WO1995022646A1 - Improved nonwoven barrier and method of making the same - Google Patents

Improved nonwoven barrier and method of making the same Download PDF

Info

Publication number
WO1995022646A1
WO1995022646A1 PCT/US1995/002085 US9502085W WO9522646A1 WO 1995022646 A1 WO1995022646 A1 WO 1995022646A1 US 9502085 W US9502085 W US 9502085W WO 9522646 A1 WO9522646 A1 WO 9522646A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven
charging
web
treated
charged
Prior art date
Application number
PCT/US1995/002085
Other languages
French (fr)
Inventor
Bernard Cohen
Original Assignee
Kimberly-Clark Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly-Clark Corporation filed Critical Kimberly-Clark Corporation
Priority to KR1019960704578A priority Critical patent/KR100313080B1/en
Priority to DE69517303T priority patent/DE69517303T2/en
Priority to MX9603399A priority patent/MX9603399A/en
Priority to JP52195795A priority patent/JP4113581B2/en
Priority to AU19239/95A priority patent/AU686769B2/en
Priority to EP95911810A priority patent/EP0746646B1/en
Publication of WO1995022646A1 publication Critical patent/WO1995022646A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/30Antimicrobial, e.g. antibacterial
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/282Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
    • D06M13/292Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/021Treatment by energy or chemical effects using electrical effects
    • B32B2310/025Electrostatic charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2535/00Medical equipment, e.g. bandage, prostheses, catheter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2418Coating or impregnation increases electrical conductivity or anti-static quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2418Coating or impregnation increases electrical conductivity or anti-static quality
    • Y10T442/2451Phosphorus containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/671Multiple nonwoven fabric layers composed of the same polymeric strand or fiber material

Definitions

  • the present invention is directed to bacterial barrier fabrics. More particularly, the present invention is directed to nonwoven bacterial barrier fabrics for use as sterilization wrap, surgical draping, surgical gowns, cover garments, such as over-suits, and the like.
  • surgical articles have been designed to greatly reduce, if not prevent, the transmission through the surgical article of liquids and/or airborne contaminates.
  • liquids sources include the gown wearer's perspiration, patient liguids, such as blood and life support liquids such as plasma and saline.
  • airborne contaminates include, but are not limited to, biological contaminates, such as bacteria, viruses and fungal spores.
  • Such contaminates may also include particulate material such as, but not limited to, lint, mineral fines, dust, skin squames and respiratory droplets.
  • a measure of a fabrics ability to prevent the passage of such airborne materials is sometimes expressed in terms of "filtration efficiency".
  • Disposable surgical articles have largely replaced linen surgical articles. Advances in such disposable surgical articles include the formation of such articles from totally liquid repellent fabrics which prevent strike- through. In this way, biological contaminates carried by liquids are prevented from passing through such fabrics. However, in some instances, surgical articles formed from nonporous films, while being liquid and airborne contaminate impervious, are, or become over a period of time, uncomfortable to wear.
  • surgical articles fashioned from liquid repellent fabrics such as fabrics formed from nonwoven polymers, sufficiently repel liquids and are more breathable and thus more comfortable to the wearer than nonporous materials.
  • these improvements in comfort and breathable provide by such nonwoven fabrics have generally occurred at the expense of barrier properties or filtration efficiency.
  • the present invention provides a steam sterilizable nonwoven material, such as nonwoven fabrics, formed from polymer fibers.
  • the nonwoven materials of the present invention are formed by subjecting a portion of the nonwoven material to charging, and more particularly to electrostatic charging, and then steam sterilizing the nonwoven material.
  • the nonwoven material may be subjected to charging followed by steam sterilization or steam sterilization followed by charging.
  • the nonwoven material may also be treated with an antistatic material before or after subjecting the nonwoven material to charging.
  • These methods further include positioning another nonwoven material in a juxtaposed relationship with the first nonwoven material. Portions of the other, or second, nonwoven material may be subjected to charging before or after steam sterilization. The second nonwoven material may also be treated with an antistatic material before or after being subjected to charging.
  • the nonwoven materials includes a steam sterilized web formed from fibers of a polymer wherein a portion of these fibers have been subjected to charging, and particularly electrostatic charging.
  • the steam sterilized nonwoven composition may also include an antistatic material present about portions thereof.
  • the above nonwoven composition may further include a second web in a juxtaposed relationship to the first web.
  • the second web may be formed from polymer fibers wherein a portion of these fibers may be subjected to charging.
  • An antistatic treatment may also be present about portions of the second web.
  • the composition of the present invention further includes a nonwoven material including a first web formed from fibers of a polymer, wherein a portion of these fibers have been subject to charging and wherein an antistatic material is present about portions of the first web.
  • This composition may further include a second web formed from fibers of a polymer, wherein the polymer is positioned in a juxtaposed relationship with the first web.
  • the second web may also be subjected to charging.
  • compositions, and methods of making the same which improved both the airborne contaminate barrier and filtration efficiency of a web formed from polymer fibers.
  • applications for such compositions and methods are included, but not limited to, applications requiring sterilizable, breathable materials having high airborne contaminate barrier properties.
  • Such materials have application in surgical articles, such as gowns, drapes, sterile wrap and face mask, as well as other non-surgical applications such as agriculture, mining, clean room and environmental.
  • Polymers are well suited for the formation of nonwoven materials which are useful in the practice of the present invention.
  • Nonwoven materials can be made from a variety of processes including, but not limited to, air laying processes, wet laid processes, hydroentangling processes, spunbonding, meltblowing, staple fiber carding and bonding, and solution spinning.
  • the fibers themselves can be made from a variety of dielectric materials including, but not limited to, polyesters, polyolefins, nylon and copolymer of these materials.
  • the fibers may be relatively short, staple length fibers, typically less than 3 inches, or longer more continuous fibers such as are produced by a spunbonding process.
  • nonwovens formed from polyolefin- based fibers are particularly well-suited for the above applications.
  • nonwovens are the polypropylene nonwovens produced by the Assignee of record, Kimberly-Clark Corporation. And more particularly, the spunbond, meltblown, spunbond material produced by Kimberly-Clark Corporation.
  • This spunbond, meltblown, spunbond material may be made from three separate layers which are laminated to one another. Such a method of making this laminated material is described in commonly assigned U.S. Patent NO. 4,041,203 to Brock et al which is incorporated herein in its entirety by reference.
  • the spunbond, meltblown, spunbond material may be made by first forming a spunbond, meltblown laminate. The spunbond, meltblown laminate is formed by applying a layer of meltblown on to a layer of spunbond. The second layer of spunbond is then applied to the meltblown side of the previously formed spunbond, meltblown laminate. Generally, the two outer layers provide the nonwoven fabric with strength while the inner layer provides barrier properties.
  • the nonwoven web of the present invention may be formed from a single layer or multiple layers. In the case of multiple layers, the layers are generally positions in a juxtaposed or surface-to-surface relationship arid all or a portion of the layers may be bound to adjacent layers.
  • the nonwoven web may also be formed from a plurality of separate nonwoven webs wherein the separate nonwoven webs may be formed from single or multiple layers. In those instances where the nonwoven web includes multiple layers, the entire thickness of the nonwoven web may be subjected to charging or individual layers may be separately subjected to charging and then combined with other layers in a juxtaposed relationship to form the finished nonwoven web.
  • Methods of subjecting a material to charging, and particularly electrostatic charging are well known by those skilled in the art. These methods include, for example, thermal, liquid-contact, electron beam and corona discharge methods.
  • One particular technique of subjecting a material to electrostatic charging is the technique disclosed in U.S. Patent Application No. 07/958,958 filed October 9, 1992 which is assigned to the University of Tennessee, and is herein incorporated in its entirety by reference. This technique involves subjecting a material to a pair of electrical fields wherein the electrical fields have opposite polarities.
  • Sterilization of the nonwoven web may be accomplished by several techniques which include chemical and steam techniques.
  • steam sterilization techniques are commonly used.
  • the unsterile instruments are first wrapped in the nonwoven web.
  • the wrapped instruments are then steam sterilized.
  • the instruments, still wrapped, are then removed from the steam sterilizing equipment or autoclave and are stored in the wrapping material until needed. When needed, the wrapping web is removed making the instruments available for handling.
  • the steam sterilization cycle may vary dependent upon type of sterilizer and the size/quantity of the items being sterilized.
  • the time and temperature parameters for gravity-displacement cycles may range from 10 to 15 minute exposure time at 270 "F to 275 °F to 15 to 30 minute exposure time at 250 °F to 254 ⁇ F.
  • the time and temperature parameters may be 3 to 4 minutes at 270 °F to 275 °F.
  • the time and temperature parameters may range from 3 to 4 minutes at 270 ⁇ F to 275 °F to 20 minutes at 250 ⁇ F to 254 ⁇ F.
  • the nonwoven web may be treated with any number of antistatic materials.
  • the antistatic material may be applied to the nonwoven by any number of techniques including, but not limited to dipping the nonwoven into a solution containing the antistatic material or by spraying the nonwoven with a solution containing the antistatic material.
  • the antistatic material may be applied to both the external surfaces of the nonwoven and the bulk of the nonwoven.
  • the antistatic material may be applied to portions of the nonwoven, such as a selected surface or surfaces thereof.
  • the nonwoven web may be treated with the antistatic material either before or after subjecting the web to charging. Furthermore, some or all of the material layers may be treated with the antistatic material. In those instances where only some of the material layers are treated with antistatic material, the non-treated layer or layers may be subjected to charging prior to or after combining with the antistatic treated layer or layers.
  • Kimberly-Clark manufactures a series of single sheet laminate nonwoven web materials made from spunbond- meltblown-spunbond (SMS) layers. These materials are available in a variety of basis weights.
  • SMS spunbond- meltblown-spunbond
  • the nonwoven web materials used in Examples l and 2 were such single sheet laminate materials sold by Kimberly-Clark under the mark KIMGUARD* Heavy Duty Sterile Wrap.
  • the basis weight of this material is 2.2 oz/sq yd. Both spunbond layers have a basis weight of 0.85 oz/sq yd and the meltblown layer has a basis weight of 0.50 oz/sq yd.
  • the second category "Charged" reports the average BFE for eleven samples of ZELEC* treated and eleven samples of non-ZELEC ® treated KIMGUARD* material which were subject to electrostatic charging but not steam sterilization.
  • the third category “Charged/Sterilized” reports the average BFE for eleven samples of ZELEC* treated and eleven samples of non-ZELEC ® treated KIMGUARD* material which were first charged then steam sterilized. Sterilization of these samples was accomplished in an Amsco 2021 Gravity Sterilizer, a product of American Sterilizer Co. of Erie, PA. Samples were sealed in a Baxter DUAL PEELTM Self Seal Pouch. The sealed pouches were exposed to 250 T at 15 psi steam for 20 minutes with a dry time of 5 minutes. After sterilizing, the above samples were analyzed by Nelson Laboratories for Bacterial Filtration Efficiency testing.
  • SMS fabric samples Further barrier properties for SMS fabric samples were investigated. Table 3 reports the barrier property results for KIMGUARD* Heavy-Duty Sterile Wrap (KIM) and SPUNGUARD* Regular Sterilization Wrap (SPU) .
  • SPUNGUARD* Regular Sterilization Wrap is also a spunbond, meltblown, spunbond material having a basis weight of 1.05 oz/sq yd (0.35/0.35/0.35). These categories included ZELEC* treated and non-ZELEC* treated materials, charged and non-charged, sterilized and non-sterilized material.
  • the charged and sterilized samples were prepared according to the charging and sterilizing procedures described in Example 1 except that all sterilized sample pouches were conditioned at laboratory ambient environment for at least 4 hours prior to testing.
  • the barrier properties were measured using the Nelson procedures described in Example 1.
  • the barrier properties were measured using a microbial challenge procedure described below.
  • the average percent reduction is a measurement of filtration efficiency.
  • the Avg%Red is an expression of the reduction of number of colony forming units (CFUs) or bacteria passing through a sample compared to the number CFUs in the challenge control filter material.
  • the Avg%Red was calculated by subtracting the number of CFUs passing through a sample from the number of CFUs passing through the challenge control filter material and dividing this number by the number of CFUs for the challenge filter material. The result was then multiplied by 100 to convert to percent.
  • Table 3 demonstrates that filtration properties of the steam sterilized nonwoven samples are improved by of the charging the fabric samples (Samples 2, 4, 7, 10, and 12) as compared to samples which have not been subjected to charging (Samples 1, 3, 6, 9, and 11).
  • Example 4
  • Table 4 reports charge data for the top and bottom surfaces of 2.2 oz. KIMGUARD* fabric samples subjected to various conditions. As noted in Table 4, one of the KIMGUARD* samples was treated with ZELEC* and the other was not. Except as otherwise indicated, the measurements were made on separate samples. Each sample was had a general dimension of about 10" X 10". The area of each sample measured had a general dimension of about 6" X 6". Measurements were taken each 1/2" in a 12 X 12 matrix. The charge number reported is an averaged number. The equipment used to measure charge was the same as described in Example 2.
  • the barrier properties of steam sterilized non-woven material are improved when these materials are subjected to charging, and particularly electrostatic charging. It will be further observed that the barrier properties of an antistatic treated non-woven material are improved when these materials are subjected to charging, and particularly electrostatic charging.

