citer les sérotypes 1 à 10 accessibles à l'ATCC, comme par exemple les souches Phelps (ATCC VR-432), Fontes (ATCC VR-280), P7-A (ATCC VR-827), IBH-2A (ATCC VR-828), J2-A (ATCC VR-829), T8-A (ATCC VR-830), K-ll (ATCC VR-921) ou encore les souches référencées ATCC VR-831 à 835. Parmi les adénovirus bovins, on peut utiliser les différents sérotypes connus, et notamment ceux disponibles à l'ATCC (types 1 à 8) sous les référencesATCC VR-313, 314, 639-642, 768 et 769. On peut également citer les adénovirus murins FL (ATCC VR-550) et E20308 (ATCC VR- 528), l'adénovirus ovin type 5 (ATCC VR-1343), ou type 6 (ATCC VR-1340); l'adénovirus porcin 5359), ou les adénovirus simiens tels que notamment les adénovirus référencée à l'ATCC sous les numéros VR-591-594, 941-943, 195-203, etc.The adenoviruses of animal origin which can be used in the context of the present invention can be of canine, bovine, murine origin (example: Mavl, Beard et al., Virology 75 (1990) 81), ovine, porcine, avian or else simienne (example: after-sales service). More particularly, among the avian adenoviruses, mention may be made of serotypes 1 to 10 accessible to ATCC, such as for example the strains Phelps (ATCC VR-432), Fontes (ATCC VR-280), P7-A (ATCC VR- 827), IBH-2A (ATCC VR-828), J2-A (ATCC VR-829), T8-A (ATCC VR-830), K-ll (ATCC VR-921) or the strains referenced ATCC VR- 831 to 835. Among the bovine adenoviruses, it is possible to use the various known serotypes, and in particular those available at ATCC (types 1 to 8) under the references ATCC VR-313, 314, 639-642, 768 and 769. It is possible to use also mention the murine adenoviruses FL (ATCC VR-550) and E20308 (ATCC VR-528), the sheep adenovirus type 5 (ATCC VR-1343), or type 6 (ATCC VR-1340); porcine adenovirus 5359), or simian adenoviruses such as in particular adenoviruses referenced in the ATCC under the numbers VR-591-594, 941-943, 195-203, etc.
De préférence, parmi les différents adénovirus d'origine animale, on utilise dans le cadre de l'invention des adénovirus ou des régions d'adenovirus d'origine canine, et notamment toutes les souches des adénovirus CAV2 [souche manhattan ouPreferably, among the various adenoviruses of animal origin, adenoviruses or adenovirus regions of canine origin are used in the context of the invention, and in particular all the strains of the CAV2 adenoviruses [Manhattan strain or
A26/61 (ATCC VR-800) par exemple]. Les adénovirus canins ont fait l'objet deA26 / 61 (ATCC VR-800) for example]. Canine adenoviruses have been the subject of
- nombreuses études structurales. Ainsi, des cartes de restriction complètes des adénovirus CAV1 et CAV2 ont été décrites dans l'art antérieur (Spibey et al., J. Gen.- numerous structural studies. Thus, complete restriction maps of the CAV1 and CAV2 adenoviruses have been described in the prior art (Spibey et al., J. Gen.
Virol. 70 (1989) 165), et les gènes Ela, E3 ainsi que les séquences ITR ont été clones et séquences (voir notamment Spibey et al., Virus Res. 14 (1989) 241; Linné, Virus Res. 23 (1992) 119, WO 91/11525).Virol. 70 (1989) 165), and the Ela, E3 genes and the ITR sequences were cloned and sequenced (see in particular Spibey et al., Virus Res. 14 (1989) 241; Linné, Virus Res. 23 (1992) 119 , WO 91/11525).
Comme indiqué ci-avant, les adénovirus de la présente invention comportent une séquence d'ADN hétérologue. La séquence d'ADN hétérologue désigne toute séquence d'ADN introduite dans le virus recombinant, dont le transfert et/ou l'expression dans la cellule cible est recherchée.As indicated above, the adenoviruses of the present invention comprise a heterologous DNA sequence. The heterologous DNA sequence designates any DNA sequence introduced into the recombinant virus, the transfer and / or expression of which in the target cell is sought.
En particulier, la séquence d'ADN hétérologue peut comporter un ou plusieurs gènes thérapeutiques et/ou un ou plusieurs gènes codant pour des peptides antigéniques. Les gènes thérapeutiques qui peuvent ainsi être transférés sont tout gène dont la transcription et éventuellement la traduction dans la cellule cible génèrent des produits ayant un effet thérapeutique.In particular, the heterologous DNA sequence may contain one or more therapeutic genes and / or one or more genes coding for antigenic peptides. The therapeutic genes which can thus be transferred are any gene whose transcription and possibly translation into the target cell generate products having a therapeutic effect.
Il peut s'agir en particulier de gènes codant pour des produits protéiques ayant un effet thérapeutique. Le produit protéique ainsi codé peut être une protéine, un peptide, un acide aminé, etc. Ce produit protéique peut être homologue vis-à-vis de la cellule cible (c'est-à-dire un produit qui est normalement exprimé dans la cellule cible lorsque celle-ci ne présente aucune pathologie). Dans ce cas, l'expression dune protéine permet par exemple de pallier une expression insuffisante dans la cellule ou l'expression d'une protéine inactive ou fmblement active en raison d ne modification, ou encore de surexprimer ladite protéine. Le gène thérapeutique peut aussi coder pour un mutant dune protéine cellulaire, ayant une stabilité accrue, une activité modifiée, etc. Le produit protéique peut également être hétérologue vis-à-vis de la cellule cible.They may in particular be genes coding for protein products having a therapeutic effect. The protein product thus coded can be a protein, a peptide, an amino acid, etc. This protein product can be homologous with respect to the target cell (that is to say a product which is normally expressed in the target cell when the latter presents no pathology). In this case, the expression of a protein makes it possible, for example, to compensate for an insufficient expression in the cell or the expression of an inactive or weakly active protein due to modification, or even to overexpress said protein. The therapeutic gene can also code for a mutant of a cellular protein, having increased stability, modified activity, etc. The protein product can also be heterologous towards the target cell.
Dans ce cas, une protéine exprimée peut par exemple compléter ou apporter une activité déficiente dans la cellule lui permettant de lutter contre une pathologie.In this case, an expressed protein can for example supplement or provide a deficient activity in the cell allowing it to fight against a pathology.
Parmi les produits thérapeutiques au sens de la présente invention, on peut citer plus particulièrement les enzymes, les dérivés sanguins, les hormones, les lymphokines : interleukines, interférons, TNF, etc (FR 9203120), les facteurs de croissance, les neurotransmetteurs ou leurs précurseurs ou enzymes de synthèse, les facteurs trophiques : BDNF, CNTF, NGF, IGF, GMF, aFGF, bFGF, NT3, NT5, etc; les apolipoprotéines : ApoAI, ApoAIV, ApoE, etc (FR 93 05125), la dystrophine ou une minidystrophine (FR 9111947), les gènes suppresseurs de tumeurs : p53, Rb, Rapl A, DCC, k-rev, etc (FR 93 04745), les gènes codant pour des facteurs impliqués dans la coagulation : Facteurs Vu, VO, IX, etc.Among the therapeutic products within the meaning of the present invention, there may be mentioned more particularly enzymes, blood derivatives, hormones, lymphokines: interleukins, interferons, TNF, etc. (FR 9203120), growth factors, neurotransmitters or their precursors or synthetic enzymes, trophic factors: BDNF, CNTF, NGF, IGF, GMF, aFGF, bFGF, NT3, NT5, etc; apolipoproteins: ApoAI, ApoAIV, ApoE, etc (FR 93 05125), dystrophin or a minidystrophin (FR 9111947), tumor suppressor genes: p53, Rb, Rapl A, DCC, k-rev, etc (FR 93 04745 ), genes coding for factors involved in coagulation: Vu Factors, VO, IX, etc.
Le gène thérapeutique peut également être un gène ou une séquence antisens, dont l'expression dans la cellule cible permet de contrôler l'expression de gènes ou la transcription d'ARNm cellulaires. De telles séquences peuvent par exemple être transcrites, dans la cellule cible, en ARN complémentaires d'ARNm cellulaires et bloquer ainsi leur traduction en protéine, selon la technique décrite dans le brevet EP 140308.The therapeutic gene can also be an antisense gene or sequence, the expression of which in the target cell makes it possible to control the expression of genes or the transcription of cellular mRNAs. Such sequences can for example be transcribed, in the target cell, into RNAs complementary to cellular mRNAs and thus block their translation into protein, according to the technique described in patent EP 140308.
Comme indiqué plus haut, la séquence d'ADN hétérologue peut également comporter un ou plusieurs gènes codant pour un peptide antigénique, capable de générer chez l'homme une réponse immunitaire. Dans ce mode particulier de mise en oeuvre, l'invention permet donc la réalisation de vaccins permettant d'immuniser l'homme, notamment contre des microorganismes ou des virus. Il peut s'agir notamment de peptides antigéniques spécifiques du virus d'epstein barr, du virus HIN, du virus de l'hépatite B (EP 185 573), du virus de la pseudo-rage, ou encore spécifiques de tumeurs (EP 259 212).As indicated above, the heterologous DNA sequence may also contain one or more genes coding for an antigenic peptide capable of generating an immune response in humans. In this particular mode of implementation, the invention therefore makes it possible to produce vaccines making it possible to immunize humans, especially against microorganisms or viruses. These may in particular be antigenic peptides specific for the epstein barr virus, the HIN virus, the hepatitis B virus (EP 185 573), the pseudo-rabies virus, or even specific for tumors (EP 259 212).
Généralement, la séquence d'ADN hétérologue comprend également des séquences permettant l'expression du gène thérapeutique et/ou du gène codant pour le peptide antigénique dans la cellule infectée. Il peut s'agir des séquences qui sont naturellement responsables de l'expression du gène considéré lorsque ces séquences sont susceptibles de fonctionner dans la cellule infectée. Il peut également s'agir de séquences d'origine différente (responsables de l'expression d'autres protéines, ou même synthétiques). Notamment, il peut s'agir de séquences promotrices de gènes eucaryotes ou viraux. Par exemple, il peut s'agir de séquences promotrices issues du génome de la cellule que l'on désire infecter. De même, il peut s'agir de séquences promotrices issues du génome d'un virus, y compris l'adénovirus utilisé. A cet égard, on peut citer par exemple les promoteurs des gènes El A, MLP, CMN, RSN, etc. En outre, ces séquences d'expression peuvent être modifiées par addition de séquences d'activation, de régulation, etc. Par ailleurs, lorsque le gène inséré ne comporte pas de séquences d'expression, il peut être inséré dans le génome du virus défectif en aval d'une telle séquence. Par ailleurs, la séquence d'ADN hétérologue peut également comporter, en particulier en amont du gène thérapeutique, une séquence signal dirigeant le produit thérapeutique synthétisé dans les voies de sécrétion de la cellule cible. Cette séquence signal peut être la séquence signal naturelle du produit thérapeutique, mais il peut également s'agir de toute autre séquence signal fonctionnelle, ou d'une séquence signal artificielle.Generally, the heterologous DNA sequence also comprises sequences allowing the expression of the therapeutic gene and / or of the gene coding for the antigenic peptide in the infected cell. These may be sequences which are naturally responsible for the expression of the gene considered when these sequences are capable of functioning in the infected cell. It can also be sequences of different origin (responsible for the expression of other proteins, or even synthetic). In particular, they may be promoter sequences of eukaryotic or viral genes. For example, they may be promoter sequences originating from the genome of the cell which it is desired to infect. Likewise, they may be promoter sequences originating from the genome of a virus, including the adenovirus used. In this regard, mention may be made, for example, of promoters of the El A, MLP, CMN, RSN, etc. genes. In addition, these expression sequences can be modified by adding activation, regulation sequences, etc. Furthermore, when the inserted gene does not contain expression sequences, it can be inserted into the genome of the defective virus downstream of such a sequence. Furthermore, the heterologous DNA sequence may also comprise, in particular upstream of the therapeutic gene, a signal sequence directing the therapeutic product synthesized in the secretory pathways of the target cell. This signal sequence may be the natural signal sequence of the therapeutic product, but it may also be any other functional signal sequence, or an artificial signal sequence.
Comme indiqué ci-avant, les vecteurs de l'invention possèdent au moins l'un des gènes E2, E4, L1-L5 non fonctionnel. Le gène viral considéré peut être rendu non fonctionnel par toute technique connue de l'homme du métier, et notamment par suppression, substitution, délétion, ou addition d'une ou plusieurs bases dans le ou les gènes considérés. De telles modifications peuvent être obtenues in vitro (sur de l'ADN isolé) ou in situ, par exemple, au moyen des techniques du génie génétique, ou encore par traitement au moyen d'agents mutagènes.As indicated above, the vectors of the invention have at least one of the non-functional E2, E4, L1-L5 genes. The viral gene considered can be made non-functional by any technique known to a person skilled in the art, and in particular by deletion, substitution, deletion, or addition of one or more bases in the gene or genes considered. Such modifications can be obtained in vitro (on isolated DNA) or in situ, for example, using genetic engineering techniques, or alternatively by treatment with mutagenic agents.
Parmi les agents mutagènes, on peut citer par exemple les agents physiques tels que les rayonnements énergétiques (rayons X, g, ultra violet, etc.), ou les agents chimiques capables de réagir avec différents groupements fonctionnels des bases de l'ADN, et par exemple les agents alkylants [éthylméthane sulfonate (EMS), N-méthyl- N'-nitro-N-nitrosoguanidine, N-nitroquinoléine-1 -oxyde (NQO)], les agents bialkylants, les agents intercalants, etc. Par délétion on entend au sens de l'invention toute suppression du gène considéré. Il peut s'agir notamment de tout ou partie de la région codante dudit gène, et/ou de tout ou partie de la région promotrice de la transcription dudit gène. La suppression peut être effectuée par digestion au moyen d'enzymes de restriction appropriées, puis ligature, selon les techniques classiques de biologie moléculaire, ainsi qu'illustré dans les exemples.Among the mutagenic agents, mention may be made, for example, of physical agents such as energy radiation (X-rays, g, ultra violet, etc.), or agents chemicals capable of reacting with different functional groups of DNA bases, and for example alkylating agents [ethylmethane sulfonate (EMS), N-methyl- N'-nitro-N-nitrosoguanidine, N-nitroquinoline-1-oxide (NQO )], bialkylating agents, intercalating agents, etc. By deletion is meant within the meaning of the invention any deletion of the gene considered. It may especially be all or part of the coding region of said gene, and / or all or part of the region promoting the transcription of said gene. The deletion can be carried out by digestion using appropriate restriction enzymes, then ligation, according to standard molecular biology techniques, as illustrated in the examples.
Les modifications génétiques peuvent également être obtenues par disruption génique, par exemple selon le protocole initialement décrit par Rothstein [Meth. Enzymol. Q± (1983) 202]. Dans ce cas, tout ou partie de la séquence codante est préférentiellement perturbée pour permettre le remplacement, par recombinaison homologue, de la séquence génomique par une séquence non fonctionnelle ou mutante.Genetic modifications can also be obtained by gene disruption, for example according to the protocol initially described by Rothstein [Meth. Enzymol. Q ± (1983) 202]. In this case, all or part of the coding sequence is preferably disturbed to allow replacement, by homologous recombination, of the genomic sequence with a non-functional or mutant sequence.
La ou lesdites modifications génétiques peuvent être localisées dans la partie codante du gène concerné, ou en dehors de la région codante, et par exemple dans les régions responsables de l'expression et/ou de la régulation transcriptionelle desdits gènes. Le caractère non fonctionnel desdits gènes peut donc se manifester par la production d'une protéine inactive en raison de modifications structurales ou conformationelles, par l'absence de production, par la production dune protéinee ayant une activité altérée, ou encore par la production de la protéine naturelle à un niveau atténué ou selon un mode de régulation désiré. Par ailleurs, certaines altérations telles que des mutations ponctuelles sont par nature capables d'être corrigées ou atténuées par des mécanismes cellulaires. De telles altérations génétiques ont alors un intérêt limité au niveau industriel. Il est donc particulièrement préféré que le caractère non fonctionnel soit parfaitement stable ségrégationellement et/ou non-réversible. . De préférence, le gène est non fonctionnel en raison d'une délétion partielle ou totale.The said genetic modification (s) may be located in the coding part of the gene concerned, or outside the coding region, and for example in the regions responsible for the expression and / or transcriptional regulation of said genes. The non-functional character of said genes can therefore be manifested by the production of an inactive protein due to structural or conformational modifications, by the absence of production, by the production of a protein having an altered activity, or by the production of the natural protein at an attenuated level or according to a desired mode of regulation. In addition, certain alterations such as point mutations are by their nature capable of being corrected or attenuated by cellular mechanisms. Such genetic alterations are therefore of limited interest at the industrial level. It is therefore particularly preferred that the non-functional character be perfectly stable segregationally and / or non-reversible. . Preferably, the gene is non-functional due to a partial or total deletion.
Préférentiellement, les adénovirus recombinants défectifs de l'invention sont dépourvus de gènes tardifs d'adenovirus.Preferably, the defective recombinant adenoviruses of the invention are devoid of late adenovirus genes.
Un mode particulièrement avantageux de l'invention consiste en un adénovirus recombinant défectif comprenant : - les séquences ITR,A particularly advantageous embodiment of the invention consists of a defective recombinant adenovirus comprising: - ITR sequences,
- une séquence permettant l'encapsidation,- a sequence allowing the packaging,
- une séquence d'ADN hétérologue, et- a heterologous DNA sequence, and
- une région portant le gène ou une partie du gène E2. Un autre mode particulièrement avantageux de l'invention consiste en un adénovirus recombinant défectif comprenant :- a region carrying the gene or part of the E2 gene. Another particularly advantageous embodiment of the invention consists of a defective recombinant adenovirus comprising:
- les séquences ITR,- ITR sequences,
- une séquence permettant l'encapsidation,- a sequence allowing the packaging,
- une séquence d'ADN hétérologue, et - une région portant le gène ou une partie du gène E4.- a heterologous DNA sequence, and - a region carrying the gene or part of the E4 gene.
Toujours dans un mode particulièrement avantageux, les vecteurs de l'invention possèdent en outre un gène E3 fonctionnel sous contrôle d'un promoteur hétérologue. Plus préférentiellement, les vecteurs possèdent une partie du gène E3 permettant l'expression de la protéine gpl9K.Still in a particularly advantageous mode, the vectors of the invention also have a functional E3 gene under the control of a heterologous promoter. More preferably, the vectors have a part of the E3 gene allowing the expression of the protein gpl9K.
Les adénovirus recombinants défectifs selon l'invention peuvent être préparés de différentes façons.The defective recombinant adenoviruses according to the invention can be prepared in different ways.
Une première méthode consiste à transfecter l'ADN du virus recombinant défectif préparé in vitro (soit par ligature, soit sous forme de plasmide) dans une lignée cellulaire compétente, c'est-à-dire portant en trans toutes les fonctions nécessaires à la complémentation du virus défectif. Ces fonctions sont préférentiellement intégrées dans le génome de la cellule, ce qui permet d'éviter les risques de recombinaison, et confère une stabilité accrue à la lignée cellulaire. La préparation de telles lignées cellulaires est décrite dans les exemples.A first method consists in transfecting the DNA of the defective recombinant virus prepared in vitro (either by ligation or in the form of a plasmid) in a competent cell line, that is to say carrying in trans all the functions necessary for complementation of the defective virus. These functions are preferably integrated into the genome of the cell, which makes it possible to avoid the risks of recombination, and confers increased stability on the cell line. The preparation of such cell lines is described in the examples.
Une seconde approche consiste à co-transfecter dans une lignée cellulaire apppropriée l'ADN du virus recombinant défectif préparé in vitro (soit par ligature, soit sous forme de plasmide) et l'ADN d'un virus helper. Selon cette méthode, il n'est pas nécessaire de disposer d'une lignée cellulaire compétente capable de complémenter toutes les fonctions défectives de l'adénovirus recombinant. Une partie de ces fonctions est en effet complémentée par le virus helper. Ce virus helper doit lui-même être défectif et la lignée cellulaire porte en trans les fonctions nécessaires à sa complémentation. La préparation d'adenovirus recombinants défectifs de l'invention selon cette méthode est également illustrée dans les exemples. Parmi les lignées cellulaires utilisables dans le cadre de cette seconde approche, on peut citer notamment la lignée de rein embryonnaire humain 293, les cellules KB, les cellules Hela, MDCK, GHK, etc (Cf exemples).A second approach consists in co-transfecting into a suitable cell line the DNA of the defective recombinant virus prepared in vitro (either by ligation or in the form of a plasmid) and the DNA of a helper virus. According to this method, it is not necessary to have a competent cell line capable of complementing all the defective functions of the recombinant adenovirus. Part of these functions is indeed complemented by the helper virus. This helper virus must itself be defective and the cell line carries in trans the functions necessary for its complementation. The preparation of defective recombinant adenoviruses of the invention according to this method is also illustrated in the examples. Among the cell lines which can be used in the context of this second approach, there may be mentioned in particular the human embryonic kidney line 293, KB cells, Hela cells, MDCK, GHK, etc. (cf. examples).
Ensuite, les vecteurs qui se sont multipliés sont récupérés, purifiés et amplifiés selon les techniques classiques de biologie moléculaire.Then, the vectors which have multiplied are recovered, purified and amplified according to conventional techniques of molecular biology.
La présente invention concerne donc aussi les lignées cellulaires infectables par les adénovirus, comprenant, intégrées dans leur génome, les fonctions nécessaires à la complémentation d'un adénovirus recombinant défectif tel que décrit précédemment. En particulier, elle concerne les lignées cellulaires comportant, intégrées dans leur génome, les régions El et E2 (notamment la région codant pour la protéine 72K), et ou E4 et/ou le gène du récepteur aux glucocorticoïdes. Préférentiellement, ces lignées sont obtenues à partie de la lignée 293 ou gm DBP6.The present invention therefore also relates to cell lines infectable by adenoviruses, comprising, integrated into their genome, the functions necessary for the complementation of a defective recombinant adenovirus as described above. In particular, it relates to cell lines comprising, integrated into their genome, the E1 and E2 regions (in particular the region coding for the protein 72K), and or E4 and / or the glucocorticoid receptor gene. Preferably, these lines are obtained from line 293 or gm DBP6.
La présente invention concerne également toute composition pharmaceutique comprenant un ou plusieurs adénovirus recombinants défectifs tels que décrits précédemment. Les compositions pharmaceutiques de l'invention peuvent être formulées en vue d'une administration par voie topique, orale, parentérale, intranasale, intraveineuse, intramusculaire, sous-cutanée, intraoculaire, transdermique, etc.The present invention also relates to any pharmaceutical composition comprising one or more defective recombinant adenoviruses as described above. The pharmaceutical compositions of the invention can be formulated for topical, oral, parenteral, intranasal, intravenous, intramuscular, subcutaneous, intraocular, transdermal, etc. administration.
Préférentiellement, la composition pharmaceutique contient des véhicules pharmaceutiquement acceptables pour une formulation injectable. H peut s'agir en -particulier de solutions salines (phosphate monosodique, disodique, chlorure de sodium, potassium, calcium ou magnésium, etc, ou des mélanges de tels sels), stériles, isotoniques, ou de compositions sèches, notamment lyophilisées, qui, par addition selon le cas d'eau stérilisée ou de sérum physiologique, permettent la constitution de solutés injectables.Preferably, the pharmaceutical composition contains pharmaceutically acceptable vehicles for an injectable formulation. H can be, in particular, saline solutions (monosodium phosphate, disodium, sodium chloride, potassium, calcium or magnesium, etc., or mixtures of such salts), sterile, isotonic, or dry compositions, in particular lyophilized, which , by addition, as appropriate, of sterilized water or physiological saline, allow the constitution of injectable solutes.
Les doses de virus utilisées pour l'injection peuvent être adaptées en fonction de différents paramètres, et notamment en fonction du mode d'administration utilisé, de la pathologie concernée, du gène à exprimer, ou encore de la durée du traitement recherchée. D'une manière générale, les adénovirus recombinants selon l'invention sont formulés et administrés sous forme de doses comprises entre 104 et 1014 pfu/ml, et de préférence 106 à 1010 pfu/ml. Le terme pfu ("plaque forming unit") correspond au pouvoir infectieux d'une solution de virus, et est déterminé par infection d'une culture cellulaire appropriée, et mesure, généralement après 5 jours, du nombre de plages de cellules infectées. Les techniques de détermination du titre pfu d'une solution virale sont bien documentées dans la littérature.The doses of virus used for the injection can be adapted according to various parameters, and in particular according to the mode of administration used, the pathology concerned, the gene to be expressed, or even the duration of the treatment sought. In general, the recombinant adenoviruses according to the invention are formulated and administered in the form of doses of between 10 4 and 10 14 pfu / ml, and preferably 10 6 to 10 10 pfu / ml. The term pfu ("plaque forming unit") corresponds to the infectious power of a virus solution, and is determined by infection of an appropriate cell culture, and measures, generally after 5 days, the number of ranges of infected cells. The techniques for determining the pfu titer of a viral solution are well documented in the literature.
Selon la séquence d'ADN hétérologue insérée, les adénovirus de l'invention peuvent être utilisés pour le traitement ou la prévention de nombreuses pathologies, incluant les maladies génétiques (dystrophie, fibrose cystique, etc), les maladies neurogégénératives (alzheimer, parkinson, ALS, etc), les cancers, les pathologies liées aux désordres de la coagulation ou aux dyslipoprotéinémies, les pathologies liées aux infections virales (hépatites, SIDA, etc), etc.Depending on the heterologous DNA sequence inserted, the adenoviruses of the invention can be used for the treatment or prevention of many pathologies, including genetic diseases (dystrophy, cystic fibrosis, etc.), neurogenerative diseases (alzheimer, parkinson, ALS , etc.), cancers, pathologies linked to coagulation disorders or dyslipoproteinemias, pathologies linked to viral infections (hepatitis, AIDS, etc.), etc.
La présente invention sera plus complètement décrite à l'aide des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.The present invention will be more fully described with the aid of the following examples, which should be considered as illustrative and not limiting.
Légende des figuresLegend of figures
