WO1995010624A1 - Endosomolytisch wirksame partikel - Google Patents

Endosomolytisch wirksame partikel Download PDF

Info

Publication number
WO1995010624A1
WO1995010624A1 PCT/EP1994/003313 EP9403313W WO9510624A1 WO 1995010624 A1 WO1995010624 A1 WO 1995010624A1 EP 9403313 W EP9403313 W EP 9403313W WO 9510624 A1 WO9510624 A1 WO 9510624A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
modified
membrane
glu ala
capsid
Prior art date
Application number
PCT/EP1994/003313
Other languages
English (en)
French (fr)
Inventor
Matthew Cotten
Susanna Chiocca
Gotthold Schaffner
Ernst Wagner
Original Assignee
Boehringer Ingelheim International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim International Gmbh filed Critical Boehringer Ingelheim International Gmbh
Priority to CA002172139A priority Critical patent/CA2172139A1/en
Priority to JP7511255A priority patent/JPH09503665A/ja
Priority to US08/628,665 priority patent/US5789230A/en
Priority to DE59410380T priority patent/DE59410380D1/de
Priority to AU78120/94A priority patent/AU681705B2/en
Priority to EP94928873A priority patent/EP0724643B1/de
Priority to AT94928873T priority patent/ATE270342T1/de
Publication of WO1995010624A1 publication Critical patent/WO1995010624A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6901Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors

Definitions

  • the invention relates to the introduction of nucleic acids into higher eukaryotic cells.
  • Gene therapy is used to synthesize therapeutically effective gene products in vivo, whereby e.g. in the event of a genetic defect, the function of the missing gene is replaced.
  • genetic diseases in which gene therapy is a promising approach are hemophilia, beta-thalassemia and Severe Combined Immune Deficiency (SCID), a syndrome caused by a genetic deficiency of the enzyme adenosine deaminase.
  • SCID Severe Combined Immune Deficiency
  • Other examples of genetic defects where administration of nucleic acid encoding the defective gene, e.g.
  • Muscular dystrophy (dystrophin gene), cystic fibrosis (“cystic fibrosis transmembrane conductance regulator gene”), hypercholesterolemia (LDL receptor gene) can be administered in a form tailored to the needs.
  • Gene therapy treatment methods can also be used if hormones, growth factors or cytotoxic or immunomodulating proteins are to be synthesized in the organism.
  • Gene therapy is also a promising approach for the treatment of cancer, with so-called “cancer vaccines” being administered.
  • cancer vaccines In order to increase the immunogenicity of tumor cells, they are modified to either make them more antigenic or to make them cause certain immunomodulating substances to be produced, for example cytokines, which then trigger an immune response.
  • the cells are transfected with DNA which codes for a cytokine, for example IL-2, IL-4, IFN-gamma, TNF- ⁇ .
  • cytokine for example IL-2, IL-4, IFN-gamma, TNF- ⁇ .
  • the most advanced techniques for gene transfer to autologous tumor cells use viral vectors.
  • Nucleic acids as therapeutically active substances are also used to inhibit certain cell functions, e.g. Antisense RNAs and DNAs or ribozymes have proven to be effective agents for the selective inhibition of certain gene sequences.
  • gene transfer systems have been developed that circumvent the limitations of the retroviral and adenoviral vectors and eliminate the security risks that arise from the co-transfer of viable viral gene elements from the original virus.
  • These gene transfer systems are based on mechanisms that the cell uses to transport macromolecules, e.g. on the extremely powerful route of receptor-mediated endocytosis (Wu and Wu, 1987; EP-AI 0 388 758; WO 91/17773, WO 92/17210 and WO 92/19281).
  • this method which uses bifunctional molecular conjugates, which have a DNA binding domain and a domain with specificity for a cell surface receptor, high gene transfer rates could be achieved.
  • synthetic peptides which are derived from viral, pH-dependent, membrane-active peptides, such as, for example, the influenza A hemagglutinin fusion peptide, have been proposed as endosomolytic agents.
  • Synthetic transfection complexes containing either the influenza apeptide (WO 93/07283, Wagner et al., 1992) or various peptides based on the GALA peptide (Subbarao et al., 1987; Parente et al., 1990; and WO 93/07283 ) showed the usefulness of these peptides.
  • the use of synthetic membrane-active peptides as endosomolytic agents is limited. This could be due to the fact that they may not always be available in the randomly arranged chemically or ionically bound gene transfer complexes in a form that enables their function to be performed.
  • the endosomolytic activity of the adenovirus particle is assumed to be located in the penton base (Seth et al., 1984), which is present in a defined number of copies at specific locations on the surface of the virus particle (Stewart et al., 1993). This organized arrangement could have a function in terms of the requirements for assembling a virus particle, but could also play a role in controlling the interactions of the membrane-active motif on the penton proteins with the endosome membrane.
  • the object of the present invention was to provide endosomolytic agents which enable an improvement in the gene transfer systems via receptor-mediated endocytosis by ensuring high expression rates with the greatest possible elimination of security risks.
  • empty capsids as found in normal adenovirus infections, were first tested (Daniell, 1976). It was shown that empty adenovirus capsids have no endosomolytic ability; this should only be activated by the proteolytic processing, which takes place in a late phase of virus maturation (Weber, 1976). This assumption is consistent with the fact that an adenovirus strain that is temperature sensitive to processing (Ad2 tsl; Weber, 1976) produces immature particles at the restrictive temperature that are incapable of triggering the release of co-endocytosed material (Defer et al ., 1990).
  • the present invention relates to an endosomolytically active virus-like particle which is composed of units of capsid proteins, derived from capsid proteins of viruses or virus-like particles, the capsid protein units being modified with a membrane-active peptide sequence.
  • the framework of the particles according to the invention is an empty virus capsid or a capsid-like particle composed of proteins from viruses or virus-like particles, such as bacteriophages or yeast transposons.
  • the proteins that form the capsid framework are referred to in the context of the present invention as "capsid proteins".
  • the membrane-active peptide sequence is arranged on the capsid protein units in such a way that it is ensured that it is functionally available at the point of its activity, that is to say in the cell: the membrane-active peptide sequences are either exposed on the surface of the particles or are in some way in the surface structure arranged that their exposure is exposed by events in the cell, such as proteolysis, pH change or change in the redox potential.
  • the membrane-active function of the peptides which i.a. determined by their accessibility is expressed in their endosomolytic activity. This is reflected in the increase in gene transfer capacity and can be tested using gene transfer experiments.
  • Empty capsules of simple, non-enveloped viruses are available from a number of viruses.
  • the natural capsids generally consist of one to three proteins.
  • the ability to produce the capsid proteins in large quantities, for example in the baculovirus system, and their ability to self-assemble have made it possible to obtain virus-like particles with ordered structures, similar to those of the native virus. In most cases, the particles are free of nucleic acid.
  • Extra capsids that have inherently endosomolytic activity, the uptake and expression of DNA transported into the cell improved can be used as such without further modification of the particle, as was proposed in WO 93/07283.
  • An example of this are the empty capsids of the parvovirus B19, which can be obtained, for example, by baculovirus expression. )
  • the particles according to the invention are derived from capsid structures which by themselves do not have the endosomolytic activity required to increase the efficiency of the gene transfer or do not have them to a sufficient or desired extent.
  • the starting particles forming the framework can be of natural origin, in which case they are obtained in particular from virus infections.
  • the particles are preferably produced by a recombinant route, in that the capsid proteins, which may have been modified, are expressed and purified and, if they are not already in an associated form, are then allowed to associate.
  • the particles obtained after their association, which form the framework can subsequently be modified on their surface with the membrane-active peptides, for example chemically by coupling with synthetic membrane-active peptides.
  • the coupling of the membrane-active peptide to the capsid skeleton can be carried out in a manner known per se for the coupling of peptides, for example by chemical means, wherein, if necessary, the individual components are provided with linker substances before the coupling reaction.
  • the coupling can take place, for example, via disulfide bridges, which split again under reducing conditions can be used (e.g. when coupled using succinimidylpyridyldithiopropionate; Jung et al., 1981).
  • the capsid has suitable carbohydrate chains, it can be linked to the peptide via these carbohydrate chains.
  • the method described for the production of glycoprotein-polycation conjugates in WO 92/19281 can be used.
  • Another method for producing the particles according to the invention is the enzymatic coupling of the membrane-active peptide to the framework capsid by a transglutaminase.
  • the method described in WO 93/07283 for the coupling of polylysine to adenovirus can be used.
  • the prerequisite for this is that corresponding glutamines or lysines are present on proteins which can be converted by the enzyme.
  • the particles according to the invention are preferably obtained by producing the modified capsid proteins using recombinant methods.
  • the invention thus relates in a further aspect to a process for the production of endosomolytically active virus-like particles, in which a DNA coding for a capsid protein of viruses or virus-like particles which has been modified with a sequence coding for a membrane-active peptide is expressed and the capsid protein obtained, if necessary, associate to capsid structures.
  • the chimeric DNA which contains a sequence coding for the capsid protein and a sequence for the membrane-active peptide, is, for example, transformed with baculoviruses Insect cells, expressed in yeast or in bacteria.
  • the resulting capsid protein modified by a membrane-active peptide domain can, for example, be associated after the overexpressed capsid protein monomers have been denatured, purified and the denaturing agent removed.
  • Particularly suitable denaturing agents are urea or guanidine hydrochloride, optionally in the presence of mild detergents and / or reducing agents. Denaturation is not necessary if the modified capsid proteins already form capsid structures in the host organism, as is obviously the case with yeast Ty particles. In this case, the host cells are broken up mechanically and the finished capsid particles are harvested.
  • a system is preferably used which enables the expression of the modified capsid proteins in large quantities; bacterial expression systems are generally preferred for their efficiency.
  • An example of a bacterial expression system suitable in the context of the present invention is that described by Studier et al., 1990.
  • An example of a suitable yeast expression system is that described by Emr, 1990;
  • Baculovirus systems, which have been used in various ways for the production of capsid proteins, are also suitable (for example O'Reilly et al., 1992).
  • Constitutive or inducible expression systems can be used.
  • the recombinant production in which the capsid proteins are modified in the course of the expression of the correspondingly modified DNA, has the advantage over the subsequent modification of capsids that the position of the membrane-active domains on the protein and the ratio of capsid proteins to membrane-active peptides can be precisely defined.
  • the presence of the membrane-active peptide does not impair the ability of the expressed capsid proteins to assemble into ordered structures. This requirement also applies to the position in the capsid protein into which the peptide is inserted.
  • the proteins can be co-expressed; e.g. in the case of two capsid proteins, by co-transforming the host organism with two plasmids each carrying a capsid protein sequence, or by transforming the host with a double recombinant vector carrying the two sequences, e.g. for the expression of the capsid of parvovirus B19 in insect cells by means of baculoviruses (Brown et al., 1991).
  • capsids currently available which can be used in the context of the present invention include the adeno- M
  • a dependovirus (Ruffing et al., 1992); "Aleutian Mink Disease Virus", an autonomous parvovirus (Christensen et al., 1993); Flock house virus, a nodovirus (Schneeman et al., 1993), papilloma virus; Poliovirus (Urakawa et al., 1989); Norwalk Virus (Jiang et al., 1992) and Polyomavirus.
  • capsid proteins which can be modified by introducing foreign domains are those of the LA particle from yeast (Icho and Wickner, 1989; Wickner, 1993), the bacteriophages Qß, GA, SP and other phages of the Leviviridae family, and of the phi x 174 bacteriophage (Ackerman and DuBow, 1987).
  • yeast Ty particle and the MS2 phage have particularly good conditions: Kingsman et al., 1991, have shown that ordered yeast Ty particles for the immunogenic, multivalent presentation of peptides and small proteins such as HIV gpl20 epitopes , Hepatitis B antigens, etc. are suitable. This is possible because the main protein, the product of the TyA gene, has the ability to assemble itself into 40 nm isometric particles (Bums et al., 1992). Kingsman et al. have identified a fragment of the protein that is relevant to this
  • the MS2 virus has a 24 nm quasi-icosohedral capsid, consisting of 180 copies of the main coat protein (13 kd), a copy of the maturation protein (45 kd), and a 3569 nt RNA genome. MS2 was the first organism whose complete genome was sequenced (Fiers et al., 1976). The crystal structure of this virus was elucidated and showed an exposed ⁇ -hairpin loop on the surface of each of the 180 capsomeres (Valegard et al., IZ
  • the particle in general is subject to the requirements that it should have a size of less than 100 nm, preferably less than 50 nm in diameter, in order to enable absorption by endocytosis, that it is free of superfluous, in particular infectious, nucleic acid which does not Has function for gene transfer, and that it has the prerequisite that it can be endosomolytic activity (in the form of membrane-active peptides or small proteins), either chemically or by genetic manipulation.
  • the capsules to be produced recombinantly in particular have the following requirements:
  • the capsid should have the simplest possible structure, preferably consisting of a maximum of three subunits.
  • the subunits should either already associate themselves in the host organism in which they are expressed or, if they are in insoluble form after overexpression, be resolubilizable and self-regulating (3rd
  • capsid proteins are assumed whose genes are available in cloned form, otherwise the cloning first has to be carried out.
  • capsid structures are preferably used, the 3D structure (crystal structure) of which has been elucidated by means of X-ray structure analysis.
  • the sequence region in the capsid protein in which the membrane-active peptide sequence is attached is generally subject to the requirement that it has no function for the formation of the capsid structure or the assembly or that its function is not hindered by the insertion of a peptide structure. If the crystal structure is available, this will be used when determining the location for the insertion of the peptide domain: Does the crystal structure show that the virus or virus-like particles has loops on its surface, e.g. the MS2 phage, these loops, which are not required for the formation of the capsid structure, are preferably used for the modification.
  • the insertion site can be determined empirically: the amino acid sequence can be used to determine whether certain areas may form the basis for the formation of structural elements such as ⁇ -helical or ⁇ -sheet structures. Insofar as information about deletions or artificial or natural mutations of virus proteins allows conclusions to be drawn about the existence of non-conserved regions, the non-conserved regions which are not required for the structure, such as the loops of the MS2 phage, can be used for the modification . '4
  • capsid frameworks and membrane-active peptides and determining the insertion point of the peptide sequence for the construction of the particles according to the invention e.g. proceed as follows:
  • the DNA sequence (s) coding for the capsid protein (s) are, under the control of suitable expression control sequences, introduced into a vector and expressed in a suitable host.
  • vectors are brought to expression in which the capsid protein sequence is modified with a sequence coding for a membrane-active peptide.
  • the insertion point for the foreign sequence is first varied in order to determine the optimal point.
  • the conditions for the purification of the capsid monomers and for their association can be optimized.
  • membrane-active peptides are suitable for the production of the particles according to the invention, provided that they meet the condition not to impair the assembly of the capsid structures and the particle in the cell endosomolytic function, which brings the increase in gene transfer efficiency with it.
  • Suitable ir.embrane-active peptides which can either be subsequently coupled to the starting particles or whose coding DNA sequence can be used to produce chimeric capsid protein DNA, include, for example, those of Subbarao et al., 1987; Parente et al., 1990 and peptides described by Wagner et al., 1992, as well as the natural and synthetic membrane-active endosomolytically active peptides described in WO 93/07283.
  • yeast Ty particles to present foreign peptides on the surface was exploited in the context of the present invention in order to obtain genetically modified particles based on yeast Ty elements (Boeke et al., 1988) have membrane-active peptides on their surface.
  • the invention thus relates to a yeast Ty particle composed of TyA protein units which are modified with a membrane-active peptide sequence.
  • the Ty particle is modified with the peptide sequence Glu Ala Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu His Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala (GALA), which is on the carboxy -Term of the TyA protein is located.