Abstract

A steam sterilizable nonwoven material which is subjected to charging, and more particularly electrostatic charging is provided. The nonwoven materials may include laminate nonwovens wherein one or more layers are subjected to charging. The nonwoven material(s) may also be treated with an antistatic material before or after subjecting the same to charging.

Description

IMPROVED NONWOVEN BARRIER
AND METHOD OF MAKING THE SAME
FIELD OF THE INVENTION
The present invention is directed to bacterial barrier fabrics. More particularly, the present invention is directed to nonwoven bacterial barrier fabrics for use as sterilization wrap, surgical draping, surgical gowns, cover garments, such as over-suits, and the like.
BACKGROUND OF THE INVENTION
As is generally known, surgical gowns, surgical drapes, surgical face masks and sterile wrap (hereinafter collectively "surgical articles") have been designed to greatly reduce, if not prevent, the transmission through the surgical article of liquids and/or airborne contaminates. In surgical procedure environments, such liquids sources include the gown wearer's perspiration, patient liguids, such as blood and life support liquids such as plasma and saline. Examples of airborne contaminates include, but are not limited to, biological contaminates, such as bacteria, viruses and fungal spores. Such contaminates may also include particulate material such as, but not limited to, lint, mineral fines, dust, skin squames and respiratory droplets. A measure of a fabrics ability to prevent the passage of such airborne materials is sometimes expressed in terms of "filtration efficiency".
Many of these surgical articles were originally made of cotton or linen and were sterilized prior to their use in the operating room. Such surgical articles fashioned from these materials, however, permitted transmission or "strike-through" of various liquids encountered in surgical procedures. In these instances, a path was established for transmission of biological contaminates, either present in the liquid or subsequently contacting the liquid, through the surgical article. Additionally, in many instances surgical articles fashioned from cotton or linen provide insufficient barrier protection from the transmission therethrough of airborne contaminates. Furthermore, these articles were costly, and of course laundering and sterilization procedures were required before reuse.
Disposable surgical articles have largely replaced linen surgical articles. Advances in such disposable surgical articles include the formation of such articles from totally liquid repellent fabrics which prevent strike- through. In this way, biological contaminates carried by liquids are prevented from passing through such fabrics. However, in some instances, surgical articles formed from nonporous films, while being liquid and airborne contaminate impervious, are, or become over a period of time, uncomfortable to wear.
In some instances, surgical articles fashioned from liquid repellent fabrics, such as fabrics formed from nonwoven polymers, sufficiently repel liquids and are more breathable and thus more comfortable to the wearer than nonporous materials. However, these improvements in comfort and breathable provide by such nonwoven fabrics have generally occurred at the expense of barrier properties or filtration efficiency.
While the focus thus far has been directed to surgical articles, there are many other garment or over-garment applications, such as personal protective equipment applications, whose designers require both fabric comfort and filtration efficiency. Other personal protective equipment applications include, but are not limited to, laboratory applications, clean room applications, such as semi-conductor manufacture, agriculture applications, mining applications, and environmental applications.
Therefore, there is a need for garment materials and methods for making the same which provide improved breathability and comfort as well as improved filtration efficiency. Such improved materials and methods are provided by the present invention and will become more apparent upon further review of the following specification and claims.
SUMMARY OF THE INVENTION In response to the above problems encountered by those of skill in the art, the present invention provides a steam sterilizable nonwoven material, such as nonwoven fabrics, formed from polymer fibers. The nonwoven materials of the present invention are formed by subjecting a portion of the nonwoven material to charging, and more particularly to electrostatic charging, and then steam sterilizing the nonwoven material. The nonwoven material may be subjected to charging followed by steam sterilization or steam sterilization followed by charging. The nonwoven material may also be treated with an antistatic material before or after subjecting the nonwoven material to charging.
These methods further include positioning another nonwoven material in a juxtaposed relationship with the first nonwoven material. Portions of the other, or second, nonwoven material may be subjected to charging before or after steam sterilization. The second nonwoven material may also be treated with an antistatic material before or after being subjected to charging.
The nonwoven materials includes a steam sterilized web formed from fibers of a polymer wherein a portion of these fibers have been subjected to charging, and particularly electrostatic charging. The steam sterilized nonwoven composition may also include an antistatic material present about portions thereof. The above nonwoven composition may further include a second web in a juxtaposed relationship to the first web. The second web may be formed from polymer fibers wherein a portion of these fibers may be subjected to charging. An antistatic treatment may also be present about portions of the second web. The composition of the present invention further includes a nonwoven material including a first web formed from fibers of a polymer, wherein a portion of these fibers have been subject to charging and wherein an antistatic material is present about portions of the first web. This composition may further include a second web formed from fibers of a polymer, wherein the polymer is positioned in a juxtaposed relationship with the first web. The second web may also be subjected to charging.
DETAILED DESCRIPTION OF THE INVENTION
Disclosed herein are compositions, and methods of making the same, which improved both the airborne contaminate barrier and filtration efficiency of a web formed from polymer fibers. Among the applications for such compositions and methods are included, but not limited to, applications requiring sterilizable, breathable materials having high airborne contaminate barrier properties. Such materials have application in surgical articles, such as gowns, drapes, sterile wrap and face mask, as well as other non-surgical applications such as agriculture, mining, clean room and environmental. Polymers are well suited for the formation of nonwoven materials which are useful in the practice of the present invention. Nonwoven materials can be made from a variety of processes including, but not limited to, air laying processes, wet laid processes, hydroentangling processes, spunbonding, meltblowing, staple fiber carding and bonding, and solution spinning. The fibers themselves can be made from a variety of dielectric materials including, but not limited to, polyesters, polyolefins, nylon and copolymer of these materials. The fibers may be relatively short, staple length fibers, typically less than 3 inches, or longer more continuous fibers such as are produced by a spunbonding process.
It has been found that nonwovens formed from polyolefin- based fibers are particularly well-suited for the above applications. Examples of such nonwovens are the polypropylene nonwovens produced by the Assignee of record, Kimberly-Clark Corporation. And more particularly, the spunbond, meltblown, spunbond material produced by Kimberly-Clark Corporation.
This spunbond, meltblown, spunbond material may be made from three separate layers which are laminated to one another. Such a method of making this laminated material is described in commonly assigned U.S. Patent NO. 4,041,203 to Brock et al which is incorporated herein in its entirety by reference. Alteratively, the spunbond, meltblown, spunbond material may be made by first forming a spunbond, meltblown laminate. The spunbond, meltblown laminate is formed by applying a layer of meltblown on to a layer of spunbond. The second layer of spunbond is then applied to the meltblown side of the previously formed spunbond, meltblown laminate. Generally, the two outer layers provide the nonwoven fabric with strength while the inner layer provides barrier properties.
The nonwoven web of the present invention may be formed from a single layer or multiple layers. In the case of multiple layers, the layers are generally positions in a juxtaposed or surface-to-surface relationship arid all or a portion of the layers may be bound to adjacent layers. The nonwoven web may also be formed from a plurality of separate nonwoven webs wherein the separate nonwoven webs may be formed from single or multiple layers. In those instances where the nonwoven web includes multiple layers, the entire thickness of the nonwoven web may be subjected to charging or individual layers may be separately subjected to charging and then combined with other layers in a juxtaposed relationship to form the finished nonwoven web.
Methods of subjecting a material to charging, and particularly electrostatic charging, are well known by those skilled in the art. These methods include, for example, thermal, liquid-contact, electron beam and corona discharge methods. One particular technique of subjecting a material to electrostatic charging is the technique disclosed in U.S. Patent Application No. 07/958,958 filed October 9, 1992 which is assigned to the University of Tennessee, and is herein incorporated in its entirety by reference. This technique involves subjecting a material to a pair of electrical fields wherein the electrical fields have opposite polarities.
Sterilization of the nonwoven web may be accomplished by several techniques which include chemical and steam techniques. In those instances when the nonwoven web is used to wrap surgical instruments, steam sterilization techniques are commonly used. In such instances, the unsterile instruments are first wrapped in the nonwoven web. The wrapped instruments are then steam sterilized. The instruments, still wrapped, are then removed from the steam sterilizing equipment or autoclave and are stored in the wrapping material until needed. When needed, the wrapping web is removed making the instruments available for handling.
The steam sterilization cycle may vary dependent upon type of sterilizer and the size/quantity of the items being sterilized. For example, the time and temperature parameters for gravity-displacement cycles may range from 10 to 15 minute exposure time at 270 "F to 275 °F to 15 to 30 minute exposure time at 250 °F to 254 βF. For pre- vacuum cycles, the time and temperature parameters may be 3 to 4 minutes at 270 °F to 275 °F. And for steam-flush pressure-pulse cycles, the time and temperature parameters may range from 3 to 4 minutes at 270 βF to 275 °F to 20 minutes at 250 βF to 254 βF.
In those instances where the nonwoven web is used in or around flammable materials and static discharge is a concern, the nonwoven web may be treated with any number of antistatic materials. In these instances, the antistatic material may be applied to the nonwoven by any number of techniques including, but not limited to dipping the nonwoven into a solution containing the antistatic material or by spraying the nonwoven with a solution containing the antistatic material. In some instances the antistatic material may be applied to both the external surfaces of the nonwoven and the bulk of the nonwoven. In other instances, the antistatic material may be applied to portions of the nonwoven, such as a selected surface or surfaces thereof.
Of particular usefulness is the antistatic material known as ZELEC®, an alcohol phosphate salt product of the Du Pont Corporation. The nonwoven web may be treated with the antistatic material either before or after subjecting the web to charging. Furthermore, some or all of the material layers may be treated with the antistatic material. In those instances where only some of the material layers are treated with antistatic material, the non-treated layer or layers may be subjected to charging prior to or after combining with the antistatic treated layer or layers.
To demonstrate the attributes of the present invention, the following Examples are provided.
Example 1
Kimberly-Clark manufactures a series of single sheet laminate nonwoven web materials made from spunbond- meltblown-spunbond (SMS) layers. These materials are available in a variety of basis weights. The nonwoven web materials used in Examples l and 2 were such single sheet laminate materials sold by Kimberly-Clark under the mark KIMGUARD* Heavy Duty Sterile Wrap. The basis weight of this material is 2.2 oz/sq yd. Both spunbond layers have a basis weight of 0.85 oz/sq yd and the meltblown layer has a basis weight of 0.50 oz/sq yd.
The method used to subject the samples reported in Tables 1-4 to electrostatic charging is described in the above referenced U.S. Patent Application No 07/958,958. Referring now to Table 1, a summary of bacterial filtration efficiency (BFE) test results and standard deviation (SD) are reported for three categories investigated for Heavy Duty KIMGUARD® Sterile Wrap. The first category, "Uncharged" reports the average BFE for eleven samples of ZELEC* treated and eleven samples of non- ZELEC® treated KIMGUARD* material. These samples were not subjected to electrostatic charging or steam sterilization. The second category, "Charged", reports the average BFE for eleven samples of ZELEC* treated and eleven samples of non-ZELEC® treated KIMGUARD* material which were subject to electrostatic charging but not steam sterilization. The third category, "Charged/Sterilized" reports the average BFE for eleven samples of ZELEC* treated and eleven samples of non-ZELEC® treated KIMGUARD* material which were first charged then steam sterilized. Sterilization of these samples was accomplished in an Amsco 2021 Gravity Sterilizer, a product of American Sterilizer Co. of Erie, PA. Samples were sealed in a Baxter DUAL PEELTM Self Seal Pouch. The sealed pouches were exposed to 250 T at 15 psi steam for 20 minutes with a dry time of 5 minutes. After sterilizing, the above samples were analyzed by Nelson Laboratories for Bacterial Filtration Efficiency testing.
Table 1 Bacterial Filtration Efficiency (KIMGUARD* Heavy Duty Sterile Wrap)
Description Uncharged Charged Charged/Sterilized
ZELEC* 85.55+/-2.38 93.85+/"3.67 95.87+/-0.99
Non-ZELEC® 82.18+/-3.*(56 96.36+/-1-72 93.64+/"2.72
As previously stated, Nelson Laboratories of Salt Lake
City, UT preformed the above BFE analysis. The procedure used to determine these BFEs is described in Nelson Laboratories' Protocol No. ARO/007B in accordance with MIL
Spec 36954C, 4.4.1.1.1 and 4.4.1.2. Example 2
Further analysis of the Heavy Duty KIMGUARD® Sterile Wrap (2.2 oz) were conducted to determine BFE and the charge on the samples for both pre- and post- steam sterilizing. Steam sterilization of the samples reported in Example 2 was accomplished using the steam sterilization procedure reported in Example 1. The BFE results reported in Table 2 were the product of Nelson Laboratories using the protocol described in Example 1. These BFE results represent the average of eleven non-antistatic treated samples.
Table 2 Bacterial Filtration Efficiency (KIMGUARD* Heavy Duty Sterile Wrap) Description BFE SD% Charge Pre Charge Post
Uncharged 90.6 2.3
Charged 98.8 0.31 800-1000 v/cm2 —
Charged 94.4 2.0 100-180 v/cm2 /Sterilized
After charging but before steam sterilizing, a voltage of between 800 to 1,000 volts/cm2, positive on one side of the material and negative on the other side of the material, was recorded. After steam sterilizing, a voltage of between 100 to 180 volts/sq cm, positive on one side and negative on the other side, was recorded. In both instances, voltage was measured using an Electrostatic Voltmeter (Trek Model 344, Trek, Inc, Median, NY) by taking ten readings on each side of the samples. Example 3
Further barrier properties for SMS fabric samples were investigated. Table 3 reports the barrier property results for KIMGUARD* Heavy-Duty Sterile Wrap (KIM) and SPUNGUARD* Regular Sterilization Wrap (SPU) . SPUNGUARD* Regular Sterilization Wrap is also a spunbond, meltblown, spunbond material having a basis weight of 1.05 oz/sq yd (0.35/0.35/0.35). These categories included ZELEC* treated and non-ZELEC* treated materials, charged and non-charged, sterilized and non-sterilized material.
The charged and sterilized samples were prepared according to the charging and sterilizing procedures described in Example 1 except that all sterilized sample pouches were conditioned at laboratory ambient environment for at least 4 hours prior to testing. For samples l and 2, the barrier properties were measured using the Nelson procedures described in Example 1. For samples 3 - 13, the barrier properties were measured using a microbial challenge procedure described below.
In runs 3 - 13, a six port exposure chamber was used. Five of the ports accommodated five separate samples. The challenge control filter material was positioned in the sixth port. Three conditions were maintained in the microbial challenge test. These were: first, a 2.8 LPM (Liters Per Minute) flowrate through each of the ports; second, an exposure time of fifteen minutes followed by a chamber exhaust of fifteen minutes, and; third, a microbial challenge that results in 1 x 10 E6 CFU's (Colony Forming Units) per port. Bacillus subtilis ss globigii spores, purchased from Amsco (Part No. NA-026, P-764271-022) was used to make the working spore suspension of 1 x 10 E6 CFUs per port recovery. Table 3
Sample Product ZELEC Charged Sterilized Avg%Red SD n
1 SPU No No Yes 71.5 9.1 25
2 SPU No Yes Yes 87.2 3.1 25
3 KIM Yes No Yes 69.4 5.7 15
4 KIM Yes Yes Yes 80.8 9.1 15
5 KIM Yes Yes No 97.2 1.1 15
6 KIM Yes No Yes 80.1 9.2 15
7 KIM Yes Yes Yes 88.9 5.7 15
8 KIM Yes Yes No 94.6 2.7 15
9 KIM Yes No Yes 73.9 7.6 15
10 KIM Yes Yes Yes 86.2 4.1 15
11 KIM No No Yes 66.8 11.9 15
12 KIM No Yes Yes 94.5 2.8 15
13 KIM No Yes No 98.2 0.7 15 n - Number of fabric samples. The average percent reduction (Avg%Red) is a measurement of filtration efficiency. The Avg%Red is an expression of the reduction of number of colony forming units (CFUs) or bacteria passing through a sample compared to the number CFUs in the challenge control filter material. The Avg%Red was calculated by subtracting the number of CFUs passing through a sample from the number of CFUs passing through the challenge control filter material and dividing this number by the number of CFUs for the challenge filter material. The result was then multiplied by 100 to convert to percent.
Table 3 demonstrates that filtration properties of the steam sterilized nonwoven samples are improved by of the charging the fabric samples (Samples 2, 4, 7, 10, and 12) as compared to samples which have not been subjected to charging (Samples 1, 3, 6, 9, and 11). Example 4
Table 4 reports charge data for the top and bottom surfaces of 2.2 oz. KIMGUARD* fabric samples subjected to various conditions. As noted in Table 4, one of the KIMGUARD* samples was treated with ZELEC* and the other was not. Except as otherwise indicated, the measurements were made on separate samples. Each sample was had a general dimension of about 10" X 10". The area of each sample measured had a general dimension of about 6" X 6". Measurements were taken each 1/2" in a 12 X 12 matrix. The charge number reported is an averaged number. The equipment used to measure charge was the same as described in Example 2.
Figure imgf000015_0001
TABLE 4
AVERAGE SURFACE VOLTAGE OF SAMPLES OF 2.2 OZ KIMGUARD* STERILE WRAP
Sample # 3 4 5 6
Sample #3 Sample #4 Sterilizer Sterilizer No Pouch No Pouch
As 20 min. in 60 min. in Sterilizer Sterilizer
Material Side Received Charge Dual Peel Pouch Dual Peel Pouch 20 min. 60 min.
Kimguard A -2.8 -125 - 51 -100 30 - 43 (ZELEC*)
B 1.6 - 15 - 48 -169 72 66
Kimguard A - 61 272 239 -353 -146 -354 (Non-ZELEC®)
B - 87 -432 -265 -243 -232 -223
Notes: Sample #5 rerun of #3 without pouch Sample #6 rerun of #4 without pouch
As demonstrated by the above Examples, the barrier properties of steam sterilized non-woven material are improved when these materials are subjected to charging, and particularly electrostatic charging. It will be further observed that the barrier properties of an antistatic treated non-woven material are improved when these materials are subjected to charging, and particularly electrostatic charging.
While the invention has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily conceive of alterations to, variations of and equivalents to these embodiments. Accordingly, the scope of the present invention should be assessed as that of the appended claims and any equivalents thereto. What is claimed is:

Claims

1. A method of manufacturing nonwoven material comprising: charging a nonwoven web; and steam sterilizing the nonwoven web.
2. The method of claim 1 wherein the nonwoven web is steam sterilized prior to being charged.
3. The method of claim 1 wherein the nonwoven web is charged prior to being steam sterilized.
4. The method of claim 1 wherein the charging is electrostatic charging.
5. The method of claim 1 further including the step of treating the web with an antistatic material.
6. The method of claim 1 wherein the nonwoven material comprises first and second nonwoven webs joined together in juxtaposed relationship.
7. The method of claim 6 wherein the webs are joined after the charging step.
8. The method of claim 7 wherein the first web is charged and the second web is not charged.
9. The method of claim 6 wherein the first web is treated with an antistatic material.
10. The method of claim 9 wherein the second web is treated with an antistatic material.
11. A method of manufacturing nonwoven material comprising: charging a nonwoven web; and treating the nonwoven web with an antistatic material.
12. The method of claim 11 wherein the nonwoven web is treated with the antistatic material prior to being charged.
13. The method of claim 11 wherein the nonwoven web is charged prior to being treated with the antistatic material.
14. The method of claim 11 wherein the charging is electrostatic charging.
15. The method of claim 11 wherein the nonwoven material comprises first and second nonwoven webs joined together in juxtaposed relationship.
16. The method of claim 15 wherein the webs are joined after the charging step.
17. The method of claim 16 wherein the first web is charged and the second web is not charged.
18. A steam sterilized, nonwoven material, wherein portions thereof have been subjected to charging.
19. The nonwoven material of claim 18 wherein the nonwoven material comprises first and second nonwoven webs joined together in juxtaposed relationship.
20. A nonwoven material treated with an antistatic material wherein portions of the nonwoven material have been subjected to charging.
21. The nonwoven material of claim 20 wherein the nonwoven material comprises first and second nonwoven webs joined together in juxtaposed relationship.
PCT/US1995/002085 1994-02-22 1995-02-17 Improved nonwoven barrier and method of making the same WO1995022646A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1019960704578A KR100313080B1 (en) 1994-02-22 1995-02-17 Improved barrier nonwoven material and its manufacturing method
DE69517303T DE69517303T2 (en) 1994-02-22 1995-02-17 IMPROVED BARRIER FABRIC AND METHOD FOR THE PRODUCTION
MX9603399A MX9603399A (en) 1994-02-22 1995-02-17 Improved nonwoven barrier and method of making the same.
JP52195795A JP4113581B2 (en) 1994-02-22 1995-02-17 Nonwoven barrier and method for producing the same
AU19239/95A AU686769B2 (en) 1994-02-22 1995-02-17 Improved nonwoven barrier and method of making the same
EP95911810A EP0746646B1 (en) 1994-02-22 1995-02-17 Improved nonwoven barrier and method of making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19892894A 1994-02-22 1994-02-22
US08/198,928 1994-02-22

Publications (1)

Publication Number Publication Date
WO1995022646A1 true WO1995022646A1 (en) 1995-08-24

Family

ID=22735484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/002085 WO1995022646A1 (en) 1994-02-22 1995-02-17 Improved nonwoven barrier and method of making the same

Country Status (10)

Country Link
US (1) US5998308A (en)
EP (1) EP0746646B1 (en)
JP (1) JP4113581B2 (en)
KR (1) KR100313080B1 (en)
AU (1) AU686769B2 (en)
CA (1) CA2124237C (en)
DE (1) DE69517303T2 (en)
ES (1) ES2148498T3 (en)
MX (1) MX9603399A (en)
WO (1) WO1995022646A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004155A1 (en) * 1995-07-19 1997-02-06 Kimberly-Clark Worldwide, Inc. Nonwoven barrier and method of making the same
WO1998004767A1 (en) * 1996-07-31 1998-02-05 Kimberly-Clark Worldwide, Inc. Improved nonwoven barrier
US6375886B1 (en) 1999-10-08 2002-04-23 3M Innovative Properties Company Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid
US6406657B1 (en) 1999-10-08 2002-06-18 3M Innovative Properties Company Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
US6454986B1 (en) 1999-10-08 2002-09-24 3M Innovative Properties Company Method of making a fibrous electret web using a nonaqueous polar liquid