Figure 1 : Organisation génétique de l'adénovirus Ad5. La séquence complète de l'Ad5 est disponible sur base de données et permet à l'homme du métier de sélectionner ou de créer tout site de restriction, et ainsi d'isoler toute région du génome. Figure 2 : Carte de restriction de l'adénovirus CAV2 souche Manhattan (d'aprèsFigure 1: Genetic organization of the Ad5 adenovirus. The complete sequence of Ad5 is available on the database and allows those skilled in the art to select or create any restriction site, and thus to isolate any region of the genome. Figure 2: Restriction map of the CAV2 adenovirus strain Manhattan (from
Spibey et al précité).Spibey et al supra).
Figure 3 : Construction de virus défectifs de l'invention par ligature.Figure 3: Construction of defective viruses of the invention by ligation.
Figure 4 : Construction d'un virus recombinant portant le gène E4.Figure 4: Construction of a recombinant virus carrying the E4 gene.
Figure 5 : Construction d'un virus recombinant portant le gène E2. Figure 6 : Construction et représentation du plasmide pPY32.Figure 5: Construction of a recombinant virus carrying the E2 gene. Figure 6: Construction and representation of the plasmid pPY32.
Figure 7 : Représentation du plasmide pPY55.Figure 7: Representation of the plasmid pPY55.
Figure 8 : Représentation du plasmide p2.Figure 8: Representation of the plasmid p2.
Figure 9 : Représentation du plasmide intermédiaire utilisé pour la construction du plasmide pITRL5-E4. Figure 10 : Représentation du plasmide pITRL5-E4.Figure 9: Representation of the intermediate plasmid used for the construction of the plasmid pITRL5-E4. Figure 10: Representation of the plasmid pITRL5-E4.
Techniques générales de biologie moléculaireGeneral molecular biology techniques
Les méthodes classiquement utilisées en biologie moléculaire telles que les extractions préparatives d'ADN plasmidique, la centrifugation d'ADN plasmidique en gradient de chlorure de césium, l'électrophorèse sur gels d'agarose ou d'acrylamide, la purification de fragments d'ADN par électroélution, les extraction de protéines au phénol ou au phénol-chloroforme, la précipitation d'ADN en milieu salin par de l'éthanol ou de l'isopropanol, la transformation dans Escherichia coli, etc ... sont bien connues de l'homme de métier et sont abondament décrites dans la littérature [Maniatis T. et al., "Molecular Cloning, a Laboratory Manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1982; Ausubel F.M. et al. (eds), "Current Protocols in Molecular Biology", John Wiley & Sons, New York, 1987].Methods conventionally used in molecular biology such as preparative extractions of plasmid DNA, centrifugation of plasmid DNA in cesium chloride gradient, electrophoresis on agarose or acrylamide gels, purification of DNA fragments by electroelution, extraction of proteins with phenol or phenol-chloroform, precipitation of DNA in a saline medium with ethanol or isopropanol, transformation in Escherichia coli, etc. are well known to those skilled in the art and are abundantly described in the literature [Maniatis T. et al., "Molecular Cloning, a Laboratory Manual ", Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982; Ausubel FM et al. (eds), "Current Protocols in Molecular Biology", John Wiley & Sons, New York, 1987].
Les plasmides de type pBR322, pUC et les phages de la série M13 sont d'origine commerciale (Bethesda Research Laboratories).The pBR322, pUC and phage plasmids of the M13 series are of commercial origin (Bethesda Research Laboratories).
Pour les ligatures, les fragments d'ADN peuvent être séparés selon leur taille par électrophorèse en gels d'agarose ou d'acrylamide, extraits au phénol ou par un mélange phénol/chloroforme, précipités à l'éthanol puis incubés en présence de l'ADN ligase du phage T4 (Biolabs) selon les recommandations du fournisseur.For the ligations, the DNA fragments can be separated according to their size by electrophoresis in agarose or acrylamide gels, extracted with phenol or with a phenol / chloroform mixture, precipitated with ethanol and then incubated in the presence of the DNA ligase from phage T4 (Biolabs) according to the supplier's recommendations.
Le remplissage des extrémités 5' proéminentes peut être effectué par le fragment de Klenow de l'ADN Polymérase I d'E. coli (Biolabs) selon les spécifications du fournisseur. La destruction des extrémités 3' proéminentes est effectuée en présence de l'ADN Polymérase du phage T4 (Biolabs) utilisée selon les recommandations du fabricant. La destruction des extrémités 5' proéminentes est effectuée par un traitement ménagé par la nucléase SI.The filling of the protruding 5 ′ ends can be carried out by the Klenow fragment of DNA Polymerase I of E. coli (Biolabs) according to the supplier's specifications. The destruction of the protruding 3 ′ ends is carried out in the presence of the DNA polymerase of phage T4 (Biolabs) used according to the manufacturer's recommendations. The destruction of the protruding 5 ′ ends is carried out by gentle treatment with nuclease SI.
La mutagénèse dirigée in vitro par oligodéoxynucléotides synthétiques peut être effectuée selon la méthode développée par Taylor et al. [Nucleic Acids Res. 12 (1985) 8749-8764] en utilisant le kit distribué par Amersham.Mutagenesis directed in vitro by synthetic oligodeoxynucleotides can be carried out according to the method developed by Taylor et al. [Nucleic Acids Res. 12 (1985) 8749-8764] using the kit distributed by Amersham.
L'amplification enzymatique de fragments d'ADN par la technique dite de PCREnzymatic amplification of DNA fragments by the so-called PCR technique
[Eolymérase-catalyzed £hain .Reaction, Saiki R.K. et al., Science 230 (1985) 1350-[Eolymerase-catalyzed £ hate . Reaction, Saiki RK et al., Science 230 (1985) 1350-
1354; Mullis K.B. et Faloona F.A., Meth. Εnzym. 155 (1987) 335-350] peut être effectuée en utilisant un "DNA thermal cycler" (Perkin Elmer Cetus) selon les spécifications du fabricant.1354; Mullis K.B. and Faloona F.A., Meth. Εnzym. 155 (1987) 335-350] can be performed using a "DNA thermal cycler" (Perkin Elmer Cetus) according to the manufacturer's specifications.
La vérification des séquences nucléotidiques peut être effectuée par la méthode développée par Sanger et al. [Proc. Natl. Acad. Sci. USA, 74 (1977) 5463-5467] en utilisant le kit distribué par Amersham.Verification of the nucleotide sequences can be carried out by the method developed by Sanger et al. [Proc. Natl. Acad. Sci. USA, 74 (1977) 5463-5467] using the kit distributed by Amersham.
Lignées cellulaires utiliséesCell lines used
Dans les exemples qui suivent, les lignées cellulaires suivantes ont ou peuvent être utilisées :In the following examples, the following cell lines have or can be used:
- Lignée de rein embryonnaire humain 293 (Graham et al., J. Gen. Virol. 36 (1977) 59). Cette lignée contient notamment, intégrée dans son génome, la partie gauche du génome de l'adénovirus humain Ad5 (12 %). - Lignée de cellules humaines KB : Issue d'un carcinome épidermique humain, cette lignée est accessible à l'ATCC (réf. CCL17) ainsi que les conditions permettant sa culture.- Human embryonic kidney line 293 (Graham et al., J. Gen. Virol. 36 (1977) 59). This line contains in particular, integrated into its genome, the left part of the genome of the human adenovirus Ad5 (12%). - Human cell line KB: From a human epidermal carcinoma, this line is accessible to the ATCC (ref. CCL17) as well as the conditions allowing its culture.
- Lignée de cellules humaines Hela : Issue d'un carcinome de l'épithelium humain, cette lignée est accessible à l'ATCC (réf. CCL2) ainsi que les conditions permettant sa culture.- Human cell line Hela: From a carcinoma of the human epithelium, this line is accessible to the ATCC (ref. CCL2) as well as the conditions allowing its culture.
- Lignée de cellules canines MDCK : Les conditions de culture des cellules MDCK ont été décrites notamment par Macatney et al., Science 44 (1988) 9.- MDCK canine cell line: The culture conditions for MDCK cells have been described in particular by Macatney et al., Science 44 (1988) 9.
- Lignée de cellules gm DBP6 (Brough et al., Virology 190 (1992) 624). Cette lignée est constituée de cellules Hela portant le gène E2 d'adenovirus sous le contrôle du LTR de MMTV.- gm DBP6 cell line (Brough et al., Virology 190 (1992) 624). This line consists of Hela cells carrying the E2 gene of adenovirus under the control of the LTR of MMTV.
EXEMPLESEXAMPLES
Exemple 1Example 1
Cet exemple démontre la faisabilité d'un adénovirus recombinant dépourvu de l'essentiel des gènes viraux. Pour cela, une série de mutants de délétion dans l'adénovirus a été construite par ligation in vitro, et chacun de ces mutants a été co- transfecté avec un virus helper dans les cellules KB. Ces cellules ne permettant pas la propagation des virus défectifs pour El, la transcomplémentation porte sur la région El. Les différents mutants de délétion ont été préparés à partir de l'adénovirusThis example demonstrates the feasibility of a recombinant adenovirus lacking most of the viral genes. For this, a series of deletion mutants in the adenovirus was constructed by in vitro ligation, and each of these mutants was co-transfected with a helper virus in the KB cells. These cells do not allow the propagation of viruses defective for E1, the transcomplementation relates to the E1 region. The various deletion mutants were prepared from the adenovirus
Ad5 par digestion puis ligation in vitro. Pour cela, l'ADN viral d'Ad5 est isolé selon la technique décrite par Lipp et al. (J. Virol. 63 (1989) 5133), soumis à digestion en présence de différentes enzymes de restriction (Cf figure 3), puis le produit de la digestion est ligaturé en présence de T4 DNA ligase. La taille des différents mutants de délétion est ensuite contrôlée sur gel SDS agarose 0,8%. Ces mutants sont ensuite cartographiés (Cf figure 3). Ces différents mutants comportent les régions suivantes : mtl : Ligation entre les fragments d'Ad5 0-20642(SauI) et (SauI)33797-35935 mt2 : Ligation entre les fragments d'Ad5 0-19549(NdeI) et (Ndel)31089-35935 mt3 : Ligation entre les fragments d'Ad5 0-10754(AatII) et (AatII)25915-35935 mt4 : Ligation entre les fragments d'Ad5 0-1131 l(MluI) et (MluI)24392-35935 mt5 : Ligation entre les fragments d'Ad5 0-9462(SalI) et (XhoI)29791-35935 mt6 : Ligation entre les fragments d'Ad5 0-5788(XhoI) et (XhoI)29791-35935 mt7 : Ligation entre les fragments d'Ad5 0-3665(SphI) et (Sphl)31224-35935 Chacun des mutants préparés ci-dessus a été co-transfecté avec l'ADN viral de Ad.RSVβGal (Stratford-Perricaudet et al., J.Clin.Invest. 90 (1992) 626) dans les cellules KB, en présence de phosphate de calcium. Les cellules ont été récoltées 8 jours après la transfection, et les surnageants de culture ont été récoltés puis amplifiés sur cellules KB jusqu'à l'obtention de stocks de 50 boites pour chaque transfection. A partir de chaque échantillon, l'ADN épisomique a été isolé et séparé sur gradient de chlorure de césium. Deux bandes distinctes de virus ont été observées dans chaque cas, prélevées et analysées. La plus lourde correspond à l'ADN viral de Ad.RSVβGal, et la plus légère à l'ADN du virus recombinant généré par ligation (figure 3). Le titre obtenu pour cette dernière est d'environ 108 pfù/ml.Ad5 by digestion then ligation in vitro. For this, the Ad5 viral DNA is isolated according to the technique described by Lipp et al. (J. Virol. 63 (1989) 5133), subjected to digestion in the presence of different restriction enzymes (cf. FIG. 3), then the digestion product is ligated in the presence of T4 DNA ligase. The size of the various deletion mutants is then checked on 0.8% SDS agarose gel. These mutants are then mapped (see FIG. 3). These different mutants include the following regions: mtl: Ligation between the fragments of Ad5 0-20642 (SauI) and (SauI) 33797-35935 mt2: Ligation between the fragments of Ad5 0-19549 (NdeI) and (Ndel) 31089 -35935 mt3: Ligation between Ad5 fragments 0-10754 (AatII) and (AatII) 25915-35935 mt4: Ligation between Ad5 fragments 0-1131 l (MluI) and (MluI) 24392-35935 mt5: Ligation between Ad5 fragments 0-9462 (SalI) and (XhoI) 29791-35935 mt6: Ligation between Ad5 fragments 0-5788 (XhoI) and (XhoI) 29791-35935 mt7: Ligation between Ad5 fragments 0-3665 (SphI) and (Sphl) 31224-35935 Each of the mutants prepared above was co-transfected with the viral DNA of Ad.RSVβGal (Stratford-Perricaudet et al., J. Clin.Invest. 90 (1992) 626) in KB cells, in the presence of phosphate calcium. The cells were harvested 8 days after transfection, and the culture supernatants were harvested and then amplified on KB cells until stocks of 50 dishes were obtained for each transfection. From each sample, the episomal DNA was isolated and separated on a cesium chloride gradient. Two distinct bands of virus were observed in each case, sampled and analyzed. The heaviest corresponds to the viral DNA of Ad.RSVβGal, and the lightest corresponds to the DNA of the recombinant virus generated by ligation (FIG. 3). The titer obtained for the latter is approximately 10 8 pfu / ml.
Une seconde série de mutants de délétion dans l'adénovirus a été construite par ligation in vitro selon la même méthodologie. Ces différents mutants comportent les régions suivantes : mt8 : Ligation entre les fragments 0-4623 (Apal) d'Ad RSVBGal et (Apal)31909- 35935 d'Ad5. mt9 : Ligation entre les fragments 0-10178(BglII) d'Ad RSVβGal et (BamHI)21562- 35935 d"Ad5.A second series of deletion mutants in the adenovirus was constructed by in vitro ligation according to the same methodology. These different mutants include the following regions: mt8: Ligation between fragments 0-4623 (Apal) of Ad RSVBGal and (Apal) 31909- 35935 of Ad5. mt9: Ligation between fragments 0-10178 (BglII) of Ad RSVβGal and (BamHI) 21562- 35935 of "Ad5.
Ces mutants, portant le gène LacZ sous contrôle du promoteur LTR du virus RSV, sont ensiute co-transfectés dans les cellules 293 en présence de l'ADN viral de H2dl808 (Weinberg et al., J. Virol. 57 (1986) 833), qui est délété de la région E4. Selon cette seconde technique, la transcomplémentation porte sur E4 et non plus sur El. Cette technique permet ainsi de générer, comme décrit ci-dessus, des virus recombinants ne possédant comme gène viral que la région E4.These mutants, carrying the LacZ gene under the control of the RSV virus LTR promoter, are then co-transfected in 293 cells in the presence of the viral DNA of H2dl808 (Weinberg et al., J. Virol. 57 (1986) 833) , which is deleted from the E4 region. According to this second technique, the transcomplementation relates to E4 and no longer to El. This technique thus makes it possible to generate, as described above, recombinant viruses possessing only the E4 region as viral gene.
Exemnle 2Claim 2
Cet exemple décrit la préparation d'adenovirus recombinants défectifs selon l'invention par co-transfection, avec un virus helper, de l'ADN du virus recombinant incorporé à un plasmide.This example describes the preparation of defective recombinant adenoviruses according to the invention by co-transfection, with a helper virus, of the DNA of the recombinant virus incorporated into a plasmid.
Pour cela, un plasmide portant les ITR jointives de l'Ad5, la séquence d'encapsidation, le gène E4 sous contrôle de son propre promoteur et, comme gène hétérologue, le gène LacZ sous contrôle du promoteur LTR du virus RSV a été construit (figure 4). Ce plasmide, désigné pE4Gal a été obtenu par clonage et ligature des fragments suivants (voir figure 4) : - fragment HindIII-SacII issu du plasmide pFG144 (Graham et al, EMBO J. 8 (1989) 2077). Ce fragment porte les séquences ITR de l'Ad5 en tête à queue et la séquence d'encapsidation : fragment Hindiπ (34920)-SacII (352).For this, a plasmid carrying the adjoining ITRs of Ad5, the packaging sequence, the E4 gene under the control of its own promoter and, as a heterologous gene, the LacZ gene under the control of the LTR promoter of the RSV virus was constructed ( figure 4). This plasmid, designated pE4Gal, was obtained by cloning and ligation of the following fragments (see FIG. 4): - HindIII-SacII fragment from the plasmid pFG144 (Graham et al, EMBO J. 8 (1989) 2077). This fragment carries the ITR sequences of Ad5 head-to-tail and the packaging sequence: Hindiπ fragment (34920) -SacII (352).
- fragment de l'Ad5 compris entre les sites SacII (localisé au niveau de la paire de bases 3827) et PstI (localisé au niveau de la paire de bases 4245);- Ad5 fragment between the SacII sites (located at the base pair 3827) and PstI (located at the base pair 4245);
- fragment de pSP 72 (Promega) compris entre les sites PstI (pb 32) et Sali (pb 34);- fragment of pSP 72 (Promega) comprised between the PstI (pb 32) and Sali (pb 34) sites;
- fragment Xhol-Xbal du plasmide pAdLTR GalLX décrit dans Stratford- Perricaudet et al (JCI 90 (1992) 626). Ce fragment porte le gène LacZ sous contrôle du LTR du virus RSV.- Xhol-Xbal fragment of the plasmid pAdLTR GalLX described in Stratford-Perricaudet et al (JCI 90 (1992) 626). This fragment carries the LacZ gene under the control of the LTR of the RSV virus.
- fragment Xbal (pb 40) - Ndel (pb 2379) du plasmide pSP 72;- Xbal fragment (bp 40) - NdeI (bp 2379) of the plasmid pSP 72;
- fragment Ndel (pb 31089) - Hindm (pb 34930) de l'Ad5. Ce fragment localisé dans l'extrémité droite du génome de l'Ad5 contient la région E4 sous contrôle de son propre promoteur. Il a été clone au niveau des sites Ndel (2379) du plasmide pSP 72 et HindlII du premier fragment.- Ndel fragment (bp 31089) - Hindm (bp 34930) of Ad5. This fragment located in the right end of the Ad5 genome contains the E4 region under the control of its own promoter. It was cloned at the NdeI (2379) sites of the plasmid pSP 72 and HindIII of the first fragment.
Ce plasmide a été obtenu par clonage des différents fragments dans les régions indiquées du plasmide pSP 72. D est entendu que des fragments équivalents peuvent être obtenus par l'homme du métier à partir d'autres sources.This plasmid was obtained by cloning of the different fragments in the regions indicated of the plasmid pSP 72. It is understood that equivalent fragments can be obtained by a person skilled in the art from other sources.
Le plasmide pE4Gal est ensuite co-transfecté avec l'ADN du virus H2dl808 dans les cellules 293 en présence de phosphate de calcium. Le virus recombinant est ensuite préparé comme décrit dans l'exemple 1. Ce virus porte, comme seul gène viral, le gène E4 de l'adénovirus*Ad5 (figure 4). Son génome a une taille de 12 kb environ, ce qui permet l'insertion d'ADN hétérologue de très grande taille (jusqu'à 20 kb). Ainsi, l'homme du métier peut aisément remplacer le gène LacZ par tout autre gène thérapeutique tels que ceux mentionnés plus haut. Par ailleurs, ce virus comporte certaines séquences issues du plasmide pSP 72, qui peuvent être éliminées par les techniques classiques de biologie moléculaires si nécessaire.The plasmid pE4Gal is then co-transfected with the DNA of the H2dl808 virus in the 293 cells in the presence of calcium phosphate. The recombinant virus is then prepared as described in Example 1. This virus carries, as the only viral gene, the E4 gene of the adenovirus * Ad5 (FIG. 4). Its genome is approximately 12 kb in size, which allows the insertion of very large heterologous DNA (up to 20 kb). Thus, a person skilled in the art can easily replace the LacZ gene with any other therapeutic gene such as those mentioned above. Furthermore, this virus contains certain sequences originating from the plasmid pSP 72, which can be eliminated by conventional molecular biology techniques if necessary.
Exemple 3Example 3
Cet exemple décrit la préparation d'un autre adénovirus recombinant défectif selon l'invention par co-transfection, avec un virus helper, de l'ADN du virus recombinant incorporé à un plasmide.This example describes the preparation of another defective recombinant adenovirus according to the invention by co-transfection, with a helper virus, of the DNA of the recombinant virus incorporated into a plasmid.
Pour cela, un plasmide portant les ITR jointives de l'Ad5, la séquence d'encapsidation, le gène E2 de l'Ad2 sous contrôle de son propre promoteur et, comme gène hétérologue, le gène LacZ sous contrôle du promoteur LTR du virus RSV a été construit (figure 5). Ce plasmide, désigné pE2Gal a été obtenu par clonage et ligature des fragments suivants (voir figure 5) :For this, a plasmid carrying the adjoining ITRs of Ad5, the packaging sequence, the E2 gene of Ad2 under the control of its own promoter and, as heterologous gene, the LacZ gene under the control of the LTR promoter of the RSV virus was constructed (FIG. 5). This plasmid, designated pE2Gal, was obtained by cloning and ligation of the following fragments (see FIG. 5):
- fragment HindIII-SacII issu du plasmide pFG144 (Graham et al, EMBO J. 8 (1989) 2077). Ce fragment porte les séquences ITR de l'Ad5 en tête à queue et la séquence d'encapsidation : fragment HindIII (34920)-SacII (352). Il a été clone, avec le fragment suivant, au niveau des sites HindIII (16) - PstI (32) du plasmide pSP 72.- HindIII-SacII fragment from the plasmid pFG144 (Graham et al, EMBO J. 8 (1989) 2077). This fragment carries the ITR sequences of Ad5 head to tail and the packaging sequence: HindIII fragment (34920) -SacII (352). It was cloned, with the following fragment, at the HindIII (16) - PstI (32) sites of the plasmid pSP 72.
- fragment de l'Ad5 compris entre les sites SacII (localisé au niveau de la paire de bases 3827) et PstI (localisé au niveau de la paire de bases 4245). Ce fragment a été clone au niveau du site SacII du fragment précédent et du site PstI (32) du plasmide pSP 72.- Ad5 fragment between the SacII sites (located at the base pair 3827) and PstI (located at the base pair 4245). This fragment was cloned at the SacII site of the preceding fragment and at the PstI site (32) of the plasmid pSP 72.
- fragment de pSP 72 (Promega) compris entre les sites PstI (pb 32) et Sali (pb 34);- fragment of pSP 72 (Promega) comprised between the PstI (pb 32) and Sali (pb 34) sites;
- fragment Xhol-Xbal du plasmide pAdLTR GalIX décrit dans Stratford- Pemcaudet et al (JCI 90 (1992) 626). Ce fragment porte le gène LacZ sous contrôle du LTR du virus RSV. Il a été clone au niveau des sites Sali (34) et Xbal du plasmide pSP 72.- Xhol-Xbal fragment of the plasmid pAdLTR GalIX described in Stratford-Pemcaudet et al (JCI 90 (1992) 626). This fragment carries the LacZ gene under the control of the LTR of the RSV virus. It was cloned at the SalI (34) and Xbal sites of the plasmid pSP 72.
- fragment de pSP 72 (Promega) compris entre les sites Xbal (pb 34) et Bamffl (pb 46); - fragment Bamffl (pb 21606) - Smal (pb 27339) de l'Ad2. Ce fragment du génome de l'Ad2 contient la région E2 sous contrôle de son propre promoteur. Il a été clone au niveau des sites BamHI (46) et EcoRV du plasmide pSP 72.- fragment of pSP 72 (Promega) between the Xbal (bp 34) and Bamffl (bp 46) sites; - Bamffl fragment (bp 21606) - Smal (bp 27339) of Ad2. This fragment of the Ad2 genome contains the E2 region under the control of its own promoter. It was cloned at the BamHI (46) and EcoRV sites of the plasmid pSP 72.
- fragment EcoRV (pb 81) - HindIII (pb 16) du plasmide pSP 72.- EcoRV fragment (bp 81) - HindIII (bp 16) of the plasmid pSP 72.
Ce plasmide a été obtenu par clonage des différents fragments dans les régions indiquées du plasmide pSP 72. Il est entendu que des fragments équivalents peuvent être obtenus par l'homme du métier à partir d'autres sources.This plasmid was obtained by cloning of the different fragments in the regions indicated of the plasmid pSP 72. It is understood that equivalent fragments can be obtained by a person skilled in the art from other sources.
Le pE2Gal plasmide est ensuite co-transfecté avec l'ADN du virus H2dl802 dépourvu de la région E2 (Rice et al. J. Virol. 56 (1985) 767) dans les cellules 293, en présence de phosphate de calcium. Le virus recombinant est ensuite préparé comme décrit dans l'exemple 1. Ce virus porte, comme seul gène viral, le gène E2 de l'adénovirus Ad2 (figure 5). Son génome a une taille de 12 kb environ, ce qui permet l'insertion d'ADN hétérologue de très grande taille (jusqu'à 20 kb). Ainsi, l'homme du métier peut aisément remplacer le gène LacZ par tout autre gène thérapeutique tels que ceux mentionnés plus haut. Par ailleurs, ce virus comporte certaines séquences issues du plasmide intermédiaire, qui peuvent être éliminées par les techniques classiques de biologie moléculaires si nécessaire.The pE2Gal plasmid is then co-transfected with the DNA of the H2dl802 virus lacking the E2 region (Rice et al. J. Virol. 56 (1985) 767) in 293 cells, in the presence of calcium phosphate. The recombinant virus is then prepared as described in Example 1. This virus carries, as the only viral gene, the E2 gene of the adenovirus Ad2 (FIG. 5). Its genome is approximately 12 kb in size, which allows the insertion of very large heterologous DNA (up to 20 kb). Thus, a person skilled in the art can easily replace the LacZ gene with any other therapeutic gene such as those mentioned above. In addition, this virus contains certain sequences from the intermediate plasmid, which can be eliminated by conventional molecular biology techniques if necessary.
Exemple 4Example 4
Cet exemple décrit la construction de lignées cellulaires complémentantes pour les régions El, E2 et/ou E4 des adénovirus. Ces lignées permettent la construction d'adenovirus recombinants selon l'invention délétés pour ces régions, sans avoir recours à un virus helper. Ces virus sont obtenus par recombinaison in vivo, et peuvent comporter des séquences hétérologues importantes.This example describes the construction of complementary cell lines for the E1, E2 and / or E4 regions of the adenoviruses. These lines allow the construction of recombinant adenoviruses according to the invention deleted for these regions, without using a helper virus. These viruses are obtained by recombination in vivo, and can contain important heterologous sequences.
Dans les lignées cellulaires décrites, les régions E2 et E4, potentiellement cytotoxiques, sont placées sous le contrôle d'un promoteur inductible : le LTR de MMTV (Pharmacia), qui est induit par la dexaméthasone, soit natif, soit la forme minimale décrite dans PNAS 90 (1993) 5603; ou le système repressible par la tétracycline décrit par Gossen et Bϋjard (PNAS 89 (1992) 5547). Il est entendu que d'autres promoteurs peuvent être utilisés, et notamment des variants du LTR de MMTV portant par exemple des régions hétérologues de régulation (région "enhancer" notamment). Les lignées de l'invention ont été construites par transfection des cellules correspondantes, en présence de phosphate de calcium, par un fragment d'ADN portant les gènes indiqués (régions d'adenovirus et/ou gène du récepteur aux glucocorticoïdes) sous le contrôle d'un promoteur de la transcription et d'un terminateur (site de polyadénylation). Le terminateur peut être soit le terminateur naturel du gène transfecté, soit un terminateur différent comme par exemple le terminateur du messager précoce du virus SV40. Avantageusement, le fragment d'ADN porte également un gène permettant la sélection des cellules transformées, et par exemple le gène de la résistance à la généticine. Le gène de résistance peut également être porté par un fragment d'ADN différent, co-transfecté avec le premier. Après transfection, les cellules tranformées sont sélectionnées et leur ADN estvanalysé pour vérifier l'intégration du fragment d'ADN dans le génome. Cette technique permet d'obtenir les lignées cellulaires suivantes :In the cell lines described, the potentially cytotoxic E2 and E4 regions are placed under the control of an inducible promoter: the LTR of MMTV (Pharmacia), which is induced by dexamethasone, either native or the minimal form described in PNAS 90 (1993) 5603; or the system repressible by tetracycline described by Gossen and Bϋjard (PNAS 89 (1992) 5547). It is understood that other promoters can be used, and in particular variants of the LTR of MMTV carrying, for example, heterologous regulatory regions ("enhancer" region in particular). The lines of the invention were constructed by transfection of the corresponding cells, in the presence of calcium phosphate, with a DNA fragment carrying the indicated genes (adenovirus regions and / or glucocorticoid receptor gene) under the control of 'a transcription promoter and a terminator (polyadenylation site). The terminator can be either the natural terminator of the transfected gene, or a different terminator, for example the terminator of the SV40 virus early messenger. Advantageously, the DNA fragment also carries a gene allowing the selection of transformed cells, and for example the gene for resistance to geneticin. The resistance gene can also be carried by a different DNA fragment, co-transfected with the first. After transfection, the transformed cells are selected and their DNA is analyzed to verify the integration of the DNA fragment into the genome. This technique makes it possible to obtain the following cell lines:
1. Cellules 293 possédant le gène de la 72K de la région E2 d'Ad5 sous contrôle du LTR de MMTV;1. 293 cells possessing the 72K gene of the E2 region of Ad5 under the control of the LTR of MMTV;
2. Cellules 293 possédant le gène de la 72K de la région E2 d'Ad5 sous contrôle du LTR de MMTV et le gène du récepteur aux glucocorticoïdes;2. 293 cells possessing the 72K gene from the E2 region of Ad5 under the control of the LTR of MMTV and the glucocorticoid receptor gene;
3. Cellules 293 possédant le gène de la 72K de la région E2 d'Ad5 sous contrôle du LTR de MMTV et la région E4 sous contrôle du LTR de MMTV; 4. Cellules 293 possédant le gène de la 72K de la région E2 d'Ad5 sous contrôle du LTR de MMTV, la région E4 sous contrôle du LTR de MMTV, et le gène du récepteur aux glucocorticoïdes;3. 293 cells possessing the 72K gene of the E2 region of Ad5 under the control of the LTR of MMTV and the E4 region under the control of the LTR of MMTV; 4. 293 cells possessing the 72K gene of the E2 region of Ad5 under the control of the LTR of MMTV, the E4 region under the control of the LTR of MMTV, and the gene for the glucocorticoid receptor;
5. Cellules 293 possédant la région E4 sous contrôle du LTR de MMTV; 6. Cellules 293 possédant la région E4 sous contrôle du LTR de MMTV et le gène du récepteur aux glucocorticoïdes;5. 293 cells possessing the E4 region under the control of the LTR of MMTV; 6. 293 cells having the E4 region under the control of the MMTV LTR and the glucocorticoid receptor gene;
7. Cellules gm DBP6 possédant les régions El A et E1B sous contrôle de leur propre promoteur;7. gm DBP6 cells possessing the El A and E1B regions under the control of their own promoter;
8. Cellules gm DBP6 possédant les régions El A et E1B sous contrôle de leur propre promoteur et la région E4 sous contrôle du LTR de MMTV.8. gm DBP6 cells possessing the El A and E1B regions under the control of their own promoter and the E4 region under the control of the LTR of MMTV.
Exemple 5Example 5
Cet exemple décrit la préparation d'adenovirus recombinants défectifs selon l'invention dont le génome est délété des gènes El, E3 et E4. Selon un mode avantageux de réalisation, illustré dans cet exemple et dans l'exemple 3 notamment, le génome des adénovirus recombinants de l'invention est modifié de sorte que les gènes El et E4 au moins soient non-fonctionnels. De tels adénovirus possèdent tout d'abord une capacité d'incorporation de gènes hétérologues importante. Par ailleurs, ces vecteurs présentent une sécurité élevée en raison de la délétion de la région E4, qui est impliquée dans la régulation de l'expression des gènes tardifs, dans la stabilité des ARN nucléaires tardifs, dans l'extinction de l'expression des protéines de la cellule hôte et dans l'efficacité de la réplication de l'ADN viral. Ces vecteurs possèdent donc un bruit de fond de transcription et une expression de gènes viraux très réduits. Enfin, de manière particulièrement avantageuse, ces vecteurs peuvent être produits à des titres comparables aux adénovirus sauvages.This example describes the preparation of defective recombinant adenoviruses according to the invention, the genome of which is deleted from the El, E3 and E4 genes. According to an advantageous embodiment, illustrated in this example and in example 3 in particular, the genome of the recombinant adenoviruses of the invention is modified so that the genes E1 and E4 at least are non-functional. First of all, such adenoviruses have a significant capacity for incorporating heterologous genes. Furthermore, these vectors exhibit high security due to the deletion of the E4 region, which is involved in the regulation of the expression of late genes, in the stability of late nuclear RNAs, in the extinction of the expression of host cell proteins and in the efficiency of viral DNA replication. These vectors therefore have very reduced transcription background noise and expression of viral genes. Finally, in a particularly advantageous manner, these vectors can be produced in titles comparable to wild adenoviruses.
Ces adénovirus ont été préparés à partir du plasmide pPY55, portant la partie droite modifiée du génome de l'adénovirus Ad5, soit par co-transfection avec un plasmide helper (voir également exemples 1, 2 et 3), soit au moyen d'une lignée complémentante (exemple 4).These adenoviruses were prepared from the plasmid pPY55, carrying the modified right part of the genome of the adenovirus Ad5, either by co-transfection with a helper plasmid (see also examples 1, 2 and 3), or by means of a complementary line (example 4).
5.1 Construction du plasmide pPY555.1 Construction of the plasmid pPY55
a) Construction du plasmide pPY32 Le fragment Avrll-Bcll du plasmide pFG144 [F.L. Graham et al. EMBO J. 8 (1989) 2077-2085], correspondant à l'extrémité droite du génome de l'adénovirus Ad5, a d'abord été clone entre les sites Xbal et BamHI du vecteur pIC19H, préparé à partir d'un contexte dam-. Ceci génère le plasmide pPY23. Une caractéristique intéressante du plasmide pPY23 est que le site Sali provenant du multisite de clonage du vecteur pIC19H reste unique et qu'il est localisé à coté de l'extrémité droite du génome de l'adénovirus Ad5. Le fragment Haelϋ-Sall du plasmide pPY23 qui contient l'extrémité droite du génome de l'adénovirus Ad5, à partir du site Haeiπ localisé en position 35614, a ensuite été clone entre les sites EcoRV et Xhol du vecteur pIC20H, ce qui génère le plasmide pPY29. Une caractéristique intéressante de ce plasmide est que les sites Xbal et Clal provenant du multisite de clonage du vecteur pIC20H sont localisés à coté de la jonction EcoRV/Haelϋ résultant du clonage. De plus cette jonction modifie le contexte nucléotidique immédiatement adjacent au site Clal qui est maintenant devenu méthylable dans un contexte dam+. Le fragment Xbal(30470)- MaeII(32811) du génome de l'adénovirus Ad5 a ensuite été clone entre les sites Xbal et Clal du plasmide pPY29 préparé à partir d'un contexte dam-, ce qui génère le plasmide pPY30. Le fragment SstI du plasmide pPY30, qui correspond à la séquence du génome de l'adénovirus Ad5 du site SstI en position 30556 jusqu'à l'extrémité droite a enfin été clone entre les sites SstI du vecteur pIC20H, ce qui génère le plasmide pPY31, dont une carte de restriction de l'insert localisé entre les sites HindIII est donnée à la Figure 6.a) Construction of the plasmid pPY32 The Avrll-Bcll fragment of the plasmid pFG144 [FL Graham et al. EMBO J. 8 (1989) 2077-2085], corresponding to the right end of the genome of the adenovirus Ad5, was first cloned between the Xbal and BamHI sites of the vector pIC19H, prepared from a dam context -. This generates the plasmid pPY23. An interesting characteristic of the plasmid pPY23 is that the SalI site originating from the cloning multisite of the vector pIC19H remains unique and that it is located next to the right end of the genome of the Ad5 adenovirus. The Haelϋ-Sall fragment of the plasmid pPY23 which contains the right end of the genome of the adenovirus Ad5, from the Haeiπ site located at position 35614, was then cloned between the EcoRV and Xhol sites of the vector pIC20H, which generates the plasmid pPY29. An interesting characteristic of this plasmid is that the Xbal and ClaI sites originating from the cloning multisite of the vector pIC20H are located next to the EcoRV / Haelϋ junction resulting from the cloning. In addition, this junction modifies the nucleotide context immediately adjacent to the Clal site which has now become methylable in a dam + context. The Xbal (30470) - MaeII (32811) fragment of the Ad5 adenovirus genome was then cloned between the Xbal and ClaI sites of the plasmid pPY29 prepared from a dam context, which generates the plasmid pPY30. The SstI fragment of the plasmid pPY30, which corresponds to the genome sequence of the Ad5 adenovirus from the SstI site at position 30556 to the right end, was finally cloned between the SstI sites of the vector pIC20H, which generates the plasmid pPY31 , a restriction map of the insert located between the HindIII sites is given in Figure 6.
Le plasmide pPY32 a été obtenu après digestion partielle du plasmide pPY31 par BglII, suivie dune digestion totale par BamHI, puis religature. Le plasmide pPY32 correspond donc à la délétion du génome de l'adénovirus Ad5 située entre le site BamHI du plasmide pPY31 et le site BglII localisé en position 30818. Une carte de restriction du fragment HindIII du plasmide pPY32 est donnée à la Figure 6. Une caractéristique du plasmide pPY32 est qu'il possède des sites Sali et Xbal uniques.Plasmid pPY32 was obtained after partial digestion of plasmid pPY31 with BglII, followed by total digestion with BamHI, then religation. The plasmid pPY32 therefore corresponds to the deletion of the genome of the Ad5 adenovirus located between the BamHI site of the plasmid pPY31 and the BglII site located at position 30818. A restriction map of the HindIII fragment of the plasmid pPY32 is given in FIG. 6. A characteristic of the plasmid pPY32 is that it has unique SalI and Xbal sites.
b) Construction du plasmide pPY47b) Construction of the plasmid pPY47
Le fragment BamHI(21562)-XbaI(28592) du génome de l'adénovirus Ad5 a tout d'abord été clone entre les sites BamHI et Xbal du vecteur plC19H préparé à partir d'un contexte dam-, ce qui génère le plasmide pPY17. Ce plasmide contient donc un fragment HindIII (26328)-BglII(28133) du génome de l'adénovirus Ad5, qui peut être clone entre les sites HindIII et BglII du vecteur pIC20R, pour générer le plasmide pPY34. Une caractéristique de ce plasmide est que le site BamHI provenant du multisite de clonage est localisé à proximité immédiate du site HindIII(26328) du génome de l'adénovirus Ad5.The BamHI (21562) -XbaI (28592) fragment of the Ad5 adenovirus genome was first of all cloned between the BamHI and Xbal sites of the vector plC19H prepared from a dam context, which generates the plasmid pPY17. . This plasmid therefore contains a HindIII (26328) -BglII (28133) fragment of the genome of the adenovirus Ad5, which can be cloned between the HindIII and BglII sites of the vector pIC20R, to generate the plasmid pPY34. A characteristic of this plasmid is that the BamHI site originating from the cloning multisite is located in the immediate vicinity of the HindIII site (26328) of the genome of the Ad5 adenovirus.
Le fragment Bamffl (21562)-Hindm(26328) du génome de l'adénovirus Ad5 provenant du plasmide pPY17 a ensuite été clone entre les sites BamHI et HindIII du plasmide pPY34, ce qui génère le plasmide pPY39. Le fragment BamHI-Xbal du plasmide pPY39 préparé à partir d'un contexte dam-, contenant la partie du génome de l'adénovirus Ad5 comprise entre les sites BamHI(21562) et BglII(28133), a ensuite été clone entre les sites Bamffl et Xbal du vecteur pIC19H préparé à partir d'un contexte dam-. Ceci génère le plasmide pPY47 dont une caractéristique intéressante est que le site Sali provenant du multisite de clonage est localisé à proximité du site HindIII (figure 7).The BamffI (21562) -Hindm (26328) fragment of the genome of the Ad5 adenovirus originating from the plasmid pPY17 was then cloned between the BamHI and HindIII sites of the plasmid pPY34, which generates the plasmid pPY39. The BamHI-Xbal fragment of the plasmid pPY39 prepared from a dam- context, containing the part of the genome of the adenovirus Ad5 between the BamHI (21562) and BglII (28133) sites, was then cloned between the Bamffl sites and Xbal of the vector pIC19H prepared from a dam- context. This generates the plasmid pPY47, an interesting characteristic of which is that the SalI site originating from the cloning multisite is located near the HindIII site (FIG. 7).
c) Construction du plasmide pPY55c) Construction of the plasmid pPY55
Le fragment Sall-Xbal du plasmide pPY47 préparé à partir d'un contexte dam-, et qui contient la partie du génome de l'adénovirus Ad5 allant du site Bamffl(21562) jusqu'au site Bgiπ(28133), a été clone entre les sites Sali et Xbal du plasmide pPY32, ce qui génère le plasmide pPY55. Ce plasmide est directement utilisable pour l'obtention d'adenovirus recombinants au moins délétés pour la région E3 (délétion entre les sites BglII localisés aux positions 28133 et 30818 du génome de l'adénovirus Ad5) et pour la région E4 dans son intégralité (délétion entre les sites Maeïï(32811) et Haem(35614) du génome de l'adénovirus Ad5 (figure 7).The Sall-Xbal fragment of the plasmid pPY47 prepared from a dam-context, and which contains the part of the genome of the Ad5 adenovirus going from the Bamffl site (21562) to the Bgiπ site (28133), was cloned between the SalI and Xbal sites of the plasmid pPY32, which generates the plasmid pPY55. This plasmid is directly usable for obtaining recombinant adenoviruses at least deleted for the E3 region (deletion between the BglII sites located at positions 28133 and 30818 of the genome of the Ad5 adenovirus) and for the E4 region in its entirety (deletion between the Maeïï (32811) and Haem (35614) sites of the Ad5 adenovirus genome (FIG. 7).
5.2 Préparation des adénovirus comprenant au moins une délétion dans la région E4, et, de préférence, au moins dans les régions El et E4.5.2 Preparation of adenoviruses comprising at least one deletion in the E4 region, and preferably at least in the E1 and E4 regions.
a) Préparation par co-transfection avec un virus helper E4 dans les cellules 293 Le principe repose sur la transcomplémentation entre un "mini-virus" (virus helper) exprimant la région E4 et un virus recombinant délété au moins pour E3 et E4. Ces virus sont obtenus soit par ligature in vitro, soit après recombinaison in vivo, selon les stratégies suivantes : (i) L'ADN du virus Ad-dl324 (Thimmappaya et al., Cell 31 (1982) 543) et le plasmide pPY55, tous deux digérés par BamHI, sont d'abord ligaturés in vitro, puis cotransfectés avec le plasmide pEAGal (décrit dans l'exemple 2) dans les cellules 293.a) Preparation by co-transfection with an E4 helper virus in 293 cells The principle is based on transcomplementation between a "mini-virus" (helper virus) expressing the E4 region and a recombinant virus deleted at least for E3 and E4. These viruses are obtained either by in vitro ligation, or after in vivo recombination, according to the following strategies: (i) The DNA of the Ad-dl324 virus (Thimmappaya et al., Cell 31 (1982) 543) and the plasmid pPY55, both digested with BamHI, are first ligated in vitro, then cotransfected with the plasmid pEAGal ( described in Example 2) in cells 293.
(ii) L'ADN du virus Ad-dl324 digéré par EcoRI et le plasmide pPY55 digéré par BamHI sont contranfectés, avec le plasmide pE4Gal, dans les cellules 293.(ii) The DNA of the Ad-dl324 virus digested with EcoRI and the plasmid pPY55 digested with BamHI are contranfected, with the plasmid pE4Gal, in the 293 cells.
(iii) L'ADN de l'adénovirus Ad5 et le plasmide pPY55, tous deux digérés par BamHI, sont ligaturés puis cotransfectés avec le plasmide pE4Gal dans les cellules 293.(iii) The DNA of the Ad5 adenovirus and the plasmid pPY55, both digested with BamHI, are ligated and then cotransfected with the plasmid pE4Gal in the 293 cells.
(iv) L'ADN de l'adénovirus Ad5 digéré par EcoRI et le plasmide pPY55 digéré par Bamffl sont cotransfectés avec le pEAGal dans les cellules 293.(iv) The DNA of the Ad5 adenovirus digested with EcoRI and the plasmid pPY55 digested with Bamffl are cotransfected with pEAGal in 293 cells.
Les stratégies (i) et (ii) permettent de générer un adénovirus recombinant délété pour les régions El, E3 et E4; les stratégies (iii) et (iv) permettent de générer un adénovirus recombinant délété pour les régions E3 et E4. Bien entendu, l'ADN d'un virus recombinant délété pour la région El mais exprimant un transgène quelconque peut être utilisé à la place de l'ADN du virus Ad-dl324 selon les stratégies (i) ou (ii), dans le but de générer un virus recombinant délété pour les régions El, E3 et E4 et exprimant ledit transgène.Strategies (i) and (ii) make it possible to generate a recombinant adenovirus deleted for the El, E3 and E4 regions; strategies (iii) and (iv) make it possible to generate a recombinant adenovirus deleted for the E3 and E4 regions. Of course, the DNA of a recombinant virus deleted for the E1 region but expressing any transgene can be used in place of the DNA of the Ad-dl324 virus according to strategies (i) or (ii), for the purpose generate a recombinant virus deleted for the El, E3 and E4 regions and expressing said transgene.
b) Préparation au moyen de lignées cellulaires transcomplémentant les fonctionsb) Preparation by means of cell lines transcomplementing the functions
El et E4El and E4
Le principe repose ici sur le fait qu'une lignée cellulaire dérivée d'une lignée exprimant la région El, par exemple la lignée 293, et exprimant également au moins les phases ouvertes ORF6 et ORF6/7 de la région E4 de l'adénovirus Ad5 sous contrôle d'un promoteur, par exemple inductible, est capable de transcomplémenter à la fois pour les régions El et E4 de l'adénovirus Ad5. De telles lignées ont été décrites dans l'exemple 4.The principle here is based on the fact that a cell line derived from a line expressing the E1 region, for example line 293, and also expressing at least the open phases ORF6 and ORF6 / 7 of the E4 region of the adenovirus Ad5 under the control of a promoter, for example inducible, is capable of transcomplementing for both the E1 and E4 regions of the adenovirus Ad5. Such lines were described in Example 4.
Un virus recombinant délété pour les régions El, E3 et E4 peut donc être obtenu par ligation in vitro ou par recombinaison in vivo selon les protocoles décrits ci-dessus. Quelque soit le protocole utilisé pour générer les virus délétés au moins pour la région E4, un effet cytopathique (indiquant la production de virus recombinants) a été observé après transfection dans les cellules utilisées. Les cellules ont ensuite été récoltées, disruptées par trois cycles de congélation-décongélation dans leur surnageant, puis centrifugées à 4000 rpm pendant 10 minutes. Le surnageant ainsi obtenu a ensuite été amplifié sur culture cellulaire fraîche (cellules 293 pour les protocoles a) et cellules 293 exprimant la région E4 pour le protocole b)). Les virus ont alors été purifiés à partir de plages et leur ADN est analysé selon la méthode de Hirt (précité). Des stocks de virus sont ensuite préparés sur gradient de chlorure de césium.A recombinant virus deleted for the E1, E3 and E4 regions can therefore be obtained by in vitro ligation or by in vivo recombination according to the protocols described above. Whatever the protocol used to generate the deleted viruses at least for the E4 region, a cytopathic effect (indicating the production of recombinant viruses) was observed after transfection in the cells used. The cells were then harvested, disrupted by three freeze-thaw cycles in their supernatant, then centrifuged at 4000 rpm for 10 minutes. The supernatant thus obtained was then amplified on fresh cell culture (293 cells for protocols a) and 293 cells expressing the E4 region. for protocol b)). The viruses were then purified from plaques and their DNA is analyzed according to the Hirt method (cited above). Virus stocks are then prepared on a cesium chloride gradient.
Exβmnle 6Example 6
Cet exemple décrit la préparation d'adenovirus recombinants défectifs selon l'invention dont le génome est délété des gènes El, E3, L5 et E4. Ces vecteurs sont particulièrement avantageux puisque la région L5 code pour la fibre, qui est une protéine extrêment toxique pour la cellule. Ces adénovirus ont été préparés à partir du plasmide p2, portant la partie droite modifiée du génome de l'adénovirus Ad5, par co-transfection avec différents plasmides helper. Ils peuvent également être préparés au moyen d'une lignée complémentante.This example describes the preparation of defective recombinant adenoviruses according to the invention, the genome of which is deleted from the El, E3, L5 and E4 genes. These vectors are particularly advantageous since the L5 region codes for fiber, which is an extremely toxic protein for the cell. These adenoviruses were prepared from the plasmid p2, carrying the modified right part of the genome of the adenovirus Ad5, by co-transfection with different helper plasmids. They can also be prepared using a complementing line.
6.1 Construction du plasmide p26.1 Construction of the plasmid p2
Ce plasmide contient toute la région droite du génome de l'adénovirus Ad5, à partir du site BamHI (21562), de laquelle a été délété le fragment compris entre les sites Xbal (28592) et Avril (35463), portant les gènes E3, L5 et E4. Le plasmide p2 a été obtenu par clonage et ligature des fragments suivants dans le plasmide pIC19R linéarisé par BamHI et déphosphorylé (voir figure 8) :This plasmid contains the entire right region of the genome of the Ad5 adenovirus, starting from the BamHI site (21562), from which the fragment between the Xbal (28592) and April (35463) sites carrying the E3 genes has been deleted, L5 and E4. The plasmid p2 was obtained by cloning and ligation of the following fragments in the plasmid pIC19R linearized with BamHI and dephosphorylated (see FIG. 8):
- fragment du génome de l'adénovirus Ad5 compris entre les sites BamHI (21562) et Xbal (28592), et- fragment of the Ad5 adenovirus genome comprised between the BamHI (21562) and Xbal (28592) sites, and
- extrémité droite du génome de l'adénovirus Ad5 (contenant 11TR droite), à partir du site Avril (35463), jusqu'au site Bell (compatible BamHI).- right end of the Ad5 adenovirus genome (containing right 11TR), from the Avril site (35463), to the Bell site (BamHI compatible).
6.2. Construction d'un plasmide helper (pITRL5-E4) portant le gène L5 Le plasmide helper pITRL5-E4 apporte en trans les gènes E4 et L5. Il correspond au plasmide pE4Gal décrit dans l'exemple 2, contenant en plus la région L5 codant pour la fibre sous contrôle du promoteur MLP de l'adénovirus Ad2, Le plasmide pITRL5-E4 a été construit de la manière suivante (figures 9 et 10) :6.2. Construction of a helper plasmid (pITRL5-E4) carrying the L5 gene The helper plasmid pITRL5-E4 provides the E4 and L5 genes in trans. It corresponds to the plasmid pE4Gal described in Example 2, additionally containing the L5 region coding for the fiber under the control of the MLP promoter of the adenovirus Ad2, The plasmid pITRL5-E4 was constructed as follows (FIGS. 9 and 10 ):
Un oligonucléotide de 58 pb contenant, dans le sens 5'-3', un site HindIII, l'ATG de la fibre et la séquence codante de la fibre jusqu'au site Ndel en position 31089 du génome de l'adénovirus Ad5 a été synthétisé. La séquence de cet oligonucléotide est donnée ci-dessous, dans l'orientation 5'-3' : AAGCTTATGAAGCGCGCAAGACCGTCTGAAGATACCTTCAACCCCGTGTATCCATATGA 58 bp oligonucleotide containing, in the 5'-3 'direction, a HindIII site, the fiber ATG and the fiber coding sequence up to the NdeI site at position 31089 of the Ad5 adenovirus genome was synthesized. The sequence of this oligonucleotide is given below, in the 5'-3 'orientation: AAGCTTATGAAGCGCGCAAGACCGTCTGAAGATACCTTCAACCCCGTGTATCCATATG
Les sites HindIII, en 5', et Ndel, en 3', sont soulignés en simple, l'ATG de la fibre est souligné en double. Un fragment SspI-HindIII contenant la séquence du promoteur MLP suivie du tripartite leader de l'adénovirus Ad2 a été isolé à partir du plasmide pMLPIO (Ballay et al., (1987) UCLA Symposia on molecular and cellular biology, New séries, Vol 70, Robinson et al (Eds) New- York, 481). Ce fragment a été inséré avec l'oligonucléotide de 58 pb décrit ci-dessus entre les sites Ndel et EcoRV du plasmide pIC19R, pour donner un plasmide intermédiaire (voir figure 9). Le fragment SacII (rendu blunt)-NdeI du plasmide pE4Gal (exemple 2) a ensuite été introduit dans le plasmide intermédiaire entre les sites Sspl et Nddel pour générer le plasmide pITRL5- E4 (figure 10).The HindIII sites in 5 ′ and Ndel in 3 ′ are underlined in single, the ATG of the fiber is underlined in double. An SspI-HindIII fragment containing the sequence of the MLP promoter followed by the leader tripartite of the adenovirus Ad2 was isolated from the plasmid pMLPIO (Ballay et al., (1987) UCLA Symposia on molecular and cellular biology, New series, Vol 70 , Robinson et al (Eds) New York, 481). This fragment was inserted with the 58 bp oligonucleotide described above between the NdeI and EcoRV sites of the plasmid pIC19R, to give an intermediate plasmid (see FIG. 9). The SacII (blunt rendered) -NdeI fragment of the plasmid pE4Gal (Example 2) was then introduced into the intermediate plasmid between the Sspl and Nddel sites to generate the plasmid pITRL5-E4 (FIG. 10).
6.3 Préparation des adénovirus recombinants défectifs comprenant une délétion dans les régions El, E3, L5 et E4.6.3 Preparation of defective recombinant adenoviruses comprising a deletion in regions E1, E3, L5 and E4.
a) Préparation par co-transfection avec un virus helper dans les cellules 293a) Preparation by co-transfection with a helper virus in 293 cells
Le principe repose sur la transcomplémentation entre un "mini-virus" (virus helper) exprimant la région L5 ou les régions E4 et L5 et un virus recombinant délété au moins pour E3, E4 et L5.The principle is based on the transcomplementation between a "mini-virus" (helper virus) expressing the L5 region or the E4 and L5 regions and a recombinant virus deleted at least for E3, E4 and L5.
Ces virus ont été obtenus soit par ligature in vitro, soit après recombinaison in vivo, selon les stratégies suivantes :These viruses were obtained either by in vitro ligation, or after in vivo recombination, according to the following strategies:
(i) L'ADN du virus Ad-dl324 (Thimmappaya et al., Cell 31 (1982) 543) et le plasmide p2, tous deux digérés par Bamffl, ont tout d'abord été ligaturés in vitro, puis cotransfectés avec le plasmide helper pITRL5-E4 (exemple 6.2.) dans les cellules 293.(i) The DNA of the Ad-dl324 virus (Thimmappaya et al., Cell 31 (1982) 543) and the plasmid p2, both digested with Bamffl, were first ligated in vitro, then cotransfected with the plasmid pITRL5-E4 helper (Example 6.2.) in cells 293.
(ii) L'ADN du virus Ad-dl324 digéré par EcoRI et le plasmide p2 digéré par BamHI sont contranfectés, avec le plasmide pITRL5-E4, dans les cellules 293.(ii) The DNA of the Ad-dl324 virus digested with EcoRI and the plasmid p2 digested with BamHI are contranfected, with the plasmid pITRL5-E4, in the 293 cells.
(iii) L'ADN de l'adénovirus Ad5 et le plasmide p2, tous deux digérés par BamHI, sont ligaturés puis cotransfectés avec le plasmide pITRL5-E4 dans les cellules 293.(iii) The DNA of the Ad5 adenovirus and the plasmid p2, both digested with BamHI, are ligated and then cotransfected with the plasmid pITRL5-E4 in the 293 cells.
(iv) L'ADN de l'adénovirus Ad5 digéré par EcoRI et le plasmide p2 digéré par BamHI sont cotransfectés avec le pITRL5-E4 dans les cellules 293. Les stratégies (i) et (ii) permettent de générer un adénovirus recombinant délété pour les régions El, E3, L5 et E4; les stratégies (iii) et (iv) permettent de générer un adénovirus recombinant délété pour les régions E3, L5 et E4. Bien entendu, l'ADN d'un virus recombinant délété pour la région El mais exprimant un transgène quelconque peut être utilisé à la place de l'ADN du virus Ad-dl324 selon les stratégies (i) ou (ii), dans le but de générer un virus recombinant délété pour les régions El, E3, L5 et E4 et exprimant ledit transgène.(iv) The DNA of the Ad5 adenovirus digested with EcoRI and the plasmid p2 digested with BamHI are cotransfected with pITRL5-E4 in the 293 cells. Strategies (i) and (ii) make it possible to generate a recombinant adenovirus deleted for the El, E3, L5 and E4 regions; strategies (iii) and (iv) make it possible to generate a recombinant adenovirus deleted for the E3, L5 and E4 regions. Of course, the DNA of a recombinant virus deleted for the E1 region but expressing any transgene can be used in place of the DNA of the Ad-dl324 virus according to strategies (i) or (ii), for the purpose generate a recombinant virus deleted for the El, E3, L5 and E4 regions and expressing said transgene.
Les protocoles décrits ci-dessus peuvent également être mis en oeuvre avec un virus helper ne portant que la région L5, en utilisant une lignée cellulaire capable d'exprimer les régions El et E4 de l'adénovirus, telle que décrite dans l'exemple 4.The protocols described above can also be implemented with a helper virus carrying only the L5 region, using a cell line capable of expressing the E1 and E4 regions of the adenovirus, as described in Example 4 .
Par ailleurs, il est également possible d'utiliser une lignée complémentante capable d'exprimer les régions El, E4 et L5, de façon à s'afiranchir totalement de l'emploi d'un virus helper. Après la transfection, les virus produits sont récupérés, amplifiés et purifiés dans les conditions décrites dans l'exemple 5. Furthermore, it is also possible to use a complementing line capable of expressing the E1, E4 and L5 regions, so as to completely eliminate the use of a helper virus. After the transfection, the viruses produced are recovered, amplified and purified under the conditions described in Example 5.

