WO1995032780A2 - A method and system for sampling and determining the presence of contaminants in recyclable plastic materials - Google Patents

A method and system for sampling and determining the presence of contaminants in recyclable plastic materials Download PDF

Info

Publication number
WO1995032780A2
WO1995032780A2 PCT/US1995/006765 US9506765W WO9532780A2 WO 1995032780 A2 WO1995032780 A2 WO 1995032780A2 US 9506765 W US9506765 W US 9506765W WO 9532780 A2 WO9532780 A2 WO 9532780A2
Authority
WO
WIPO (PCT)
Prior art keywords
contaminants
materials
volatiles
pieces
plastic material
Prior art date
Application number
PCT/US1995/006765
Other languages
French (fr)
Other versions
WO1995032780A3 (en
Inventor
Alex Malaspina
Forrest Lee Bayer
Dirck Vanburen Myers
David H. Fine
Freeman W. Fraim
Stephen J. Macdonald
Original Assignee
The Coca-Cola Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Coca-Cola Company filed Critical The Coca-Cola Company
Priority to AT95921473T priority Critical patent/ATE204499T1/en
Priority to AU26545/95A priority patent/AU681295B2/en
Priority to DE1995622325 priority patent/DE69522325T2/en
Priority to EP19950921473 priority patent/EP0762917B1/en
Priority to BR9507789A priority patent/BR9507789A/en
Priority to JP50110496A priority patent/JP3022600B2/en
Priority to PL95317433A priority patent/PL179604B1/en
Priority to KR1019960706747A priority patent/KR100264138B1/en
Publication of WO1995032780A2 publication Critical patent/WO1995032780A2/en
Publication of WO1995032780A3 publication Critical patent/WO1995032780A3/en
Priority to MXPA/A/1996/005727A priority patent/MXPA96005727A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; rubber; leather
    • G01N33/442Resins, plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/46Inspecting cleaned containers for cleanliness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/766Chemiluminescence; Bioluminescence of gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9018Dirt detection in containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9081Inspection especially designed for plastic containers, e.g. preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/005Details of cleaning machines or methods involving the use or presence of liquid or steam the liquid being ozonated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0203Separating plastics from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0275Specific separating techniques using chemical sensors, e.g. analysing gasified constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/065Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts containing impurities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N2001/222Other features
    • G01N2001/2223Other features aerosol sampling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • G01N2001/2229Headspace sampling, i.e. vapour over liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N2033/0078Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00 testing material properties on manufactured objects
    • G01N2033/0081Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00 testing material properties on manufactured objects containers; packages; bottles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S241/00Solid material comminution or disintegration
    • Y10S241/38Solid waste disposal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/115831Condition or time responsive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25875Gaseous sample or with change of physical state