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110588A (en) 1999-02-05 2000-08-29 3M Innovative Properties Company Microfibers and method of making
US6630231B2 (en) 1999-02-05 2003-10-07 3M Innovative Properties Company Composite articles reinforced with highly oriented microfibers
US7785699B1 (en) * 2000-09-06 2010-08-31 Ward Calvin B Electrostatically charged porous water-impermeable absorbent laminate for protecting work surfaces from contamination
US6420024B1 (en) 2000-12-21 2002-07-16 3M Innovative Properties Company Charged microfibers, microfibrillated articles and use thereof
US6709623B2 (en) 2000-12-22 2004-03-23 Kimberly-Clark Worldwide, Inc. Process of and apparatus for making a nonwoven web
US6680114B2 (en) 2001-05-15 2004-01-20 3M Innovative Properties Company Fibrous films and articles from microlayer substrates
AU2003251382A1 (en) 2002-05-24 2003-12-12 Michel Joyce Article of clothing with moisture absorbent portion
US7488441B2 (en) * 2002-06-15 2009-02-10 Kimberly-Clark Worldwide, Inc. Use of a pulsating power supply for electrostatic charging of nonwovens
JP4526959B2 (en) * 2005-01-19 2010-08-18 株式会社クラレ Textile products reused after steam sterilization
US8507087B2 (en) * 2009-08-26 2013-08-13 E4 Technologies, Inc. Multi-purpose item rest
US9392866B1 (en) 2009-11-20 2016-07-19 E4 Technologies, Incorporated Multi-purpose item protector and method of production thereof
US8839955B1 (en) 2009-11-20 2014-09-23 E4 Technologies Incorporated Multi-purpose item protector and methods of production thereof
EP4017808A4 (en) * 2019-08-24 2023-10-25 Lohia Corp Limited A process and an apparatus for bag formation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876118A (en) * 1981-10-30 1983-05-09 Koken Kk Multilayer structured filter
JPS6253719A (en) * 1985-08-30 1987-03-09 Japan Vilene Co Ltd Polyolefin nonwoven fabrics charged electrostatically
JPS6274423A (en) * 1985-09-27 1987-04-06 Japan Vilene Co Ltd Polyolefinic charged nonwoven fabric
US4863785A (en) * 1988-11-18 1989-09-05 The James River Corporation Nonwoven continuously-bonded trilaminate