  • the Ty particle is modified with the peptide sequence Gly Leu Phe Glu Ala Ile Glu Gly Phe Ile Glu Asn Gly Trp Glu Gly Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser located at the carboxy terminus of the TyA protein.
  • the yeast Ty particles according to the invention are obtained by expressing a DNA coding for the TyA protein which has a membrane-active peptide sequence at the carboxy terminus, which unlocks the host cells and the capsids are harvested.
  • the expression of the modified TyA sequence for example in yeast or bacteria, provides modified Ty particles which can be purified due to their size and density.
  • the purified endosomolytic Ty particles were biotinylated in the context of the present invention and combined with streptavidin-polylysine and transferrin-polylysine and the DNA to be transported into the cell to form ternary transfection complexes.
  • endosomolytic Ty particles were coupled directly to polylysine using transglutaminase and combined with transferrin-polylysine conjugates and the DNA to form ternary transfection complexes.
  • the tolerance of the MS2 phage for the insertion of foreign sequences into the loop located between the ⁇ -sheets near the N-terminus of the MS2 capsid protein was exploited by modifying its capsid proteins to give membrane-active peptide sequences to express its surface.
  • Another preferred embodiment of the present invention is thus an MS2 particle composed of MS2 capsid protein units which are modified with a membrane-active peptide sequence.
  • the membrane-active peptide is preferably inserted in the ⁇ -hairpin loop region between amino acid 11 (Asp) and amino acid 17 (Asp), in particular between amino acid 14 (Gly) and 15 (Thr) of the MS2 capsid protein.
  • Another possible insertion site for the membrane-active peptide is in the C-terminal region of the MS2 capsid protein.
  • the endosomolytic MS2 particle is modified with the peptide sequence GALA, which is inserted between amino acid 14 and amino acid 15 of the MS2 capsid protein.
  • the MS2 particles according to the invention are preferably obtained by expressing the capsid protein DNA modified by inserting the sequence coding for the membrane-active peptide, and denaturing the modified capsid protein obtained and allowing it to be associated with removal of the denaturing agent.
  • the purified endosomolytic MS2 particles were biotinylated in the context of the present invention and combined to form complexes with streptavidin-polylysine and transferrin-polylysine and the DNA to be transported into the cell.
  • the particles according to the invention in addition to the membrane-active peptide (s), the particles according to the invention have a peptide sequence with the function of a ligand for the target cell. In addition to its endosomolytic function, the particle according to the invention is thus given an internalizing function; this 13
  • Peptide sequence is referred to below as "ligand peptide”.
  • the best characterized ligand peptide is the arginine-glycine-aspartic acid sequence (RGD), which binds to various integrins
  • Cell adhesion proteins such as fibronectin, fibrinogen, from Willebrand factor and vitronectin (Pierschbacher and Ruoslahti, 1984; 1987) were found.
  • An RGD motif that is present in the penton base of adenovirus type 2 and type 5 has been shown to play a role in the internalization of the virus (Wickham et al., 1993).
  • Such a short ligand peptide sequence containing the RGD motif can be inserted into capsid proteins in order to obtain particles according to the invention which have a cell-binding motif on their surface.
  • MS2 capsid protein for example, to assemble itself from urea-denatured monomers can also be used to produce MS2 particles which have more than one foreign domain. The prerequisite for this is also in ⁇ ⁇
  • the procedure is preferably such that capsid monomers with a membrane-active modification on the one hand and those with a Ligand modification are prepared, and the two differently modified, denatured monomers are mixed in a defined quantitative ratio and the denaturing agent is removed in order to allow the association of the modified proteins to virus-like particles.
  • RGD motif As an alternative to the RGD motif, other ligand peptides can be introduced into the capsid monomers; Examples of this are small peptide growth factors and hormones, such as the EGF (epidermal growth factor) peptide, insulin, the co-stimulatory molecule HSA "Heat Steel Antigen” (Kay et al., 1990), and also peptides from so-called superantigens, encoded by Mouse mammary tumor virus (Torres et al., 1993).
  • EGF epidermal growth factor
  • HSA Heat Steel Antigen
  • superantigens encoded by Mouse mammary tumor virus
  • the particles according to the invention are provided with a nucleic acid-binding domain, in particular an organic polycationic compound such as polylysine.
  • organic polycations such as e.g. are proposed in WO 93/07283.
  • the virus-like particles thus contain, in addition to the membrane-active endosomolytic peptides and 2o
  • cell-binding ligand motifs optionally the cell-binding ligand motifs, domains that have the ability to bind to nucleic acids.
  • These particles which contain a DNA binding domain, can be produced by subsequently conjugating the capsid with a DNA binding substance such as polylysine.
  • the conjugation of the capsid e.g. with polylysine can be carried out in a manner known per se for the coupling of peptides with polyamine compounds, e.g. chemically, by coupling via a biotin-streptavidin bridge or by direct binding of the polylysine to the capsid by means of transglutaminase.
  • the procedure can be analogous to that described in WO 93/07283 for the coupling of polylysine to viruses or virus components.
  • the capsid proteins can also be modified directly with a DNA-binding domain, i.e. by expression of a chimeric DNA sequence consisting of a DNA sequence coding for the capsid protein and a sequence coding for the DNA binding peptide.
  • the requirement for the DNA binding peptides that also applies to the other foreign domains is that their presence on the capsid protein does not impair its ability to assemble into ordered structures.
  • DNA-binding motifs which are present on the particles according to the invention after expression of the chimeric capsid DNA are cationic polypeptides, for example 2 ⁇
  • homologues polylysine, polyarginine, or peptides derived from naturally occurring DNA-binding proteins such as histones, adenovirus core proteins (e.g. protein V, protein VII and the 13 kd protein L211K) or protamines.
  • DNA-binding proteins such as histones, adenovirus core proteins (e.g. protein V, protein VII and the 13 kd protein L211K) or protamines.
  • the presence of a polycationic domain in the form of polylysine enables the capsid conjugates according to the invention to form complexes with the nucleic acid to be transported into the cell.
  • particles according to the invention which have more than one foreign domain, e.g. several membrane-active domains or one membrane-active domain in connection with a ligand and / or a DNA-binding domain can be produced in two or more separate, identical or different expression systems.
  • a capsid protein monomer with a membrane-active domain e.g. the peptide GALA
  • a capsid monomer with a ligand domain e.g. the RGD motif
  • the optimal mixing ratio is determined empirically.
  • the particles according to the invention are used as endosomolytic agents in compositions for gene transfer, as described in WO 93/07283.
  • the invention thus relates in a further aspect to a composition for the transport of nucleic acid into the higher eukaryotic cell in which the Nucleic acid is complexed with endosomolytically active virus-like particles, consisting of modified units of capsid proteins derived from viruses or virus-like particles, the capsid protein units having membrane-active peptide sequences and polycationic sequences for binding the nucleic acid.
  • the gene transfer complexes contain, in addition to the endosomolytic particles according to the invention which have a nucleic acid binding domain, a conjugate in which a nucleic acid binding domain, generally the same as that of the particle, with a
  • ternary complexes or combination complexes are used especially when the endosomolytic particle cannot penetrate into the target cell by itself, i.e. if it cannot enter the cell in native form and has not been modified with a ligand domain for the target cell.
  • this embodiment can also be used if the ligand function of a particle according to the invention is to be supplemented by an additional ligand function.
  • transfection complexes consisting of DNA, the particle according to the invention conjugated with polylysine, and a transferrin-polylysine conjugate.
  • a nucleic acid-binding substance in particular polylysine, can additionally be contained in non-conjugated form in order to condense the nucleic acid.
  • the particle or e.g.
  • Internalization factor conjugate contained nucleic acid binding domain the function of adhering to the nucleic acid without saturating all of the negative charges.
  • the plasmid pJefl668 was used as the starting plasmid. This plasmid is derived from the plasmid pGTyH3 described by Boeke et al., 1988, from which the two internal Bgl II fragments had been removed. First the BamHI site at position 2695 was removed by cutting with BamHI, filling up with Klenow and religating; the clone obtained was called pJefnoßam.
  • the PCR primers named TyBstX.l (SEQ ID NO: 1) and Tya.2 (SEQ ID NO: 2) were used with pJefl668 as a template to form an 870 bp fragment (fragment 1) which was at position 1952 contains a new BamHI site.
  • pJefnoBam was used as a template in order to obtain fragment 2 with the primers designated TyB.l (SEQ ID NO: 3) and TyB.2 (SEQ ID N0: 4).
  • the Sall / BstXI fragment from pJefl668 was removed and replaced by the PCR fragments 1 and 2.
  • Tystop.l SEQ ID NO: 5
  • Tystop.2 SEQ ID NO: 6
  • the plasmids were introduced into the pep - Saccharomyces cerevisiae strain 1268 using the lithium acetate method (Schiestl and Gietz, 1989), whereby this was transformed into a uracil auxotrophy (the plasmid has an ura marker).
  • uracil minus plates per liter: 8 g yeast nitrogen base, without amino acids, 22 g agar, 55 mg tyrosine, 55 mg adenine, 11 g CAA vitamin assay, cooled to 50 * C, addition of 100 ml 10% raffinose, 10 ml 0.5% tryptophan, 10 ml 0.5% leucine) selected and expanded in uracil minus medium (identical to the composition on the plates, without agar). After growing for 24 hours at 30 * C (cell density approx. 108 cells / ml), galactose (to 2%) was added to induce the gal4 promoter and the cells were allowed to grow for an additional 24 hours.
  • the induced cells were then harvested by centrifugation, washed in water and finally in 4 ml of cold buffer B / Mg (10 mM HEPES-KOH pH 7.8, 15 mM KC1, 5 mM MgCl2, 3 mM DTT, 10 ⁇ g / ml aprotinin) 50 ml falcon tubes added. All further steps were carried out on ice: The cells were lysed by adding 5 g of cold, acid-washed glass beads and 5 min of vortexing, interrupted by cooling on ice for 30 to 60 seconds. The suspension was centrifuged for 5 min at 3,000 rpm (4 * C) and the supernatant was kept on ice (15 ml Corex tubes).
  • the pellets obtained were taken up in about 1.5 ml of B / EDTA buffer, whereby the sucrose was diluted to less than 12.5%, and then the 800 ⁇ l samples of the material were placed on a linear 15 to 50% sucrose gradient (13 ml) in buffer B / EDTA (25,000 rpm, 3 h, 4 # C, SW41 rotor) fractionated. The fractions were examined for their protein content by SDS / PAGE and the fractions containing the TyA protein were pooled.
  • Biotinylation The biotinylation of the Ty particles for the purpose of binding to streptavidin polylysine was carried out essentially as described in WO 93/07283 inter alia for adenovirus, with NHS-LC-Biotin (Pierce Cat. No. 21335) in 10 mM HEPES pH 7.9 1 mM dissolved and the biotin solution of the Ty particle solution (10 ul per ml) was added. After 3 hours of reaction at room temperature, the sample was extensively dialyzed against HBS / 40% glycerol at 4 * C to remove the unreacted biotin.
  • the GALA sequence contains a lysine residue; the addition of the biotin group and the subsequent binding of streptavidin could impair the membrane interaction expected from this sequence.
  • the direct coupling of polylysine to the Ty particle was therefore carried out using transglutaminase.
  • the reaction mixture was adjusted to a Cation exchange column (Bio-Rad MacroprephigS in column HR 10/10) applied and fractionated with a salt gradient of 0.5 M to 3.0 M sodium chloride with a constant content of 20 mM HEPES pH 7.3.
  • the high salt concentration when loading the column and from the beginning of the gradient was essential for the extraction of the polycation conjugates.
  • the majority of the conjugate eluted at a salt concentration between 2.1 M and 2.6 M and was pooled.
  • the iron-containing conjugates were divided into small aliquots before use for DNA complex formation, snap-frozen in liquid nitrogen or dry ice / ethanol and stored at -20 ° C. (This measure turned out to be expedient after it had been shown that repeated thawing and freezing would spoil the conjugates.)
  • Transfection complexes containing biotinylated wild-type Ty, TyGALA or TyP50 particles were prepared as follows: The amounts of biotinylated Ty particles shown in FIG. 1 were diluted in 150 ⁇ l HBS and with 150 ⁇ l HBS containing 1 ⁇ g streptavidin polylysine, Mixed for 30 minutes at room temperature. Then a 100 ⁇ l aliquot of HBS containing 6 ⁇ g pCMVL-DNA was added and the mixture was left to stand for 30 minutes at room temperature. Finally, a 100 ⁇ l aliquot of HBS containing 5.6 ⁇ g transferrin-polylysine was added.
  • the polylysine-modified TyGALA particles were incorporated into DNA complexes as indicated under i), with the difference that the incubation with streptavidin-polylysine was omitted and the transferrin-polylysine / HBS- Solution additionally contained the amounts of free polylysine indicated in FIG. 2 in order to ensure the complete condensation of the DNA.
  • the complexes were applied to deferrioxamine-stimulated cells, extracts were prepared 24 hours later and examined for luciferase activity. It was found that the absolute expression values obtained with the transglutaminase-coupled ty-polylysine conjugates did not exceed those which were achieved with the biotin-streptavidin-coupled conjugates.
  • pPLaACR26 The plasmid called pPLaACR26 (Remaut et al., 1981), which contains the sequence coding for MS2, was obtained from the LMBP Culture-Collection Laboratory of Molecular Biology, University of Ghent, Belgium.
  • the PCR method was used.
  • pETH2a is the T7 expression vector pET2a (Studier et al., 1990), in which the small Ndel / BamHI site is replaced by that for polyhistidine (SEQ ID NO : 14) encoding complementary oligonucleotides A (SEQ ID NO: 13) and B (SEQ ID NO: 15) was replaced).
  • SEQ ID NO: 14 polyhistidine
  • SEQ ID NO: 15 complementary oligonucleotides
  • the plasmid pMS2GALA4 was prepared by inserting the complementary oligonucleotides GALAMSI and GALAMS2 encoding GALA into the only BamHI site of pMS2WT9.
  • GALAMSI is identical to GALA.l, with the difference that T was removed at position 5.
  • GALAMS2 is identical to GALA.2, with the difference that the terminal A has been removed. This places the GALA sequence in the correct reading frame for the expression of the modified MS2 capsid. The presence of the correct DNA insert in the correct orientation was again confirmed using DNA sequencing.
  • the cells were harvested by centrifugation and the bacterial cell pellets were lysed in 6 M guanidine hydrochloride, 0.1 M sodium phosphate, 10 mM ⁇ -mercaptoethanol and 10 mM Tris, pH 8.0 (buffer A) with stirring for one hour at room temperature.
  • the lysate was clarified by centrifugation at 17,000 rpm (Sorval SS34 rotor) and the supernatant was passed over a 3 ml nickel chelate NTA-Sepharose column, equilibrated with buffer A, in order to harvest the polyhistidine-labeled proteins.
  • the columns were eluted with 10 column volumes of buffer A; 5 column volumes of 6 M urea, 100 mM sodium phosphate, 10 mM Tris, pH 6.5; 13
  • capsid proteins obtained under b) were biotinylated like the Ty particles in the previous example, dialysed extensively against 40 mM HEPES pH 7.4 and stored at 4'C.
  • Biotinylated MS2 particles were prepared as follows: The amounts of biotinylated MS2 particles (wild-type MS2 and MS2-GALA) in biotinylated (samples 1-6) and in non-modified (samples 7 -9) Form) were diluted in 150 ⁇ l HBS and mixed with 150 ⁇ l HBS containing 1 ⁇ g streptavidin-polylysine for 30 min at room temperature. Then a 100 ⁇ l aliquot of HBS containing 6 ⁇ g pCMVL-DNA was added and the mixture was left to stand for 30 minutes at room temperature.
  • Cells were harvested, cell extracts prepared and examined for luciferase activity.
  • MOLECULE TYPE synthetic oligodeoxyribonucleotide
  • MOLECULE TYPE synthetic oligodeoxyribonucleotide
  • MOLECULE TYPE synthetic oligodeoxyribonucleotide
  • MOLECULE TYPE synthetic oligodeoxyribonucleotide
  • ANTISENSE NO 4 '
  • MOLECULE TYPE synthetic oligodeoxyribonucleotide
  • ANTISENSE YES
  • MOLECULE TYPE synthetic oligodeoxyribonucleotide
  • ANTISENSE NO
  • MOLECULE TYPE synthetic oligodeoxyribonucleotide
  • ANTISENSE YES
  • MOLECULE TYPE synthetic oligodeoxyribonucleotide
  • ANTISENSE NO
  • MOLECULE TYPE synthetic oligodeoxyribonucleotide
  • ANTISENSE YES

Abstract

Endosomolytisch wirksames virusähnliches Partikel, das aus Einheiten von Kapsidproteinen von Viren oder virusähnlichen Teilchen zusammengesetzt ist, wobei die Kapsidproteineinheiten eine membranaktive peptidische Sequenz aufweisen. Die Partikel sind als Bestandteil von Zusammensetzungen für den Transport von Nukleinsäuren in höhere eukaryotische Zellen über Rezeptor-vermittelte Endozytose geeignet.