Definitions

  • the present invention relates to an inspection system for sampling and determining the presence of certain substances, such as residues of contaminants within plastic materials to be recycled from containers such as plastic polyethylene terephthalate (PET) beverage bottles or plastic food containers. More specifically, the present invention relates to an improved sampling and analyzing system and method for determining the presence of substances such as residues of contaminants in plastic materials from recycled articles such as beverage bottles or other containers - e.g., as the material is rapidly moved along a conveyor past a series of test stations in a material washing and sorting system.
  • PET plastic polyethylene terephthalate
  • Glass containers have the disadvantage of being fragile and, in larger volumes, of being relatively heavy. Accordingly, it is highly desirable to use plastic containers because they are less fragile and lighter than glass containers of the same volume.
  • plastic materials can absorb a variety of compounds which may later be desorbed into the product thereby potentially adversely affecting the quality of the product packed in the container. Examples of such compounds include but are not limited to ammonia, organic nitrogenous compounds, and hydrocarbons including gasoline and various cleaning fluids including soaps and detergents.
  • these plastic containers, or the materials from which each is made can be reliably inspected for contaminants of very high sensitivity, contaminated plastic bottles or materials can be separated from uncontaminated containers or materials, and the good containers or materials can be recycled.
  • the present invention is directed to improvements to the techniques described in the prior application Ser. No. 07/890,863 regarding recycling of plastic materials, including materials from which such used plastic beverage containers were made.
  • specific substances e.g., contaminants including but not limited to ammonia, organic nitrogenous compounds and hydrocarbons, in plastic materials.
  • the objects of the present invention are fulfilled by providing a method of sampling and determining the presence of certain volatiles in plastic materials to be recycled comprising the steps of: providing a supply of plastic materials to be recycled; directing fluid (usually a jet of air or CO- gas) at said materials in order to displace at least a portion of volatiles therein to positions spaced from the materials to form a sample cloud at a region spaced from the materials; evacuating a sample of said portion of the volatiles so displaced by applying suction to the sample cloud at said regions spaced from said materials; and analyzing the sample evacuated to determine the presence or absence of volatiles of said contaminants in said materials.
  • the procedure may also involve optical scanning of the plastic for non volatile contaminants.
  • Other fluids which may be directed at the materials may include but are not limited to liquids such as aqueous sodium carbonate (NaC0 3 ) which enhances liberation of ammonia or amines from the materials.
  • NaCO- would not be used at an inspection station located after a washer - i.e., to inspect plastic materials immediately following their washing or at any other location further downstream.
  • the supply of materials is provided from used beverage containers of plastic by an in- line shredder or flaker in-line with the inspection and washing conveyor which shreds or flakes the plastic containers into constituent pieces thereof which are inspected for contaminants, sorted and washed. It is a discovery of the present invention, that the shredding of the plastic containers into pieces, heats the pieces to a temperature sufficient to vaporize some of the contaminants therein in order to emit volatiles thereof. Accordingly, it is particularly advantageous to analyze the emitted volatiles either during or immediately after the shredding of the containers.
  • Fig. 1 is a schematic block diagram of the sampling and residue analyzing system of the invention described in U.S. application Ser. No. 07/890,863 illustrating a plurality of containers moving seriatim along a conveyor system through a test station, reject mechanism and washer station; and
  • Fig. 2 is a schematic block diagram of a system and method for inspecting, shredding, washing and sorting recyclable plastic materials according to the present invention.
  • FIG. 1 there is illustrated a conveyor 10 moving in the direction of arrow A having a plurality of uncapped, open-topped spaced containers C (e.g. plastic beverage bottles of about 1500 c.c. volume) disposed thereon for movement seriatim through a test station 12, reject mechanism 28 and conveyor 32 to a washer system.
  • containers C could be touching each other rather than spaced.
  • the contents of containers C would typically include air, volatiles of residues of contaminants, if any, and volatiles of any products such as beverages which had been in the containers.
  • An air injector 14 which is a source of compressed air is provided with a nozzle 16 spaced from but aligned with a container C at test station 12. That is nozzle 16 is disposed outside of the containers and makes no contact therewith. Nozzle 16 directs compressed air into containers C to displace at least a portion of the contents of the container to thereby emit a sample cloud 18 to a region outside of the container being tested.
  • CO- gas could be utilized as the injected fluid.
  • the compressed air or C0 2 gas could be heated to enhance volatility of the compounds being tested.
  • the column of injected air through nozzle 16 into a container C would be typically of the order of about 10 c.c. to 50 c.c. for bottle speeds of about 200 to 1000 bottles per minute. A rate of 400 to 600 bottles per minute is possible and is compatible with current beverage bottle filling speeds. The desired test rate may vary with the size of the bottles being inspected and filled. Of course the bottles could be stationary or moving slower than 200 bottles per minute and the system would still work. Only about 10 c.c. of the container contents would be displaced to regions outside of the bottle to form sample cloud 18.
  • an evacuator sampler 22 which may comprise a vacuum pump or the like coupled to a sampling tube or conduit 20.
  • the tube is mounted near, and preferably downstream (e.g., about 1/16 inch) of the air injector 14 so as to be in fluid communication with sample cloud 18 adjacent to the opening at the top of containers C.
  • nozzle 16 nor tube 20 contacts the containers C at test station 12; rather both are spaced at positions outside of the containers in close proximity to the openings thereof. This is advantageous in that no physical coupling is required to the containers C, or insertion of probes into the containers, which would impede their rapid movement along conveyor 10 and thus slow down the sampling rate. High speed sampling rates of from about 200 to 1000 bottles per minute are possible with the system and method of the present invention.
  • the conveyor 10 is preferably driven continuously to achieve these rates without stopping or slowing the bottles down at the test station.
  • a bypass line 24 is provided in communication with the evacuator sampler 22 so that a predetermined portion (preferably about 90%) of the sample from cloud 18 entering tube 20 can be diverted through bypass line 24.
  • the remaining sample portion passes to a residue analyzer 26, which determines whether undesirable substances are present, and then is exhausted.
  • One purpose of diverting a large portion of the sample from cloud 18 is to reduce the amount of sample passing from evacuator sampler 22 to residue analyzer 26 in order to achieve high speed analysis. This is done in order to provide manageable levels of samples to be tested by the residue analyzer 26.
  • Another purpose for diverting a portion of the sample is to be able to substantially remove all of sample cloud 18 by evacuator 22 from the test station area and divert the excess through bypass line 24.