Family Cites Families (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US30782A (en) * 1860-11-27 John wright
US32171A (en) * 1861-04-30 Coiffibinatioit-lbck
US31285A (en) * 1861-01-29 Making- finger-guards for harvesters
US668791A (en) * 1899-03-16 1901-02-26 Lucien I Blake Process of electrical separation of conductors from non-conductors.
US813063A (en) * 1903-04-18 1906-02-20 Henry M Sutton Process of separating substances of different dielectric capacities.
US924032A (en) * 1906-03-17 1909-06-08 Blake Mining & Milling Company Electrostatic separating process.
US859998A (en) * 1906-12-20 1907-07-16 Huff Electrostatic Separator Company Method of electrical separation.
US1222305A (en) * 1914-10-27 1917-04-10 Jakob Kraus Electrostatic separator for inflammable materials.
US1297159A (en) * 1918-02-07 1919-03-11 Research Corp Electric separator.
US1355477A (en) * 1918-11-04 1920-10-12 United Chemical & Organic Prod Means for separating mixtures
US2106865A (en) * 1935-01-31 1938-02-01 American Lurgi Corp Method and apparatus for electrostatic separation
US2217444A (en) * 1938-04-06 1940-10-08 Westinghouse Electric & Mfg Co Method of and means for the manufacture of abrasive cloth
US2328577A (en) * 1940-01-12 1943-09-07 Behr Manning Corp Process and apparatus for grading and for coating with comminuted material
US2378067A (en) * 1942-09-28 1945-06-12 Petroleum Conversion Corp Process of cracking petroleum
US2398792A (en) * 1943-10-22 1946-04-23 Ritter Products Corp Electrostatic sizing of materials
US2748018A (en) * 1953-06-05 1956-05-29 Ransburg Electro Coating Corp Apparatus and method of electrostatic powdering
US2998051A (en) * 1958-04-04 1961-08-29 Walsco Company Method and apparatus for forming fibrous articles
US3012668A (en) * 1959-09-11 1961-12-12 Fraas Foster Electrostatic separator carrier electrode
US3338992A (en) * 1959-12-15 1967-08-29 Du Pont Process for forming non-woven filamentary structures from fiber-forming synthetic organic polymers
US3125547A (en) * 1961-02-09 1964-03-17 Extrudable composition consisting of
US3502763A (en) * 1962-02-03 1970-03-24 Freudenberg Carl Kg Process of producing non-woven fabric fleece
BE633894A (en) * 1962-06-22
US3281347A (en) * 1962-07-13 1966-10-25 Int Paper Co Method and apparatus for treating plastic coated paper
FR1374392A (en) * 1963-06-27 1964-10-09 Sames Mach Electrostat Electrostatic sorting process and means for implementing this process
US3341007A (en) * 1964-06-12 1967-09-12 Jr Mayer Mayer Fiber fractionating apparatus and process
US3380584A (en) * 1965-06-04 1968-04-30 Atomic Energy Commission Usa Particle separator
US3341394A (en) * 1966-12-21 1967-09-12 Du Pont Sheets of randomly distributed continuous filaments
US3542615A (en) * 1967-06-16 1970-11-24 Monsanto Co Process for producing a nylon non-woven fabric
US3581886A (en) * 1967-10-12 1971-06-01 Wintershall Ag Two-stage electrostatic separation of particulate material
US3849241A (en) * 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
DE2048006B2 (en) * 1969-10-01 1980-10-30 Asahi Kasei Kogyo K.K., Osaka (Japan) Method and device for producing a wide nonwoven web
DE1950669C3 (en) * 1969-10-08 1982-05-13 Metallgesellschaft Ag, 6000 Frankfurt Process for the manufacture of nonwovens
US3907604A (en) * 1969-10-09 1975-09-23 Exxon Research Engineering Co Nonwoven mat battery separators
CA948388A (en) * 1970-02-27 1974-06-04 Paul B. Hansen Pattern bonded continuous filament web
US3821021A (en) * 1972-02-29 1974-06-28 Du Pont Antistatically protected nonwoven polyolefin sheet
US3859330A (en) * 1972-03-15 1975-01-07 Du Pont Ultraviolet absorbing coating compositions
GB1453447A (en) * 1972-09-06 1976-10-20 Kimberly Clark Co Nonwoven thermoplastic fabric
US3979529A (en) * 1972-10-31 1976-09-07 Usm Corporation Electrostatic application of thermoplastic adhesive
US3962386A (en) * 1973-01-02 1976-06-08 Sun Research And Development Co. Corona discharge treatment of foam fibrillated webs
US3909009A (en) * 1974-01-28 1975-09-30 Astatic Corp Tone arm and phonograph pickup assemblies
US4011067A (en) * 1974-01-30 1977-03-08 Minnesota Mining And Manufacturing Company Filter medium layered between supporting layers
NL160303C (en) 1974-03-25 1979-10-15 Verto Nv METHOD FOR MANUFACTURING A FIBER FILTER
US3896802A (en) * 1974-04-19 1975-07-29 American Cyanamid Co Flexible flocked dressing
US4035164A (en) * 1974-11-29 1977-07-12 Minnesota Mining And Manufacturing Company Methods for removing charged and non-charged particles from a fluid by employing a pyrollectric filter
US4209563A (en) * 1975-06-06 1980-06-24 The Procter & Gamble Company Method for making random laid bonded continuous filament cloth
US4058724A (en) * 1975-06-27 1977-11-15 Minnesota Mining And Manufacturing Company Ion Scattering spectrometer with two analyzers preferably in tandem
DE2556723C3 (en) * 1975-12-17 1978-09-14 Hoechst Ag, 6000 Frankfurt Method and device for the electrostatic coating of a strip made of hydrophilic material with powder made of a modified cellulose ether
US3973068A (en) * 1975-10-28 1976-08-03 Kimberly-Clark Corporation Soft, nonwoven web having high intensity and low intensity bonds and a lubricant on the surfaces of the synthetic filaments comprising said
US4013816A (en) * 1975-11-20 1977-03-22 Draper Products, Inc. Stretchable spun-bonded polyolefin web
US4091140A (en) * 1976-05-10 1978-05-23 Johnson & Johnson Continuous filament nonwoven fabric and method of manufacturing the same
US4353799A (en) * 1976-05-19 1982-10-12 Baxter Travenol Laboratories, Inc. Hydrophobic diffusion membranes for blood having wettable surfaces
US4103062A (en) * 1976-06-14 1978-07-25 Johnson & Johnson Absorbent panel having densified portion with hydrocolloid material fixed therein
US4430277A (en) * 1976-08-16 1984-02-07 The Goodyear Tire & Rubber Company Method for producing large diameter spun filaments
US4140607A (en) * 1976-11-22 1979-02-20 Forchungsinstitut Fur Textiltechnologie Method for modifying the surface of polymeric substrate materials by means of electron bombardment in a low pressure gas discharge
NL181632C (en) 1976-12-23 1987-10-01 Minnesota Mining & Mfg ELECTRIC FILTER AND METHOD FOR MANUFACTURING THAT.
JPS5910046B2 (en) * 1977-03-28 1984-03-06 新田ベルト株式会社 Charge retention structure of electrified air filter media
GB1578063A (en) * 1977-05-26 1980-10-29 British Cellophane Ltd Wrapping film
ZA785803B (en) * 1977-10-17 1979-09-26 Kimberly Clark Co Microfiber oil and water wipe
US4215682A (en) * 1978-02-06 1980-08-05 Minnesota Mining And Manufacturing Company Melt-blown fibrous electrets
IT434035A (en) * 1978-05-30
US4196245A (en) * 1978-06-16 1980-04-01 Buckeye Cellulos Corporation Composite nonwoven fabric comprising adjacent microfine fibers in layers
DE2927238A1 (en) 1978-07-07 1980-01-17 Holm Varde As PLASTIC REINFORCING FIBERS AND METHOD FOR THEIR PRODUCTION
US4208366A (en) * 1978-10-31 1980-06-17 E. I. Du Pont De Nemours And Company Process for preparing a nonwoven web
NZ192629A (en) * 1979-02-05 1983-05-31 British Cellophane Ltd Treating plastics film by corona discharge electrodes constructed and spaced to prevent arc discharges
JPS5624013A (en) * 1979-05-04 1981-03-07 Nitta Kk Structure of air filter element
US4223677A (en) * 1979-05-11 1980-09-23 Scott Paper Company Absorbent fibrous structure and disposable diaper including same
DE2936754A1 (en) * 1979-09-12 1981-04-02 Weitmann & Konrad GmbH & Co KG, 7023 Echterdingen DEVICE FOR ELECTROSTATICALLY APPLYING MATERIAL PARTICLES CONTAINED IN A GAS FLOW TO A PROVIDING, FLAT-BASED BASE
EP0030418B1 (en) * 1979-12-07 1983-05-04 Imperial Chemical Industries Plc Process for producing a non-woven fabric
US4411795A (en) * 1980-03-10 1983-10-25 Baxter Travenol Laboratories, Inc. Particle adsorption
US4308223A (en) * 1980-03-24 1981-12-29 Albany International Corp. Method for producing electret fibers for enhancement of submicron aerosol filtration
FR2480807A1 (en) * 1980-04-18 1981-10-23 Seplast Sa PROCESS FOR THE SUPERFICIAL TREATMENT OF A FIBROUS, NON-WOVEN AND VERY ACOUSTIC FILTERING LAYER, FORMING ELECTRET AND ITS APPLICATION TO FILTERS AND RESPIRATORY MASKS, IN PARTICULAR
US4340563A (en) * 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
ZA813132B (en) 1980-05-14 1982-12-29 Surgikos Inc Disposable surgical apparel and method of producing it
DE3120945A1 (en) * 1980-05-28 1982-04-08 Fuji Electric Co., Ltd., Kawasaki, Kanagawa ELECTROSTATIC SORTING DEVICE
US4394235A (en) * 1980-07-14 1983-07-19 Rj Archer Inc. Heat-sealable polypropylene blends and methods for their preparation
EP0047798B1 (en) * 1980-09-15 1983-10-05 Firma Carl Freudenberg Filtering material
US4305797A (en) * 1980-11-24 1981-12-15 Carpco, Inc. Material separation by dielectrophoresis
JPS57105217A (en) * 1980-12-22 1982-06-30 Nitta Kk Fibrous filter medium
US4375718A (en) * 1981-03-12 1983-03-08 Surgikos, Inc. Method of making fibrous electrets
US4373224A (en) * 1981-04-21 1983-02-15 Duskinfranchise Kabushiki Kaisha Method for manufacturing a duster and the duster manufactured therefrom