Claims

REVENDICATIONS
1. Adénovirus recombinant défectif comprenant :1. Defective recombinant adenovirus comprising:
- les séquences ITR,- ITR sequences,
- une séquence permettant l'encapsidation, - une séquence d'ADN hétérologue, et dans lequel le gène El et au moins un des gènes E2, E4, L1-L5 est non fonctionnel.- A sequence allowing the packaging, - a heterologous DNA sequence, and in which the El gene and at least one of the E2, E4, L1-L5 genes is non-functional.
2. Adénovirus selon la revendication 1 caractérisé en ce qu'il est d'origine humaine, animale, ou mixte.2. Adenovirus according to claim 1 characterized in that it is of human, animal, or mixed origin.
3. Adénovirus selon la revendication 2 caractérisé en ce que les adénovirus d'origine humaine sont choisis parmi ceux classés dans le groupe C, de préférence parmi les adénovirus de type 2 ou 5 (Ad 2 ou Ad 5).3. Adenovirus according to claim 2 characterized in that the adenoviruses of human origin are chosen from those classified in group C, preferably from adenoviruses of type 2 or 5 (Ad 2 or Ad 5).
4. Adénovirus selon la revendication 2 caractérisé en ce que les adénovirus d'origine animale sont choisis parmi les adénovirus d'origine canine, bovine, murine, ovine, porcine, aviaire et simienne.4. Adenovirus according to claim 2 characterized in that the adenoviruses of animal origin are chosen from adenoviruses of canine, bovine, murine, ovine, porcine, avian and simian origin.
5. Adénovirus selon l'une des revendications précédentes caractérisé en ce que les gènes El et E4 au moins sont non-fonctionnels.5. Adenovirus according to one of the preceding claims, characterized in that the E1 and E4 genes at least are non-functional.
6. Adénovirus selon l'une des revendications précédentes caractérisé en ce qu'il est dépourvu de gènes tardifs.6. Adenovirus according to one of the preceding claims, characterized in that it is devoid of late genes.
7. Adénovirus selon la revendication 1 caractérisé en ce qu'il comprend : - les séquences ITR,7. Adenovirus according to claim 1 characterized in that it comprises: - the ITR sequences,
- une séquence permettant l'encapsidation,- a sequence allowing the packaging,
- une séquence d'ADN hétérologue, et- a heterologous DNA sequence, and
- une région portant le gène ou une partie du gène E2.- a region carrying the gene or part of the E2 gene.
8. Adénovirus selon la revendication 1 caractérisé en ce qu'il comprend : - les séquences ITR,8. Adenovirus according to claim 1 characterized in that it comprises: - the ITR sequences,
- une séquence permettant l'encapsidation,- a sequence allowing the packaging,
- une séquence d'ADN hétérologue, et- a heterologous DNA sequence, and
- une région portant le gène ou une partie du gène E4. - a region carrying the gene or part of the E4 gene.
9. Adénovirus selon la revendication 1 caractérisé en ce que son génome est délété des gènes El, E3 et E4.9. Adenovirus according to claim 1 characterized in that its genome is deleted from the El, E3 and E4 genes.
10. Adénovirus selon la revendication 1 caractérisé en ce que son génome est délété des gènes El, E3, L5 et E4.10. Adenovirus according to claim 1 characterized in that its genome is deleted from the El, E3, L5 and E4 genes.
11. Adénovirus selon l'une des revendications précédentes caractérisé en ce qu'il comprend en outre un gène E3 fonctionnel sous contrôle d'un promoteur hétérologue.11. Adenovirus according to one of the preceding claims, characterized in that it further comprises a functional E3 gene under the control of a heterologous promoter.
12. Adénovirus selon l'une des revendications précédentes caractérisé en ce que la séquence d'ADN hétérologue comporte un ou plusieurs gènes thérapeutiques et/ou un ou plusieurs gènes codant pour des peptides antigéniques.12. Adenovirus according to one of the preceding claims, characterized in that the heterologous DNA sequence comprises one or more therapeutic genes and / or one or more genes coding for antigenic peptides.
13. Adénovirus selon la revendication 12 caractérisé en ce que le gène thérapeutique est choisi parmi les gènes codant pour des enzymes, des dérivés sanguins, des hormones, des lymphokines (interleukines, interférons, TNF, etc), des facteurs de croissance, dles neurotransmetteurs ou leurs précurseurs ou enzymes de synthèse, dles facteurs trophiques (BDNF, CNTF, NGF, IGF, GMF, aFGF, bFGF, NT3, NT5, etc), des apolipoprotéines (ApoAI, ApoAIV, ApoE, etc), la dystrophine ou une minidystrophine, des gènes suppresseurs de tumeurs ou des gènes codant pour des facteurs impliqués dans la coagulation (Facteurs VU, VHI, IX, etc).13. Adenovirus according to claim 12 characterized in that the therapeutic gene is chosen from the genes encoding enzymes, blood derivatives, hormones, lymphokines (interleukins, interferons, TNF, etc.), growth factors, neurotransmitters or their synthetic precursors or enzymes, trophic factors (BDNF, CNTF, NGF, IGF, GMF, aFGF, bFGF, NT3, NT5, etc.), apolipoproteins (ApoAI, ApoAIV, ApoE, etc.), dystrophin or a minidystrophin , tumor suppressor genes or genes coding for factors involved in coagulation (VU, VHI, IX factors, etc.).
14. Adénovirus selon la revendication 12 caractérisé en ce que le gène thérapeutique est un gène ou une séquence antisens, dont l'expression dans la cellule cible permet de contrôler l'expression de gènes ou la transcription d'ARNm cellulaires.14. Adenovirus according to claim 12 characterized in that the therapeutic gene is an antisense gene or sequence, the expression of which in the target cell makes it possible to control the expression of genes or the transcription of cellular mRNA.
15. Adénovirus selon la revendication 12 caractérisé en ce que le gène code pour un peptide antigénique capable de générer chez l'homme une réponse immunitaire contre des microorganismes ou des virus.15. Adenovirus according to claim 12 characterized in that the gene codes for an antigenic peptide capable of generating in humans an immune response against microorganisms or viruses.
16. Adénovirus selon la revendication 15 caractérisé en ce que le gène code pour un peptide antigénique spécifique du virus d'epstein barr, du virus HIV, du virus de l'hépatite B, du virus de la pseudo-rage, ou encore spécifique de tumeurs.16. Adenovirus according to claim 15 characterized in that the gene codes for an antigenic peptide specific for the epstein barr virus, the HIV virus, the hepatitis B virus, the pseudo-rabies virus, or even specific for tumors.
17. Adénovirus selon l'une des revendications précédentes caractérisé en ce que la séquence d'ADN hétérologue comprend également des séquences permettant l'expression du gène thérapeutique et/ou du gène codant pour le peptide antigénique dans la cellule infectée.17. Adenovirus according to one of the preceding claims, characterized in that the heterologous DNA sequence also comprises sequences allowing expression of the therapeutic gene and / or of the gene coding for the antigenic peptide in the infected cell.
18. Adénovirus selon l'une des revendications précédentes caractérisé en ce que la séquence d'ADN hétérologue comprend, en amont du gène thérapeutique, une séquence signal dirigeant le produit thérapeutique synthétisé dans les voies de sécrétion de la cellule cible.18. Adenovirus according to one of the preceding claims, characterized in that the heterologous DNA sequence comprises, upstream of the therapeutic gene, a signal sequence directing the therapeutic product synthesized in the secretory pathways of the target cell.
19. Lignée cellulaire infectable par un adénovirus comprenant, intégrées dans son génome, les fonctions nécessaires à la complémentation d'un adénovirus recombinant défectif selon l'une des revendications 1 à 18.19. Cell line infectable with an adenovirus comprising, integrated into its genome, the functions necessary for the complementation of a defective recombinant adenovirus according to one of claims 1 to 18.
20. Lignée cellulaire selon la revendication 19 caractérisée en ce qu'elle comporte dans son génome au moins les gènes El et E2 d'un adénovirus.20. Cell line according to claim 19 characterized in that it comprises in its genome at least the El and E2 genes of an adenovirus.
21. Lignée cellulaire selon la revendication 20 caractérisée en ce qu'elle comporte en outre le gène E4 d'un adénovirus.21. Cell line according to claim 20, characterized in that it also comprises the E4 gene of an adenovirus.
22. Lignée cellulaire selon la revendication 19 caractérisée en ce qu'elle comporte dans son génome au moins les gènes El et E4 d'un adénovirus.22. Cell line according to claim 19 characterized in that it comprises in its genome at least the El and E4 genes of an adenovirus.
23. Lignée cellulaire selon les revendications 19 à 22 caractérisée en ce qu'elle comporte en outre le gène du récepteur aux glucocorticoïdes.23. Cell line according to claims 19 to 22 characterized in that it also comprises the glucocorticoid receptor gene.
24. Lignée cellulaire selon les revendications 19 à 23 catactérisée en ce que les gènes E2 et E4 sont placés sous le contrôle d'un promoteur inductible.24. Cell line according to claims 19 to 23, characterized in that the E2 and E4 genes are placed under the control of an inducible promoter.
25. Lignée cellulaire selon la revendication 24 caractérisée en ce que le promoteur inductible est le promoteur LTR de MMTV.25. Cell line according to claim 24 characterized in that the inducible promoter is the LTR promoter of MMTV.
26. Lignée cellulaire selon les revendications 19 à 25 catactérisée en ce que le gène E2 code pour la protéine 72K.26. Cell line according to claims 19 to 25, characterized in that the E2 gene codes for the protein 72K.
27. Lignée cellulaire selon les revendications 19 à 26 catactérisée en ce qu'elle est obtenue à partir de la lignée 293.27. Cell line according to claims 19 to 26, characterized in that it is obtained from line 293.
28. Composition pharmaceutique comprenant au moins un adénovirus recombinant défectif selon l'une des revendications 1 à 18. 28. Pharmaceutical composition comprising at least one defective recombinant adenovirus according to one of claims 1 to 18.
29. Composition pharmaceutique selon la revendication 28 comprenant un adénovirus recombinant selon l'une des revendications 5 à 10.29. Pharmaceutical composition according to claim 28 comprising a recombinant adenovirus according to one of claims 5 to 10.
30. Composition pharmaceutique selon les revendications 28 ou 29 comprenant un véhicule pharmaceutiquement acceptable pour une formulation injectable. 30. Pharmaceutical composition according to claims 28 or 29 comprising a pharmaceutically acceptable vehicle for an injectable formulation.
PCT/FR1994/000851 1993-07-13 1994-07-08 Defective adenovirus vectors and use thereof in gene therapy WO1995002697A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP94922889A EP0667912B1 (en) 1993-07-13 1994-07-08 Defective adenovirus vectors and use thereof in gene therapy
SK312-95A SK282843B6 (en) 1993-07-13 1994-07-08 Defective adenovirus vectors and use thereof in gene therapy
JP50436895A JP4190028B2 (en) 1993-07-13 1994-07-08 Defective recombinant adenovirus vector and use in gene therapy
AU72646/94A AU7264694A (en) 1993-07-13 1994-07-08 Defective adenovirus vectors and use thereof in gene therapy
DK94922889T DK0667912T3 (en) 1993-07-13 1994-07-08 Defective adenovirus vectors and their use in gene therapy
BR9405507A BR9405507A (en) 1993-07-13 1994-07-08 Defective recombinant adenovirus cell line and pharmaceutical composition
PL94308122A PL179877B1 (en) 1993-07-13 1994-07-08 Viral vectors and their application in genic therapy
DE69435108T DE69435108D1 (en) 1993-07-13 1994-07-08 DEFECTIVE ADENOVIRUS VECTORS AND THEIR USE IN GENE THERAPY
UA95038233A UA65516C2 (en) 1993-07-13 1994-08-07 Defect adenovirus-derived vectors and the use thereof in gene therapy
FI951138A FI951138A (en) 1993-07-13 1995-03-10 Defective adenoviral vectors and their use in gene therapy
NO19950939A NO321309B1 (en) 1993-07-13 1995-03-10 Defective, recombinant adenoviruses, cell line, and a pharmaceutical preparation.
US10/301,085 US20030096787A1 (en) 1993-07-13 2002-11-21 Defective adenovirus vectors and use thereof in gene therapy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR93/08596 1993-07-13
FR9308596A FR2707664B1 (en) 1993-07-13 1993-07-13 Viral vectors and use in gene therapy.
FR9404590A FR2718749B1 (en) 1994-04-18 1994-04-18 Viral vectors and use in gene therapy.
FR94/04590 1994-04-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US39722595A Continuation 1993-07-13 1995-03-28

Publications (1)

Publication Number Publication Date
WO1995002697A1 true WO1995002697A1 (en) 1995-01-26

Family

ID=26230472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/000851 WO1995002697A1 (en) 1993-07-13 1994-07-08 Defective adenovirus vectors and use thereof in gene therapy

Country Status (23)

Country Link
US (1) US20030096787A1 (en)
EP (1) EP0667912B1 (en)
JP (1) JP4190028B2 (en)
KR (1) KR100356615B1 (en)
CN (1) CN1115414C (en)
AT (1) ATE399873T1 (en)
AU (1) AU7264694A (en)
BR (1) BR9405507A (en)
CA (1) CA2144040A1 (en)
CZ (1) CZ287157B6 (en)
DE (1) DE69435108D1 (en)
DK (1) DK0667912T3 (en)
ES (1) ES2310924T3 (en)
FI (1) FI951138A (en)
HU (1) HU216871B (en)
IL (1) IL110284A0 (en)
NO (1) NO321309B1 (en)
NZ (1) NZ269156A (en)
PL (1) PL179877B1 (en)
PT (1) PT667912E (en)
RU (1) RU2219241C2 (en)
SK (1) SK282843B6 (en)
WO (1) WO1995002697A1 (en)

Cited By (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995012660A3 (en) * 1993-10-29 1995-08-03 Univ Texas Recombinant p53 adenovirus methods and compositions
WO1996005321A1 (en) * 1994-08-17 1996-02-22 Rhone-Poulenc Rorer S.A. Gene therapy for restenosis using an adenoviral vector
EP0707071A1 (en) * 1994-08-16 1996-04-17 Introgene B.V. Recombinant vectors derived from adenovirus for use in gene therapy
FR2727867A1 (en) * 1994-12-13 1996-06-14 Rhone Poulenc Rorer Sa GENE TRANSFER IN MEDULLAR MOTONURONES USING ADENOVIRAL VECTORS
WO1996022378A1 (en) * 1995-01-20 1996-07-25 Rhone-Poulenc Rorer S.A. Cells for the production of recombinant adenoviruses
FR2729674A1 (en) * 1995-01-20 1996-07-26 Centre Nat Rech Scient Cells for prodn. of recombinant adeno and adeno-associated virus
FR2730504A1 (en) * 1995-02-13 1996-08-14 Rhone Poulenc Rorer Sa PROCESS FOR THE PREPARATION OF RECOMBINANT ADENOVIRUS GENOMES
EP0732405A1 (en) * 1995-03-15 1996-09-18 Sumitomo Pharmaceuticals Company, Limited Recombinant DNA virus and method for preparation thereof
WO1996028553A1 (en) * 1995-03-14 1996-09-19 Rhone-Poulenc Rorer S.A. Recombinant viruses expressing lecithin-cholesterol acyltransferase, and uses thereof in gene therapy
FR2732357A1 (en) * 1995-03-31 1996-10-04 Rhone Poulenc Rorer Sa VIRAL VECTORS AND USE FOR THE TREATMENT OF HYPERPROLIFERATIVE DISORDERS, IN PARTICULAR RESTENOSIS
WO1996033280A1 (en) * 1995-04-17 1996-10-24 Board Of Regents, The University Of Texas System An adenovirus helper-virus system
WO1996038556A2 (en) * 1995-06-01 1996-12-05 Rhone-Poulenc Rorer S.A. Deltap62, variants thereof, amino acid sequences coding therefor and their uses in gene therapy for cancer
FR2735789A1 (en) * 1995-06-23 1996-12-27 Centre Nat Rech Scient RECOMBINANT ADENOVIRUSES, THEIR USE FOR PREPARING AVA, COMPLEMENTARY CELL LINE AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
WO1997000326A1 (en) * 1995-06-15 1997-01-03 Introgene B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
WO1997000954A1 (en) * 1995-06-23 1997-01-09 Board Of Regents, The University Of Texas System C-cam expression constructs and their application in cancer therapy
FR2737221A1 (en) * 1995-07-24 1997-01-31 Transgene Sa Viral vector for gene therapy includes heterologous regulatory sequence - so that viral genes are functional only in complementing cells, also derived infectious particles
FR2737222A1 (en) * 1995-07-24 1997-01-31 Transgene Sa NEW VIRTORS AND LINEAR FOR GENE THERAPY
WO1995027071A3 (en) * 1994-04-04 1997-02-13 Univ Texas An adenovirus supervector system
FR2738575A1 (en) * 1995-09-08 1997-03-14 Centre Nat Rech Scient Cells for prodn. of recombinant adeno and adeno-associated virus
WO1997016547A1 (en) * 1995-10-31 1997-05-09 The Board Of Regents, The University Of Texas System ADENOVIRUS-ANTISENSE K-ras EXPRESSION VECTORS AND THEIR APPLICATION IN CANCER THERAPY
WO1997017937A2 (en) * 1995-11-17 1997-05-22 Franz Wolfgang M Gene-therapeutic nucleic acid construct, production of same and use of same in the treatment of heart disorders
FR2741891A1 (en) * 1995-06-01 1997-06-06 Centre Nat Rech Scient Cells for prodn. of recombinant adeno and adeno-associated virus
US5637456A (en) * 1995-02-17 1997-06-10 The University Of Texas, Board Of Regents Rapid test for determining the amount of functionally inactive gene in a gene therapy vector preparation
WO1997034009A1 (en) * 1996-03-14 1997-09-18 Rhone-Poulenc Rorer S.A. Recombinant adenoviral vectors for human tumour gene therapy
US5698202A (en) * 1995-06-05 1997-12-16 The Wistar Institute Of Anatomy & Biology Replication-defective adenovirus human type 5 recombinant as a rabies vaccine carrier
US5707618A (en) * 1995-03-24 1998-01-13 Genzyme Corporation Adenovirus vectors for gene therapy
WO1998013499A2 (en) * 1996-09-25 1998-04-02 Novartis Ag Packaging cell lines for use in facilitating the development of high-capacity adenoviral vectors
US5747469A (en) * 1991-03-06 1998-05-05 Board Of Regents, The University Of Texas System Methods and compositions comprising DNA damaging agents and p53
US5756283A (en) * 1995-06-05 1998-05-26 The Trustees Of The University Of Pennsylvania Method for improved production of recombinant adeno-associated viruses for gene therapy
WO1998032860A1 (en) * 1997-01-28 1998-07-30 Baxter International Inc. Methods for highly efficient generation of adenoviral vectors
US5856152A (en) * 1994-10-28 1999-01-05 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV vector and methods of use therefor
US5935935A (en) * 1993-06-10 1999-08-10 Genetic Therapy, Inc. Adenoviral vectors for treatment of hemophilia
US6001557A (en) * 1994-10-28 1999-12-14 The Trustees Of The University Of Pennsylvania Adenovirus and methods of use thereof
US6017524A (en) * 1991-03-06 2000-01-25 Board Of Regents, The University Of Texas System Inhibiting the growth p53 deficient tumor cells by administering the p53 gene
US6019978A (en) * 1995-06-05 2000-02-01 The Wistar Institute Of Anatomy And Biology Replication-defective adenovirus human type 5 recombinant as a vaccine carrier
US6083716A (en) * 1996-09-06 2000-07-04 The Trustees Of The University Of Pennsylvania Chimpanzee adenovirus vectors
US6132989A (en) * 1996-06-03 2000-10-17 University Of Washington Methods and compositions for enhanced stability of non-adenoviral DNA
US6174871B1 (en) 1995-02-28 2001-01-16 The Regents Of The University Of California Gene therapies for enhancing cardiac function
US6225456B1 (en) 1998-05-07 2001-05-01 University Technololy Corporation Ras suppressor SUR-5
US6251677B1 (en) 1997-08-25 2001-06-26 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
US6261551B1 (en) 1995-06-05 2001-07-17 The Trustees Of The University Of Pennsylvania Recombinant adenovirus and adeno-associated virus, cell lines, and methods of production and use thereof
US6265212B1 (en) 1995-06-15 2001-07-24 Introgene B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
WO2001074900A2 (en) 2000-03-31 2001-10-11 Aventis Pharmaceuticals Products Inc. Nuclear factor kb inducing factor
US6387368B1 (en) 1999-02-08 2002-05-14 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
US6403370B1 (en) 1997-02-10 2002-06-11 Genstar Therapeutics Corporation Oncolytic/immunogenic complementary-adenoviral vector system
US6410029B1 (en) 1996-07-30 2002-06-25 Board Of Regents, The University Of Texas System 2-methoxyestradiol-induced apoptosis in cancer cells
US6413776B1 (en) 1998-06-12 2002-07-02 Galapagos Geonomics N.V. High throughput screening of gene function using adenoviral libraries for functional genomics applications
US6441156B1 (en) 1998-12-30 2002-08-27 The United States Of America As Represented By The Department Of Health And Human Services Calcium channel compositions and methods of use thereof
US6482803B1 (en) 1995-09-01 2002-11-19 Board Of Regents, The University Of Texas System Modification of mutated P53 gene in tumors by retroviral delivery of ribozyme A
US6506889B1 (en) 1998-05-19 2003-01-14 University Technology Corporation Ras suppressor SUR-8 and related compositions and methods
US6512161B1 (en) 1998-01-08 2003-01-28 Aventis Pharmaceuticals, Inc. Transgenic rabbit that expresses a functional human lipoprotein (a)
WO2003061708A1 (en) * 2002-01-18 2003-07-31 Schering Aktiengesellschaft Stabilized formulations of adenovirus
US6620618B2 (en) * 1999-02-25 2003-09-16 National Research Council Of Canada Complementary cell line for the growth of adenovirus mutants with a deleted protease gene
US6638502B1 (en) 1997-04-28 2003-10-28 Gencell Sas Adenovirus-mediated intratumoral delivery of an angiogenesis antagonist for the treatment of tumors
US6653088B1 (en) 1997-10-24 2003-11-25 Aventis Pharma S.A. Interaction test for the investigation of inhibitory molecules of the interaction between a presenilin and the β-amyloid peptide
US6670188B1 (en) 1998-04-24 2003-12-30 Crucell Holland B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US6682929B2 (en) 2001-07-23 2004-01-27 Genvec, Inc. Adenovector complementing cells
US6752987B1 (en) 1995-02-28 2004-06-22 The Regents Of The University Of California Adenovirus encoding human adenylylcyclase (AC) VI
US6783980B2 (en) 1995-06-15 2004-08-31 Crucell Holland B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US6793926B1 (en) 1999-05-27 2004-09-21 Genovo, Inc. Methods for production of a recombinant adeno-associated virus
US6875606B1 (en) 1997-10-23 2005-04-05 The United States Of America As Represented By The Department Of Veterans Affairs Human α-7 nicotinic receptor promoter
WO2005093064A1 (en) 2004-03-29 2005-10-06 Galpharma Co., Ltd. Novel galectin 9 modification protein and use thereof
WO2006002161A2 (en) 2004-06-18 2006-01-05 Duke University Modulators of odorant receptors
WO2006020071A2 (en) 2004-07-16 2006-02-23 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Vaccines against aids comprising cmv/r-nucleic acid constructs
US7008776B1 (en) 1996-12-06 2006-03-07 Aventis Pharmaceuticals Inc. Compositions and methods for effecting the levels of high density lipoprotein (HDL) cholesterol and apolipoprotein AI very low density lipoprotein (VLDL) cholesterol and low density lipoprotein (LDL) cholesterol
US7060442B2 (en) 2000-10-30 2006-06-13 Regents Of The University Of Michigan Modulators on Nod2 signaling
WO2006086454A2 (en) 2005-02-08 2006-08-17 President And Fellows Of Harvard College Methods and compositions for extending the life span and increasing the stress resistance of cells and organisms
US7195896B2 (en) 1994-06-10 2007-03-27 Genvec, Inc. Complementary adenoviral vector systems and cell lines
US7232899B2 (en) 1996-09-25 2007-06-19 The Scripps Research Institute Adenovirus vectors, packaging cell lines, compositions, and methods for preparation and use
US7235236B2 (en) 1995-02-28 2007-06-26 The Regents Of The University Of California Polynucleotide encoding human adenylylcyclase VI and uses thereof for enhancing cardiac function
US7306794B2 (en) 1995-02-24 2007-12-11 The Trustees Of The University Of Pennsylvania Methods and compositions for the treatment of defects in lipoprotein metabolism
US7319001B2 (en) 2002-03-09 2008-01-15 Neurogenex Co., Ltd. High throughput system for producing recombinant viruses using site-specific recombination
WO2008020335A2 (en) 2006-06-09 2008-02-21 Novartis Ag Immunogenic compositions for streptococcus agalactiae
EP1935979A2 (en) 1999-07-14 2008-06-25 Novartis Vaccines and Diagnostics S.r.l. Antigenic meningococcal peptides
US7432057B2 (en) 2004-01-30 2008-10-07 Michigan State University Genetic test for PSE-susceptible turkeys
US7473428B2 (en) 1997-08-14 2009-01-06 Vectogen Pty Ltd. Recombinant porcine adenovirus vector
EP2039768A1 (en) 1996-11-13 2009-03-25 Novartis Vaccines and Diagnostics, Inc. Mutant forms of Fas ligand and uses thereof
JP2009077737A (en) * 1995-11-09 2009-04-16 Genzyme Corp Accessory functions for use in recombinant aav virion production
US7541343B2 (en) 2001-05-22 2009-06-02 Newsouth Innovations Pty Limited Inhibiting cellular proliferation by expressing yin yang-1
US7569217B2 (en) 2001-09-24 2009-08-04 University Of Saskatchewan Porcine adenovirus E1 and E4 regions
US7604798B2 (en) 2004-07-15 2009-10-20 Northwestern University Methods and compositions for importing nucleic acids into cell nuclei
EP2168603A1 (en) 2003-11-14 2010-03-31 GenVec, Inc. Therapeutic regimen for treating cancer
EP2210945A2 (en) 1998-01-14 2010-07-28 Novartis Vaccines and Diagnostics S.r.l. Neisseria meningitidis antigens
WO2010096561A1 (en) 2009-02-18 2010-08-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Synthetic hiv/siv gag proteins and uses thereof
US7785608B2 (en) 2002-08-30 2010-08-31 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
EP2251424A1 (en) 1999-05-19 2010-11-17 Novartis Vaccines and Diagnostics S.r.l. Antigenic neisserial peptides
US7846450B2 (en) 1996-07-11 2010-12-07 United States Of America, As Represented By The Secretary, Department Of Health And Human Services Melanoma associated peptide analogues and vaccines against melanoma
EP2261355A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2267005A1 (en) 2003-04-09 2010-12-29 Novartis Vaccines and Diagnostics S.r.l. ADP-ribosylating toxin from Listeria monocytogenes
EP2270176A1 (en) 2001-03-27 2011-01-05 Novartis Vaccines and Diagnostics S.r.l. Streptococcus pneumoniae proteins and nucleic acids
EP2275129A2 (en) 2000-01-17 2011-01-19 Novartis Vaccines and Diagnostics S.r.l. Outer membrane vesicle (OMV) vaccine comprising N. meningitidis serogroup B outer membrane proteins
EP2275553A2 (en) 1999-10-29 2011-01-19 Novartis Vaccines and Diagnostics S.r.l. Neisserial antigenic peptides
EP2277894A1 (en) 2000-10-27 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A & B
EP2278007A1 (en) 1999-04-30 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Conserved neisserial antigens
EP2278006A2 (en) 1997-11-06 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Neisserial antigens
EP2298796A2 (en) 2001-03-27 2011-03-23 Novartis Vaccines and Diagnostics S.r.l. Staphylococcus aureus proteins and nucleic acids
WO2011047316A1 (en) 2009-10-16 2011-04-21 The United States Of America, As Represented By The Secretary Department Of Health And Human Services Nucleic acid sequences encoding expandable hiv mosaic proteins
EP2316922A1 (en) 2002-05-24 2011-05-04 Schering Corporation Neutralizing human anti-IGFR antibody
WO2011057248A2 (en) 2009-11-09 2011-05-12 Genvec, Inc. Simian adenovirus and methods of use
WO2011057254A2 (en) 2009-11-09 2011-05-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Simian adenoviral vector-based vaccines
EP2332961A2 (en) 2001-10-11 2011-06-15 Wyeth Holdings Corporation Novel immunogenic compositions for the prevention and treatment of meningococcal disease
EP2335723A1 (en) 2001-12-12 2011-06-22 Novartis Vaccines and Diagnostics S.r.l. Immunisation against chlamydia trachomatis
WO2011116189A1 (en) 2010-03-17 2011-09-22 Cornell University Disrupted adenovirus-based vaccine against drugs of abuse
EP2402359A1 (en) 2000-12-28 2012-01-04 Wyeth LLC Recombinant protective protein from streptococcus pneumoniae
WO2012021730A2 (en) 2010-08-11 2012-02-16 Genvec, Inc. Respiratory syncytial virus (rsv) vaccine
JP2012050453A (en) * 1995-11-09 2012-03-15 Genzyme Corp Accessory function for use in recombinant aav virion production
EP2431480A2 (en) 2002-08-09 2012-03-21 The President and Fellows of Harvard College Methods and compositions for increasing the stress resistance of cells and organisms
WO2012083297A2 (en) 2010-12-17 2012-06-21 Genvec, Inc. Adenoviral vectors with modified hexon regions
WO2012088041A1 (en) 2010-12-20 2012-06-28 Genvec, Inc. Adenoviral vector-based dengue fever vaccine
US8263395B2 (en) 1999-10-07 2012-09-11 Aventis Pharma S.A. Recombinant adenoviruses preparation and adenovirus banks
WO2012135549A2 (en) 2011-03-29 2012-10-04 Dynavax Technologies Corporation Tlr8 transgenic animals
WO2012162428A1 (en) 2011-05-23 2012-11-29 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Prime-boost vaccination for viral infection
US8323663B2 (en) 2005-11-10 2012-12-04 Genvec, Inc. Adenoviral vector-based foot-and-mouth disease vaccine
EP2530090A2 (en) 2006-10-19 2012-12-05 CSL Limited Anti-IL-13R alpha 1 antibodies and their uses thereof
US8329669B2 (en) 2006-07-28 2012-12-11 Sanofi Composition and method for treatment of tumors
US8343494B2 (en) 1996-12-06 2013-01-01 Aventis Pharmaceuticals Inc. Antibodies against LLG polypeptides of the triacylglycerol lipase family
EP2567967A2 (en) 2004-04-12 2013-03-13 GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES Method of using adenoviral vectors to induce an immune response
WO2013052811A2 (en) 2011-10-05 2013-04-11 Genvec, Inc. Adenoviral vectors and methods of use
WO2013052832A2 (en) 2011-10-05 2013-04-11 Genvec, Inc. Adenoviral vectors and methods of use
WO2013052859A2 (en) 2011-10-05 2013-04-11 Genvec, Inc. Adenoviral vector-based respiratory syncytial virus (rsv) vaccine
WO2013052799A2 (en) 2011-10-05 2013-04-11 Genvec, Inc. Adenoviral vectors and methods of use
WO2013116591A1 (en) 2012-02-02 2013-08-08 Genvec, Inc. Adenoviral vector-based malaria vaccine
US8563001B2 (en) 2008-11-05 2013-10-22 Regents Of The University Of Minnesota Multicomponent immunogenic composition for the prevention of beta-hemolytic streptococcal (BHS) disease
US8574597B2 (en) 2006-12-22 2013-11-05 Wyeth Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
WO2013181128A1 (en) 2012-05-29 2013-12-05 Genvec, Inc. Modified serotype 28 adenoviral vectors
WO2013180967A1 (en) 2012-05-29 2013-12-05 Genvec, Inc. Herpes simplex virus vaccine
US8623831B2 (en) 2000-03-31 2014-01-07 Aventis Pharmaceuticals Inc. Nuclear factor κB inducing factor
US8642028B2 (en) 1999-06-11 2014-02-04 Aventis Pharma S.A. Recombinant adenoviruses encoding the specific iodine transporter (NIS)
US8765146B2 (en) 2005-08-31 2014-07-01 Genvec, Inc. Adenoviral vector-based malaria vaccines
WO2014107739A1 (en) 2013-01-07 2014-07-10 Eleven Biotherapeutics, Inc. Antibodies against pcsk9
WO2014164703A1 (en) 2013-03-11 2014-10-09 University Of Florida Research Foundation, Inc. Delivery of card protein as therapy for occular inflammation
EP2829551A1 (en) 2006-10-19 2015-01-28 CSL Limited High affinity antibody antagonists of interleukin-13 receptor alpha 1
US8986710B2 (en) 2012-03-09 2015-03-24 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
WO2015127094A1 (en) 2014-02-19 2015-08-27 University Of Florida Research Foundation, Inc. Delivery of nrf2 as therapy for protection against reactive oxygen species
WO2016037154A1 (en) 2014-09-04 2016-03-10 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Recombinant hiv-1 envelope proteins and their use
EP3002330A1 (en) 2005-05-27 2016-04-06 Ospedale San Raffaele S.r.l. Gene vector
WO2016103238A1 (en) 2014-12-24 2016-06-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Recombinant metapneumovirus f proteins and their use
WO2016118642A1 (en) 2015-01-20 2016-07-28 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Recombinant human/bovine parainfluenza virus 3 (b/hpiv3) expressing a chimeric rsv/bpiv3 f protein and uses thereof
WO2016122791A1 (en) 2015-01-30 2016-08-04 The Regents Of The University Of California Spinal subpial gene delivery system
WO2016138160A1 (en) 2015-02-24 2016-09-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Middle east respiratory syndrome coronavirus immunogens, antibodies, and their use
EP3115063A2 (en) 2008-12-03 2017-01-11 The John Hopkins University Galectin-3 and annexin-a2 as immunological target
US9556240B2 (en) 2010-08-23 2017-01-31 Wyeth Llc Stable formulations of Neisseria meningitidis rLP2086 antigens
WO2017070237A1 (en) 2015-10-19 2017-04-27 University Of Maryland, Baltimore Methods for generating engineered human primary blood dendritic cell lines
WO2017139392A1 (en) 2016-02-08 2017-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Recombinant hiv-1 envelope proteins and their use
US9757443B2 (en) 2010-09-10 2017-09-12 Wyeth Llc Non-lipidated variants of Neisseria meningitidis ORF2086 antigens
WO2017156272A1 (en) 2016-03-09 2017-09-14 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Recombinant hiv-1 envelope proteins and their use
WO2017172606A1 (en) 2016-03-28 2017-10-05 The Regents Of The University Of California Method and composition for treating neuronal hyper-excitability
US9802987B2 (en) 2013-03-08 2017-10-31 Pfizer Inc. Immunogenic fusion polypeptides
US9822150B2 (en) 2013-09-08 2017-11-21 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
WO2018064523A1 (en) 2016-09-30 2018-04-05 Genvec, Inc. Adenovectors for delivery of therapeutic genetic material into t cells
WO2018067582A2 (en) 2016-10-03 2018-04-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hiv-1 env fusion peptide immunogens and their use
WO2018081318A1 (en) 2016-10-25 2018-05-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion coronavirus spike proteins and their use
WO2018109220A2 (en) 2016-12-16 2018-06-21 Institute For Research In Biomedicine Novel recombinant prefusion rsv f proteins and uses thereof
WO2018176031A1 (en) 2017-03-24 2018-09-27 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Glycan-masked engineered outer domains of hiv-1 gp120 and their use
US10183070B2 (en) 2017-01-31 2019-01-22 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10196429B2 (en) 2012-03-09 2019-02-05 Pfizer Inc. Neisseria meningitidis composition and methods thereof
WO2019079337A1 (en) 2017-10-16 2019-04-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Recombinant hiv-1 envelope proteins and their use
WO2019079242A1 (en) 2017-10-16 2019-04-25 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis (als)
WO2019079240A1 (en) 2017-10-16 2019-04-25 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis (als)
WO2020010035A1 (en) 2018-07-02 2020-01-09 Voyager Therapeutics, Inc. Cannula system
WO2020010042A1 (en) 2018-07-02 2020-01-09 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis and disorders associated with the spinal cord
WO2020086483A1 (en) 2018-10-22 2020-04-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Recombinant gp120 protein with v1-loop deletion
US10888611B2 (en) 2015-02-19 2021-01-12 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
WO2021163365A1 (en) 2020-02-11 2021-08-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Sars-cov-2 vaccine
US11147249B2 (en) 2016-12-08 2021-10-19 Alector Llc Siglec transgenic mice and methods of use thereof
WO2021222639A2 (en) 2020-04-29 2021-11-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Recombinant human metapneumovirus f proteins and their use
WO2021247995A2 (en) 2020-06-04 2021-12-09 Voyager Therapeutics, Inc. Compositions and methods of treating neuropathic pain
US11213482B1 (en) 2020-03-05 2022-01-04 University of Pittsburgh—Of the Commonwealth System of Higher Educat SARS-CoV-2 subunit vaccine and microneedle array delivery system
WO2022035860A2 (en) 2020-08-10 2022-02-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Replication-competent adenovirus type 4-hiv env vaccines and their use
WO2022074464A2 (en) 2020-03-05 2022-04-14 Neotx Therapeutics Ltd. Methods and compositions for treating cancer with immune cells
US11470827B2 (en) 2017-12-12 2022-10-18 Alector Llc Transgenic mice expressing human TREM proteins and methods of use thereof
WO2022232648A1 (en) 2021-04-29 2022-11-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion-stabilized lassa virus glycoprotein complex and its use
WO2022235929A1 (en) 2021-05-05 2022-11-10 Radius Pharmaceuticals, Inc. Animal model having homologous recombination of mouse pth1 receptor
US11560412B2 (en) 2016-04-01 2023-01-24 University Of Maryland, Baltimore Compositions comprising GRIM-19 therapeutics and methods of use
WO2023015186A1 (en) 2021-08-03 2023-02-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hiv-1 vaccination and samt-247 microbicide to prevent hiv-1 infection
US11608362B2 (en) 2018-03-06 2023-03-21 Precigen, Inc. Hepatitis B vaccines and uses of the same
WO2023069979A1 (en) 2021-10-20 2023-04-27 University Of Rochester Isolated glial progenitor cells for use in the competition treatment of age-related white matter loss
WO2023081633A1 (en) 2021-11-02 2023-05-11 University Of Rochester Tcf7l2 mediated remyelination in the brain
WO2023091696A1 (en) 2021-11-19 2023-05-25 Christiana Care Gene Editing Institute, Inc. Adenovirus delivery system for cancer treatment
US11773391B2 (en) 2020-04-01 2023-10-03 University of Pittsburgh—of the Commonwealth System of Higher Education Therapeutic and diagnostic target for SARS-CoV-2 and COVID-19
WO2023192835A1 (en) 2022-03-27 2023-10-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Base-covered hiv-1 envelope ectodomains and their use
WO2023196898A1 (en) 2022-04-07 2023-10-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Beta globin mimetic peptides and their use