  • the excess portion of the sample passing through bypass line 24 is returned to air injector 14 for introduction into the subsequent containers moving along conveyor 10 through nozzle 16.
  • sample cloud 18 could be analyzed in situ without transporting it to a remote analyzer such as 26. It could also be transported to analyzer 26 by blowing rather than sucking.
  • a microprocessor controller 34 is provided for controlling the operation of air injector 14, evacuator sampler 22, residue analyzer 26, a reject mechanism 28 and an optional fan 15.
  • Container sensor 17 including juxtaposed radiation source and photodetector is disposed opposite a reflector (not shown) across conveyor 10. Sensor 17 tells controller 34 when a container arrives at the test station and briefly interrupts the beam of radiation reflected to the photodetector.
  • Optional fan 15 is provided to generate an air blast towards sample cloud 18 and preferably in the direction of movement of containers C to assist in the removal of sample cloud 18 from the vicinity of test station 12 after each container C is sampled.
  • fan 15 is controlled by microprocessor 34 as indicated diagrammatically in Fig. 1.
  • fan 15 is continuously operating for the entire time the rest of the system is operating.
  • a reject mechanism 28 receives a reject signal from microprocessor controller 34 when residue analyzer 26 determines that a particular container C is contaminated with a residue of various undesirable types. Reject mechanism 28 diverts contaminated rejected bottles to a conveyor 30 and allows passage of uncontaminated, acceptable bottles to a washer (not shown) on a conveyor 32.
  • An alternative option is to place the bottle test station downstream of the bottle washer in the direction of conveyor travel, or to place an additional test station and sample and residue analyzing system after the washer.
  • the contaminant is a hydrocarbon, such as gasoline which is insoluble in water
  • Certain hydrocarbons may then be sampled by a sampler 22 downstream of the washer, to the exclusion of the dissolved, water- soluble chemicals. Therefore, the detection of such hydrocarbons can be performed without potential interference from other water soluble chemicals if the bottles pass through a washer before testing.
  • the materials to be inspected are not limited to substances in containers.
  • the method and system of Fig. 1 could be used to detect volatiles adsorbed in shredded strips or flakes of the bottles, or plastic stock to be recycled for manufacturing new plastic beverage bottles or food containers or other articles of plastic.
  • This shredded or flaked plastic stock could be placed directly on a conveyor belt 10 and passed through test station 12 of Fig. 1; or the plastic stock could be placed in baskets, buckets or other types of containers disposed thereon and inspected in batches.
  • Fig. 2 illustrates an in-line conveyor system including a conveyor 198 on which a plurality of plastic containers C move through a first test station 200, and into a shredder or flaker 202.
  • Shreds or flakes F emerging from shredder or flaker 202 pass through a test station 204, where contaminated flakes are rejected and separated from cleaner flakes F on their way to a washer 206.
  • the shredded or flaked material F emerging from washer 206 is again inspected at a test station 208, and still contaminated flakes of material are rejected.
  • Substantially clean and pure flakes F to be utilized in the fabrication of new plastic containers emerge on conveyor 10 from test station 3.
  • Each of the test stations 200, 204 and 208 in the system of Fig. 2 preferably contains a chemical "sniffer" such as the system disclosed in Fig. 1 at test station 12.
  • test station 208 could follow test station 208.
  • Fig. 2 There are three different stages of the process illustrated in Fig. 2 where chemical sniffing of the plastic flakes F of material can be most effective.
  • the first two sampling points at test stations 200 and 204 are designed to remove the contaminated material before it goes into the washing process in washer 206. If the chemical sniffing processes at test stations 200 and 204 are effective, then the effectiveness of the washing step at washer 206 is less critical. This may allow use of an inexpensive or cost- effective washer 206.
  • Testing and sampling of the incoming containers C at test station 200 of Fig. 2 is conducted to find gross contaminants in the containers and to minimize cross- contamination in other steps of pre-processing.
  • the containers C are typically in the form of crushed and/or punctured bottles at this point, and may be in prone rather than upright position. Monitoring will, for example, find the bottles where liquid has spilled out and has cross contaminated other bottles on their way to the shredder 202. This step is important since a bottle full of engine oil, for example, may contaminate several other bottles if the oil spills.
  • Containers C which have passed through test station 200, and have not been rejected, pass into shredder 202. Heat is generated in the shredder 202 as the containers are broken down into pieces. Temperatures of up to 200*F are generated, which can serve to drive off the contaminants so that they can be more readily detected.
  • An additional advantage of sampling the shredded material as it emerges from shredder 202 at test station 204, is that contaminants released from the shredding of a single contaminated bottle will not have contaminated too much other material. Thus, sampling the fumes from the shredder at test station 204 could lead to the rejection from the process stream of flakes of material F from the bottle in question together with materials from just a few adjacent bottles.
  • Sampling at the shredder 202 is needed so as to avoid contaminating a large amount of flakes F. That is, any contaminated flakes emerging from shredder 202 are immediately detected at test station 204, and rejected in order to avoid contaminating a substantial quantity of flakes on the conveyor 198.
  • a third test station 208 is designed to detect flakes F as they emerge from washer 206 in order to monitor the washing process. Again, monitoring is best accomplished where the temperatures are high enough to assist in the emission of volatiles of contaminants from the flakes of material. Temperatures in the washer are typically from about 190°F to about 210 ⁇ F. Monitoring of the post-washed flakes F is for quality assurance purposes, since the detection of contaminants at this point in the process will require the automatic rejection of a considerable amount of material due to the mixing of good and bad flakes F in the washing process.
  • the temperature of the wash solution used in the washer 206 or in a pelletizer or preform maker must be kept below a temperature at which the plastic material being inspected will vaporize. Such vaporization would produce detectable background volatiles which would tend to interfere with detection of volatiles relating to contaminants within the materials. For example, tests were performed on flakes from PET beverage bottles in order to determine the ability of the analyzing apparatus of the present invention to sniff the material without interference from background volatiles of the PET material itself. Six temperatures were studied, as shown below:
  • PET flakes can be chemically sniffed at temperatures of up to about 650*F without any effects from the PET itself on the accurate detection of contaminants within the PET flakes.
  • typically the highest temperatures encountered where sniff tests would be made would occur at the pelletizing and preform stations, and those temperatures would likely not exceed about 570 F.
  • the washing procedure must preferably vent the hot vapors from the process stream or risk contamination of all of the PET material that is in contact with contaminated vapors in the washer. This is important and differs from conventional washers since the tendency in prior art systems is to use enclosed systems washers so as to conserve heat and minimize energy cost.
  • washer 206 has a vent, such as vent 210, to carry hot vapors away from the PET flakes.
  • Shredder 202 may also include a vent for hot vapors associated with the shredding process.