US4363723A (en) * 1981-04-27 1982-12-14 Carpco, Inc. Multifield electrostatic separator
US4357234A (en) * 1981-05-18 1982-11-02 Canadian Patents & Development Limited Alternating potential electrostatic separator of particles with different physical properties
US4451589A (en) * 1981-06-15 1984-05-29 Kimberly-Clark Corporation Method of improving processability of polymers and resulting polymer compositions
US4374888A (en) * 1981-09-25 1983-02-22 Kimberly-Clark Corporation Nonwoven laminate for recreation fabric
ZA828635B (en) 1981-11-24 1983-10-26 Kimberly Clark Ltd Microfibre web product
US4455237A (en) * 1982-01-05 1984-06-19 James River Corporation High bulk pulp, filter media utilizing such pulp, related processes
US4455195A (en) * 1982-01-05 1984-06-19 James River Corporation Fibrous filter media and process for producing same
US4507539A (en) * 1982-01-06 1985-03-26 Sando Iron Works Co., Ltd. Method for continuous treatment of a cloth with the use of low-temperature plasma and an apparatus therefor
US4443515A (en) * 1982-02-05 1984-04-17 Peter Rosenwald Antistatic fabrics incorporating specialty textile fibers having high moisture regain and articles produced therefrom
US4443513A (en) * 1982-02-24 1984-04-17 Kimberly-Clark Corporation Soft thermoplastic fiber webs and method of making
SU1091940A1 (en) * 1982-02-26 1984-05-15 Украинский Институт Инженеров Водного Хозяйства Liquid cleaning device
DE3233528C1 (en) 1982-09-10 1984-04-12 Kali Und Salz Ag, 3500 Kassel Electrostatic free fall separator
JPS5994621A (en) * 1982-11-12 1984-05-31 Unitika Ltd Production of antistaining fiber
AU557832B2 (en) * 1982-11-17 1987-01-08 Blue Circle Industries Plc Electrostatically seperating particulate materials
US4620785A (en) 1982-12-01 1986-11-04 Canon Kabushiki Kaisha Sheet-like member having alignment marks and an alignment apparatus for the same
AU565762B2 (en) * 1983-02-04 1987-09-24 Minnesota Mining And Manufacturing Company Method and apparatus for manufacturing an electret filter medium
US4513049A (en) * 1983-04-26 1985-04-23 Mitsui Petrochemical Industries, Ltd. Electret article
GR81673B (en) 1983-05-06 1984-12-12 Personal Products Co
US4677017A (en) 1983-08-01 1987-06-30 Ausimont, U.S.A., Inc. Coextrusion of thermoplastic fluoropolymers with thermoplastic polymers
US4456648A (en) * 1983-09-09 1984-06-26 Minnesota Mining And Manufacturing Company Particulate-modified electret fibers
US4517143A (en) * 1983-10-03 1985-05-14 Polaroid Corporation Method and apparatus for uniformly charging a moving web
US4547420A (en) * 1983-10-11 1985-10-15 Minnesota Mining And Manufacturing Company Bicomponent fibers and webs made therefrom
US4795668A (en) 1983-10-11 1989-01-03 Minnesota Mining And Manufacturing Company Bicomponent fibers and webs made therefrom
US4729371A (en) 1983-10-11 1988-03-08 Minnesota Mining And Manufacturing Company Respirator comprised of blown bicomponent fibers
US4534918A (en) * 1983-10-27 1985-08-13 E. I. Du Pont De Nemours And Company Method and apparatus for the electrostatic pinning of polymeric webs
US4623438A (en) 1983-11-08 1986-11-18 Celanese Corporation Electret making process using corona discharge
US4944854A (en) 1983-11-08 1990-07-31 Celanese Corporation Electret process and products
JPS60168511A (en) * 1984-02-10 1985-09-02 Japan Vilene Co Ltd Production of electret filter
US4594626A (en) * 1984-02-13 1986-06-10 Xerox Corporation Air filtration system for rotating disk drives having recirculating air flows
JPS60196921A (en) 1984-03-19 1985-10-05 東洋紡績株式会社 Method of producing electreted material
DE3509857C2 (en) 1984-03-19 1994-04-28 Toyo Boseki Electretized dust filter and its manufacture
JPS60209220A (en) * 1984-04-04 1985-10-21 Koken Kk Electrostatic type air filtration filter
JPS60225416A (en) 1984-04-24 1985-11-09 三井化学株式会社 High performance electret and air filter
US4671943A (en) 1984-04-30 1987-06-09 Kimberly-Clark Corporation Sterilization and storage container
US4555811A (en) * 1984-06-13 1985-12-03 Chicopee Extensible microfine fiber laminate
US4551378A (en) * 1984-07-11 1985-11-05 Minnesota Mining And Manufacturing Company Nonwoven thermal insulating stretch fabric and method for producing same
US4818464A (en) 1984-08-30 1989-04-04 Kimberly-Clark Corporation Extrusion process using a central air jet
DE3437183C2 (en) 1984-10-10 1986-09-11 Fa. Carl Freudenberg, 6940 Weinheim Microporous multilayer nonwoven for medical purposes and processes for the production thereof
US4874659A (en) 1984-10-24 1989-10-17 Toray Industries Electret fiber sheet and method of producing same
US4554207A (en) * 1984-12-10 1985-11-19 E. I. Du Pont De Nemours And Company Stretched-and-bonded polyethylene plexifilamentary nonwoven sheet
US4657639A (en) 1985-05-31 1987-04-14 The United States Of America As Represented By The Secretary Of The Air Force Apparatus for electrostatic filtration of N2 O4 for removal of solid and vapor contaminants
US4663220A (en) 1985-07-30 1987-05-05 Kimberly-Clark Corporation Polyolefin-containing extrudable compositions and methods for their formation into elastomeric products including microfibers
US4720415A (en) 1985-07-30 1988-01-19 Kimberly-Clark Corporation Composite elastomeric material and process for making the same
US4622259A (en) 1985-08-08 1986-11-11 Surgikos, Inc. Nonwoven medical fabric
US4657804A (en) 1985-08-15 1987-04-14 Chicopee Fusible fiber/microfine fiber laminate
US4699823A (en) 1985-08-21 1987-10-13 Kimberly-Clark Corporation Non-layered absorbent insert having Z-directional superabsorbent concentration gradient
JPH0714446B2 (en) * 1985-10-28 1995-02-22 三井石油化学工業株式会社 Electretized non-woven fabric filter
US4705151A (en) 1985-10-31 1987-11-10 Automotive Product Plc Hydraulic slave cylinder interlock switching device with proximity sensor
JPH0673643B2 (en) 1986-02-10 1994-09-21 ノードソン株式会社 Electrostatic coating method and apparatus for powder on non-conductive and void-containing coating object
US4739882A (en) 1986-02-13 1988-04-26 Asyst Technologies Container having disposable liners
US4689241A (en) 1986-02-14 1987-08-25 Richart Douglas S Method for powder coating with electrostatic fluidized bed
US4652322A (en) 1986-02-28 1987-03-24 E. I. Du Pont De Nemours And Company Process for bonding and stretching nonwoven sheet
US4738772A (en) 1986-04-14 1988-04-19 Cpc International Inc. Process for separating fiber from dry-milled corn
US4714647A (en) 1986-05-02 1987-12-22 Kimberly-Clark Corporation Melt-blown material with depth fiber size gradient
JPS62263361A (en) 1986-05-09 1987-11-16 東レ株式会社 Production of nonwoven fabric
DE3787118T2 (en) 1986-05-28 1994-01-20 Daikin Ind Ltd Fluorine, water and oil repellent preparation.
US4948639A (en) 1986-07-31 1990-08-14 Kimberly-Clark Corporation Vacuum cleaner bag
US4797318A (en) 1986-07-31 1989-01-10 Kimberly-Clark Corporation Active particle-containing nonwoven material, method of formation thereof, and uses thereof
US4707398A (en) 1986-10-15 1987-11-17 Kimberly-Clark Corporation Elastic polyetherester nonwoven web
US4670913A (en) 1986-10-16 1987-06-09 Kimberly-Clark Corporation Coverall with elastomeric panels
US4831664A (en) 1987-05-14 1989-05-23 Redi-Corp Protective Materials, Inc. Garment for protecting against environmental contamination
US4847914A (en) 1987-05-14 1989-07-18 Redi-Corp Protective Materials, Inc. Garment for protecting against environmental contamination
US4761326A (en) 1987-06-09 1988-08-02 Precision Fabrics Group, Inc. Foam coated CSR/surgical instrument wrap fabric
DE3719420A1 (en) 1987-06-11 1988-12-29 Sandler Helmut Helsa Werke RESPIRATORY MASK
DE3731575A1 (en) 1987-09-19 1989-03-30 Freudenberg Carl Fa FILTER PACK
US5183701A (en) 1987-10-02 1993-02-02 Dyneema V.O.F. Articles of highly oriented polyolefins of ultrahigh molecular weight, process for their manufacture, and their use
BR8804999A (en) 1987-10-02 1989-05-02 Dyneema Vof APPLIANCES AND PROCESS FOR THE SURFACE TREATMENT OF SYNTHETIC YARNS OR FIBERS
DE3839956C2 (en) 1987-11-28 1998-07-02 Toyo Boseki Electret film and process for its production
JPH01156578A (en) * 1987-12-10 1989-06-20 Showa Denko Kk Production of water absorbable composite
JPH01168364A (en) 1987-12-24 1989-07-03 Toray Ind Inc Filtration method
JPH0627361B2 (en) 1988-01-06 1994-04-13 東レ株式会社 Self-adhesive apron
DE68914001T2 (en) 1988-01-12 1994-07-07 Mitsui Petrochemical Ind Process for the production of electret filters.
US5055151A (en) 1988-01-21 1991-10-08 Greenstreak Plastic Products Company Porous filamentary mats and method of making same
US4874399A (en) 1988-01-25 1989-10-17 Minnesota Mining And Manufacturing Company Electret filter made of fibers containing polypropylene and poly(4-methyl-1-pentene)
FR2627498B1 (en) 1988-02-19 1990-07-06 Labofina Sa POLYPROPYLENE PROCESSING PROCESS
US4920168A (en) 1988-04-14 1990-04-24 Kimberly-Clark Corporation Stabilized siloxane-containing melt-extrudable thermoplastic compositions
EP0337662A3 (en) 1988-04-14 1990-10-24 DON & LOW LIMITED Polymers