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851806A (en) * 1994-06-10 1998-12-22 Genvec, Inc. Complementary adenoviral systems and cell lines
AUPN477695A0 (en) * 1995-08-14 1995-09-07 Commonwealth Scientific And Industrial Research Organisation Gene therapy
US6328958B1 (en) * 1998-08-28 2001-12-11 Duke University Deleted adenovirus vectors and methods of making and administering the same
EP2163640B1 (en) * 1999-04-15 2011-12-07 Crucell Holland B.V. Recombinant protein production in a human cell comprising at least one E1 protein of adenovirus
US6875610B2 (en) * 2000-05-31 2005-04-05 Human Gene Therapy Research Institute Methods and compositions for efficient gene transfer using transcomplementary vectors
RU2244928C2 (en) * 2003-02-19 2005-01-20 Пинигина Нина Максимовна Endogenic pharmaceutical composition prepared on basis of goal-seeking activation of humoral mediators of brain cortex nerve ending
ES2391975T3 (en) * 2003-07-25 2012-12-03 Genvec, Inc. Adenoviral vector based vaccines
CA2836987C (en) 2004-05-26 2016-07-05 Psioxus Therapeutics Limited Chimeric adenoviruses for use in cancer treatment
CA2589602A1 (en) * 2004-09-01 2006-04-13 Genvec, Inc. Adenoviral vectors able to transduce apcs, potential use in immune response generation
EP2137311A1 (en) 2007-03-24 2009-12-30 Genzyme Corporation Administering antisense oligonucleotides complementary to human apolipoprotein b
CN101067139B (en) * 2007-05-14 2010-05-26 清华大学深圳研究生院 RNAi vector and its application
CN101619324B (en) * 2008-07-01 2013-06-26 中国疾病预防控制中心病毒病预防控制所 Replication defective recombinant adenovirus Ad41 vector system and application thereof
WO2010045659A1 (en) 2008-10-17 2010-04-22 American Gene Technologies International Inc. Safe lentiviral vectors for targeted delivery of multiple therapeutic molecules
WO2010065787A2 (en) * 2008-12-04 2010-06-10 Curna, Inc. Treatment of tumor suppressor gene related diseases by inhibition of natural antisense transcript to the gene
CN102240405A (en) * 2011-05-09 2011-11-16 上海市第十人民医院 Apolipoprotein A-I (ApoA-I) milano genetic medicine
CN110055244A (en) 2011-12-28 2019-07-26 日本新药株式会社 Antisense nucleic acid
RU2491097C1 (en) * 2012-02-16 2013-08-27 Общество с ограниченной ответственностью "НТфарма" Pharmaceutical composition and method of therapy of neurodegenerative disorders, including amyotrophic lateral sclerosis
CA3178379A1 (en) * 2013-09-12 2015-03-19 Biomarin Pharmaceutical Inc. Adeno-associated virus factor viii vectors
PL3021859T3 (en) 2013-10-25 2018-06-29 Psioxus Therapeutics Limited Oncolytic adenoviruses armed with heterologous genes
PL3288573T3 (en) 2015-04-30 2020-05-18 Psioxus Therapeutics Limited Oncolytic adenovirus encoding a b7 protein
JP6924487B2 (en) 2015-06-10 2021-08-25 アメリカン ジーン テクノロジーズ インターナショナル インコーポレイテッド Non-embedded virus delivery system and how to use it
WO2017103291A1 (en) 2015-12-17 2017-06-22 Psioxus Therapeutics Limited Virus encoding an anti-tcr-complex antibody or fragment
US10137144B2 (en) 2016-01-15 2018-11-27 American Gene Technologies International Inc. Methods and compositions for the activation of gamma-delta T-cells
CA3011529A1 (en) 2016-01-15 2017-07-20 American Gene Technologies International Inc. Methods and compositions for the activation of gamma-delta t-cells
JP7153332B2 (en) 2016-02-08 2022-10-14 アメリカン ジーン テクノロジーズ インターナショナル インコーポレイテッド HIV vaccination and immunotherapy
JP7017247B2 (en) 2016-03-09 2022-02-08 アメリカン ジーン テクノロジーズ インターナショナル インコーポレイテッド Combination Vectors and Methods for Treating Cancer
CA2971303A1 (en) * 2016-06-21 2017-12-21 Bamboo Therapeutics, Inc. Optimized mini-dystrophin genes and expression cassettes and their use
WO2018009246A1 (en) 2016-07-08 2018-01-11 American Gene Technologies International Inc. Hiv pre-immunization and immunotherapy
US11583562B2 (en) 2016-07-21 2023-02-21 American Gene Technologies International Inc. Viral vectors for treating Parkinson's disease
GB201713765D0 (en) 2017-08-28 2017-10-11 Psioxus Therapeutics Ltd Modified adenovirus
EP3515504B1 (en) 2016-09-20 2023-07-12 Boehringer Ingelheim Vetmedica GmbH Canine adenovirus vectors
TWI780070B (en) 2016-09-20 2022-10-11 德商百靈佳殷格翰維美迪加股份有限公司 New promoters
EA201990717A1 (en) 2016-09-20 2019-10-31 NEW VACCINE AGAINST PIG INFLUENZA
MX2019003161A (en) 2016-09-20 2019-05-27 Boehringer Ingelheim Vetmedica Gmbh New ehv insertion site orf70.
JP2020512815A (en) 2017-04-03 2020-04-30 アメリカン ジーン テクノロジーズ インターナショナル インコーポレイテッド Compositions and methods for treating phenylketonuria
CN110714027A (en) * 2019-10-28 2020-01-21 嘉铭(固安)生物科技有限公司 Expression plasmid, cell strain for packaging second-generation adenovirus and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006223A1 (en) * 1991-09-27 1993-04-01 Centre National De La Recherche Scientifique (C.N.R.S.) Viral recombinant vectors for expression in muscle cells
WO1994012649A2 (en) * 1992-12-03 1994-06-09 Genzyme Corporation Gene therapy for cystic fibrosis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585362A (en) * 1989-08-22 1996-12-17 The Regents Of The University Of Michigan Adenovirus vectors for gene therapy
US5670488A (en) * 1992-12-03 1997-09-23 Genzyme Corporation Adenovirus vector for gene therapy
FR2705686B1 (en) * 1993-05-28 1995-08-18 Transgene Sa New defective adenoviruses and corresponding complementation lines.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006223A1 (en) * 1991-09-27 1993-04-01 Centre National De La Recherche Scientifique (C.N.R.S.) Viral recombinant vectors for expression in muscle cells
WO1994012649A2 (en) * 1992-12-03 1994-06-09 Genzyme Corporation Gene therapy for cystic fibrosis

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BABISS, L.E.: "The cellular transcription factor E2f requires viral E1A and E4 gene products for increased DNA-binding activity and functions to stimulate adenovirus E2A gene expression", JOURNAL OF VIROLOGY, vol. 63, no. 6, June 1989 (1989-06-01), pages 2709 - 2717 *
KETNER, G. ET AL.: "Complementation of adenovirus E4 mutants by transient expression of E4 cDNA and deletion plasmids", NUCLEIC ACIDS RESEARCH., vol. 17, no. 8, 1989, ARLINGTON, VIRGINIA US, pages 3037 - 3047 *
STATFORD-PERRICAUDET, L. & PERRICAUDET, M.: "Gene transfer into animals: the promise of adenovirus", HUMAN GENE TRANSFER, vol. 219, 1991, pages 51 - 61 *
WEINBERG, D.H. & KETNER, G.: "A cell line that supports the growth of a defective early region 4 deletion mutant of human adenovirus type 2", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA., vol. 80, September 1983 (1983-09-01), WASHINGTON US, pages 5383 - 5386 *