Abstract

An inspection system for sampling and determining the presence of residues of contaminants within plastic materials to be recycled from used plastic materials such as plastic beverage bottles or plastic food containers includes a chemical sniffing apparatus, or alternatively an optical scanner, for detecting the contaminants as the plastic materials are rapidly moved along a conveyor past a series of stations. Recycled food or beverage bottles are fed through a shredder in-line with the conveyor and the shredded plastic material from the bottles is fed to a washer. The bottles and shredded material may be tested for contaminants at any location in an in-line process. In one exemplary system first the bottles are tested prior to entry into the shredder in order to remove bottles containing gross contaminants. Second the shredded material emerging from the shredder is immediately tested for contaminants at an elevated temperature caused by the shredding process and contaminated materials are separated or sorted out from the uncontaminated material. Third, the materials are again tested for contaminants as they emerge from the washer once again taking advantage of the elevated temperature of the materials which is conducive to the emission of vapors of the contaminants. Contaminated materials are again sorted from the uncontaminated supply of materials to be used for the fabrication of new plastic food or beverage bottles.

Description

A METHOD AND SYSTEM FOR SAMPLING AND DETERMINING THE PRESENCE OF CONTAMINANTS IN RECYCLABLE PLASTIC MATERIALS
This application is a continuation-in-part of prior U.S. application Ser. No.: 07/890,863 filed June 1, 1992, and assigned to the same assignee as the present invention described herein.
BACKGROUND OF THE INVENTION
The present invention relates to an inspection system for sampling and determining the presence of certain substances, such as residues of contaminants within plastic materials to be recycled from containers such as plastic polyethylene terephthalate (PET) beverage bottles or plastic food containers. More specifically, the present invention relates to an improved sampling and analyzing system and method for determining the presence of substances such as residues of contaminants in plastic materials from recycled articles such as beverage bottles or other containers - e.g., as the material is rapidly moved along a conveyor past a series of test stations in a material washing and sorting system.
In many industries, including the beverage industry, products are packaged in containers which are returned after use, washed and refilled. Typically refillable containers, such as beverage bottles, are made of glass which can be easily cleaned. These containers are washed and then inspected for the presence of foreign matter.
Glass containers have the disadvantage of being fragile and, in larger volumes, of being relatively heavy. Accordingly, it is highly desirable to use plastic containers because they are less fragile and lighter than glass containers of the same volume. However, plastic materials can absorb a variety of compounds which may later be desorbed into the product thereby potentially adversely affecting the quality of the product packed in the container. Examples of such compounds include but are not limited to ammonia, organic nitrogenous compounds, and hydrocarbons including gasoline and various cleaning fluids including soaps and detergents. However, if these plastic containers, or the materials from which each is made can be reliably inspected for contaminants of very high sensitivity, contaminated plastic bottles or materials can be separated from uncontaminated containers or materials, and the good containers or materials can be recycled.
The aforementioned U.S. application Ser. No. 07/890,863 describes inspection techniques for determining the presence of contaminants in used, plastic beverage containers, or in shredded or flaked plastic material from which the containers were made.
The present invention is directed to improvements to the techniques described in the prior application Ser. No. 07/890,863 regarding recycling of plastic materials, including materials from which such used plastic beverage containers were made.
In order to recycle plastic materials such as from PET beverage bottles for use in the fabrication of new bottles, it is necessary to ensure that the recycled material does not contain any potentially harmful contaminants of the types described hereinbefore.
While various efforts have been made for removing unwanted contaminated plastics from an incoming stream of beverage bottles, and then shredding the bottles and thoroughly washing the shredded plastic material so as to remove potentially harmful contaminants from the shredded or flaked material, a need in the art exists for improved inspection of recycled plastic materials. In particular, it would be advantageous to have on-line, real-time, chemical monitoring of recycled plastic materials such as bottles or resulting flake at any stage of processing, particularly at any stage of pre-processing, including sortation, cleaning, washing, flaking, pelletizing and preform and/or bottle manufacturing to ensure that badly contaminated material has been removed from the recycled material.
SUMMARY OF THE INVENTION
Accordingly, it is a primary object of the present invention to provide a method and system for detecting the presence or absence of specific substances - e.g., contaminants including but not limited to ammonia, organic nitrogenous compounds and hydrocarbons, in plastic materials.
It is another object of the present invention to provide a system and method for detecting specific contaminants in articles made of plastic materials, or in shredded, pelletized, or flaked plastic materials, as the articles or materials move rapidly along a conveyor.
It is another object of the present invention to provide a system and method for sampling and analyzing residues in materials as they move along a conveyor.
It is still another object of the present invention to provide a system and method for sampling and analyzing residues in materials moving along a conveyor without contacting the materials being tested with any of the sampling and analyzing mechanisms.
It is yet another object of the present invention to provide a method for inspecting used plastic beverage containers for contaminants, shredding the containers into constituent pieces thereof and washing the constituent pieces in a continuous, in-line process.
The objects of the present invention are fulfilled by providing a method of sampling and determining the presence of certain volatiles in plastic materials to be recycled comprising the steps of: providing a supply of plastic materials to be recycled; directing fluid (usually a jet of air or CO- gas) at said materials in order to displace at least a portion of volatiles therein to positions spaced from the materials to form a sample cloud at a region spaced from the materials; evacuating a sample of said portion of the volatiles so displaced by applying suction to the sample cloud at said regions spaced from said materials; and analyzing the sample evacuated to determine the presence or absence of volatiles of said contaminants in said materials. The procedure may also involve optical scanning of the plastic for non volatile contaminants. This is carried out in real time as the bottle or shreds pass by the sampling point. Other fluids which may be directed at the materials may include but are not limited to liquids such as aqueous sodium carbonate (NaC03) which enhances liberation of ammonia or amines from the materials. However, NaCO- would not be used at an inspection station located after a washer - i.e., to inspect plastic materials immediately following their washing or at any other location further downstream.