US4983677A (en) 1988-04-15 1991-01-08 Minnesota Mining And Manufacturing Company Extrudable thermoplastic hydrocarbon polymer composition
US4863983A (en) 1988-04-15 1989-09-05 Minnesota Mining And Manufacturing Company Extrudable thermoplastic hydrocarbon polymer composition
JP2672329B2 (en) 1988-05-13 1997-11-05 東レ株式会社 Electret material
US4960820A (en) 1988-05-24 1990-10-02 Shell Oil Company Compositions and articles using high melt flow poly-1-butene and polypropylene blends
US4901370A (en) 1988-08-12 1990-02-20 Redi-Corp Protective Materials, Inc. Garment for protecting against environmental contamination
US4904174A (en) 1988-09-15 1990-02-27 Peter Moosmayer Apparatus for electrically charging meltblown webs (B-001)
US4965122A (en) 1988-09-23 1990-10-23 Kimberly-Clark Corporation Reversibly necked material
US5226992A (en) 1988-09-23 1993-07-13 Kimberly-Clark Corporation Process for forming a composite elastic necked-bonded material
US4917942A (en) 1988-12-22 1990-04-17 Minnesota Mining And Manufacturing Company Nonwoven filter material
US5135724A (en) 1989-02-03 1992-08-04 Hoechst Aktiengesellschaft Process and apparatus for the surface treatment of sheet-like structures by electric corona discharge
GR900100242A (en) 1989-04-07 1991-09-27 Johnson & Johnson Medical Electrostatically loaded mask for covering the face and method for fabricating it
US5108827A (en) 1989-04-28 1992-04-28 Fiberweb North America, Inc. Strong nonwoven fabrics from engineered multiconstituent fibers
EP0426845B1 (en) 1989-05-26 1994-11-09 Toray Industries, Inc. Dustproof cap
US5035941A (en) 1989-08-22 1991-07-30 Abandaco, Inc. Anti-static multilayer laminate comprising a non-woven layer extrusion coated with polymeric laminae, and method of making the same
US5188885A (en) 1989-09-08 1993-02-23 Kimberly-Clark Corporation Nonwoven fabric laminates
US5173356A (en) 1989-09-25 1992-12-22 Amoco Corporation Self-bonded fibrous nonwoven webs
CA2027687C (en) 1989-11-14 2002-12-31 Douglas C. Sundet Filtration media and method of manufacture
US5169706A (en) 1990-01-10 1992-12-08 Kimberly-Clark Corporation Low stress relaxation composite elastic material
US5012094A (en) 1990-02-05 1991-04-30 Hamade Thomas A Electrostatic charging apparatus and method
US5118942A (en) 1990-02-05 1992-06-02 Hamade Thomas A Electrostatic charging apparatus and method
US5077468A (en) 1990-02-05 1991-12-31 Hamade Thomas A Electrostatic charging apparatus and method
US5149335A (en) 1990-02-23 1992-09-22 Kimberly-Clark Corporation Absorbent structure
CA2037942A1 (en) 1990-03-12 1991-09-13 Satoshi Matsuura Process for producing an electret, a film electret, and an electret filter
GB9006146D0 (en) 1990-03-19 1990-05-16 Wheway Plc Filter
US5344691A (en) 1990-03-30 1994-09-06 Minnesota Mining And Manufacturing Company Spatially modified elastic laminates
US5165979A (en) 1990-05-04 1992-11-24 Kimberly-Clark Corporation Three-dimensional polymer webs with improved physical properties
US5204174A (en) 1990-05-04 1993-04-20 Kimberly-Clark Corporation Fine fiber webs with improved physical properties
US5213881A (en) 1990-06-18 1993-05-25 Kimberly-Clark Corporation Nonwoven web with improved barrier properties
US5464688A (en) 1990-06-18 1995-11-07 Kimberly-Clark Corporation Nonwoven web laminates with improved barrier properties
JPH0465088A (en) 1990-07-03 1992-03-02 Fuji Photo Film Co Ltd Web electrifying device
US5090975A (en) 1990-09-21 1992-02-25 The Drackett Company High efficiency vacuum cleaner bags
US5112048A (en) 1990-11-05 1992-05-12 Kienle Robert N Garage roof party game
US5145727A (en) 1990-11-26 1992-09-08 Kimberly-Clark Corporation Multilayer nonwoven composite structure
CA2048905C (en) 1990-12-21 1998-08-11 Cherie H. Everhart High pulp content nonwoven composite fabric
US5257982A (en) 1990-12-26 1993-11-02 Hercules Incorporated Fluid absorbing article utilizing a flow control cover sheet
FR2671969A1 (en) 1991-01-30 1992-07-31 Celatose Sa LAYER AND METHOD OF MANUFACTURE
US5306534A (en) 1991-03-22 1994-04-26 Home Care Industries, Inc. Vacuum cleaner bag with electrostatically charged meltblown layer
TW211049B (en) 1991-03-26 1993-08-11 Du Pont
JPH04330907A (en) 1991-05-02 1992-11-18 Mitsui Petrochem Ind Ltd Manufacture of electret filter
EP0520798A1 (en) 1991-06-26 1992-12-30 Peter Maurice Lock Absorptive materials, and methods for their production
JPH0517595A (en) 1991-07-15 1993-01-26 Matsushita Electric Ind Co Ltd Ultra-thin film of polymer electret and its production
US5238733A (en) 1991-09-30 1993-08-24 Minnesota Mining And Manufacturing Company Stretchable nonwoven webs based on multi-layer blown microfibers
US5232770A (en) 1991-09-30 1993-08-03 Minnesota Mining And Manufacturing Company High temperature stable nonwoven webs based on multi-layer blown microfibers
US5247072A (en) 1991-10-25 1993-09-21 Kimberly-Clark Corporation Carboxyalkyl polysaccharides having improved absorbent properties and process for the preparation thereof
US5213882A (en) 1991-12-18 1993-05-25 W. L. Gore & Associates, Inc. Static dissipative nonwoven textile material
CA2070588A1 (en) 1991-12-31 1993-07-01 Kimberly-Clark Worldwide, Inc. Conductive fabric and method of producing same
JP3286998B2 (en) 1992-01-08 2002-05-27 東レ株式会社 Antibacterial electret material
EP0561379B1 (en) 1992-03-17 1998-07-08 ASAHI MEDICAL Co., Ltd. Filter medium having a limited surface negative charge for treating a blood material
US5244482A (en) 1992-03-26 1993-09-14 The University Of Tennessee Research Corporation Post-treatment of nonwoven webs
US5443606A (en) 1992-03-26 1995-08-22 The University Of Tennessee Reserch Corporation Post-treatment of laminated nonwoven cellulosic fiber webs
US5486411A (en) 1992-03-26 1996-01-23 The University Of Tennessee Research Corporation Electrically charged, consolidated non-woven webs
US5441550A (en) 1992-03-26 1995-08-15 The University Of Tennessee Research Corporation Post-treatment of laminated nonwoven cellulosic fiber webs
US5264276A (en) 1992-04-06 1993-11-23 W. L. Gore & Associates, Inc. Chemically protective laminate
US5397413A (en) 1992-04-10 1995-03-14 Fiberweb North America, Inc. Apparatus and method for producing a web of thermoplastic filaments
US5286326A (en) 1992-05-12 1994-02-15 The Budd Company Method for binding fibers in a fiber reinforced preform using an electromagnetic field to melt binding fibers
US5230727A (en) 1992-06-05 1993-07-27 Cybermedic, Inc. Air filter for medical ventilation equipment and the like
ES2107494T3 (en) 1992-07-02 1997-12-01 Procter & Gamble ABSORBENT HYDROGEL FINE IN ABSORBENT STRUCTURES.
US5254297A (en) 1992-07-15 1993-10-19 Exxon Chemical Patents Inc. Charging method for meltblown webs
US5401446A (en) * 1992-10-09 1995-03-28 The University Of Tennessee Research Corporation Method and apparatus for the electrostatic charging of a web or film
JP2849291B2 (en) 1992-10-19 1999-01-20 三井化学株式会社 Electretized nonwoven fabric and method for producing the same
AU669420B2 (en) 1993-03-26 1996-06-06 Minnesota Mining And Manufacturing Company Oily mist resistant electret filter media
US5503745A (en) 1993-05-26 1996-04-02 Chisso Corporation Filtering medium and a process for producing the same
US5456972A (en) 1993-05-28 1995-10-10 The University Of Tennessee Research Corporation Method and apparatus for glow discharge plasma treatment of polymer materials at atmospheric pressure
JP3204801B2 (en) 1993-06-18 2001-09-04 富士写真フイルム株式会社 Vacuum glow discharge processing apparatus and processing method
EP0845554B1 (en) 1993-08-17 2009-11-18 Minnesota Mining And Manufacturing Company Method of charging electret filter media
US5491022A (en) 1993-09-24 1996-02-13 Lakeland Industries, Inc. Protective fabrics and garments
US5308691A (en) 1993-10-04 1994-05-03 E. I. Du Pont De Nemours And Company Controlled-porosity, calendered spunbonded/melt blown laminates
US5492754A (en) 1993-12-15 1996-02-20 Kimberly-Clark Corporation Absorbent composition including a magnetically-responsive material
US5455108A (en) 1993-12-30 1995-10-03 Kimberly-Clark Corporation Coated polymeric fabric having reduced adsorption of protein
US5436066A (en) 1993-12-30 1995-07-25 Kimberly-Clark Corporation Absorbent composition including a microfiber
US5834386A (en) 1994-06-27 1998-11-10 Kimberly-Clark Worldwide, Inc. Nonwoven barrier
US5482765A (en) 1994-04-05 1996-01-09 Kimberly-Clark Corporation Nonwoven fabric laminate with enhanced barrier properties
US5540979A (en) 1994-05-16 1996-07-30 Yahiaoui; Ali Porous non-woven bovine blood-oxalate absorbent structure
CA2136576C (en) 1994-06-27 2005-03-08 Bernard Cohen Improved nonwoven barrier and method of making the same
US5552012A (en) 1994-09-09 1996-09-03 Kimberly-Clark Corporation Placement of electric-field-responsive material onto a substrate
US5804512A (en) 1995-06-07 1998-09-08 Bba Nonwovens Simpsonville, Inc. Nonwoven laminate fabrics and processes of making same
US5834384A (en) 1995-11-28 1998-11-10 Kimberly-Clark Worldwide, Inc. Nonwoven webs with one or more surface treatments