Description

END0S0M0LYTISCH WIRKSAME PARTIKEL
Die Erfindung bezieht sich auf das Einbringen von Nukleinsäuren in höhere eukaryotische Zellen.
In den letzten Jahren hat der therapeutische Ansatz der Gentherapie für die Behandlung zahlreicher Erkrankungen an Interesse gewonnen. Die Gentherapie wird eingesetzt, um in vivo therapeutisch wirksame Genprodukte zu synthetisieren, wodurch z.B. im Falle eines genetischen Defekts die Funktion des fehlenden Gens ersetzt wird. Beispiele für genetisch bedingte Erkrankungen, bei denen die Gentherapie einen erfolgversprechenden Ansatz darstellt, sind Hämophilie, beta-Thalassämie und "Severe Combined Immune Deficiency" (SCID), ein Syndrom, das durch einen genetisch bedingten Mangel des Enzyms Adenosindeaminase hervorgerufen wird. Anwendungsmöglichkeiten bestehen ferner bei der Immunregulation, mittels einer Impfung eine humorale oder intrazelluläre Immunität erzielt wird. Weitere Beispiele für genetische Defekte, bei denen eine Verabreichung von Nukleinsäure, die für das defekte Gen kodiert, z.B. in individuell auf den Bedarf abgestimmter Form verabreicht werden kann, sind Muskeldystrophie (Dystrophin-Gen) , Cystische Fibröse ( "Cystic fibrosis transmembrane conductance regulator gene" ) , Hypercholesterolämie (LDL-Rezeptor-Gen) . Gentherapeutische Behandlungsmethoden können auch eingesetzt werden, wenn Hormone, Wachstumsfaktoren oder cytotoxisch oder immunmodulierend wirkende Proteine im Organismus synthetisiert werden sollen.
Die Gentherapie stellt ferner einen erfolgversprechenden Ansatz für die Behandlung von Krebs dar, wobei sog. "Krebsvakzine" verabreicht werden. Um die Immunogenizität von Tumorzellen zu erhöhen, werden diese verändert, um sie entweder stärker antigenisch zu machen, oder um sie zu veranlassen, bestimmte immunmodulierende Substanzen zu erzeugen, z.B. Zytokine, die dann eine Immunantwort auslösen. Um dies zu bewirken, werden die Zellen mit DNA transfiziert, die für ein Zytokin, z.B. IL-2, IL-4, IFN-gamma, TNF-α, kodiert. Die am weitesten fortgeschrittenen Techniken für den Gentransfer in autologe Tumorzellen benützen virale Vektoren.
Nukleinsäuren als therapeutisch wirksame Substanzen kommen außerdem zur Anwendung, um bestimmte Zellfunktionen zu inhibieren, z.B. haben sich Antisense RNAs und -DNAs oder Ribozyme als wirksame Mittel für die selektive Inhibierung bestimmter Gensequenzen erwiesen.
In jüngerer Zeit wurden GentransferSysteme entwickelt, die die Beschränkungen der retroviralen und adenoviralen Vektoren umgehen und deren Sicherheitsrisken, die aufgrund des Co-Transfers von lebensfähigen viralen Genelementen des Ursprungsvirus bestehen, ausschalten. Diese Gentransfersysteme beruhen auf Mechanismen, deren sich die Zelle für den Transport von Makromolekülen bedient, z.B. auf dem äußerst leistungsfähigen Weg der Rezeptor-vermittelten Endozytose (Wu und Wu, 1987; EP-AI 0 388 758; WO 91/17773, WO 92/17210 und WO 92/19281). Mit Hilfe dieser Methode, die sich bifunktioneller molekularer Konjugate bedient, die eine DNA-Bindungsdomäne und eine Domäne mit Spezifität für einen Zelloberflächenrezeptor aufweisen, konnten hohe Gentransferraten erzielt werden.
Da der Gentransfer auf physiologischem Weg, wie ihn die Rezeptor-vermittelte Endozytose mittels Nukleinsäure- Komplexen darstellt, große Vorteile aufweist (nicht¬ toxischer Mechanismus des Durchtritts durch die Zellmembran; Möglichkeit der Verabreichung biologisch aktiver Nukleinsäuren, auf repetitiver oder kontinuierlicher Basis; Möglichkeit des zellspezifischen Targeting; Herstellbarkeit der Konjugate in großen Mengen), besteht das Bedürfnis, dieses System effizienter zu machen.
Bei der Anwendung der Gentransfertechniken, die auf dem Prinzip der Rezeptor-vermittelten Endozytose beruhen, stellte sich heraus, daß ein limitierender Faktor des Systems der Abbau des Genmaterials in der Zelle nach dessen Freisetzung aus den Endosomen ist. Eine wesentliche Verbesserung des Systems wurde daher durch eine Technik erzielt, die die Fähigkeit von bestimmten Viren und Viruskomponenten ausnützt, Endosomen aufbrechen zu können. Mit Hilfe eines Zusatzes dieser endosomolytischen Mittel konnte eine erhebliche Steigerung der Expressionsraten der in die Zelle importierten Gene erzielt werden (Wagner et al., 1991a und 1991b; Cotten et al., 1992; Wagner et al., 1992a und 1992b; Zatloukal et al., 1992; Cotten et al., 1993a und 1993b; Curiel et al. 1991; WO 93/07283 und WO 93/07282).
Als endosomolytische Agentien wurden neben Viren oder Viruskomponenten u.a. synthetische Peptide vorgeschlagen, die von viralen, pH-abhängigen, membranaktiven Peptiden, wie z.B. dem Influenza A Hämagglutinin-Fusionspeptid, abgeleitet sind. Synthetische Transfektionskomplexe, enthaltend entweder das Influenzapeptid (WO 93/07283, Wagner et al., 1992) oder verschiedene Peptide auf der Grundlage des GALA- Peptids (Subbarao et al., 1987; Parente et al., 1990; und WO 93/07283) zeigten die Brauchbarkeit dieser Peptide. Die Anwendung synthetischer membranaktiver Peptide als endosomolytische Mittel ist jedoch begrenzt. Dies könnte daran liegen, daß sie in den wahllos angeordneten chemisch oder ionisch gebundenen Gentransferkomplexen möglicherweise nicht immer in einer Form zugänglich vorliegen, die die Ausübung ihrer Funktion ermöglicht.
Den zufällig angeordneten Konjugaten aus synthetischen Peptiden und Polylysin, die für die Koπ-plexierung und Kondensierung der DNA-Moleküle verwendet wurden, fehlt eine geordnete dreidimensionale Strukturierung der endosomolytischen Funktion, wie sie das hinsichtlich seiner endosomolytischen Aktivität äußerst effiziente Adenoviruspartikels aufweist. Von der endosomolytischen Aktivität des Adenoviruspartikels wird angenommen, daß sie in der Pentonbasis lokalisiert ist (Seth et al., 1984), welche in einer definierten Kopienzahl an spezifischen Stellen auf der Oberfläche des Viruspartikels vorliegt (Stewart et al., 1993). Diese organisierte Anordnung könnte eine Funktion im Hinblick auf die Erfordernisse für den Zusammenbau eines Viruspartikels haben, sie könnte aber ebenso eine Rolle bei der Steuerung der Wechselwirkungen des membranaktiven Motivs auf den Pentonproteinen mit der Endosomenmembran spielen.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, endosomolytische Mittel bereitzustellen, die eine Verbesserung der GentransferSysteme über Rezeptor- vermittelte Endozytose ermöglichen, indem sie hohe Expressionsraten bei weitestgehender Ausschaltung von Sicherheitsrisken gewährleisten.
Bei der Lösung der gestellten Aufgabe wurde von der Überlegung ausgegangen, Verbesserungen der r
endosomolytischen Eigenschaften der aus dem Stand der Technik bekannten membranaktiven Peptide dadurch zu erzielen, daß man sie in einer geordneten Form zusammenbaut oder anordnet, indem man sie auf einem Protein anbringt, das die Fähigkeit hat, sich selbst zu Teilchen mit geordneten Strukturen zusammenzubauen.
Im Zuge der Realisierung der vorliegenden Erfindung wurden zunächst die leeren Kapside getestet, wie sie in normalen Adenovirusinfektionen gefunden werden (Daniell, 1976). Es zeigte sich, daß leere Adenoviruskapside keine endosomolytische Fähigkeit aufweisen; diese dürfte erst durch die proteolytische Prozessierung, die in einer späten Phase der Virusreifung stattfindet, aktiviert werden (Weber, 1976). Diese Annahme ist im Einklang damit, daß ein Adenovirusstamm, der hinsichtlich der Prozessierung temperaturempfindlich ist (Ad2 tsl; Weber, 1976) bei der restriktiven Temperatur unreife Teilchen produziert, die nicht fähig sind, die Freisetzung von co-endozytiertem Material auszulösen (Defer et al., 1990). In Vorversuchen zur vorliegenden Erfindung wurde außerdem festgestellt, daß diese Partikel nicht die Fähigkeit haben, den DNA-Transport zu verbessern oder Liposomen aufzubrechen. Falls dieses bei Adenoviren beobachtete Merkmal ein allgemeines Charakteristikum der Virusreifung ist, ist zu erwarten, daß leere Kapside nicht die endosomolytische Aktivität der ganzen reifen Viruspartikel aufweisen.
Die vorliegende Erfindung betrifft ein endosomolytisch wirksames virusähnliches Partikel, das aus Einheiten von Kapsidproteinen, abgeleitet von Kapsidproteinen von Viren oder virusähnlichen Teilchen, zusammengesetzt ist, wobei die Kapsidproteinheiten mit einer membranaktiven peptidischen Sequenz modifiziert sind. Das Gerüst der erfindungsgemäßen Partikel ist ein leeres Viruskapsid oder ein kapsidartiges Partikel aus Proteinen von Viren oder virusähnlichen Teilchen, wie Bakteriophagen oder Hefe-Transposons. Die Proteine, die das Kapsidgerüst bilden, werden im Rahmen der vorliegenden Erfindung als "Kapsidproteine" bezeichnet.
Die membranaktive Peptidsequenz ist auf den Kapsidproteineinheiten so angeordnet, daß gewährleistet ist, daß sie am Ort ihrer Wirksamkeit, also in der Zelle, funktionell verfügbar ist: die membranaktiven peptidischen Sequenzen liegen entweder an der Oberfläche der Partikel frei oder sind in einer Weise in der Oberflächenstruktur angeordnet, daß ihre Freilegung durch Ereignisse in der Zelle, wie Proteolyse, pH-Wertänderung oder Änderung des Redoxpotentials, freigelegt wird. Die membranaktive Funktion der Peptide, die u.a. durch ihre Zugänglichkeit bestimmt wird, äußert sich in ihrer endosomolytischen Aktivität. Diese schlägt sich in der Steigerung der Gentransferkapazität nieder und kann mittels Gentransferexperimenten getestet werden.
Leere Kapside von einfachen Viren ohne Hülle sind von einer Reihe von Viren verfügbar. Die natürlichen Kapside bestehen im allgemeinen aus ein bis drei Proteinen. Die Herstellbarkeit der Kapsidproteine in großen Mengen, z.B. im Baculovirussystem, und deren Fähigkeit zum Selbstzusammenbau haben die Gewinnung von virusähnlichen Partikeln mit geordneten Strukturen, ähnlich denen des nativen Virus, ermöglicht. In den meisten Fällen sind die Partikel frei von Nukleinsäure. (Leere Kapside, die von sich aus endosomolytische Aktivität aufweisen, die die Aufnahme und die Expression von in die Zelle transportierter DNA verbessert, können als solche ohne weitere Modifikation des Partikels verwendet werden, wie in der WO 93/07283 vorgeschlagen wurde. Ein Beispiel dafür sind die leeren Kapside des Parvovirus B19, die z.B. durch Baculovirusexpression erhalten werden können. )
Die erfindungsgemäßen Partikel sind von Kapsidstrukturen abgeleitet, die von sich aus die zur Steigerung der Effizienz des Gentransfers erforderliche endosomolytische Aktivität nicht oder nicht in ausreichendem oder gewünschtem Ausmaß aufweisen.
Die das Gerüst bildenden Ausgangspartikel können natürlichen Ursprungs sein, in diesem Fall werden sie insbesondere von Virusinfektionen erhalten.
Vorzugsweise werden die Partikel auf rekombinantem Weg hergestellt, indem die, gegebenenfalls modifizierten, Kapsidproteine exprimiert und gereinigt und, falls sie nicht bereits in assoziierter Form vorliegen, anschließend assoziieren gelassen werden.
Wenn nicht-modifizierte Kapsidproteine exprimiert werden, können die nach ihrer Assoziation erhaltenen Partikel, die das Gerüst bilden, nachträglich an ihrer Oberfläche mit den membranaktiven Peptiden modifiziert werden, z.B. auf chemischem Weg durch Kopplung mit synthetischen membranaktiven Peptiden. Die Kopplung des membranaktiven Peptids an das Kapsidgerüst kann in für die Kopplung von Peptiden an sich bekannter Weise erfolgen, z.B. auf chemischem Weg, wobei, falls erforderlich, die Einzelkomponenten vor der Kopplungsreaktion mit Linkersubstanzen versehen werden. Die Kopplung kann z.B. erfolgen über Disulfidbrücken, die unter reduzierenden Bedingungen wieder gespalten werden können (z.B. bei Kopplung mittels Succinimidylpyridyldithiopropionat; Jung et al., 1981).
Falls das Kapsid geeignete Kohlenhydratketten aufweist, kann es mit dem Peptid über diese Kohlenhydratketten verbunden werden. Dabei kann nach der für die Herstellung von Glykoprotein-Polykation-Konjugaten in der WO 92/19281 beschriebenen Methode vorgegangen werden.
Ein weiteres Verfahren zur Herstellung der erfindungsgemäßen Partikel ist die enzymatische Kopplung des membranaktiven Peptids an das Gerüstkapsid durch eine Transglutaminase. Dabei kann nach der in der WO 93/07283 für die Kopplung von Polylysin an Adenovirus beschriebenen Methode vorgegangen werden. Voraussetzung hierfür ist, daß an Proteinen entsprechende Glutamine oder Lysine vorhanden sind, die von dem Enzym umgesetzt werden können.
Vorzugsweise werden die erfindungsgemäßen Partikel erhalten, indem die modifizierten Kapsidproteine mit Hilfe rekombinanter Methoden hergestellt werden.
Die Erfindung betrifft somit in einem weiteren Aspekt ein Verfahren zur Herstellung von endosomolytisch wirksamen virusähnlichen Partikeln, wobei man eine für ein Kapsidprotein von Viren oder virusähnlichen Teilchen kodierende DNA, die mit einer für ein membranaktives Peptid kodierenden Sequenz modifiziert ist, exprimiert und das erhaltene Kapsidprotein, falls erforderlich, zu Kapsidstrukturen assoziieren läßt.
Die Chimäre DNA, die eine für das Kapsidprotein und eine für das membranaktive Peptid kodierende Sequenz enthält, wird z.B. in mit Baculoviren transformierten Insektenzellen, in Hefe oder in Bakterien, exprimiert. Das erhaltene, durch eine membranaktive Peptiddomäne modifizierte Kapsidprotein kann z.B. assoziieren gelassen werden, nachdem die überexprimierten Kapsidproteinmonomeren denaturiert, gereinigt und das Denaturierungsmittel entfernt wurden. Als Denaturierungsmittel kommen insbesondere Harnstoff oder Guanidinhydrochlorid, gegebenenfalls in Gegenwart milder Detergentien und/oder Reduktionsmittel, in Betracht. Eine Denaturierung ist dann nicht erforderlich, wenn sich die modifizierten Kapsidproteine bereits im Wirtsorganismus zu Kapsidstrukturen anordnen, wie dies offensichtlich beim Hefe-Ty-Partikel der Fall ist. In diesem Fall werden die Wirtszellen mechanisch aufgebrochen und die fertigen Kapsid-Teilchen geerntet.
Bezüglich des Expressionssystems, von dem eine große Auswahl zur routinemäßigen Verwendung zur Verfügung steht, bestehen keine Beschränkungen. Bevorzugt wird ein System eingesetzt, das die Expression der modifizierten Kapsidproteine in großen Mengen ermöglicht; wegen ihrer Effizienz werden im allgemeinen bakterielle Expressionssysteme bevorzugt. Ein Beispiel für ein im Rahmen der vorliegenden Erfindung geeignetes bakterielles Expressionssystem ist das von Studier et al., 1990, beschriebene. Ein Beispiel für ein geeignetes Hefe-Expressionssystem ist das von Emr, 1990, beschriebene; auch Baculovirussysteme, die für die Herstellung von Kapsidproteinen schon verschiedentlich herangezogen wurden, sind geeignet (z.B. O'Reilly et al., 1992). Es können konstitutive oder induzierbare Expressionssysteme verwendet werden. Durch Auswahl und gegebenenfalls Modifikation von vorhandenen Expressionssystemen kann gesteuert werden, in welcher Form die Kapside erhalten werden, z.B. kann eine Verringerung der Expressionsrate die Denaturierung und anschließende Resolubilisierung der Kapsidproteine überflüssig machen.
Die rekombinante Herstellung, bei der die Modifikation der Kapsidproteine im Zuge der Expression der entsprechend modifizierten DNA erfolgt, hat gegenüber der nachträglichen Modifikation von Kapsiden den Vorteil, daß die Lage der membranaktiven Domänen auf dem Protein und das Verhältnis Kapsidproteine zu membranaktiven Peptiden exakt definierbar ist.
Bei der rekombinanten Herstellung der modifizierten Kapsidproteine ist grundsätzlich zu beachten, daß die Gegenwart des membranaktiven Peptids, sei es aufgrund seiner Sequenz oder Anordnung, die Fähigkeit der exprimierten Kapsidproteine, sich zu geordneten Strukturen zusammenzufügen, nicht beeinträchtigt. Diese Forderung gilt auch hinsichtlich der Stelle im Kapsidprotein, in die das Peptid eingefügt ist.
Für den Fall, daß die Kapside aus mehr als einem Protein bestehen, können die Proteine co-exprimiert werden; z.B. im Fall von zwei Kapsidproteinen durch Co- Transformation des Wirtsorganismus mit zwei Plasmiden, die je eine Kapsidprotein-Sequenz tragen, oder durch Transformation des Wirts mit einem doppelt rekombinanten Vektor, der die beiden Sequenzen trägt, wie z.B. für die Expression des Kapsids des Parvovirus B19 in Insektenzellen mittels Baculoviren gezeigt wurde (Brown et al., 1991).