Cited By (346)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436700B1 (en) 1991-03-06 2002-08-20 Board Of Regents, The University Of Texas Systems Anti-sense p21 k-ras
US6017524A (en) * 1991-03-06 2000-01-25 Board Of Regents, The University Of Texas System Inhibiting the growth p53 deficient tumor cells by administering the p53 gene
US5747469A (en) * 1991-03-06 1998-05-05 Board Of Regents, The University Of Texas System Methods and compositions comprising DNA damaging agents and p53
US6069134A (en) * 1991-03-06 2000-05-30 Board Of Regents, The University Of Texas System Methods and compositions comprising DNA damaging agents and p53
US6797702B1 (en) 1991-03-06 2004-09-28 Board Of Regents, The University Of Texas System Methods and compositions comprising DNA damaging agents and P53
US6998117B1 (en) 1991-03-06 2006-02-14 Board Of Regents, The University Of Texas System Cancer treatment with retroviral vectors comprising wild-type p53
US6627189B1 (en) 1991-03-06 2003-09-30 Board Of Regents, The University Of Texas Systems Inhibition of cellular proliferation using ras antisense molecules
US7109179B2 (en) 1991-03-06 2006-09-19 Board Of Regents, The University Of Texas System Methods and compositions comprising DNA damaging agents and p53
US6905873B1 (en) 1992-10-13 2005-06-14 Board Of Regents, The University Of Texas System Recombinant p53 adenovirus methods and compositions
US6143290A (en) * 1992-10-13 2000-11-07 The Board Of Regents, University Of Texas System Tumor regression by adenovirus expression of wild-type p53
US6511847B1 (en) 1992-10-13 2003-01-28 Board Of Regents, The University Of Texas System Recombinant p53 adenovirus methods and compositions
US6805858B1 (en) 1992-10-13 2004-10-19 Board Of Regents, The University Of Texas System Methods for the administration of adenovirus p53
US7033750B2 (en) 1992-10-13 2006-04-25 Board Of Regents, The University Of Texas System Recombinant P53 adenovirus methods and compositions
US6649375B2 (en) 1993-06-10 2003-11-18 Genetic Theraphy, Inc. Adenoviral vectors for enhanced gene expression
US5935935A (en) * 1993-06-10 1999-08-10 Genetic Therapy, Inc. Adenoviral vectors for treatment of hemophilia
US6830749B2 (en) 1993-10-29 2004-12-14 Board Of Regents, The University Of Texas System Recombinant P53 adenovirus methods and compositions
WO1995012660A3 (en) * 1993-10-29 1995-08-03 Univ Texas Recombinant p53 adenovirus methods and compositions
WO1995027071A3 (en) * 1994-04-04 1997-02-13 Univ Texas An adenovirus supervector system
US7252989B1 (en) 1994-04-04 2007-08-07 Board Of Regents, The University Of Texas System Adenovirus supervector system
US7195896B2 (en) 1994-06-10 2007-03-27 Genvec, Inc. Complementary adenoviral vector systems and cell lines
EP0707071A1 (en) * 1994-08-16 1996-04-17 Introgene B.V. Recombinant vectors derived from adenovirus for use in gene therapy
WO1996005321A1 (en) * 1994-08-17 1996-02-22 Rhone-Poulenc Rorer S.A. Gene therapy for restenosis using an adenoviral vector
US6001557A (en) * 1994-10-28 1999-12-14 The Trustees Of The University Of Pennsylvania Adenovirus and methods of use thereof
US6203975B1 (en) 1994-10-28 2001-03-20 The Trustees Of The University Of Pennsylvania Adenovirus and method of use thereof
US5856152A (en) * 1994-10-28 1999-01-05 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV vector and methods of use therefor
US5871982A (en) * 1994-10-28 1999-02-16 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
US6632427B1 (en) 1994-12-13 2003-10-14 Aventis Pharma S.A. Adenoviral-vector-mediated gene transfer into medullary motor neurons
FR2727867A1 (en) * 1994-12-13 1996-06-14 Rhone Poulenc Rorer Sa GENE TRANSFER IN MEDULLAR MOTONURONES USING ADENOVIRAL VECTORS
WO1996018740A1 (en) * 1994-12-13 1996-06-20 Rhone-Poulenc Rorer S.A. Adenoviral-vector-mediated gene transfer into medullary motor neurons
FR2729674A1 (en) * 1995-01-20 1996-07-26 Centre Nat Rech Scient Cells for prodn. of recombinant adeno and adeno-associated virus
WO1996022378A1 (en) * 1995-01-20 1996-07-25 Rhone-Poulenc Rorer S.A. Cells for the production of recombinant adenoviruses
US6127175A (en) * 1995-01-20 2000-10-03 Rhone-Poulenc Rorer S.A. Cells for the production of recombinant adenoviruses
AU717253B2 (en) * 1995-01-20 2000-03-23 Rhone-Poulenc Rorer S.A. Cells for the production of recombinant adenoviruses
WO1996025506A1 (en) * 1995-02-13 1996-08-22 Rhone-Poulenc Rorer S.A. Method for preparing a recombinant adenovirus genome
US6261807B1 (en) 1995-02-13 2001-07-17 Rhone-Poulenc Rorer S.A. Method for preparing a recombinant adenovirus genome
FR2730504A1 (en) * 1995-02-13 1996-08-14 Rhone Poulenc Rorer Sa PROCESS FOR THE PREPARATION OF RECOMBINANT ADENOVIRUS GENOMES
US5637456A (en) * 1995-02-17 1997-06-10 The University Of Texas, Board Of Regents Rapid test for determining the amount of functionally inactive gene in a gene therapy vector preparation
US7306794B2 (en) 1995-02-24 2007-12-11 The Trustees Of The University Of Pennsylvania Methods and compositions for the treatment of defects in lipoprotein metabolism
US7235236B2 (en) 1995-02-28 2007-06-26 The Regents Of The University Of California Polynucleotide encoding human adenylylcyclase VI and uses thereof for enhancing cardiac function
US6174871B1 (en) 1995-02-28 2001-01-16 The Regents Of The University Of California Gene therapies for enhancing cardiac function
US6752987B1 (en) 1995-02-28 2004-06-22 The Regents Of The University Of California Adenovirus encoding human adenylylcyclase (AC) VI
AU711381B2 (en) * 1995-03-14 1999-10-14 Rhone-Poulenc Rorer S.A. Recombinant viruses expressing lecithin-cholesterol acyltransferase, and uses thereof in gene therapy
FR2731710A1 (en) * 1995-03-14 1996-09-20 Rhone Poulenc Rorer Sa RECOMBINANT VIRUSES EXPRESSING LECITHIN CHOLESTEROL ACYLTRANSFERASE AND USES IN GENE THERAPY
WO1996028553A1 (en) * 1995-03-14 1996-09-19 Rhone-Poulenc Rorer S.A. Recombinant viruses expressing lecithin-cholesterol acyltransferase, and uses thereof in gene therapy
EP0732405A1 (en) * 1995-03-15 1996-09-18 Sumitomo Pharmaceuticals Company, Limited Recombinant DNA virus and method for preparation thereof
US5700470A (en) * 1995-03-15 1997-12-23 Sumitomo Pharmaceuticals Company, Limited Recombinant adenovirus with removed EZA gene and method of preparation
AU704608B2 (en) * 1995-03-15 1999-04-29 Sumitomo Pharmaceuticals Company, Limited Recombinant DNA virus and method for preparation thereof
US5824544A (en) * 1995-03-24 1998-10-20 Genzyme Corporation Adenovirus vectors for gene therapy
US5707618A (en) * 1995-03-24 1998-01-13 Genzyme Corporation Adenovirus vectors for gene therapy
EP1923467A3 (en) * 1995-03-24 2009-12-02 Genzyme Corporation Adenovirus vectors for gene therapy
FR2732357A1 (en) * 1995-03-31 1996-10-04 Rhone Poulenc Rorer Sa VIRAL VECTORS AND USE FOR THE TREATMENT OF HYPERPROLIFERATIVE DISORDERS, IN PARTICULAR RESTENOSIS
USRE37933E1 (en) 1995-03-31 2002-12-10 Case Western Reserve University Viral vectors and their use for treating hyperproliferative disorders, in particular restenosis
EP0817791A4 (en) * 1995-03-31 1998-07-15 Univ Case Western Reserve Viral vectors and their use for treating hyperproliferative disorders, in particular restenosis
EP0817791A1 (en) * 1995-03-31 1998-01-14 Case Western Reserve University Viral vectors and their use for treating hyperproliferative disorders, in particular restenosis
US5851521A (en) * 1995-03-31 1998-12-22 Case Western Reserve University Viral vectors and their use for treating hyperproliferative disorders, in particular restenosis
WO1996033280A1 (en) * 1995-04-17 1996-10-24 Board Of Regents, The University Of Texas System An adenovirus helper-virus system
FR2741891A1 (en) * 1995-06-01 1997-06-06 Centre Nat Rech Scient Cells for prodn. of recombinant adeno and adeno-associated virus
WO1996038556A2 (en) * 1995-06-01 1996-12-05 Rhone-Poulenc Rorer S.A. Deltap62, variants thereof, amino acid sequences coding therefor and their uses in gene therapy for cancer
FR2734826A1 (en) * 1995-06-01 1996-12-06 Rhone Poulenc Rorer Sa DELTAP62, ITS VARIANTS, NUCLEIC SEQUENCES AND THEIR USES
WO1996038556A3 (en) * 1995-06-01 1997-01-09 Rhone Poulenc Rorer Sa Deltap62, variants thereof, amino acid sequences coding therefor and their uses in gene therapy for cancer
US5698202A (en) * 1995-06-05 1997-12-16 The Wistar Institute Of Anatomy & Biology Replication-defective adenovirus human type 5 recombinant as a rabies vaccine carrier
US6261551B1 (en) 1995-06-05 2001-07-17 The Trustees Of The University Of Pennsylvania Recombinant adenovirus and adeno-associated virus, cell lines, and methods of production and use thereof
US5756283A (en) * 1995-06-05 1998-05-26 The Trustees Of The University Of Pennsylvania Method for improved production of recombinant adeno-associated viruses for gene therapy
US6019978A (en) * 1995-06-05 2000-02-01 The Wistar Institute Of Anatomy And Biology Replication-defective adenovirus human type 5 recombinant as a vaccine carrier
US6287571B1 (en) 1995-06-05 2001-09-11 The Wistar Institute Of Anatomy And Biology Replication-defective adenovirus human type 5 recombinant as a vaccine carrier
US6281010B1 (en) 1995-06-05 2001-08-28 The Trustees Of The University Of Pennsylvania Adenovirus gene therapy vehicle and cell line
US6270996B1 (en) 1995-06-05 2001-08-07 The Trustees Of The University Of Pennsylvania Recombinant adenovirus and adeno-associated virus, cell lines and methods of production and use thereof
US6238893B1 (en) 1995-06-15 2001-05-29 Introgene B.V. Method for intracellular DNA amplification
US6033908A (en) * 1995-06-15 2000-03-07 Introgene, B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US6783980B2 (en) 1995-06-15 2004-08-31 Crucell Holland B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US6692966B2 (en) 1995-06-15 2004-02-17 Crucell Holland B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US6602706B1 (en) 1995-06-15 2003-08-05 Introgene B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US6265212B1 (en) 1995-06-15 2001-07-24 Introgene B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US5994128A (en) * 1995-06-15 1999-11-30 Introgene B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
KR100449181B1 (en) * 1995-06-15 2005-01-24 크루셀 홀란드 비.브이. A recombinant adenovirus packaging system that can be used in gene therapy
WO1997000326A1 (en) * 1995-06-15 1997-01-03 Introgene B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US6395519B1 (en) 1995-06-15 2002-05-28 Introgene B.V. Means and methods for nucleic acid delivery vehicle design and nucleic acid transfer
US6306652B1 (en) 1995-06-15 2001-10-23 Introgene B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US6420170B1 (en) 1995-06-23 2002-07-16 Aventis Pharma S.A. Recombinant adenoviruses containing an inducible promoter controlling a gene of viral origin
US7033826B2 (en) 1995-06-23 2006-04-25 Aventis Pharma S.A. Recombinant adenoviruses, use thereof for preparing AAVS, complementary cell line, and pharmaceutical compositions containing said adenoviruses
WO1997000954A1 (en) * 1995-06-23 1997-01-09 Board Of Regents, The University Of Texas System C-cam expression constructs and their application in cancer therapy
FR2735789A1 (en) * 1995-06-23 1996-12-27 Centre Nat Rech Scient RECOMBINANT ADENOVIRUSES, THEIR USE FOR PREPARING AVA, COMPLEMENTARY CELL LINE AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
WO1997000947A1 (en) * 1995-06-23 1997-01-09 Rhone-Poulenc Rorer S.A. Recombinant adenoviruses, use thereof for preparing aavs, complementary cell line, and pharmaceutical compositions containing said adenoviruses
US6204060B1 (en) 1995-07-24 2001-03-20 Transgene S.A. Viral vectors and line for gene therapy
FR2737222A1 (en) * 1995-07-24 1997-01-31 Transgene Sa NEW VIRTORS AND LINEAR FOR GENE THERAPY
WO1997004119A1 (en) * 1995-07-24 1997-02-06 Transgene S.A. Viral vectors and line for gene therapy
FR2737221A1 (en) * 1995-07-24 1997-01-31 Transgene Sa Viral vector for gene therapy includes heterologous regulatory sequence - so that viral genes are functional only in complementing cells, also derived infectious particles
AU712951B2 (en) * 1995-07-24 1999-11-18 Transgene S.A. Viral vectors and line for gene therapy
EP1096018A1 (en) * 1995-07-24 2001-05-02 Transgene S.A. Complementation cells comprising an inducer and/or a repressor
US6482803B1 (en) 1995-09-01 2002-11-19 Board Of Regents, The University Of Texas System Modification of mutated P53 gene in tumors by retroviral delivery of ribozyme A
FR2738575A1 (en) * 1995-09-08 1997-03-14 Centre Nat Rech Scient Cells for prodn. of recombinant adeno and adeno-associated virus
WO1997016547A1 (en) * 1995-10-31 1997-05-09 The Board Of Regents, The University Of Texas System ADENOVIRUS-ANTISENSE K-ras EXPRESSION VECTORS AND THEIR APPLICATION IN CANCER THERAPY
JP2012050453A (en) * 1995-11-09 2012-03-15 Genzyme Corp Accessory function for use in recombinant aav virion production
JP2009077737A (en) * 1995-11-09 2009-04-16 Genzyme Corp Accessory functions for use in recombinant aav virion production
WO1997017937A2 (en) * 1995-11-17 1997-05-22 Franz Wolfgang M Gene-therapeutic nucleic acid construct, production of same and use of same in the treatment of heart disorders
WO1997017937A3 (en) * 1995-11-17 1997-07-17 Franz Wolfgang M Gene-therapeutic nucleic acid construct, production of same and use of same in the treatment of heart disorders
FR2746110A1 (en) * 1996-03-14 1997-09-19 Centre Nat Rech Scient METHOD OF TREATING GENE THERAPY OF HUMAN TUMORS AND CORRESPONDING RECOMBINANT VIRUSES
AU732288B2 (en) * 1996-03-14 2001-04-12 Gencell S.A. Recombinant adenoviral vectors for human tumour gene therapy
WO1997034009A1 (en) * 1996-03-14 1997-09-18 Rhone-Poulenc Rorer S.A. Recombinant adenoviral vectors for human tumour gene therapy
US6132989A (en) * 1996-06-03 2000-10-17 University Of Washington Methods and compositions for enhanced stability of non-adenoviral DNA
US8075900B2 (en) 1996-07-11 2011-12-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Melanoma associated peptide analogues and vaccines against melanoma
US7846450B2 (en) 1996-07-11 2010-12-07 United States Of America, As Represented By The Secretary, Department Of Health And Human Services Melanoma associated peptide analogues and vaccines against melanoma
US6410029B1 (en) 1996-07-30 2002-06-25 Board Of Regents, The University Of Texas System 2-methoxyestradiol-induced apoptosis in cancer cells
US6083716A (en) * 1996-09-06 2000-07-04 The Trustees Of The University Of Pennsylvania Chimpanzee adenovirus vectors
EP1471146A3 (en) * 1996-09-25 2005-03-30 Novartis AG A packaging cell line expressing for use in facilitating the development of high capacity adenoviral vectors
WO1998013499A2 (en) * 1996-09-25 1998-04-02 Novartis Ag Packaging cell lines for use in facilitating the development of high-capacity adenoviral vectors
WO1998013499A3 (en) * 1996-09-25 1998-08-27 Ciba Geigy Ag Packaging cell lines for use in facilitating the development of high-capacity adenoviral vectors
EP1471146A2 (en) * 1996-09-25 2004-10-27 Novartis AG A packaging cell line expressing for use in facilitating the development of high capacity adenoviral vectors
US7232899B2 (en) 1996-09-25 2007-06-19 The Scripps Research Institute Adenovirus vectors, packaging cell lines, compositions, and methods for preparation and use
EP2039768A1 (en) 1996-11-13 2009-03-25 Novartis Vaccines and Diagnostics, Inc. Mutant forms of Fas ligand and uses thereof
US8343494B2 (en) 1996-12-06 2013-01-01 Aventis Pharmaceuticals Inc. Antibodies against LLG polypeptides of the triacylglycerol lipase family
US7008776B1 (en) 1996-12-06 2006-03-07 Aventis Pharmaceuticals Inc. Compositions and methods for effecting the levels of high density lipoprotein (HDL) cholesterol and apolipoprotein AI very low density lipoprotein (VLDL) cholesterol and low density lipoprotein (LDL) cholesterol
WO1998032860A1 (en) * 1997-01-28 1998-07-30 Baxter International Inc. Methods for highly efficient generation of adenoviral vectors
US6403370B1 (en) 1997-02-10 2002-06-11 Genstar Therapeutics Corporation Oncolytic/immunogenic complementary-adenoviral vector system
US6638502B1 (en) 1997-04-28 2003-10-28 Gencell Sas Adenovirus-mediated intratumoral delivery of an angiogenesis antagonist for the treatment of tumors
US7473428B2 (en) 1997-08-14 2009-01-06 Vectogen Pty Ltd. Recombinant porcine adenovirus vector
US6251677B1 (en) 1997-08-25 2001-06-26 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
US7572580B2 (en) 1997-10-23 2009-08-11 The United States Of America As Represented By The Department Of Veterans Affairs Promoter variants of the alpha-7 nicotinic acetylcholine receptor
US6875606B1 (en) 1997-10-23 2005-04-05 The United States Of America As Represented By The Department Of Veterans Affairs Human α-7 nicotinic receptor promoter
US6653088B1 (en) 1997-10-24 2003-11-25 Aventis Pharma S.A. Interaction test for the investigation of inhibitory molecules of the interaction between a presenilin and the β-amyloid peptide
EP2278006A2 (en) 1997-11-06 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Neisserial antigens
US6512161B1 (en) 1998-01-08 2003-01-28 Aventis Pharmaceuticals, Inc. Transgenic rabbit that expresses a functional human lipoprotein (a)
EP2210945A2 (en) 1998-01-14 2010-07-28 Novartis Vaccines and Diagnostics S.r.l. Neisseria meningitidis antigens
EP2278011A2 (en) 1998-01-14 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Neisseria meningitidis antigens
US6670188B1 (en) 1998-04-24 2003-12-30 Crucell Holland B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US7037716B2 (en) 1998-04-24 2006-05-02 Crucell Holland B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
US6878549B1 (en) 1998-04-24 2005-04-12 Introgene B.V. Packaging systems for human recombinant adenovirus to be used in gene therapy
EP2261346A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261338A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261342A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261347A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261343A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261339A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261357A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261350A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261345A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261356A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261355A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261349A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261340A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261352A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261341A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261354A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261348A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261351A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261353A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
EP2261344A2 (en) 1998-05-01 2010-12-15 Novartis Vaccines and Diagnostics, Inc. Neisseria meningitidis antigens and compositions
US6225456B1 (en) 1998-05-07 2001-05-01 University Technololy Corporation Ras suppressor SUR-5
US6506889B1 (en) 1998-05-19 2003-01-14 University Technology Corporation Ras suppressor SUR-8 and related compositions and methods
US6413776B1 (en) 1998-06-12 2002-07-02 Galapagos Geonomics N.V. High throughput screening of gene function using adenoviral libraries for functional genomics applications
US7029848B2 (en) 1998-06-12 2006-04-18 Galapagos Genomics N.V. High throughput screening of gene function using libraries for functional genomics applications
US6979724B2 (en) * 1998-12-30 2005-12-27 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Calcium channel proteins
US6441156B1 (en) 1998-12-30 2002-08-27 The United States Of America As Represented By The Department Of Health And Human Services Calcium channel compositions and methods of use thereof
US6387368B1 (en) 1999-02-08 2002-05-14 The Trustees Of The University Of Pennsylvania Hybrid adenovirus-AAV virus and methods of use thereof
US6620618B2 (en) * 1999-02-25 2003-09-16 National Research Council Of Canada Complementary cell line for the growth of adenovirus mutants with a deleted protease gene
EP2278007A1 (en) 1999-04-30 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Conserved neisserial antigens
EP2290083A1 (en) 1999-04-30 2011-03-02 Novartis Vaccines and Diagnostics S.r.l. Conserved neisserial antigens
EP2251424A1 (en) 1999-05-19 2010-11-17 Novartis Vaccines and Diagnostics S.r.l. Antigenic neisserial peptides
US6793926B1 (en) 1999-05-27 2004-09-21 Genovo, Inc. Methods for production of a recombinant adeno-associated virus
US8642028B2 (en) 1999-06-11 2014-02-04 Aventis Pharma S.A. Recombinant adenoviruses encoding the specific iodine transporter (NIS)
EP1935979A2 (en) 1999-07-14 2008-06-25 Novartis Vaccines and Diagnostics S.r.l. Antigenic meningococcal peptides
US8263395B2 (en) 1999-10-07 2012-09-11 Aventis Pharma S.A. Recombinant adenoviruses preparation and adenovirus banks
EP2975127A1 (en) 1999-10-29 2016-01-20 GlaxoSmithKline Biologicals SA Neisserial antigenic peptides
EP2275553A2 (en) 1999-10-29 2011-01-19 Novartis Vaccines and Diagnostics S.r.l. Neisserial antigenic peptides
EP2275552A2 (en) 1999-10-29 2011-01-19 Novartis Vaccines and Diagnostics S.r.l. Neisserial antigenic peptides
EP2275551A2 (en) 1999-10-29 2011-01-19 Novartis Vaccines and Diagnostics S.r.l. Neisserial antigenic peptides
EP2275554A2 (en) 1999-10-29 2011-01-19 Novartis Vaccines and Diagnostics S.r.l. Neisserial antigenic peptides
EP2289545A2 (en) 2000-01-17 2011-03-02 Novartis Vaccines and Diagnostics S.r.l. Supplemented OMV vaccine against meningococcus
EP2275129A2 (en) 2000-01-17 2011-01-19 Novartis Vaccines and Diagnostics S.r.l. Outer membrane vesicle (OMV) vaccine comprising N. meningitidis serogroup B outer membrane proteins