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876118A (en) * 1981-10-30 1983-05-09 Koken Kk Multilayer structured filter
JPS6253719A (en) * 1985-08-30 1987-03-09 Japan Vilene Co Ltd Polyolefin nonwoven fabrics charged electrostatically
JPS6274423A (en) * 1985-09-27 1987-04-06 Japan Vilene Co Ltd Polyolefinic charged nonwoven fabric
US4863785A (en) * 1988-11-18 1989-09-05 The James River Corporation Nonwoven continuously-bonded trilaminate

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 167 (C - 177) 22 July 1958 (1958-07-22) *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 246 (C - 439) 11 August 1987 (1987-08-11) *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 273 (C - 445) 4 September 1987 (1987-09-04) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834386A (en) * 1994-06-27 1998-11-10 Kimberly-Clark Worldwide, Inc. Nonwoven barrier
WO1997004155A1 (en) * 1995-07-19 1997-02-06 Kimberly-Clark Worldwide, Inc. Nonwoven barrier and method of making the same
WO1998004767A1 (en) * 1996-07-31 1998-02-05 Kimberly-Clark Worldwide, Inc. Improved nonwoven barrier
US6375886B1 (en) 1999-10-08 2002-04-23 3M Innovative Properties Company Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid
US6406657B1 (en) 1999-10-08 2002-06-18 3M Innovative Properties Company Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
US6454986B1 (en) 1999-10-08 2002-09-24 3M Innovative Properties Company Method of making a fibrous electret web using a nonaqueous polar liquid
US6824718B2 (en) 1999-10-08 2004-11-30 3M Innovative Properties Company Process of making a fibrous electret web

Also Published As

Publication number Publication date
JP4113581B2 (en) 2008-07-09
JPH09509227A (en) 1997-09-16
CA2124237C (en) 2004-11-02
DE69517303D1 (en) 2000-07-06
CA2124237A1 (en) 1995-08-19
ES2148498T3 (en) 2000-10-16
KR100313080B1 (en) 2001-12-28
US5998308A (en) 1999-12-07
AU1923995A (en) 1995-09-04
MX9603399A (en) 1997-03-29
EP0746646B1 (en) 2000-05-31
EP0746646A1 (en) 1996-12-11
DE69517303T2 (en) 2001-02-08
AU686769B2 (en) 1998-02-12

Similar Documents

Publication Publication Date Title
CA2136576C (en) Improved nonwoven barrier and method of making the same
US5830810A (en) Nonwoven barrier and method of making the same
AU686769B2 (en) Improved nonwoven barrier and method of making the same
US5834386A (en) Nonwoven barrier
US5879620A (en) Sterilization wrap and procedures
AU708641B2 (en) Nonwoven web dielectric electrects with surface treatments
CA2212984C (en) Nonwoven laminate barrier material
AU731478C (en) Improved nonwoven barrier
MXPA97006751A (en) A laminated barrier material not tej
MXPA00004659A (en) Sterilization wrap and procedures
MXPA98004241A (en) Dielectric electretes of non-woven fabric with superfi treatment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PA/a/1996/003399

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1995911810

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1995911810

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1995911810

Country of ref document: EP