In a preferred embodiment the supply of materials is provided from used beverage containers of plastic by an in- line shredder or flaker in-line with the inspection and washing conveyor which shreds or flakes the plastic containers into constituent pieces thereof which are inspected for contaminants, sorted and washed. It is a discovery of the present invention, that the shredding of the plastic containers into pieces, heats the pieces to a temperature sufficient to vaporize some of the contaminants therein in order to emit volatiles thereof. Accordingly, it is particularly advantageous to analyze the emitted volatiles either during or immediately after the shredding of the containers.
It is a further discovery of the present invention that it is particularly advantageous to test the shredded plastic materials just after the washing process, again due to the fact that there are high temperatures associated with the washing process that will liberate volatiles of contaminants in the plastic material if any are present.
It is still a further discovery of the present invention that it is important to maintain the temperature of the washed shredded material below a level that would emit detectable levels of vapors derived from the plastic material itself which would create background interference with volatiles of any contaminants emitted from the plastic materials. Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description. BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitative of the present invention and wherein:
Fig. 1 is a schematic block diagram of the sampling and residue analyzing system of the invention described in U.S. application Ser. No. 07/890,863 illustrating a plurality of containers moving seriatim along a conveyor system through a test station, reject mechanism and washer station; and
Fig. 2 is a schematic block diagram of a system and method for inspecting, shredding, washing and sorting recyclable plastic materials according to the present invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS The system of Fig. 1 is fully disclosed in allowed parent application Ser. No. 07/890,863 filed June 1, 1992, the entire disclosure of which is incorporated herein by reference.
Referring to Fig. 1 there is illustrated a conveyor 10 moving in the direction of arrow A having a plurality of uncapped, open-topped spaced containers C (e.g. plastic beverage bottles of about 1500 c.c. volume) disposed thereon for movement seriatim through a test station 12, reject mechanism 28 and conveyor 32 to a washer system. To achieve higher test rates containers C could be touching each other rather than spaced. The contents of containers C would typically include air, volatiles of residues of contaminants, if any, and volatiles of any products such as beverages which had been in the containers. An air injector 14 which is a source of compressed air is provided with a nozzle 16 spaced from but aligned with a container C at test station 12. That is nozzle 16 is disposed outside of the containers and makes no contact therewith. Nozzle 16 directs compressed air into containers C to displace at least a portion of the contents of the container to thereby emit a sample cloud 18 to a region outside of the container being tested.
As an alternative to compressed air, CO- gas could be utilized as the injected fluid. Also the compressed air or C02 gas could be heated to enhance volatility of the compounds being tested.
The column of injected air through nozzle 16 into a container C would be typically of the order of about 10 c.c. to 50 c.c. for bottle speeds of about 200 to 1000 bottles per minute. A rate of 400 to 600 bottles per minute is possible and is compatible with current beverage bottle filling speeds. The desired test rate may vary with the size of the bottles being inspected and filled. Of course the bottles could be stationary or moving slower than 200 bottles per minute and the system would still work. Only about 10 c.c. of the container contents would be displaced to regions outside of the bottle to form sample cloud 18.
Also provided is an evacuator sampler 22 which may comprise a vacuum pump or the like coupled to a sampling tube or conduit 20. The tube is mounted near, and preferably downstream (e.g., about 1/16 inch) of the air injector 14 so as to be in fluid communication with sample cloud 18 adjacent to the opening at the top of containers C.
Neither nozzle 16 nor tube 20 contacts the containers C at test station 12; rather both are spaced at positions outside of the containers in close proximity to the openings thereof. This is advantageous in that no physical coupling is required to the containers C, or insertion of probes into the containers, which would impede their rapid movement along conveyor 10 and thus slow down the sampling rate. High speed sampling rates of from about 200 to 1000 bottles per minute are possible with the system and method of the present invention. The conveyor 10 is preferably driven continuously to achieve these rates without stopping or slowing the bottles down at the test station.
A bypass line 24 is provided in communication with the evacuator sampler 22 so that a predetermined portion (preferably about 90%) of the sample from cloud 18 entering tube 20 can be diverted through bypass line 24. The remaining sample portion passes to a residue analyzer 26, which determines whether undesirable substances are present, and then is exhausted. One purpose of diverting a large portion of the sample from cloud 18 is to reduce the amount of sample passing from evacuator sampler 22 to residue analyzer 26 in order to achieve high speed analysis. This is done in order to provide manageable levels of samples to be tested by the residue analyzer 26. Another purpose for diverting a portion of the sample is to be able to substantially remove all of sample cloud 18 by evacuator 22 from the test station area and divert the excess through bypass line 24. In a preferred embodiment the excess portion of the sample passing through bypass line 24 is returned to air injector 14 for introduction into the subsequent containers moving along conveyor 10 through nozzle 16. However, it would also be possible to simply vent bypass line 24 to the atmosphere.
It should be understood that sample cloud 18 could be analyzed in situ without transporting it to a remote analyzer such as 26. It could also be transported to analyzer 26 by blowing rather than sucking.
A microprocessor controller 34 is provided for controlling the operation of air injector 14, evacuator sampler 22, residue analyzer 26, a reject mechanism 28 and an optional fan 15. Container sensor 17 including juxtaposed radiation source and photodetector is disposed opposite a reflector (not shown) across conveyor 10. Sensor 17 tells controller 34 when a container arrives at the test station and briefly interrupts the beam of radiation reflected to the photodetector. Optional fan 15 is provided to generate an air blast towards sample cloud 18 and preferably in the direction of movement of containers C to assist in the removal of sample cloud 18 from the vicinity of test station 12 after each container C is sampled. This clears out the air from the region of the test station so that no lingering residues from an existing sample cloud 18 can contaminate the test station area when successive containers C reach the test station for sampling. Thus, sample carryover between containers is precluded. The duty cycle for operation of fan 15 is controlled by microprocessor 34 as indicated diagrammatically in Fig. 1. Preferably fan 15 is continuously operating for the entire time the rest of the system is operating.
A reject mechanism 28 receives a reject signal from microprocessor controller 34 when residue analyzer 26 determines that a particular container C is contaminated with a residue of various undesirable types. Reject mechanism 28 diverts contaminated rejected bottles to a conveyor 30 and allows passage of uncontaminated, acceptable bottles to a washer (not shown) on a conveyor 32.