Zu den derzeit verfügbaren, im Rahmen der vorliegenden Erfindung verwendbaren Kapsiden, deren Proteine im Baculovirus-System exprimiert werden und die sich zu Partikeln zusammensetzen können, zählen das Adeno- M
assoziierte Virus, ein Dependovirus (Ruffing et al. , 1992); "Aleutian Mink Disease Virus", ein autonomes Parvovirus ( Christensen et al., 1993); Flock House Virus, ein Nodovirus (Schneeman et al., 1993), Papilloma Virus; Poliovirus (Urakawa et al., 1989); Norwalk Virus (Jiang et al. , 1992) und Polyomavirus. Beispiele für weitere Kapsidproteine, die durch Einführen vcn Fremddomänen modifiziert werden können, sind das des L-A-Teilchens aus Hefe ( Icho und Wickner, 1989; Wickner, 1993), der Bakteriophagen Qß, GA, SP und anderer Phagen der Familie der Leviviridae, und des Bakteriophagen phi x 174 (Ackerman und DuBow, 1987).
Besonders gute Voraussetzungen bringen das Hefe-Ty- Teilchen und der MS2-Phage mit: Kingsman et al., 1991, haben gezeigt, daß geordnete Hefe-Ty-Partikel für die immunogene, multivalente Darbietung von Peptiden und kleinen Proteinen wie HIV gpl20-Epitopen, Hepatitis B- Antigenen, etc. geeignet sind. Dies ist möglich, weil das Hauptprctein des Ty-Teilchens, das Produkt des TyA- Gens, die Fähigkeit besitzt, sich selbst zu 40 nm großen isometrischen Partikeln zusammenzusetzen (Bums et al., 1992). Kingsman et al. haben ein Fragment des Proteins identifiziert, das für diese
Selbstzusammenbau-Aktivität ausreicht; Peptidsequenzen, die an den Carboxy-Terminus dieses Proteins angehängt werden, liegen an der Oberfläche des zusammengesetzten Partikels frei. Das MS2-Virus besitzt ein 24 nm quasi- icosohedrales Kapsid, bestehend aus 180 Kopien des Haupt-Hüllproteins (13 kd), einer Kopie des Reifungsproteins (45 kd), und ein 3569 nt RNA-Genom. MS2 war der erste Organismus, dessen komplettes Genom sequenziert wurde (Fiers et al., 1976). Die Kristallstruktur dieses Virus wurde aufgeklärt und zeigte eine freiliegende ß-Haarnadelschleife auf der Oberfläche jedes der 180 Kapsomeren (Valegard et al., IZ
1990). Die nicht-fixierte Struktur dieser Schleife und deren Freiliegen an der Oberfläche wurde ausgenützt, um Partikel für die Antigenpräsentation zu bilden, indem Abschnitte aus 11 bis 26 Aminosäuren in diese Schleife eingefügt wurden (Mastico et al., 1993). Das MS2- Kapsidprotein toleriert diese Insertionen unter Beibehaltung seiner Fähigkeit, sich zu geordneten Kapsidstrukturen selbst zusammenzusetzen; das Kapsidprotein kann in Harnstoff denaturiert werden und baut sich nach dessen Entfernung zu nativen virusähnlichen Strukturen zusammen, (Mastico et al., 1993). Dadurch wird die Zusammensetzung von Kapsiden, die an ihrer Oberfläche zahlreiche Peptidepitope tragen, ermöglicht.
An das Partikel im allgemeinen werden die Anforderungen gestellt, da3 es eine Größe von weniger als 100 nm, vorzugsweise weniger als 50 nm Durchmesser aufweisen soll, um die Aufnahme mittels Endozytose zu ermöglichen, daß es frei ist von überflüssiger, insbesondere infektiöser Nukleinsäure, die keine Funktion für den Gentransfer aufweist, und daß es die Voraussetzung mitbringt, daß ihm eine endosomolytische Aktivität (in Form von membranaktiven Peptiden oder kleinen Proteinen) verliehen werden kann, entweder auf chemischem Weg oder mittels genetischer Manipulation.
An rekombinant herzustellende Kapside im besonderen werden die folgenden Anforderungen gestellt: Das Kapsid soll eine möglichst einfache Struktur, vorzugsweise bestehend aus maximal drei Untereinheiten, aufweisen. Die Untereinheiten sollen sich entweder bereits im Wirtsorganismus, in dem sie exprimiert werden, von selbst assoziieren oder, falls sie nach Überexpression in unlöslicher Form vorliegen, resolubilisierbar sein und sich von selbst zu (3
Kapsidstrukturen zusammensetzen. Der Einfachheit halber wird von Kapsidproteinen ausgegangen, deren Gene in klonierter Form verfügbar sind, andernfalls muß die Klonierung erst vorgenommen werden.
Im Hinblick auf die Insertionsstelle für die Einfügung der membranaktiven Peptidsequenz wird bevorzugt von Kapsidstrukturen ausgegangen, deren 3D-Struktur (Kristallstruktur) mittels Röntgenstrukturanalyse aufgeklärt wurde. An den Sequenzbereich im Kapsidprotein, in dem die Anbringung der membranaktiven Peptidsequenz vorgenommen wird, wird generell die Anforderung gestellt, daß er für die Ausbildung der Kapsidstruktur bzw. den Zusammenbau keine Funktion hat bzw. daß ihre Funktion durch die Einfügung einer Peptidstruktur nicht behindert wird. Wenn die Kristallstruktur verfügbar ist, wird diese bei der Festlegung der Stelle für die Einfügung der Peptiddomäne herangezogen: Zeigt die Kristallstruktur, daß das Virus oder virusähnliche Partikel an seiner Oberfläche Schleifen hat, wie z.B. der MS2-Phage, so werden bevorzugt diese Schleifen, die für die Ausbildung der Kapsidstruktur nicht erforderlich sind, für die Modifikation herangezogen.
Ist die Kristallstruktur nicht bekannt, kann bei der Bestimmung der Insertionsstelle empirisch vorgegangen werden: Aus der Aminosäuresequenz kann abgeleitet werden, ob bestimmte Bereiche gegebenenfalls die Grundlage für die Ausbildung von Strukturelementen, wie α-helikalen oder von ß-Faltblattstrukturen, darstellen. Sofern Informationen über Deletionen oder künstliche oder natürliche Mutationen von Virusproteinen einen Rückschluß auf die Existenz nicht-konservierter Regionen zulassen, können die nicht konservierten Regionen, die für die Struktur nicht erforderlich sind, wie z.B. die Schleifen des MS2-Phagen, für die Modifikation benützt werden. '4
Bei der Auswahl von Kapsidgerüsten und membranaktiven Peptiden sowie der Bestimmung der Insertionsstelle der Peptidsequenz für die Konstruktion der erfindungsgemäßen Partikel wird z.B. wie folgt vorgegangen: Die für das bzw. die Kapsidprotein(e) kodierende(n) DNA-Sequenz(en) werden, unter der Kontrolle geeigneter Expressionskontrollsequenzen, in einen Vektor eingebracht und in einem geeigneten Wirt exprimiert. Parallel dazu werden Vektoren zur Expression gebracht, in denen jeweils die Kapsidproteinsequenz mit einer für ein membranaktives Peptid kodierenden Sequenz modifiziert ist. Dabei wird gegebenenfalls zunächst die Insertionsstelle für die Fremdsequenz variiert, um die optimale Stelle zu ermitteln. Im Zuge der Aufarbeitung der Expressionsprodukte können die Bedingungen für die Reinigung der Kapsidmonomeren und für deren Assoziation optimiert werden.
Im Anschluß daran wird in einer Serie von Transfektionsversuchen, in denen als DNA zweckmäßigerweise ein Reportergen eingesetzt wird, unter ansonsten identischen Transfektionsbedingungen die Fähigkeit der nicht-modifizierten und der mit verschiedenen membranaktiven Peptiden, die gegebenenfalls an verschiedenen Stellen des Kapsidproteins eingefügt wurden, modifizierten Kapside getestet, den Transport der Reporter-DNA in die Zelle zu verbessern.
Grundsätzlich sind sämtliche membranaktive Peptide für die Herstellung der erfindungsgemäßen Partikel geeignet, sofern sie die Bedingung erfüllen, den Zusammenbau der Kapsidstrukturen nicht zu beeinträchtigen und dem Partikel in der Zelle die endosomolytische Funktion zu verleihen, die die Steigerung der Gentransfereffizienz mit sich bringt. Zu geeigneten ir.embranaktiven Peptiden, die entweder nachträglich an die Ausgangspartikel gekoppelt oder deren kodierende DNA-Sequenz zur Herstellung chimärer Kapsidprotein-DNA verwendet werden kann, zählen z.B. die von Subbarao et al., 1987; Parente et al., 1990 und von Wagner et al., 1992, beschriebenen Peptide sowie die natürlichen und synthetischen membranaktiven endosomolytisch wirksamen Peptide, die in der WO 93/07283 beschrieben sind.
Die Eignung der Hefe-Ty-Partikel, Fremdpeptide an der Oberfläche zu präsentieren, wurde im Rahmen der vorliegenden Erfindung ausgenutzt, um, ausgehend von Hefe-Ty-Elementen (Boeke et al., 1988), genetisch modifizierte Partikel zu erhalten, die auf ihrer Oberfläche membranaktive Peptide aufweisen.
Die Erfindung betrifft somit in einem bevorzugten Aspekt ein Hefe-Ty-Partikel, zusammengesetzt aus TyA- Protein-Einheiten, die mit einer membranaktiven Peptidsequenz modifiziert sind.
In einer bevorzugten Ausgestaltung ist das Ty-Partikel mit der Peptidsequenz Glu Ala Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu His Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala (GALA) modifiziert, die sich am Carboxy-Terminus des TyA-Proteins befindet.
In einer weiteren bevorzugten Ausgestaltung ist das Ty- Partikel mit der Peptidsequenz Gly Leu Phe Glu Ala Ile Glu Gly Phe Ile Glu Asn Gly Trp Glu Gly Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser modifiziert, die sich am Carboxy-Terminus des TyA- Proteins befindet. Die erfindungsgemäßen Hefe-Ty-Partikel werden erhalten, indem man eine DNA, kodierend für das TyA-Protein, das am Carboxy-Terminus eine membranaktive Peptid-Sequenz aufweist, exprimiert, die Wirtszellen aufschließt und die Kapside erntet. Die Expression der modifizierten TyA-Sequenz, z.B. in Hefe oder Bakterien, liefert modifizierte Ty-Partikel, die aufgrund ihrer Größe und Dichte gereinigt werden können.
Die gereinigten endosomolytischen Ty-Partikel wurden im Rahmen der vorliegenden Erfindung biotinyliert und mit Streptavidin-Polylysin und Transferrin-Polylysin sowie der in die Zelle zu transportierenden DNA zu ternären Transfektionskomplexen vereinigt.
Alternativ wurden die endosomolytischen Ty-Partikel mittels Transglutaminase direkt mit Polylysin gekoppelt und mit Transferrin-Polylysin-Konjugaten und der DNA zu ternären Transfektionskomplexen vereinigt.
Ferner wurde ihm Rahmen der vorliegenden Erfindung die Toleranz des MS2-Phagen für die Insertion von Fremdsequenzen in die zwischen den ß-Faltblättern gelegene Schleife in der Nähe des N-Terminus des MS2- Kapsidproteins ausgenützt, indem seine Kapsidproteine modifiziert wurden, um membranaktive Peptidsequenzen auf seiner Oberfläche zu exprimieren.
Eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung ist somit ein MS2-Partikel, zusammengesetzt aus MS2-Kapsidprotein-Einheiten, die mit einer membranaktiven Peptidsequenz modifiziert sind. Vorzugsweise ist das membranaktive Peptid in der ß- Haarnadelschleifenregion zwischen Aminosäure 11 (Asp) und Aminosäure 17 (Asp), insbesondere zwischen Aminosäure 14 (Gly) und 15 (Thr) des MS2-Kapsidproteins eingefügt.
Eine weitere mögliche Insertionsstelle für das membranaktive Peptid liegt in der C-terminalen Region des MS2-Kapsidproteins.
In einer bevorzugten Ausgestaltung der Erfindung ist das endosomolytische MS2-Partikel mit der Peptidsequenz GALA, die zwischen Aminosäure 14 und Aminosäure 15 des MS2-Kapsidproteins eingefügt ist, modifiziert.
Die erfindungsgemäßen MS2-Partikel werden bevorzugt erhalten, indem die durch Einfügung der für das membranaktive Peptid kodierende Sequenz modifizierte Kapsidprotein-DNA exprimiert, und das erhaltene modifizierte Kapsidprotein denaturiert und unter Entfernung des Denaturierungsmittels assoziieren gelassen wird.
Die gereinigten endosomolytischen MS2-Partikel wurden im Rahmen der vorliegenden Erfindung biotinyliert und mit Streptavidin-Polylysin und Transferrin-Polylysin sowie der in die Zelle zu transportierenden DNA zu Komplexen vereinigt.
In einer bevorzugten Ausführungsform weisen die erfindungsgemäßen Partikel zusätzlich zu dein/den membranaktiven Peptid(en) eine Peptidsequenz mit der Funktion eines Liganden für die Zielzelle auf. Damit wird dem erfindungsgemäßen Partikel neben seiner endosomolytischen Funktion eine Internalisierungsfunktion verliehen; diese 13
Peptidsequenz wird im folgenden "Ligandenpeptid" bezeichnet.
Das am besten charakterisierte Ligandenpeptid ist die Arginin-Glycin-Asparaginsäure-Sequenz (RGD), die in verschiedenen Integrin-bindenden
Zelladhäsionsproteinen, wie Fibronektin, Fibrinogen, von Willebrand Faktor und Vitronektin ( Pierschbacher und Ruoslahti, 1984; 1987), gefunden wurde. Von einem RGD-Motiv, das in der Pentonbasis von Adenovirus Typ 2 und Typ 5 vorhanden ist, wurde gezeigt, daß es bei der Internalisierung des Virus eine Rolle spielt (Wickham et al., 1993). Von einer synthetischen, eine Disulfid- Brücke enthaltenden, in ihrer Struktur fixierten Version der RGD-Sequenz, die das Muster Cys-(Xaa)5~Cys benützt, wobei die sechs Aminosäuren neben der RGD- Sequenz drei andere Aminosäuren entsprechend den von Pierschbacher und Ruoslahti, 1987, und O'Neil et al., 1992, definierten Regeln enthalten, wurde festgestellt, daß sie eine um drei Größenordnungen höhere Affinität für ein Integrinsubstrat aufweist als eine nicht- fixierte Version der Sequenz (O'Neil et al., 1992). Eine für dieses Motiv kodierende Sequenz wurde auch in das M13-Gen III eingeführt, um es an der Oberfläche des filamentösen Phagen zu präsentieren.
Eine derartige kurze, das RGD-Motiv enthaltende Ligandenpeptidsequenz kann in Kapsidproteine eingefügt werden, um erfindungsgemäße Partikel zu erhalten, die auf ihrer Oberfläche ein zellbindendes Motiv aufweisen.
Die Fähigkeit z.B. des MS2-Kapsidproteins, sich aus Harnstoff-denaturierten Monomeren selbst zusammenzusetzen, kann auch dazu ausgenützt werden, MS2-Partikel herzustellen, die mehr als eine Fremddomäne aufweisen. Voraussetzung dafür ist auch in \<\
diesem Fall, daß diese Insertionen die Fähigkeit der Partikel zum Selbstzusammenbau nicht beeinträchtigen. Um ein erfindungsgemäßes Partikel zu erhalten, das einerseits eine membranaktive Domäne (z.B. das GALA- Motiv) und andererseits eine zellbindende Domäne (z.B. das RGD-Motiv) aufweist, wird vorzugsweise so vorgegangen, daß einerseits Kapsidmonomere mit einer membranaktiven Modifikation und andererseits solche mit einer Ligandenmodifikation hergestellt werden, und die beiden unterschiedlich modifizierten, denaturierten Monomeren in einem definierten Mengenverhältnis gemischt und das Denaturierungsmittel entfernt wird, um die Assoziation der modifizierten Proteine zu virusähnlichen Partikeln zu ermöglichen.
Alternativ zu dem RGD-Motiv können andere Ligandenpeptide in die Kapsidmonomeren eingeführt werden; Beispiele dafür sind kleine Peptidwachstumsfaktoren und Hormone, wie das EGF(Epidermal Growth Factor)-Peptid , Insulin, das co- stimulatorische Molekül HSA "Heat Stahle Antigen" (Kay et al., 1990), ferner Peptide von sog. Superantigenen, kodiert vom Maus-Mammatumor-Virus (Torres et al., 1993).
In einer bevorzugten Ausführungsform sind die erfindungsgemäßen Partikel mit einer Nukleinsäure- bindenden Domäne, insbesondere einer organischen polykationischen Verbindung wie Polylysin, versehen. Als Nukleinsäure-affine Substanzen kommen auch andere organische Polykationen, wie sie z.B. in der WO 93/07283 vorgeschlagen sind, in Betracht.
In dieser Ausführungsform der vorliegenden Erfindung enthalten somit die virusähnlichen Partikel zusätzlich zu den membranaktiven endosomolytischen Peptiden und 2o
gegebenenfalls den zellbindenden Liganden-Motiven Domänen, die die Fähigkeit haben, an Nukleinsäuren zu binden.
Diese Partikel, die eine DNA-Bindungsdomäne enthalten, können hergestellt werden, indem das Kapsid nachträglich mit einer DNA bindenden Substanz wie Polylysin konjugiert wird.
Die Konjugation des Kapsids z.B. mit Polylysin kann nach für die Kopplung von Peptiden mit Polyaminverbindungen an sich bekannter Weise erfolgen, z.B. auf chemischem Weg, durch Kopplung über eine Biotin-Streptavidin-Brücke oder durch direkte Bindung des Polylysins an das Kapsid mittels Transglutaminase. Dabei kann analog vorgegangen werden, wie in der WO 93/07283 für die Kopplung von Polylysin an Viren oder Viruskomponenten beschrieben.
Alternativ zur nachträglichen Konjugation von Kapsiden mit einem DNA-bindenden Peptid kann die Modifikation der Kapsidproteine mit einer DNA-Bindungsdomäne auch direkt erfolgen, d.h. durch Expression einer Chimären DNA-Sequenz, bestehend aus einer für das Kapsidprotein kodierenden DNA-Sequenz, und einer für das DNA-bindende Peptid kodierenden Sequenz.