EP2281571A2 (en) 2000-01-17 2011-02-09 Novartis Vaccines and Diagnostics S.r.l. Outer membrane vesicle (omv) vaccine comprising n. meningitidids serogroup b outer membrane proteins
EP2281570A2 (en) 2000-01-17 2011-02-09 Novartis Vaccines and Diagnostics S.r.l. Outer membrane vesicle (OMV) vaccine comprising n. meningitidis serogroup B outer membrane proteins
US8623831B2 (en) 2000-03-31 2014-01-07 Aventis Pharmaceuticals Inc. Nuclear factor κB inducing factor
US8642739B2 (en) 2000-03-31 2014-02-04 Aventis Pharmaceuticals Inc. Nuclear factor κB inducing factor
WO2001074900A2 (en) 2000-03-31 2001-10-11 Aventis Pharmaceuticals Products Inc. Nuclear factor kb inducing factor
EP2277894A1 (en) 2000-10-27 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A & B
EP2277896A1 (en) 2000-10-27 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A & B
EP2284182A1 (en) 2000-10-27 2011-02-16 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A and B
EP2277895A1 (en) 2000-10-27 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A & B
EP2284183A1 (en) 2000-10-27 2011-02-16 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A and B
EP2284181A1 (en) 2000-10-27 2011-02-16 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A and B
EP2896629A1 (en) 2000-10-27 2015-07-22 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus group A & B
US7060442B2 (en) 2000-10-30 2006-06-13 Regents Of The University Of Michigan Modulators on Nod2 signaling
US7375086B2 (en) 2000-10-30 2008-05-20 The Regents Of The University Of Michigan Modulators of Nod2 signaling
EP2402359A1 (en) 2000-12-28 2012-01-04 Wyeth LLC Recombinant protective protein from streptococcus pneumoniae
EP2270175A1 (en) 2001-03-27 2011-01-05 Novartis Vaccines and Diagnostics S.r.l. Streptococcus pneumoniae proteins and nucleic acids
EP2278009A1 (en) 2001-03-27 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Streptococcus pneumoniae proteins and nucleic acids
EP2270177A1 (en) 2001-03-27 2011-01-05 Novartis Vaccines and Diagnostics S.r.l. Streptococcus pneumoniae proteins and nucleic acids
EP2278010A1 (en) 2001-03-27 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Streptococcus pneumoniae proteins and nucleic acids
EP2270176A1 (en) 2001-03-27 2011-01-05 Novartis Vaccines and Diagnostics S.r.l. Streptococcus pneumoniae proteins and nucleic acids
EP2278008A2 (en) 2001-03-27 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Streptococcus pneumoniae proteins and nucleic acids
EP2314697A1 (en) 2001-03-27 2011-04-27 Novartis Vaccines and Diagnostics S.r.l. Streptococcus pneumoniae proteins and nucleic acids
EP2298796A2 (en) 2001-03-27 2011-03-23 Novartis Vaccines and Diagnostics S.r.l. Staphylococcus aureus proteins and nucleic acids
US7541343B2 (en) 2001-05-22 2009-06-02 Newsouth Innovations Pty Limited Inhibiting cellular proliferation by expressing yin yang-1
US6682929B2 (en) 2001-07-23 2004-01-27 Genvec, Inc. Adenovector complementing cells
US7569217B2 (en) 2001-09-24 2009-08-04 University Of Saskatchewan Porcine adenovirus E1 and E4 regions
US8563007B1 (en) 2001-10-11 2013-10-22 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
EP3199539A1 (en) 2001-10-11 2017-08-02 Wyeth Holdings LLC Novel immunogenic compositions for the prevention and treatment of meningococcal disease
US9107873B2 (en) 2001-10-11 2015-08-18 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US8563006B2 (en) 2001-10-11 2013-10-22 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
US9132182B2 (en) 2001-10-11 2015-09-15 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US9168293B2 (en) 2001-10-11 2015-10-27 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US10300122B2 (en) 2001-10-11 2019-05-28 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US11116829B2 (en) 2001-10-11 2021-09-14 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
EP2332961A2 (en) 2001-10-11 2011-06-15 Wyeth Holdings Corporation Novel immunogenic compositions for the prevention and treatment of meningococcal disease
US9623101B2 (en) 2001-10-11 2017-04-18 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US8101194B2 (en) 2001-10-11 2012-01-24 Wyeth Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
EP2341062A2 (en) 2001-10-11 2011-07-06 Wyeth Holdings Corporation Novel immunogenic compositions for the prevention and treatment of meningococcal disease
EP2341063A2 (en) 2001-10-11 2011-07-06 Wyeth Holdings Corporation Novel immunogenic compositions for the prevention and treatment of meningococcal disease
EP2343308A2 (en) 2001-10-11 2011-07-13 Wyeth Holdings Corporation Novel immunogenic compositions for the prevention and treatment of meningococcal disease
EP2348036A2 (en) 2001-10-11 2011-07-27 Wyeth Holdings Corporation Novel immunogenic compositions for the prevention and treatment of meningococcal disease
EP2348035A2 (en) 2001-10-11 2011-07-27 Wyeth Holdings Corporation Novel immunogenic compositions for the prevention and treatment of meningococcal disease
EP2348034A2 (en) 2001-10-11 2011-07-27 Wyeth Holdings Corporation Novel immunogenic compositions for the prevention and treatment of meningococcal disease
EP2351767A2 (en) 2001-10-11 2011-08-03 Wyeth Holdings Corporation Novel immunogenic compositions for the prevention and treatment of meningococcal disease
EP2366707A1 (en) 2001-10-11 2011-09-21 Wyeth Holdings Corporation Novel immunogenic compositions for the prevention and treatment of meningococcal disease
US9757444B2 (en) 2001-10-11 2017-09-12 Wyeth Holdings Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
EP2371837A1 (en) 2001-10-11 2011-10-05 Wyeth Holdings Corporation Novel immunogenic compositions for the prevention and treatment of meningococcal disease
EP2371836A1 (en) 2001-10-11 2011-10-05 Wyeth Holdings Corporation Novel immunogenic compositions for the prevention and treatment of meningococcal disease
EP2371838A1 (en) 2001-10-11 2011-10-05 Wyeth Holdings Corporation Novel immunogenic compositions for the prevention and treatment of meningococcal disease
EP2335723A1 (en) 2001-12-12 2011-06-22 Novartis Vaccines and Diagnostics S.r.l. Immunisation against chlamydia trachomatis
EP2335724A1 (en) 2001-12-12 2011-06-22 Novartis Vaccines and Diagnostics S.r.l. Immunisation against chlamydia trachomatis
WO2003061708A1 (en) * 2002-01-18 2003-07-31 Schering Aktiengesellschaft Stabilized formulations of adenovirus
US7319001B2 (en) 2002-03-09 2008-01-15 Neurogenex Co., Ltd. High throughput system for producing recombinant viruses using site-specific recombination
EP2316921A1 (en) 2002-05-24 2011-05-04 Schering Corporation Neutralizing human anti-IGFR antibody
EP2316922A1 (en) 2002-05-24 2011-05-04 Schering Corporation Neutralizing human anti-IGFR antibody
EP2431480A2 (en) 2002-08-09 2012-03-21 The President and Fellows of Harvard College Methods and compositions for increasing the stress resistance of cells and organisms
US7785608B2 (en) 2002-08-30 2010-08-31 Wyeth Holdings Corporation Immunogenic compositions for the prevention and treatment of meningococcal disease
EP2267005A1 (en) 2003-04-09 2010-12-29 Novartis Vaccines and Diagnostics S.r.l. ADP-ribosylating toxin from Listeria monocytogenes
EP2168603A1 (en) 2003-11-14 2010-03-31 GenVec, Inc. Therapeutic regimen for treating cancer
US7432057B2 (en) 2004-01-30 2008-10-07 Michigan State University Genetic test for PSE-susceptible turkeys
WO2005093064A1 (en) 2004-03-29 2005-10-06 Galpharma Co., Ltd. Novel galectin 9 modification protein and use thereof
EP2567967A2 (en) 2004-04-12 2013-03-13 GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES Method of using adenoviral vectors to induce an immune response
WO2006002161A2 (en) 2004-06-18 2006-01-05 Duke University Modulators of odorant receptors
US7604798B2 (en) 2004-07-15 2009-10-20 Northwestern University Methods and compositions for importing nucleic acids into cell nuclei
WO2006020071A2 (en) 2004-07-16 2006-02-23 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Vaccines against aids comprising cmv/r-nucleic acid constructs
EP2397490A1 (en) 2004-07-16 2011-12-21 THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES Vaccine constructs and combinations of vaccines designed to improve the breadth of the immune response to diverse strains and clades of HIV
WO2006086454A2 (en) 2005-02-08 2006-08-17 President And Fellows Of Harvard College Methods and compositions for extending the life span and increasing the stress resistance of cells and organisms
EP3002330A1 (en) 2005-05-27 2016-04-06 Ospedale San Raffaele S.r.l. Gene vector
US8765146B2 (en) 2005-08-31 2014-07-01 Genvec, Inc. Adenoviral vector-based malaria vaccines
US8323663B2 (en) 2005-11-10 2012-12-04 Genvec, Inc. Adenoviral vector-based foot-and-mouth disease vaccine
WO2008020335A2 (en) 2006-06-09 2008-02-21 Novartis Ag Immunogenic compositions for streptococcus agalactiae
US8329669B2 (en) 2006-07-28 2012-12-11 Sanofi Composition and method for treatment of tumors
EP2829551A1 (en) 2006-10-19 2015-01-28 CSL Limited High affinity antibody antagonists of interleukin-13 receptor alpha 1
EP2530090A2 (en) 2006-10-19 2012-12-05 CSL Limited Anti-IL-13R alpha 1 antibodies and their uses thereof
US8574597B2 (en) 2006-12-22 2013-11-05 Wyeth Llc Immunogenic compositions for the prevention and treatment of meningococcal disease
US8563001B2 (en) 2008-11-05 2013-10-22 Regents Of The University Of Minnesota Multicomponent immunogenic composition for the prevention of beta-hemolytic streptococcal (BHS) disease
US9127050B2 (en) 2008-11-05 2015-09-08 Regents Of The University Of Minnesota Multicomponent immunogenic composition for the prevention of beta-hemolytic streptococcal (BHS) disease
EP3115063A2 (en) 2008-12-03 2017-01-11 The John Hopkins University Galectin-3 and annexin-a2 as immunological target
WO2010096561A1 (en) 2009-02-18 2010-08-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Synthetic hiv/siv gag proteins and uses thereof
WO2011047316A1 (en) 2009-10-16 2011-04-21 The United States Of America, As Represented By The Secretary Department Of Health And Human Services Nucleic acid sequences encoding expandable hiv mosaic proteins
WO2011057254A2 (en) 2009-11-09 2011-05-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Simian adenoviral vector-based vaccines
WO2011057248A2 (en) 2009-11-09 2011-05-12 Genvec, Inc. Simian adenovirus and methods of use
EP2853266A1 (en) 2009-11-09 2015-04-01 Genvec, Inc. Methods of propagating monkey adenoviral vectors
WO2011116189A1 (en) 2010-03-17 2011-09-22 Cornell University Disrupted adenovirus-based vaccine against drugs of abuse
WO2012021730A2 (en) 2010-08-11 2012-02-16 Genvec, Inc. Respiratory syncytial virus (rsv) vaccine
US9556240B2 (en) 2010-08-23 2017-01-31 Wyeth Llc Stable formulations of Neisseria meningitidis rLP2086 antigens
US9757443B2 (en) 2010-09-10 2017-09-12 Wyeth Llc Non-lipidated variants of Neisseria meningitidis ORF2086 antigens
US11077180B2 (en) 2010-09-10 2021-08-03 Wyeth Llc Non-lipidated variants of Neisseria meningitidis ORF2086 antigens
US10512681B2 (en) 2010-09-10 2019-12-24 Wyeth Llc Non-lipidated variants of Neisseria meningitidis ORF2086 antigens
WO2012083297A2 (en) 2010-12-17 2012-06-21 Genvec, Inc. Adenoviral vectors with modified hexon regions
WO2012088041A1 (en) 2010-12-20 2012-06-28 Genvec, Inc. Adenoviral vector-based dengue fever vaccine
US9063123B2 (en) 2011-03-29 2015-06-23 Dynavax Technologies Corporation Transgenic mice expressing human toll-like receptor 8
WO2012135549A2 (en) 2011-03-29 2012-10-04 Dynavax Technologies Corporation Tlr8 transgenic animals
WO2012162428A1 (en) 2011-05-23 2012-11-29 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Prime-boost vaccination for viral infection
US9617560B2 (en) 2011-10-05 2017-04-11 Genvec, Inc. Simian (gorilla) adenovirus or adenoviral vectors and methods of use
US10787682B2 (en) 2011-10-05 2020-09-29 Genvec, Inc. Simian (gorilla) adenovirus or adenoviral vectors and methods of use
WO2013052832A2 (en) 2011-10-05 2013-04-11 Genvec, Inc. Adenoviral vectors and methods of use
US10272162B2 (en) 2011-10-05 2019-04-30 Genvec, Inc. Affenadenovirus (gorilla) or adenoviral vectors and methods of use
US10059962B2 (en) 2011-10-05 2018-08-28 Genvec, Inc. Simian (gorilla) adenovirus or adenoviral vectors and methods of use
US11359214B2 (en) 2011-10-05 2022-06-14 Genvec, Inc. Simian (gorilla) adenovirus or adenoviral vectors and methods of use
US9233153B2 (en) 2011-10-05 2016-01-12 Genvec, Inc. Affenadenovirus (gorilla) or adenoviral vectors and methods of use
WO2013052859A2 (en) 2011-10-05 2013-04-11 Genvec, Inc. Adenoviral vector-based respiratory syncytial virus (rsv) vaccine
WO2013052799A2 (en) 2011-10-05 2013-04-11 Genvec, Inc. Adenoviral vectors and methods of use
WO2013052811A2 (en) 2011-10-05 2013-04-11 Genvec, Inc. Adenoviral vectors and methods of use
US9580476B2 (en) 2011-10-05 2017-02-28 Genvec, Inc. Adenoviral vector-based respiratory syncytial virus (RSV) vaccine
US10792376B2 (en) 2011-10-05 2020-10-06 Genvec, Inc. Affenadenovirus (gorilla) or adenoviral vectors and methods of use
US10260074B2 (en) 2011-10-05 2019-04-16 Genvec, Inc. Affenadenovirus (gorilla) or adenoviral vectors and methods of use
US9629906B2 (en) 2011-10-05 2017-04-25 Genvec, Inc. Affenadenovirus (gorilla) or adenoviral vectors and methods of use
US11034975B2 (en) 2011-10-05 2021-06-15 Genvec, Inc. Affenadenovirus (gorilla) or adenoviral vectors and methods of use
US9725738B2 (en) 2011-10-05 2017-08-08 Genvec, Inc. Affenadenovirus (gorilla) or adenoviral vectors and methods of use
WO2013116591A1 (en) 2012-02-02 2013-08-08 Genvec, Inc. Adenoviral vector-based malaria vaccine
US9724402B2 (en) 2012-03-09 2017-08-08 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US10550159B2 (en) 2012-03-09 2020-02-04 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US10196429B2 (en) 2012-03-09 2019-02-05 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US8986710B2 (en) 2012-03-09 2015-03-24 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10829521B2 (en) 2012-03-09 2020-11-10 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US11472850B2 (en) 2012-03-09 2022-10-18 Pfizer Inc. Neisseria meningitidis composition and methods thereof
US9561269B2 (en) 2012-03-09 2017-02-07 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
WO2013181128A1 (en) 2012-05-29 2013-12-05 Genvec, Inc. Modified serotype 28 adenoviral vectors
US10125174B2 (en) 2012-05-29 2018-11-13 Genvec, Inc. Herpes simplex virus vaccine
WO2013180967A1 (en) 2012-05-29 2013-12-05 Genvec, Inc. Herpes simplex virus vaccine
US9676824B2 (en) 2012-05-29 2017-06-13 Genvec, Inc. Herpes simplex virus vaccine
WO2014107739A1 (en) 2013-01-07 2014-07-10 Eleven Biotherapeutics, Inc. Antibodies against pcsk9
US9802987B2 (en) 2013-03-08 2017-10-31 Pfizer Inc. Immunogenic fusion polypeptides
WO2014164703A1 (en) 2013-03-11 2014-10-09 University Of Florida Research Foundation, Inc. Delivery of card protein as therapy for occular inflammation
US9822150B2 (en) 2013-09-08 2017-11-21 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10899802B2 (en) 2013-09-08 2021-01-26 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US11680087B2 (en) 2013-09-08 2023-06-20 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
WO2015127094A1 (en) 2014-02-19 2015-08-27 University Of Florida Research Foundation, Inc. Delivery of nrf2 as therapy for protection against reactive oxygen species
WO2016037154A1 (en) 2014-09-04 2016-03-10 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Recombinant hiv-1 envelope proteins and their use
WO2016103238A1 (en) 2014-12-24 2016-06-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Recombinant metapneumovirus f proteins and their use
WO2016118642A1 (en) 2015-01-20 2016-07-28 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Recombinant human/bovine parainfluenza virus 3 (b/hpiv3) expressing a chimeric rsv/bpiv3 f protein and uses thereof
WO2016122791A1 (en) 2015-01-30 2016-08-04 The Regents Of The University Of California Spinal subpial gene delivery system
US10888611B2 (en) 2015-02-19 2021-01-12 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
WO2016138160A1 (en) 2015-02-24 2016-09-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Middle east respiratory syndrome coronavirus immunogens, antibodies, and their use
WO2017070237A1 (en) 2015-10-19 2017-04-27 University Of Maryland, Baltimore Methods for generating engineered human primary blood dendritic cell lines
WO2017139392A1 (en) 2016-02-08 2017-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Recombinant hiv-1 envelope proteins and their use
WO2017156272A1 (en) 2016-03-09 2017-09-14 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Recombinant hiv-1 envelope proteins and their use
WO2017172606A1 (en) 2016-03-28 2017-10-05 The Regents Of The University Of California Method and composition for treating neuronal hyper-excitability
US11560412B2 (en) 2016-04-01 2023-01-24 University Of Maryland, Baltimore Compositions comprising GRIM-19 therapeutics and methods of use
WO2018064523A1 (en) 2016-09-30 2018-04-05 Genvec, Inc. Adenovectors for delivery of therapeutic genetic material into t cells
WO2018067582A2 (en) 2016-10-03 2018-04-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hiv-1 env fusion peptide immunogens and their use
EP4070815A1 (en) 2016-10-03 2022-10-12 The U.S.A. as represented by the Secretary, Department of Health and Human Services Hiv-1 env fusion peptide immunogens and their use
WO2018081318A1 (en) 2016-10-25 2018-05-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion coronavirus spike proteins and their use
US11147249B2 (en) 2016-12-08 2021-10-19 Alector Llc Siglec transgenic mice and methods of use thereof
WO2018109220A2 (en) 2016-12-16 2018-06-21 Institute For Research In Biomedicine Novel recombinant prefusion rsv f proteins and uses thereof
US10183070B2 (en) 2017-01-31 2019-01-22 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10813989B2 (en) 2017-01-31 2020-10-27 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US11730800B2 (en) 2017-01-31 2023-08-22 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
US10543267B2 (en) 2017-01-31 2020-01-28 Pfizer Inc. Neisseria meningitidis compositions and methods thereof
WO2018176031A1 (en) 2017-03-24 2018-09-27 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Glycan-masked engineered outer domains of hiv-1 gp120 and their use
EP4124658A2 (en) 2017-10-16 2023-02-01 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis (als)
WO2019079337A1 (en) 2017-10-16 2019-04-25 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Recombinant hiv-1 envelope proteins and their use
WO2019079240A1 (en) 2017-10-16 2019-04-25 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis (als)
WO2019079242A1 (en) 2017-10-16 2019-04-25 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis (als)
US11470827B2 (en) 2017-12-12 2022-10-18 Alector Llc Transgenic mice expressing human TREM proteins and methods of use thereof
US11608362B2 (en) 2018-03-06 2023-03-21 Precigen, Inc. Hepatitis B vaccines and uses of the same
WO2020010035A1 (en) 2018-07-02 2020-01-09 Voyager Therapeutics, Inc. Cannula system
WO2020010042A1 (en) 2018-07-02 2020-01-09 Voyager Therapeutics, Inc. Treatment of amyotrophic lateral sclerosis and disorders associated with the spinal cord
WO2020086483A1 (en) 2018-10-22 2020-04-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Recombinant gp120 protein with v1-loop deletion
WO2021163365A1 (en) 2020-02-11 2021-08-19 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Sars-cov-2 vaccine
US11737974B2 (en) 2020-03-05 2023-08-29 University of Pittsburgh—of the Commonwealth System of Higher Education SARS-CoV-2 subunit vaccine and microneedle array delivery system
WO2022074464A2 (en) 2020-03-05 2022-04-14 Neotx Therapeutics Ltd. Methods and compositions for treating cancer with immune cells
US11213482B1 (en) 2020-03-05 2022-01-04 University of Pittsburgh—Of the Commonwealth System of Higher Educat SARS-CoV-2 subunit vaccine and microneedle array delivery system
US11773391B2 (en) 2020-04-01 2023-10-03 University of Pittsburgh—of the Commonwealth System of Higher Education Therapeutic and diagnostic target for SARS-CoV-2 and COVID-19
WO2021222639A2 (en) 2020-04-29 2021-11-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Recombinant human metapneumovirus f proteins and their use
WO2021247995A2 (en) 2020-06-04 2021-12-09 Voyager Therapeutics, Inc. Compositions and methods of treating neuropathic pain
WO2022035860A2 (en) 2020-08-10 2022-02-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Replication-competent adenovirus type 4-hiv env vaccines and their use
WO2022232648A1 (en) 2021-04-29 2022-11-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion-stabilized lassa virus glycoprotein complex and its use
WO2022235929A1 (en) 2021-05-05 2022-11-10 Radius Pharmaceuticals, Inc. Animal model having homologous recombination of mouse pth1 receptor
WO2023015186A1 (en) 2021-08-03 2023-02-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hiv-1 vaccination and samt-247 microbicide to prevent hiv-1 infection
WO2023069979A1 (en) 2021-10-20 2023-04-27 University Of Rochester Isolated glial progenitor cells for use in the competition treatment of age-related white matter loss
WO2023069987A1 (en) 2021-10-20 2023-04-27 University Of Rochester Rejuvenation treatment of age-related white matter loss cross reference to related application
WO2023081633A1 (en) 2021-11-02 2023-05-11 University Of Rochester Tcf7l2 mediated remyelination in the brain
WO2023091696A1 (en) 2021-11-19 2023-05-25 Christiana Care Gene Editing Institute, Inc. Adenovirus delivery system for cancer treatment
WO2023192835A1 (en) 2022-03-27 2023-10-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Base-covered hiv-1 envelope ectodomains and their use
WO2023196898A1 (en) 2022-04-07 2023-10-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Beta globin mimetic peptides and their use