An alternative option is to place the bottle test station downstream of the bottle washer in the direction of conveyor travel, or to place an additional test station and sample and residue analyzing system after the washer. In fact it may be preferable to position the test station and system after the washer when inspecting bottles for some contaminants. For example, if the contaminant is a hydrocarbon, such as gasoline which is insoluble in water, it is easier to detect residues of hydrocarbons after the bottles have been washed. This is because during the washing process in which the bottles are heated and washed with water, water soluble chemical volatiles are desorbed from the bottles by the heating thereof and then dissolved in the washing water. Certain hydrocarbons, on the other hand, not being water soluble, may then be sampled by a sampler 22 downstream of the washer, to the exclusion of the dissolved, water- soluble chemicals. Therefore, the detection of such hydrocarbons can be performed without potential interference from other water soluble chemicals if the bottles pass through a washer before testing. The materials to be inspected are not limited to substances in containers. For example, the method and system of Fig. 1 could be used to detect volatiles adsorbed in shredded strips or flakes of the bottles, or plastic stock to be recycled for manufacturing new plastic beverage bottles or food containers or other articles of plastic. This shredded or flaked plastic stock could be placed directly on a conveyor belt 10 and passed through test station 12 of Fig. 1; or the plastic stock could be placed in baskets, buckets or other types of containers disposed thereon and inspected in batches.
The system for analyzing volatiles emitted from containers C at test station 12 in Fig. 1 will be referred to hereinafter with respect to embodiments of the present invention illustrated in Fig. 2 as chemical "sniffing". Fig. 2 illustrates an in-line conveyor system including a conveyor 198 on which a plurality of plastic containers C move through a first test station 200, and into a shredder or flaker 202. Shreds or flakes F emerging from shredder or flaker 202 pass through a test station 204, where contaminated flakes are rejected and separated from cleaner flakes F on their way to a washer 206. The shredded or flaked material F emerging from washer 206 is again inspected at a test station 208, and still contaminated flakes of material are rejected. Substantially clean and pure flakes F to be utilized in the fabrication of new plastic containers emerge on conveyor 10 from test station 3.
Each of the test stations 200, 204 and 208 in the system of Fig. 2 preferably contains a chemical "sniffer" such as the system disclosed in Fig. 1 at test station 12.
It should be understood that additional test stations could follow test station 208. For example, there could be a flake pelletizer after station 208 and a test station following the pelletizer; an additional test station following a preform manufacturing station for new bottles to test the preforms; and another test station after a blow molder which blows the preform into new bottles.
There are three different stages of the process illustrated in Fig. 2 where chemical sniffing of the plastic flakes F of material can be most effective. The first two sampling points at test stations 200 and 204 are designed to remove the contaminated material before it goes into the washing process in washer 206. If the chemical sniffing processes at test stations 200 and 204 are effective, then the effectiveness of the washing step at washer 206 is less critical. This may allow use of an inexpensive or cost- effective washer 206.
Testing and sampling of the incoming containers C at test station 200 of Fig. 2 is conducted to find gross contaminants in the containers and to minimize cross- contamination in other steps of pre-processing. The containers C are typically in the form of crushed and/or punctured bottles at this point, and may be in prone rather than upright position. Monitoring will, for example, find the bottles where liquid has spilled out and has cross contaminated other bottles on their way to the shredder 202. This step is important since a bottle full of engine oil, for example, may contaminate several other bottles if the oil spills.
Containers C which have passed through test station 200, and have not been rejected, pass into shredder 202. Heat is generated in the shredder 202 as the containers are broken down into pieces. Temperatures of up to 200*F are generated, which can serve to drive off the contaminants so that they can be more readily detected. An additional advantage of sampling the shredded material as it emerges from shredder 202 at test station 204, is that contaminants released from the shredding of a single contaminated bottle will not have contaminated too much other material. Thus, sampling the fumes from the shredder at test station 204 could lead to the rejection from the process stream of flakes of material F from the bottle in question together with materials from just a few adjacent bottles.
Sampling at the shredder 202, or as close to the newly shredded material emerging from shredder 202 as possible, is needed so as to avoid contaminating a large amount of flakes F. That is, any contaminated flakes emerging from shredder 202 are immediately detected at test station 204, and rejected in order to avoid contaminating a substantial quantity of flakes on the conveyor 198.
A third test station 208, is designed to detect flakes F as they emerge from washer 206 in order to monitor the washing process. Again, monitoring is best accomplished where the temperatures are high enough to assist in the emission of volatiles of contaminants from the flakes of material. Temperatures in the washer are typically from about 190°F to about 210βF. Monitoring of the post-washed flakes F is for quality assurance purposes, since the detection of contaminants at this point in the process will require the automatic rejection of a considerable amount of material due to the mixing of good and bad flakes F in the washing process.
It is a discovery of the present invention that the temperature of the wash solution used in the washer 206 or in a pelletizer or preform maker must be kept below a temperature at which the plastic material being inspected will vaporize. Such vaporization would produce detectable background volatiles which would tend to interfere with detection of volatiles relating to contaminants within the materials. For example, tests were performed on flakes from PET beverage bottles in order to determine the ability of the analyzing apparatus of the present invention to sniff the material without interference from background volatiles of the PET material itself. Six temperatures were studied, as shown below:
Temperature Observation βF
80 No background response from PET vapors
200 No background response from PET vapors 300 No background response from PET vapors
400 No background response from PET vapors
650 No background response from PET vapors
750 Background response observed
From the above results it was concluded that PET flakes can be chemically sniffed at temperatures of up to about 650*F without any effects from the PET itself on the accurate detection of contaminants within the PET flakes. However, typically the highest temperatures encountered where sniff tests would be made would occur at the pelletizing and preform stations, and those temperatures would likely not exceed about 570 F. Another observation from these experiments is that the washing procedure must preferably vent the hot vapors from the process stream or risk contamination of all of the PET material that is in contact with contaminated vapors in the washer. This is important and differs from conventional washers since the tendency in prior art systems is to use enclosed systems washers so as to conserve heat and minimize energy cost. However, washer 206 has a vent, such as vent 210, to carry hot vapors away from the PET flakes. Shredder 202 may also include a vent for hot vapors associated with the shredding process.
It should be understood that the present invention may be modified as would occur to one of ordinary skill in the art without departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.