Bei dieser Herstellungsmethode wird an die DNA- Bindungspeptide die auch für die anderen Fremddomänen geltende Anforderung gestellt, daß ihre Gegenwart auf dem Kapsidprotein dessen Fähigkeit, sich zu geordneten Strukturen zusammenzusetzen, nicht beeinträchtigt.
Beispiele für DNA-bindende Motive, die nach Expression der Chimären Kapsid-DNA auf den erfindungsgemäßen Partikeln vorliegen, sind kationische Polypeptide, z.B. 2\
die Homologen Polylysin, Polyarginin, oder Peptide, die von natürlich vorkommenden DNA-bindenden Proteinen, wie Histonen, Core-Proteinen von Adenovirus (z.B. Protein V, Protein VII und das 13 kd Protein L211K) oder Protaminen, abgeleitet sind.
Das Vorliegen einer polykationischen Domäne in Form von Polylysin ermöglicht die Komplexbildung der erfindungsgemäßen Kapsid-Konjugate mit der in die Zelle zu transportierenden Nukleinsäure.
Die Herstellung von erfindungsgemäßen Partikeln, die mehr als eine Fremddomäne aufweisen, z.B. mehrere membranaktive Domänen oder eine membranaktive Domäne in Verbindung mit einer Liganden- und/oder einer DNA- bindenden Domäne, können in zwei oder mehr getrennten, gleichen oder verschiedenen Expressionssystemen hergestellt werden.
So kann z.B. ein Kapsidprotein-Monomeres mit einer membranaktiven Domäne, z.B. dem Peptid GALA, einerseits und ein Kapsid-Monomeres mit einer Ligandendomäne, z.B. dem RGD-Motiv, andererseits hergestellt und die Monomeren im gewünschten Verhältnis gemischt werden, damit diese sich zu geordneten Strukturen zusammenzubauen. Das optimale Mischungsverhältnis wird empirisch bestimmt.
Die erfindungsgemäßen Partikel werden als endosomolytische Mittel in Zusammensetzungen für den Gentransfer eingesetzt, wie sie in der WO 93/07283 beschrieben sind.
Die Erfindung betrifft somit in einem weiteren Aspekt eine Zusammensetzung für den Transport von Nukleinsäure in die höhere eukaryotische Zelle, in denen die Nukleinsäure komplexiert ist mit endosomolytisch wirksamen virusähnlichen Partikeln, bestehend aus modifizierten Einheiten von Kapsidproteinen, abgeleitet von Viren oder virusähnlichen Teilchen, wobei die Kapsidproteineinheiten membranaktive peptidische Sequenzen sowie polykationische Sequenzen zur Bindung der Nukleinsäure aufweisen.
In einer bevorzugten Ausführungsform enthalten die Gentransferkomplexe zusätzlich zu den erfindungsgemäßen endosomolytischen Partikeln, die eine Nukleinsäure- Bindungsdomäne aufweisen, ein Konjugat, in dem eine Nukleinsäure-bindende Domäne, im allgemeinen dieselbe wie die des Partikels, mit einem
Internalisierungsfaktor für die zu transfizierende Zielzelle gekoppelt ist. Diese ternären Komplexe oder Kombinationskomplexe werden vor allem dann angewendet, wenn das endosomolytische Partikel nicht von sich aus in die Zielzelle eindringen kann, d.h. wenn es nicht in nativer Form in die Zelle eindringen kann und auch nicht mit einer Ligandendomäne für die Zielzelle modifiziert wurde. Diese Ausführungsform kann jedoch auch zum Einsatz kommen, wenn die Ligandenfunktion eines erfindungsgemäßen Partikels durch eine zusätzliche Ligandenfunktion ergänzt werden soll.
Bevorzugt im Rahmen der vorliegenden Erfindung sind Transfektionskomplexe, bestehend aus DNA, dem erfindungsgemäßen, mit Polylysin konjugiertem Partikel, und einem Transferrin-Polylysin-Konjugat.
In den Transfektionsko plexen kann zusätzlich eine Nukleinsäure-bindende Substanz, insbesondere Polylysin, in nicht-konjugierter Form enthalten sein, um die Nukleinsäure zu kondensieren. In diesem Fall hat die in dem erfindungsgemäßen Partikel bzw. z
Internalisierungsfaktor-Konjugat enthaltene Nukleinsäure-Bindungsdomäne die Funktion des Anhaftens an die Nukleinsäure, ohne dabei die Gesamtheit der negativen Ladungen abzusättigen.
Bezüglich der Definition des Begriffes "Internalisierungsfaktor" sowie der Anwendbarkeit von Internalisierungsfaktor-Konjugaten zusammen mit den erfindungsgemäßen endosomolytischen Partikeln in ternären Transfektionskomplexen wird auf die Offenbarung der WO 93/07283 Bezug genommen.
Figurenübersicht
Fig. 1: Transfer von DNA in K562-Zellen mittels Transfektionskomplexen, enthaltend endosomolytische Ty-Partikel, die über Biotin-Streptavidin an Polylysin gekoppelt sind
Fig. 2: Transfer von DNA in K562-Zellen mittels Transfektionskomplexen, enthaltend endosomolytische Ty-Partikel, die direkt an Polylysin gekoppelt sind
Fig. 3 und 4: Transfer von DNA in K562-Zellen mittels Transfektionskomplexen, enthaltend endosomolytische MS2-Partikel, die über Biotin-Streptavidin an Polylysin gekoppelt sind
Die Erfindung wird anhand der folgenden Beispiele illustriert:
Beispiel 1 H
a) Konstruktion des Ty-Expressionsplasmids
Als Ausgangεplasmid wurde das Plasmid pJefl668 verwendet. Dieses Plasmid ist abgeleitet von dem von Boeke et al., 1988, beschriebenen Plasmid pGTyH3, aus dem die zwei internen Bgl II-Fragmente entfernt worden waren. Zunächst wurde die BamHI-Stelle bei Position 2695 entfernt, indem mit BamHI geschnitten, mit Klenow aufgefüllt und religiert wurde; der erhaltene Klon wurde pJefnoßam genannt. Die PCR-Primer der Bezeichnung TyBstX.l (SEQ ID NO:l) und Tya.2 (SEQ ID NO:2) wurden mit pJefl668 als Vorlage benutzt, um ein 870 bp Fragment (Fragment 1) zu bilden, das bei Position 1952 eine neue BamHI-Stelle enthält. Dann wurde pJefnoBam als Vorlage benutzt, um mit den Primern der Bezeichnung TyB.l (SEQ ID NO:3) und TyB.2 (SEQ ID N0:4) das Fragment 2 erhalten. Das Sall/BstXI-Fragment aus pJefl668 wurde entfernt und durch die PCR-Fragmente 1 und 2 ersetzt. Abschließend wurde mit den komplementären Oligonukleotiden Tystop.l (SEQ ID NO:5) und Tystop.2 (SEQ ID NO:6) eine synthetische Translationsterminationssequenz in die BamHI-Stelle eingeführt, um das Plasmid der Bezeichnung pJefTerm4 zu erhalten.
Dadurch wurde das Einführen von DNA-Sequenzen, kodierend für membranaktive Peptide, die auf der Oberfläche des resultierenden TyA-Fusionsproteins exprimiert werden sollten, in die nun nur einmal vorkommende BamHI-Stelle ermöglicht. In diese Stelle wurden zwei verschiedene, für membranaktive Peptide kodierende Sequenzen eingeführt: die komplementären Oligonukleotide der Bezeichnung GALA.l (SEQ ID NO:7) und GALA.2 (SEQ ID N0:9), kodierend für die Original- GALA-Sequenz minus Trp am N-Terminus (Subbarao et al., 1987; Parente et al., 1990) (SEQ ID NO:8); die komplementären Oligonukleotide GALAP50.1 (SEQ ID NO:10) und GALAP50.2 (SEQ ID NO:12), die für das Chimäre Peptid der Bezeichnung GALAP50 (SEQ ID NO.11) kodieren. Die erhaltenen Plasmide wurden pJefGALA und pJefGALAP50 bezeichnet; die Plasmide wurden über die eingefügte Region sequenziert, um die Korrektheit der Modifikation zu bestätigen.
b) Expression von modifizierten Ty-Partikeln in Hefe
Die Plasmide wurden unter Verwendung der Lithiumacetatmethode (Schiestl und Gietz, 1989) in den pep--Saccharomyces cerevisiae-Stamm 1268 eingeführt, womit dieser zu einer Uracil-Auxotrophie transformiert wurde (das Plasmid hat einen ura-Marker). Einzelne Klone wurden auf Uracil-Minus-Platten (pro Liter: 8 g Hefe-Stickstoffbasis, ohne Aminosäuren, 22 g Agar, 55 mg Tyrosin, 55 mg Adenin, 11 g CAA-Vitaminassay, autoklaviert, gekühlt auf 50*C, Zugabe von 100 ml 10 % Raffinose, 10 ml 0.5 % Tryptophan, 10 ml 0.5 % Leucin) selektiert und in Uracil-Minus-Medium (identisch mit der Zusammensetzung auf den Platten, ohne Agar) expandiert. Nach 24 stündigem Wachstum bei 30*C (Zelldichte ca. 108 Zellen/ml) wurde Galaktose (auf 2 %) beigegeben, um den gal4-Promotor zu induzieren, und die Zellen wurden weitere 24 h wachsen gelassen. Danach wurden die induzierten Zellen mittels Zentrifugation geerntet, in Wasser gewaschen und abschließend in 4 ml kaltem Puffer B/Mg (10 mM HEPES- KOH pH 7.8, 15 mM KC1, 5 mM MgCl2, 3 mM DTT, 10 μg/ml Aprotinin) in 50 ml Falconröhrchen aufgenommen. Alle weiteren Schritte wurden auf Eis durchgeführt: Die Zellen wurden durch Zugabe von 5 g kalten, säuregewaschenen Glaskugeln und 5 min Vortexen, unterbrochen von 30 bis 60 sek Kühlen auf Eis, lysiert. Die Suspension wurde 5 min bei 3.000 rpm (4*C) zentrifugiert und der Überstand auf Eis gehalten (15 ml Corex-Röhrchen). Dieser Schritt wurde noch zweimal wiederholt, mit 4 ml bzw. 3 ml desselben Puffers. Das Lysat wurde abschließend 10 min bei 10.000 rpm (4*C) in einem Sorvall SS34-Rotor zentrifugiert. Portionen (2.75 ml) des Homogenats wurden dann in 3 ml Zentrifugenröhrchen überführt, dann wurden vorsichtig 250 μl 60 % Saccharose in Puffer B/EDTA (entspricht Puffer B/Mg ohne Aprotinin und MgCl2, dafür enthaltend 10 mM EDTA) unterschichtet und bei 100.000 rpm (TLA- 100.3-Rotor) 20 min lang bei 4*C zentrifugiert. Der Überstand bis zu der unscharfen ("fuzzy") Zwischenphase oberhalb des Saccharose-Polsters wurde verworfen und das Pellet nochmals in dem verbleibenden Rest plus 1 ml zusätzlichem B/EDTA-Puffer aufgenommen, dieses Material in ein frisches Zentrifugenröhrchen gegeben und auf 1.5 ml 35 % Saccharose / B/EDTA-Puffer geschichtet. Zur Unterschichtung wurden 250 μl desselben Materials wie beim ersten Durchgang verwendet. Die Zentrifugation wurde genauso durchgeführt wie beim ersten Mal; das auf diese Weise aus mehreren Doppelzentrifugationen gewonnene Material wurde zusammengeführt, mit 400 μl 60 % Saccharaose / B/EDTA-Puffer unterschichtet und 1 h in einem SW41-Rotor bei 4*C und 39 rpm zentrifugiert. Die erhaltenen Pellets wurden in ca. 1.5 ml B/EDTA- Puffer aufgenommen, womit die Saccharose auf weniger als 12.5 % verdünnt wurde, und anschließend wurden die 800 μl Proben des Materials auf einem linearen 15 bis 50 % Saccharosegradienten (13 ml) in Puffer B/EDTA (25.000 rpm, 3 h, 4#C, SW41-Rotor) fraktioniert. Die Fraktionen wurden mittels SDS/PAGE auf ihren Proteingehalt untersucht und die das TyA-Protein enthaltenden Fraktionen vereinigt.
c) Modifikation der Ty-Partikel
i) Biotinylierung Die Biotinylierung der Ty-Partikel zwecks Bindung an Streptavidin-Polylysin wurde im wesentlichen durchgeführt, wie in der WO 93/07283 u.a. für Adenovirus beschrieben, wobei NHS-LC-Biotin (Pierce Kat.Nr. 21335) in 10 mM HEPES pH 7.9 zu 1 mM aufgelöst und die Biotinlösung der Ty-Partikellösung ( 10 μl pro ml) beigegeben wurde. Nach 3 stündiger Reaktion bei Raumtemperatur wurde die Probe ausgiebig gegen HBS/40 % Glycerin bei 4*C dialysiert, um das nicht-reagierte Biotin zu entfernen.
ii) Kopplung von Polylysin mittels Transglutaminase
Aufgrund der verwendeten Klonierungsmethode zur Herstellung des Plasmids pJefGALA enthält die GALA- Sequenz einen Lysinrest; die Anfügung der Biotingruppe und die anschließende Bindung von Streptavidin könnte die von dieser Sequenz erwartete Membranwechselwirkung beeinträchtigen. Es wurde daher alternativ die direkte Kopplung von Polylysin an das Ty-Partikel mittels Transglutaminase durchgeführt.
Die Reaktion wurde im wesentlichen durchgeführt, wie in der WO 93/07283 beschrieben: Proben der gereinigten TyGALA-Partikel (500 μl, 0.2 mg/ml) in 100 mM HEPES pH 7.9, 2 mM DTT, 10 mM CaCl2, wurden mit 1 nmol Meerschweinchen-Lebertransglutaminase (Sigma) und 50 μl Polylysin (Kettenlänge 200; 1 mg/ml) 2 h lang bei 37*C inkubiert. Die Polylysin-modifizierten Ty-Partikel wurden von freiem Polylysin gereinigt, indem die Probe in HBS verdünnt, mit einem 60 % Saccharose-Polster unterschichtet und 40 min lang in einem TLA-100.3-Rotor zentrifugiert wurde. Das .zentrifugierte Material wurde in HBS/40 % Glycerin über Nacht bei 4*C aufgenommen und direkt für die DNA-Transferversuche verwendet. 2δ
d) Herstellung von Humantransferrin-Polylysin
Es wurde die von Wagner et al., 1991b, beschriebene Methode verwendet, bei der die Kopplung von Polylysin an die Kohlenhydratseitenketten des Transferrins erfolgt.
Eine Lösung von 91 mg (1.14 μmol) humanem Transferrin (eisenfrei, Biotest Pharma) in 1.4 ml 30 mM Natriumacetatpuffer, pH 5, wurde auf 0*C gekühlt und 34 μl 30 mM Natriumacetatpuffer pH 5, enthaltend 0.73 mg (3.4 μmol) Natriumperiodat hinzugefügt. Die Mischung wurde im Eisbad 90 min lang im Dunklen stehen gelassen. Zur Entfernung der niedermolekularen Produkte wurde eine Gelfiltration durchgeführt (Sephadex G-25, Pharmacia), die eine Lösung mit einem Gehalt von ca. 82 mg (2 ml) oxidiertem Transferrin (Messung durch Ninhydrinassay) ergab. (Um die oxidierte Form nachzuweisen, die Aldehyde- enthält und bei Färbung mit Anisaldehyd eine Farbreaktion gibt, wurden die Proben auf eine Silikagel-Dünnschichtplatte getropft, getrocknet und die Platten in p-
Anisaldehyd/Schwefelsäure/Ethanol (1/1/18) getaucht, getrocknet und erhitzt. ) Die modifizierte Transferrin- Lösung wurde rasch (innerhalb 10 bis 15 min) einer Lösung, enthaltend 1.0 μmol Poly(L)Lysin mit einer durchschnittlichen Kettenlänge von 250 Lysinmonomeren in 0.9 ml Wasser hinzugefügt. Der pH-Wert der Lösung wurde durch Zusatz von 0.3 ml 2 M HEPES pH 7.9 auf pH 7.7 eingestellt. Zu der Mischung wurden in Abständen von je 1 h 4 Portionen von je 8 mg (126.3 μmol) Natriumcyanoborhydrid hinzugefügt. Nach 17 h wurden 1 ml 5 M Natriumchlorid und 5.8 ml Wasser zugefügt, um die Lösung auf eine Gesamtkonzentration von ca. 0.5 M zu bringen. Die Reaktiσnsmischung wurde auf eine Kationenaustauschsäule (Bio-Rad MacroprephigS in Säule HR 10/10) aufgebracht und mit einem Salzgradienten von 0.5 M bis 3.0 M Natriumchlorid mit einem konstanten Gehalt von 20 mM HEPES pH 7.3 fraktioniert. Die hohe Salzkonzentration beim Laden der Säule und ab Beginn des Gradienten war wesentlich für die Gewinnung der Polykation-Konjugate. Die Hauptmenge von Konjugat eluierte bei einer Salzkonzentration zwischen 2.1 M und 2.6 M und wurde gepoolt. Diese Fraktionen ergaben (in der Reihenfolge ihrer Elution) nach einmaliger Dialyse gegen 2 1 HBS (20 mM HEPES pH 7.3 150 mM NaCl) eine Hauptfraktion (TfpL250) mit einem Gehalt an 54 mg (0.67 μmol) Transferrin, modifiziert mit 39.4 mg = 0.76 μmol Polylysin. Die Transferrin-Konjugate wurden, sofern sie nicht sofort verwendet wurden, nach Schockgefrieren in flüssigem Stickstoff bei -20*C in eisenfreier Form gelagert. Der Eiseneinbau wurde durch Hinzufügen von 1.25 μl 10 mM Eisen( III)citratpuffer (enthaltend 200 mM Citrat, durch Zugabe von Natriumbicarbonat auf einen pH-Wert von 7.8 eingestellt) pro mg Transferrin-Gehalt vorgenommen. Die eisenhaltigen Konjugate wurden vor ihrer Verwendung für die DNA-Komplexbildung in kleine Aliquots aufgeteilt, schockgefroren in flüssigem Stickstoff oder Trockeneis/Ethanol und bei -20*C aufbewahrt. (Diese Maßnahme erwies sich als zweckmäßig, nachdem sich gezeigt hatte, daß mehrmaliges Auftauen und Einfrieren den Verderb der Konjugate zur Folge hat. )
e) Gentransfer in K562-Zellen mittels Transfektionskomplexen, die endosomolytische Ty- Partikel enthalten
i) Verwendung von Ty-Partikeln, die über Biotin- Streptavidin mit Polylysin konjugiert sind Jo
Transfektionskomplexe, enthaltend biotinyliertes Wildtyp Ty-, TyGALA- oder TyP50-Partikel wurden wie folgt hergestellt: Die in Fig. 1 angegebenen Mengen an biotinylierten Ty-Partikeln wurden in 150 μl HBS verdünnt und mit 150 μl HBS, enthaltend 1 μg Streptavidin-Polylysin, 30 min lang bei Raumtemperatur gemischt. Dann wurde ein 100 μl Aliquot HBS, enthaltend 6 μg pCMVL-DNA beigegeben und die Mischung 30 min bei Raumtemperatur stehengelassen. Abschließend wurde ein 100 μl Aliquot HBS, enthaltend 5.6 μg Transferrin- Polylysin hinzugefügt. Zur Kontrolle wurden Komplexe aus DNA, Streptavidin-Polylysin und Transferrin- Polylysin eingesetzt. Diese Komplexe wurden auf 500.000 Deferrioxamin-behandelte K562-Zellen aufgebracht, wie in der WO 93/07283 beschrieben. 24 h später wurden die Zellen geerntet, Zellextrakte hergestellt und auf Luciferaseaktivität untersucht. Es zeigte sich, daß die als Kontrolle eingesetzten Komplexe nicht funktionieren, daß das Wildtyp Ty-Partikel eine geringfügige Zunahme der Luciferaseaktivität hervorruft und daß der Gehalt an biotinyliertem Ty, das mit dem membranaktiven Peptid GALA modifiziert ist, in den Komplexen eine ca. lOfache Zunahme des DNA-Transfers gegenüber den Wildtyp-Ty-Partikeln bewirkt. Die mit GALAP50 modifizierten Ty-Partikel induzierten eine geringe Zunahme des DNA-Transports. (In allen Figuren sind die Mittelwerte aus zwei Transfektionen angegeben. )