Also Published As

Publication number Publication date
HU216871B (en) 1999-09-28
SK282843B6 (en) 2002-12-03
EP0667912B1 (en) 2008-07-02
JPH08501703A (en) 1996-02-27
NO950939D0 (en) 1995-03-10
EP0667912A1 (en) 1995-08-23
SK31295A3 (en) 1996-05-08
NZ269156A (en) 1996-03-26
NO321309B1 (en) 2006-04-24
HU9500732D0 (en) 1995-04-28
RU2219241C2 (en) 2003-12-20
CA2144040A1 (en) 1995-01-26
BR9405507A (en) 1999-05-25
CN1113390A (en) 1995-12-13
CZ63995A3 (en) 1995-11-15
PL179877B1 (en) 2000-11-30
JP4190028B2 (en) 2008-12-03
KR100356615B1 (en) 2003-04-03
DK0667912T3 (en) 2008-11-10
HUT72558A (en) 1996-05-28
AU7264694A (en) 1995-02-13
PL308122A1 (en) 1995-07-24
RU95108217A (en) 1997-06-10
CZ287157B6 (en) 2000-10-11
FI951138A (en) 1995-04-13
DE69435108D1 (en) 2008-08-14
FI951138A0 (en) 1995-03-10
NO950939L (en) 1995-03-10
PT667912E (en) 2008-10-15
KR950703649A (en) 1995-09-20
US20030096787A1 (en) 2003-05-22
ATE399873T1 (en) 2008-07-15
ES2310924T3 (en) 2009-01-16
IL110284A0 (en) 1994-10-21
CN1115414C (en) 2003-07-23

Similar Documents

Publication Publication Date Title
EP0667912B1 (en) Defective adenovirus vectors and use thereof in gene therapy
EP0698108B1 (en) Adenoviral vectors of animal origin and use thereof in gene therapy
FR2707664A1 (en) Viral vectors and use in gene therapy
FR2726285A1 (en) ADENOVIRUSES CONTAINING VIABLE CONTAMINANT PARTICLES, PREPARATION AND USE
EP0741793B1 (en) Method for preparing recombinant adeno-associated viruses (aav), and uses thereof
WO1997000947A1 (en) Recombinant adenoviruses, use thereof for preparing aavs, complementary cell line, and pharmaceutical compositions containing said adenoviruses
WO1996012030A1 (en) Defective adenoviruses including a therapeutic gene and an immunoprotective gene
EP1032695B1 (en) Adenovirus vectors and method for reducing homologous recombination phenomena
WO1996025506A1 (en) Method for preparing a recombinant adenovirus genome
EP0783585B1 (en) DEFFECTIVE RECOMBINANT ADENOVIRUSES WITH INACTIVATED IVa2 GENE
EP1078094B1 (en) Methods and compositions for producing viral particles
FR2718749A1 (en) New defective recombinant adenovirus for gene therapy
WO1997047757A1 (en) Generating replicating molecules in vivo
AU725843B2 (en) Defective adenovirus vectors and use thereof in gene therapy
FR2729674A1 (en) Cells for prodn. of recombinant adeno and adeno-associated virus
FR2741891A1 (en) Cells for prodn. of recombinant adeno and adeno-associated virus
FR2738575A1 (en) Cells for prodn. of recombinant adeno and adeno-associated virus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR BY CA CN CZ FI HU JP KP KR KZ LK LV MG MN MW NO NZ PL RO RU SD SK UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1994922889

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2144040

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 951138

Country of ref document: FI

Ref document number: 31295

Country of ref document: SK

Ref document number: PV1995-639

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 1019950700975

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 269156

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 1995 397225

Country of ref document: US

Date of ref document: 19950328

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994922889

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1995-639

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: PV1995-639

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1994922889

Country of ref document: EP