Claims

What is claimed is:
1. A method of determining whether plastic material obtained from used containers is free of volatiles of contaminants so that the material can be recycled to produce new containers, comprising the steps of: providing a supply of used containers; breaking each container into pieces of said material, said breaking causing said pieces to be heated to temperatures sufficient to vaporize the contaminants and emit volatiles thereof; and testing said volatiles to determine the presence or absence of said contaminants in said materials.
2. The method of claim 1 wherein the step of breaking comprises shredding the plastic material into strips.
3. The method of claim 1 wherein the step of breaking comprises forming flakes of the plastic material.
4. The method of claim 1 wherein the step of testing comprises the steps of: directing fluid at said pieces of materials in order to displace at least a portion of volatiles therein to positions spaced from the materials to form a sample cloud at a region spaced from the materials; evacuating a sample of said portion of the volatiles so displaced by applying suction to the sample cloud at said region spaced from said materials; and analyzing the sample evacuated to determine the presence or absence of said contaminants in the materials.
5. The method of claim 1 including the additional steps prior to the step of testing of: washing the pieces of plastic material in a heated fluid to remove a portion of contaminants therein, and maintaining the temperature of washed material below a level that would emit detectable levels of vapors derived from the plastic material itself.
6. The method of claim 5 wherein the plastic material is PET and the temperature is maintained below about 650"F.
7. A method of determining whether plastic material obtained from used containers is free of volatiles of contaminants so that the material can be recycled to produce new containers, comprising the steps of: providing a supply of materials from which used containers were fabricated; washing the supply of materials in a heated fluid to remove a portion of contaminants therein; maintaining the temperature of washed material below a level that would emit detectable levels of vapors derived from the plastic material itself but high enough to emit detectable levels of volatiles of the contaminants; and testing the volatiles of the contaminants to determine the presence or absence of contaminants in the materials.
8. The method of claim 7 wherein the plastic material is PET and the temperature is maintained up to about 650'F.
9. The method of claim 7 wherein the step of testing comprises the steps of: directing fluid at said pieces of materials in order to displace at least a portion of volatiles therein to positions spaced from the materials to form a sample cloud at a region spaced from the materials; evacuating a sample of said portion of the volatiles so displaced by applying suction to the sample cloud at said region spaced from said materials; and analyzing the sample evacuated to determine the presence or absence of said contaminants in the materials.
10. A method of determining whether plastic material moving along a conveyor obtained from used containers is free of volatiles of contaminants and sorting that material so that the material can be recycled to produce new containers, comprising the steps of: providing a supply of used containers to the conveyor; testing each used container for volatiles of contaminants therein; separating and removing contaminated containers from the conveyor; breaking each remaining container into pieces of said material, said breaking causing said pieces to be heated to temperatures sufficient to vaporize the contaminants and emit volatiles thereof; testing said volatiles to determine the presence or absence of said contaminants in said materials; separating and removing pieces of material containing contaminants from the conveyor; washing the pieces of materials remaining on the conveyor in a heated fluid to remove a portion of contaminants therein; testing the volatiles of the contaminants from pieces which have been washed to determine the presence or absence of contaminants in the materials; and separating pieces containing contaminants from those not containing contaminants.
11. The method of claim 10 wherein each step of testing comprises the steps of: directing fluid at said container or pieces of materials in order to displace at least a portion of volatiles therein to positions spaced from the materials to form a sample cloud at a region spaced from the materials; evacuating a sample of said portion of the volatiles so displaced by applying suction to the sample cloud at said region spaced from said materials; and analyzing the sample evacuated to determine the presence or absence of said contaminants in the materials.
12. The method of claim 11 including the additional step of: maintaining the temperature of washed material below a level that would emit detectable levels of vapors derived from the plastic material itself.