ii) Verwendung von Ty-Partikeln, die direkt an Polylysin gekoppelt sind
Die Polylysin-modifizierten TyGALA-Partikel wurden in DNA-Komplexe inkorporiert, wie unter i) angegeben, mit dem Unterschied, daß die Inkubation mit Streptavidin- Polylysin unterblieb und die Transferrin-Polylysin/HBS- Lösung zusätzlich die in Fig. 2 angegebenen Mengen an freiem Polylysin enthielten, um die vollständige Kondensation der DNA zu gewährleisten. Die Komplexe wurden auf Deferrioxamin-stimulierte Zellen aufgebracht, 24 h später wurden Extrakte hergestellt und auf Luciferaseaktivität untersucht. Es zeigte sich, daß die mit den Transglutaminase-gekoppelten Ty- Polylysin-Konjugaten erzielten absoluten Expressionswerte diejenigen nicht überschritten, die mit den Biotin-Streptavidin-gekoppelten Konjugaten erzielt wurden.
Beispiel 2
a) Konstruktion von MS2-Kapsid-Expressionsplasmiden
Das Plasmid der Bezeichnung pPLaACR26 (Remaut et al., 1981), das die für MS2 kodierende Sequenz enthält, wurde von der LMBP Culture- Collection Laboratory of Molecular Biology, Universität Gent, Belgien, bezogen. Um die MS2-Kapsid-Sequenz als Bglll-Fragment zu isolieren und die Sequenz zwecks Bildung einer nur einmal vorkommenden BamHI-Stelle bei den Nukleotiden, die für Aminosäure 15 kodieren, zu mutieren, wurde die PCR-Methode eingesetzt. Das PCR-Fragment wurde mittels Gelelektrophorese gereinigt und in das BamHI geschnittene Plasmid pETH2a hineinligiert (pETH2a ist der T7-Expressionsvektor pET2a (Studier et al., 1990), in dem die kleine Ndel/BamHI-Stelle durch die für Polyhistidin (SEQ ID NO:14) kodierenden komplementären Oligonukleotide A (SEQ ID NO:13) und B (SEQ ID NO:15) ersetzt wurde). Ein Klon der Bezeichnung pMS2WT9, der das Insert in der richtigen Orientierung enthielt, wurde isoliert; das Vorhandensein der richtigen Sequenz wurde durch Sequenzieren bestätigt. J
Das Plasmid pMS2GALA4 wurde hergestellt, indem die für GALA kodierenden komplementären Oligonukleotide GALAMSI und GALAMS2 in die einzige BamHI-Stelle von pMS2WT9 eingesetzt wurden. GALAMSI ist identisch mit GALA.l, mit dem Unterschied, daß T bei Position 5 entfernt wurde. GALAMS2 ist identisch mit GALA.2, mit dem Unterschied, daß das endständige A entfernt wurde. Dadurch wird die GALA-Sequenz in den richtigen Leserahmen für die Expression des modifizierten MS2- Kapsids gesetzt. Das Vorhandensein des richtigen DNA- Inserts in der richtigen Orientierung wurde wieder mittels DNA-Sequenzierung bestätigt.
b) Expression von MS2-Kapsiden
Die Plasmide pMS2WT9 und pMS2GALA4 wurden in den T7- Expressionsbakterienstamm BL21 (DE3)(Studier et al., 1990; bezogen von Novagen) transformiert, Einzelkolonien selektioniert und in 1 Liter Kulturen gezüchtet (OD600 = 0.7), daraufhin wurde IPTG (auf 1 mM) hinzugefügt, um die T7-Polymeraseexpression und anschließend die Expression der MS2- und MS2GALA- Proteine zu induzieren. Nach 4 h bei 37*C wurden die Zellen mittels Zentrifugation geerntet und die Bakterienzellpellets in 6 M Guanidinhydrochlorid, 0.1 M Natriumphosphat, 10 mM ß-Mercaptoethanol und 10 mM Tris, pH 8.0 (Puffer A) unter einstündigem Rühren bei Zimmertemperatur lysiert. Das Lysat wurde mittels Zentrifugation bei 17.000 rpm (Sorval SS34-Rotor) geklärt und der Überstand zwecks Ernte der Polyhistidin-markierten Proteine über eine 3 ml Nickel- Chelat NTA-Sepharosesäule, equilibriert mit Puffer A, geschickt. Die Säulen wurden eluiert mit 10 Säulenvolumina Puffer A; 5 Säulenvolumina 6 M Harnstoff, 100 mM Natriumphosphat, 10 mM Tris, pH 6.5; 13
5 Säulenvolumina 6 M Harnstoff, 100 mM Natriumphosphat, 10 mM Tris, pH 5.7. Abschließend wurden 5 Säulenvolumina 0.2 N Essigsäure/6 M Guanidinhydrochlorid eingesetzt, um die MS2- und MS2GALA-Proteine zu eluieren. Um das Denaturierungsmittel zu entfernen, wurden die Eluate über kleine Gelfiltrationssäulen (Pharmacia "Nick Columns" oder Pharmacia PD-10 Säulen), equilibriert mit 100 mM DTT, 40 mM HEPES, pH 7.4, geschickt.
c) Biotinylierung von MS2-Kapsiden
Die unter b) erhaltenen Kapsid-Proteine wurden biotinyliert wie die Ty-Partikel im vorangegangenen Beispiel, ausgiebig gegen 40 mM HEPES pH 7.4 dialysiert und bei 4'C gelagert.
d) Gentransfer in K562-Zellen mittels Transfektionskomplexen, die endosomolytische MS2- Partikel enthalten
i) Transfektionskomplexe, enthaltend biotinyliertes MS2-Partikel wurden wie folgt hergestellt: Die in Fig. 3 angegebenen Mengen an biotinylierten MS2-Partikeln (Wildtyp-MS2 und MS2-GALA in biotinylierter (Proben 1-6) und in nicht-modifizierter (Proben 7-9) Form) wurden in 150 μl HBS verdünnt und mit 150 μl HBS, enthaltend 1 μg Streptavidin-Polylysin, 30 min lang bei Raumtemperatur gemischt. Dann wurde ein 100 μl Aliquot HBS, enthaltend 6 μg pCMVL-DNA beigegeben und die Mischung 30 min bei Raumtemperatur stehengelassen. Abschließend wurde ein 100 μl Aliquot HBS, enthaltend 5.6 μg Transferrin-Polylysin (s. Beispiel 1) hinzugefügt. Diese Komplexe wurden auf 500.000 Deferrioxamin-behandelte K562-Zellen aufgebracht, wie in der WO 93/07283 beschrieben. 24 h später wurden die 3-t
Zellen geerntet, Zellextrakte hergestellt und auf Luciferaseaktivität untersucht.
ii) Es wurde eine zweite Versuchsreihe mit biotinyliertem Wildtyp-MS2 und MS2-GALA, wie unter i) durchgeführt, mit dem Unterschied, daß größere Mengen (wie in Fig. 4 angegeben) an biotinylierten MS2- Partikeln verwendet wurden. Es zeigte sich, daß die biotinylierten Wildtyp-Partikel (Proben 1-3) nur eine geringfügige Verstärkung des DNA-Transports gegenüber dem Background bewirkten, während die Gegenwart von biotinylierten MS2-GALA-Partikeln (Proben 4-6) den DNA-Transport entsprechend 600.000 Lichteinheiten stimulierte. (Probe 7 enthielt keine MS2-Partikel. )
Literatur
Ackerman, H.W. und DuBow, M.S., 1987, Viruses of
Prokaryotes, Vol. II, pp. 171-218, CRC Press, Boca
Raton, Florida. Boeke, J., Eichinger, D., Castrillon, D. und Fink, G. ,
1988, Mol. Cell. Biol. 8, 1432-1442. Brown, C.S., van Lent, W.M., Vlak, J.M. und Spaan,
W.J.M., 1991, J. Virol. 65, 2702-2706. Bums, N., Saibil, H., White, N., Pardon, J., Timmons,
R., Richardson, S., Richards, B., Adams, S.,
Kingsman, S. und Kingsman, A., 1992, EMBO J. 11,
1155-1164. Christensen, J., Storgaard, T., Bloch, B.,
Alexandersen, S. und Aasted, B., 1993, J. Virol.
67, 229-238. Cotten, M. , Wagner, E., Zatloukal, K., Phillips, S.,
Curiel, D. und Birnstiel, M.L., 1992,
Proc.Natl.Acad.Sci. USA 89, 6094-6098. Cotten, M., Wagner, E. und Birnstiel, M.L., 1993a,
Methods Enzy ol. 217, 618-644. Cotten, M., Wagner, E., Zatloukal, K. und Birnstiel,
M.L., 1993b, J. Virol. 67, 3777-3785. Curiel, D.T., Agarwal, S., Wagner, E. und Cotten, M. ,
1991, Proc.Natl.Acad.Sci. USA 88, 8850-8854. Daniell, E., 1976, J. Virol. 19, 685-708. Defer, C, Belin, M. , Caillet-Boudin, M. und Boulanger,
P., 1990, J. Virol. 64, 3661-3673. Emr, S.D., 1990, Methods Enzymology 185, 231-233. Fiers, W. , Contreras, R., Duerinck, F., Haegeman, G.,
Iserentant, D., Merregaert, J., Minjou, W.,
Molemans, F., Raeymaekers, A. , Van den Berghe, A. ,
Volckaert, G. und Ysebaert, M., 1976, Nature 260,
500-507. Icho, T. und Wickner, R.B., 1989, J. Biol. Chem. 264,
6716-6723. Jiang, X., Wang, M., Graham, D.Y. und Estes, M.K.,
1992, J. Virol. 66, 6527-6532. Jung, et al., 1981, Biochem. Res. Commun. 101, 599. Kay, R., Takei, F. und Humphries, R.K., 1990, J.
Immunology 145, 1952-1959. Kingsman, A.J., Adams, S.E., Burns, N.R. und Kingsman,
S.M., 1991, Trends in Biotechnology 9, 303-309. Mastico, R.A., Talbot, S.J. und Stockley, P.G., 1993,
J. Gen. Virology 74, 541-548. O'Neil, K.T., Hoess, R.H., Jackson, S.A., Ramachandran,
N.S., Mousa, S.A. und DeGrado, W.F., 1992, Proteins
14, 509-515. O'Reilly, D.R., Miller, L.K. und Luckow, V.A., 1992,
Baculovirus expression vectors. W.H. Freeman & Co.
New York. Parente, R.A., Nir, S. und Szoka, F.C., 1990,
Biochemistry 29, 8720-8728. Pierschbacher, M.D. und Ruoslahti, E., 1984, Nature
309, 30-33. Pierschbacher, M.D. und Ruoslahti, E., 1987, J. Biol.
Chem. 262, 17294-17298. Remaut, E., Stanssens, P. und Fiers W. , 1981, Gene 15,
81-93. Ruffing, M. , Zentgraf, H. und Kleinschmidt, J.A., 1992,
J. Virol. 66, 6922-6930. Schiestl, R.H. und Gietz, R.D., 1989, Current Genetics
16, 339-346. Schneeman, A., Dasgupta, R. , Johnson, J.E. und
Rueckert, R.R., 1993, J. Virol. 67, 2756-2763. Seth, P., FitzGerald, D., Ginsberg, H., Willingha , M. und Pastan, I., 1984, Mol. Cell. Biol. 4, 1528-
1533. Stewart, P.L., Füller, S.D. und Burnett, R.M. , 1993,
EMBO J. 12, 2589-2599. Studier, W., Rosenberg, A.H., Dünn, J.J. und
Dubendorff, J.W.. 1990, Methods Enzymol. 185, 60-
89. Subbarao, N.K., Parente, R.A., Szoka, F.C., Nadasdi, L. und Pongracz, K. , 1987, J. Biol. Chem. 26, 2964-
2972. Torres, B.A., Griggs, N.D. und Johnson, H.M., 1993,
Nature 364, 152-154. Urakawa, T., Ferguson, M., Minor, P.D., Cooper, J.,
Sullivan, M. , Almond, J.W. und Bishop, D.H.L.,
1989, J. Gen. Virol. 70, 1453-1463. Valegard, K. , Lijas, L., Fridborg, K. und Unge, T.,
1990, Nature 345, 36-41.
Wagner, E., Cotten, M. , Foisner, R. und Birnstiel,
M.L., 1991a, Proc.Natl.Acad.Sci. USA 88, 4255-4259. Wagner, E., Cotten, M., Mechtler, K., Kirlappos, H. und
Birnstiel, M.L., 1991b, Bioconjugate Chemistry 2,
226-231. Wagner, E., Zatloukal, K. , Cotten, M., Kirlappos, H.,
Mechtler, K. , Curiel, D. und Birnstiel, M.L.,
1992a, Proc.Natl.Acad.Sci. USA 89, 6099-6103. Wagner, E., Plank, C, Zatloukal, K., Cotten, M. und
Birnstiel, M.L., 1992b, Proc.Natl.Acad.Sci. USA 89,
7934-7938. Weber, J., 1976, J. Virol. 17, 462-471. Wickner, R.B., 1993, J. Biol. Chem. 268, 3797-3800. Wickham, T.J., Mathias, P., Cheresh, D.A. und Nemerow,
G.R., 1993, Cell 73, 309-319. Wu, G.Y, und Wu, C.H., 1987, J. Biol. Chem. 262, 4429-
4432. Zatloukal, K., Wagner, E., Cotten, M. , Phillips, St.,
Plank, C, Steinlein, P., Curiel, D. und Birnstiel,
M.L., 1992, Annais New York Academy of Sciences
660, 136-153. 3?
SEQUENZPROTOKOLL
(1) ALLGEMEINE INFORMATION:
(i) ANMELDER:
(A) NAME: Boehringer Ingelheim International GmbH
(B) STRASSE: Binger Strasse 173
(C) ORT: Ingelheim am Rhein
(E) LAND: BRD
(F) POSTLEITZAHL: 55216
(G) TELEPHON: 06132/772282 (H) TELEFAX: 06132/774377 (I) TELEX: 4187910 bi d
(ii) ANMELDETITEL: Endosomolytisch wirksame Partikel
(iii) ANZAHL DER SEQUENZEN: 15
(iv) COMPUTER-LESBARE FORM:
(A) DATENTRÄGER: Floppy disk
(B) COMPUTER: IBM PC co patible
(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.25 (EPA)
(2) INFORMATION ZU SEQ ID NO: 1:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 34 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: synthetisches Oligodesoxyribonukleotid
(ix) MERKMALE:
(A) NAME/SCHLÜSSEL: misc_feature
(B) LAGE: 1..34
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1: GACCCAAAAC CAAGCCAATC CATCTGGTTG GTCA 34
(2) INFORMATION ZU SEQ ID NO: 2:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 33 Basenpaare
(B) ART: Nukleinsäure -
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear (ii) ART DES ^-0---EKÜLS: synthetisches Oligodesoxyribonukleotid
(ix) MERKMALE:
(A) NAME/SCHLÜSSEL: misc_feature
(B) LAGE: 1..33
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2: TGTAACTGGA TCC-CCTTTGG GTTTGGTTGT ATT 33
(2) INFORMATION ZU SEQ ID NO: 3:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 35 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: synthetisches Oligodesoxyribonukleotid
(ix) MERKMALE:
(A) NAME/SCHLÜSSEL: misc_feature
(B) LAGE: 1..35
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3: GGTACCTGGA TCCCGTTATA GCTCGGAATC CTCAA 35
(2) INFORMATION ZU SEQ ID NO: 4:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 25 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: synthetisches Oligodesoxyribonukleotid
(ix) MERKMALE:
(A) NAME/SCHLÜSSEL: misc_feature
(B) LAGE: 1..25
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: TCAAGGGCAT CGGTCGACGC TCTCC 25 (2) INFORMATION ZU SEQ ID NO: 5:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 18 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: synthetisc-hes Oligodesoxyribonukleotid
(ix) MERKMALE:
(A) NAME/SCHLÜSSEL: misc_feature
(B) LAGE: 1..18
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5: GATCCTAAAT TGAATTGA 18
(2) INFORMATION ZU SEQ ID NO: 6:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 18 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: synthetisc-hes Oligodesoxyribonukleotid
(ix) MERKMALE:
(A) NAME/SCHLÜSSEL: misc_feature
(B) LAGE: 1..18
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: GATCTCAATT CAATTTAG 18
(2) INFORMATION ZU SEQ ID NO: 7:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 93 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: synthetisches Oligodesoxyribonukleotid (iii) ANTISENSE: NEIN 4'
(ix) MERKMALE:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE: 7..93
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:
GATCTA GAA GCC GCC TTG GCC GAA GCC TTG GCC GAA GCC TTG GCC GAA 48 Glu Ala Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu 1 5 10
CAC TTG GCC GAA GCC TTG GCC GAA GCC TTG GAA GCC TTG GCC GCC 93 His Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala 15 20 25
(2) INFORMATION ZU SEQ ID NO: 8:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 29 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:
Glu Ala Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu His Leu 1 5 10 15
Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala 20 25
(2) INFORMATION ZU SEQ ID NO: 9:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 93 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: synthetisches Oligodesoxyribonukleotid (iii) ANTISENSE: JA
(ix) MERKMALE:
(A) NAME/SCHLÜSSEL: misc_feature
(B) LAGE: 1..93
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9: GATCTGGCGG CCAAGGCTTC CAAGGCTTCG GCCAAGGCTT CGGCCAAGTG TTCGGCCAAG 60 GCTTCGGCCA AGGCTTCGGC CAAGGCGGCT TCT 93
(2) INFORMATION ZU SEQ ID NO: 10:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 106 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: synthetisches Oligodesoxyribonukleotid (iii) ANTISENSE: NEIN
(ix) MERKMALE:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE: 7..105
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:
GATCTA GGT TTG TTC GAA GCC ATT GAA GGT TTC ATT GAA AAC GGT TGG 48 Gly Leu Phe Glu Ala Ile Glu Gly Phe Ile Glu Asn Gly Trp 1 5 10
GAA GGT TTG GCC GAA GCC TTG GCC GAA GCC TTG GAA GCC TTG GCC GCC 96 Glu Gly Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala 15 20 25 30
GGT GGT TCT A 106
Gly Gly Ser
(2) INFORMATION ZU SEQ ID NO: 11:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 33 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:
Gly Leu Phe Glu Ala Ile Glu Gly Phe Ile Glu Asn Gly Trp Glu Gly 1 5 10 15
Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly 20 25 30
Ser (2) INFORMATION ZU SEQ ID NO: 12:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 105 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: synthetisches Oligodesoxyribonukleotid (iii) ANTISENSE: JA
(ix) MERKMALE:
(A) NAME/SCHLÜSSEL: misc_feature
(B) LAGE: 1..105
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12: GATCTAGAAC CACCGGCGGC (-^GGCTTCC AAGGCTTCGG CCAAGGCTTC GGCCAAACCT 60 TCCCAACCGT TTTCAATGAA ACCTTCAAGG CTTCGAACAA ACCTA 105
(2) INFORMATION ZU SEQ ID NO: 13:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 32 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: synthetisches Oligodesoxyribonukleotid (iii) ANTISENSE: NEIN
(ix) MERKMALE:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE: 2..31
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:
T ATG GCT AGC CAC CAT CAC CAT CAC CAT GGT G 32
Met Ala Ser His His His His His His Gly 1 5 10
(2) INFORMATION ZU SEQ ID NO: 14: Ή
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 10 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:
Met Ala Ser His His His His His His Gly 1 5 10
(2) INFORMATION ZU SEQ ID NO: 15:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 34 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: synthetisches Oligodesoxyribonukleotid (iii) ANTISENSE: JA
(ix) MERKMALE:
(A) NAME/SCHLÜSSEL: misc_feature
(B) LAGE: 1..34
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15: GATCCACCAT GGTGATGGTG ATGGTGGCTA GCCA 34

Claims

XPatentansprüche
1. Endosomolytisch wirksames virusähnliches Partikel, dadurch gekennzeichnet, daß es aus Einheiten von Kapsidproteinen, abgeleitet von Viren oder virusähnlichen Teilchen, zusammengesetzt ist, die mit einer membranaktiven peptidischen Sequenz modifiziert sind.
2. Partikel nach Anspruch 1, dadurch gekennzeichnet, daß es ein modifiziertes Hefe-Ty-Partikel ist, das aus Einheiten von TyA-Protein zusammengesetzt ist, die mit einer membranaktiven Peptidsequenz modifiziert sind.
3. Partikel nach Anspruch 2, dadurch gekennzeichnet, daß das Ty-Partikel mit der Peptidsequenz Glu Ala Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu His Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala modifiziert ist, die sich am Carboxy-Terminus des TyA-Proteins befindet.
4. Partikel nach Anspruch 2, dadurch gekennzeichnet, daß das Ty-Partikel mit der Peptidsequenz Gly Leu Phe Glu Ala Ile Glu Gly Phe Ile Glu Asn Gly Trp Glu Gly Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala Gly Gly Ser modifiziert ist, die sich am Carboxy-Terminus des TyA-Proteins befindet.
5. Partikel nach Anspruch 1, dadurch gekennzeichnet, daß es ein modifiziertes MS2-Partikel ist, das aus Einheiten des MS2-Kapsidproteins zusammengesetzt ist, die mit einer membranaktiven Peptidsequenz modifiziert sind.
6. Partikel nach Anspruch 5, dadurch gekennzeichnet, daß das membranaktive Peptid in der ß- Haarnadelschleifenregion zwischen Aminosäure 11 (Asp) und Aminosäure 17 (Asp), insbesondere zwischen Aminosäure 14 (Gly) und 15 (Thr), des MS2- Kapsidproteins eingefügt ist.
7. Partikel nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß es mit der Peptidsequenz Glu Ala Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu His Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Ala Ala modifiziert ist.
8. Partikel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es außerdem eine Nukleinsäure- bindende Domäne aufweist.
9. Partikel nach Anspruch 8, dadurch gekennzeichnet, daß die Nukleinsäure-bindende Domäne Polylysin ist.
10. Partikel nach Anspruch 9, dadurch gekennzeichnet, daß es direkt an Polylysin gebunden ist.
11. Partikel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß es außerdem eine Peptidsequenz aufweist, die die Funktion eines Liganden für eine höhere eukaryotische Zelle hat.
12. Verfahren zur Herstellung von Partikeln nach Anspruch 1, dadurch gekennzeichnet, daß man eine für ein Kapsidprotein von Viren oder virusähnlichen Teilchen kodierende DNA, die mit einer für ein membranaktives Peptid kodierenden Sequenz modifiziert ist, exprimiert und das erhaltene Kapsid erntet oder erforderlichenfalls die fr
Kapsidproteinmonomeren zu Kapsidstrukturen assoziieren läßt.
13. Verfahren zur Herstellung von Hefe-Ty-Partikeln nach Anspruch 2, dadurch gekennzeichnet, daß man eine DNA, kodierend für das TyA-Protein, das am Carboxy-Terminus ein membranaktives Peptid enthält, in Hefezellen exprimiert, die Zellen aufschließt und die Partikel erntet.
14. Verfahren zur Herstellung von MS2-Partikeln nach Anspruch 5, dadurch gekennzeichnet, daß man eine DNA, kodierend für das MS2-Kapsidprotein, die eine für ein membranaktives Peptid kodierene Sequenz eingefügt enthält, exprimiert, das erhaltene modifizierte Kapsidprotein denaturiert und nach Entfernung des Denaturierungsmittels assoziieren läßt.
15. Zusammensetzung für den Transport von Nukleinsäure in die höhere eukaryotische Zelle, enthaltend ein endosomolytisches Mittel, dadurch gekennzeichnet, daß das endosomolytische Mittel ein endosomolytisch wirksames virusähnliches Partikel nach einem der Ansprüche 7 bis 11 ist.
16. Zusammensetzung nach Anspruch 15, daß sie außerdem ein Konjugat aus einer Nukleinsäure-bindenden Substanz und einem Internalisierungsfaktor für die Zelle enthält.
17. Zusammensetzung nach Anspruch 16, dadurch gekennzeichnet, sie ein Transferrin-Polylysin- Kon ugat enthält.
PCT/EP1994/003313 1993-10-14 1994-10-07 Endosomolytisch wirksame partikel WO1995010624A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002172139A CA2172139A1 (en) 1993-10-14 1994-10-07 Endosomolytically active particles
JP7511255A JPH09503665A (ja) 1993-10-14 1994-10-07 エンドソーム分解活性粒子
US08/628,665 US5789230A (en) 1993-10-14 1994-10-07 Endosomolytically active particles
DE59410380T DE59410380D1 (de) 1993-10-14 1994-10-07 Endosomolytisch wirksame partikel
AU78120/94A AU681705B2 (en) 1993-10-14 1994-10-07 Endosomolytically active particles
EP94928873A EP0724643B1 (de) 1993-10-14 1994-10-07 Endosomolytisch wirksame partikel
AT94928873T ATE270342T1 (de) 1993-10-14 1994-10-07 Endosomolytisch wirksame partikel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4335025A DE4335025A1 (de) 1993-10-14 1993-10-14 Endosomolytisch wirksame Partikel
DEP4335025.9 1993-10-14

Publications (1)

Publication Number Publication Date
WO1995010624A1 true WO1995010624A1 (de) 1995-04-20

Family

ID=6500137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/003313 WO1995010624A1 (de) 1993-10-14 1994-10-07 Endosomolytisch wirksame partikel

Country Status (8)

Country Link
US (1) US5789230A (de)
EP (1) EP0724643B1 (de)
JP (1) JPH09503665A (de)
AT (1) ATE270342T1 (de)
AU (1) AU681705B2 (de)
CA (1) CA2172139A1 (de)
DE (2) DE4335025A1 (de)
WO (1) WO1995010624A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003517A1 (de) * 1994-07-26 1996-02-08 Boehringer Ingelheim International Gmbh Verfahren zur herstellung von viren und viralen vektoren
WO1997039134A1 (en) * 1996-04-17 1997-10-23 Scottish Crop Research Institute Virus-like particle
US6010871A (en) * 1994-09-29 2000-01-04 Ajinomoto Co., Inc. Modification of peptide and protein
US6232099B1 (en) 1994-10-18 2001-05-15 Scottish Crop Research Institute Method of producing a chimeric protein

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ244306A (en) 1991-09-30 1995-07-26 Boehringer Ingelheim Int Composition for introducing nucleic acid complexes into eucaryotic cells, complex containing nucleic acid and endosomolytic agent, peptide with endosomolytic domain and nucleic acid binding domain and preparation
DE19618797C2 (de) * 1996-05-10 2000-03-23 Bertling Wolf Vehikel zum Transport molekularer Substanz
FR2749323B1 (fr) * 1996-06-04 1998-07-10 Pasteur Merieux Serums Vacc Pseudo-particules virales utiles en tant que vecteur de delivrance d'acide nucleique
US20060002949A1 (en) 1996-11-14 2006-01-05 Army Govt. Of The Usa, As Rep. By Secretary Of The Office Of The Command Judge Advocate, Hq Usamrmc. Transcutaneous immunization without heterologous adjuvant
US6797276B1 (en) 1996-11-14 2004-09-28 The United States Of America As Represented By The Secretary Of The Army Use of penetration enhancers and barrier disruption agents to enhance the transcutaneous immune response
DE19829005C2 (de) * 1998-06-29 2000-08-31 November Ag Molekulare Medizin Verfahren zum Transport molekularer Substanz in vorgegebene Bereiche eukaryontischer Zellen
WO2000036176A2 (en) 1998-12-15 2000-06-22 Lynntech, Inc. Polymetalate and heteropolymetalate conversion coatings for metal substrates
DE19956568A1 (de) 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
GB9908195D0 (en) 1999-04-09 1999-06-02 Microbiological Res Authority Treatment of intracellular infection
DE19916224C1 (de) 1999-04-10 2000-06-21 November Ag Molekulare Medizin Synthetisches biologisch aktives Molekül
DE19952957B4 (de) * 1999-11-03 2006-08-31 Acgt Progenomics Ag Modulare Transportsysteme für molekulare Substanzen und deren Herstellung und Verwendung
DE10131145B4 (de) * 2001-06-28 2005-07-14 Innovent E.V. Zusammensetzung zum zellspezifischen Transfer von Wirkstoffen
WO2003078576A2 (en) * 2002-03-12 2003-09-25 Nitto Denko Corporation Vector for transfection of eukaryotic cells
DK1532279T3 (da) 2002-05-31 2011-05-23 Childrens Hosp Medical Center Fremgangsmåde, sammensætning og kit til antigenbinding af Norwalk-lignende vira
US7977098B2 (en) 2002-05-31 2011-07-12 Children's Hospital Medical Center Antigenic binding patterns of norovirus to human histo-blood group antigens
US8507277B2 (en) 2003-10-24 2013-08-13 Gencia Corporation Nonviral vectors for delivering polynucleotides
US8062891B2 (en) 2003-10-24 2011-11-22 Gencia Corporation Nonviral vectors for delivering polynucleotides to plants
US8133733B2 (en) 2003-10-24 2012-03-13 Gencia Corporation Nonviral vectors for delivering polynucleotides to target tissues
US20090123468A1 (en) 2003-10-24 2009-05-14 Gencia Corporation Transducible polypeptides for modifying metabolism
EP1687017B1 (de) 2003-10-24 2013-03-06 Gencia Corporation Verfahren und Zusammensetzungen zur Abgabe von Polynukleotiden
EP3101034A1 (de) * 2004-02-12 2016-12-07 Morphotek, Inc. Monoklonale, spezifisch an folatrezeptor-alpha bindende antikörper
JP2008538700A (ja) * 2005-04-22 2008-11-06 モルフォテック、インク. 免疫エフェクター活性を有するエンドシアリン細胞に内部移行する抗体
US20110152263A1 (en) * 2006-11-16 2011-06-23 Xi Jiang Composition and method for inhibiting norovirus infection
WO2008128251A1 (en) 2007-04-17 2008-10-23 The Children's Hospital Of Philadelphia Humanized viral vectors and methods of use thereof
WO2010144602A2 (en) 2009-06-09 2010-12-16 Children's Hospital Medical Center Antigen-norovirus p-domain monomers and dimers, antigen-norovirus p-particle molecules, and methods for their making and use
US9321803B2 (en) 2013-07-12 2016-04-26 Children's Hospital Medical Center Compositions and methods for inhibiting norovirus infection
US11672866B2 (en) 2016-01-08 2023-06-13 Paul N. DURFEE Osteotropic nanoparticles for prevention or treatment of bone metastases
US11344629B2 (en) 2017-03-01 2022-05-31 Charles Jeffrey Brinker Active targeting of cells by monosized protocells
WO2018182983A1 (en) 2017-03-28 2018-10-04 Children's Hospital Medical Center Norovirus s particle based vaccines and methods of making and using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003562A1 (en) * 1986-11-01 1988-05-19 Oxford Gene Systems Limited Particulate hybrid hiv antigens
WO1993007282A1 (de) * 1991-09-30 1993-04-15 Boehringer Ingelheim International Gmbh Neue konjugate zum einführen von nukleinsäure in höhere eukaryotische zellen
EP0545016A1 (de) * 1991-09-30 1993-06-09 BOEHRINGER INGELHEIM INTERNATIONAL GmbH Zusammensetzung für das Einbringen von Nukleinsäure-Komplexen in höhere eukaryotische Zellen
WO1994000588A1 (en) * 1992-06-26 1994-01-06 British Technology Group Ltd. Protein based delivery system
WO1994006923A1 (en) * 1992-09-24 1994-03-31 The University Of Connecticut Modification of a virus to redirect infectivity and enhance targeted delivery of polynucleotides to cells

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166320A (en) * 1987-04-22 1992-11-24 University Of Connecticut Carrier system and method for the introduction of genes into mammalian cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003562A1 (en) * 1986-11-01 1988-05-19 Oxford Gene Systems Limited Particulate hybrid hiv antigens
WO1993007282A1 (de) * 1991-09-30 1993-04-15 Boehringer Ingelheim International Gmbh Neue konjugate zum einführen von nukleinsäure in höhere eukaryotische zellen
EP0545016A1 (de) * 1991-09-30 1993-06-09 BOEHRINGER INGELHEIM INTERNATIONAL GmbH Zusammensetzung für das Einbringen von Nukleinsäure-Komplexen in höhere eukaryotische Zellen
WO1994000588A1 (en) * 1992-06-26 1994-01-06 British Technology Group Ltd. Protein based delivery system
WO1994006923A1 (en) * 1992-09-24 1994-03-31 The University Of Connecticut Modification of a virus to redirect infectivity and enhance targeted delivery of polynucleotides to cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASTICO ET AL.: "Multiple presentation of foreign peptides on the surface of an RNA-free sperical bacteriophage capsid", THE JOURNAL OF GENERAL VIROLOGY, vol. 74, no. 4, April 1993 (1993-04-01), READING, UK, pages 541 - 548 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003517A1 (de) * 1994-07-26 1996-02-08 Boehringer Ingelheim International Gmbh Verfahren zur herstellung von viren und viralen vektoren
US6010871A (en) * 1994-09-29 2000-01-04 Ajinomoto Co., Inc. Modification of peptide and protein
US6232099B1 (en) 1994-10-18 2001-05-15 Scottish Crop Research Institute Method of producing a chimeric protein
WO1997039134A1 (en) * 1996-04-17 1997-10-23 Scottish Crop Research Institute Virus-like particle

Also Published As

Publication number Publication date
EP0724643A1 (de) 1996-08-07
JPH09503665A (ja) 1997-04-15
DE59410380D1 (de) 2004-08-05
AU681705B2 (en) 1997-09-04
AU7812094A (en) 1995-05-04
EP0724643B1 (de) 2004-06-30
CA2172139A1 (en) 1995-04-20
ATE270342T1 (de) 2004-07-15
DE4335025A1 (de) 1995-04-20
US5789230A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
EP0724643B1 (de) Endosomolytisch wirksame partikel
EP0941318B1 (de) Hantelförmige expressionskonstrukte für die gentherapie
DE69725878T2 (de) Zusammensetzungen zur polynukleotidabgabe
EP1427837B1 (de) Modulare transfektionssysteme auf der basis von nukleoproteinfilamenten
EP0571414B1 (de) Neue, über endozytose in höhere eukaryotische zellen aufnehmbare, nukleinsäure enthaltende komplexe
US20060252140A1 (en) Development of a transposon system for site-specific DNA integration in mammalian cells
DE4311651A1 (de) Virus für den Transport von Fremd-DNA in höhere eukaryotische Zellen
DD294969A5 (de) Thermisch stabile cytosin-deaminase
DE19618797C2 (de) Vehikel zum Transport molekularer Substanz
CN113811611A (zh) 无毒cas9酶及其应用
WO1999066061A1 (fr) Phage de transfert d&#39;acide nucleique
EP1270586B1 (de) Zusammensetzung zum zellspezifischen Transfer von Wirkstoffen
DE4421079C1 (de) Chimäres Peptid-Nukleinsäure-Fragment, Verfahren zu seiner Herstellung und die Verwendung des Fragments zur zielgerichteten Nukleinsäureeinbringung in Zellorganellen und Zellen
DE69634489T2 (de) Adenovirus dodekahedrischer proteinkomplex, dieser enthaltende zusammensetzung und verwendungen davon
DE4339922C1 (de) Vektor für Leber-Gentherapie
DE69933875T2 (de) Protein-verabreichungssystem, das dem menschlichen papillomavirus ähnliche partikel benützt.
DE19952983A1 (de) Verfahren zum Transfer von molekularen Substanzen mit prokaryontischen nukleinsäurebindenden Proteinen
JP2003521934A (ja) ウイルスベクターライブラリーの製造および使用方法
US6815200B1 (en) Modified adenovirus containing a fiber replacement protein
EP1685253A2 (de) Adapter zum ankoppeln einer an einer zelloberfläche anzukoppelnden substanz
DE60033679T2 (de) Herstellung von rekombinanten adenoviren und von adenovirus-genbanken
DE102004032888B4 (de) Rekombinante ScV-Partikel, ihre kodierenden Nukleinsäuren und ihre Verwendungen
EP1228199A2 (de) Verfahren zur gerichteten verpackung von molekularen substanzen in proteinhüllen
EP1196618A2 (de) Neue vektorkomplexe und deren verwendung für die gentherapie
WO1996003517A1 (de) Verfahren zur herstellung von viren und viralen vektoren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2172139

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08628665

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994928873

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994928873

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994928873

Country of ref document: EP