13. The method of claim 12 wherein the plastic material is PET and the temperature is maintained below about 650βF.
14. The method of claim 10 including the additional step of: maintaining the temperature of washed material below a level that would emit detectable levels of vapors derived from the plastic material itself.
15. The method of claim 14 wherein the plastic material is PET and the temperature is maintained below about 650'F.
16. A system for determining whether plastic material moving along a conveyor obtained from used containers is free of volatiles of contaminants and sorting that material so that the material can be recycled to produce new containers, comprising: a supply of used containers on the conveyor; first means for testing each used container for volatiles of contaminants therein; first means for separating and removing contaminated containers from the conveyor; means for breaking each remaining container into pieces of said material, said breaking causing said pieces to be heated to temperatures sufficient to vaporize the contaminants and emit volatiles thereof; second means for testing said volatiles to determine the presence or absence of said contaminants in said materials; second means for separating and removing pieces of material containing contaminants from the conveyor; means for washing the pieces of materials remaining on the conveyor in a heated fluid to remove a portion of contaminants therein; third means for testing the volatiles of the contaminants of pieces which have been washed to determine the presence or absence of contaminants in the materials; and third means for separating pieces containing contaminants from those not containing contaminants.
17. The system of claim 16 wherein each means for testing comprises: means for directing fluid at said container or pieces of materials in order to displace at least a portion of volatiles therein to positions spaced from the materials to form a sample cloud at a region spaced from the materials; means for evacuating a sample of said portion of the volatiles so displaced by applying suction to the sample cloud at said region spaced from said materials; and means for analyzing the sample evacuated to determine the presence or absence of said contaminants in the materials.
18. The system of claim 17 further including: means for maintaining the temperature of washed material below a level that would emit detectable levels of vapors derived from the plastic material itself.
19. The system of claim 18 wherein the plastic material is PET and the temperature is maintained below about 650*F.
20. The system of claim 16 further including: means for maintaining the temperature of washed material below a level that would emit detectable levels of vapors derived from the plastic material itself.
21. The system of claim 20 wherein the plastic material is PET and the temperature is maintained below about 650*F.
PCT/US1995/006765 1994-05-31 1995-05-30 A method and system for sampling and determining the presence of contaminants in recyclable plastic materials WO1995032780A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AT95921473T ATE204499T1 (en) 1994-05-31 1995-05-30 METHOD AND SYSTEM FOR SAMPLING FOR DETERMINING CONTAMINATION IN CONTAINERS
AU26545/95A AU681295B2 (en) 1994-05-31 1995-05-30 A method and system for sampling and determining the presence of contaminants in recyclable plastic materials
DE1995622325 DE69522325T2 (en) 1994-05-31 1995-05-30 SAMPLING METHOD AND SYSTEM FOR DETERMINING IMPURITIES IN CONTAINERS
EP19950921473 EP0762917B1 (en) 1994-05-31 1995-05-30 A method and system for sampling and determining the presence of contaminants in recyclable plastic materials
BR9507789A BR9507789A (en) 1994-05-31 1995-05-30 Process and system for determining whether plastic material from used containers is free of volatile contaminants and selecting that material in such a way that the material can be recycled to produce new containers
JP50110496A JP3022600B2 (en) 1994-05-31 1995-05-30 Method and system for sampling a recyclable plastic material and determining the presence of contaminants in the material
PL95317433A PL179604B1 (en) 1994-05-31 1995-05-30 Method od and system sampling and determining presence of impurities in recycled plastic materials
KR1019960706747A KR100264138B1 (en) 1994-05-31 1995-05-30 A method and system for sampling and determining the presence of contaminants in recyclable plastic materials
MXPA/A/1996/005727A MXPA96005727A (en) 1994-05-31 1996-11-21 A method and system for sampling and determining the presence of plastic contaminants that can be recycled

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/251,373 US5569606A (en) 1992-06-01 1994-05-31 Method and system for sampling and determining the presence of contaminants in recyclable plastic materials
US08/251,373 1994-05-31

Publications (2)

Publication Number Publication Date
WO1995032780A2 true WO1995032780A2 (en) 1995-12-07
WO1995032780A3 WO1995032780A3 (en) 1996-04-25

Family

ID=22951678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/006765 WO1995032780A2 (en) 1994-05-31 1995-05-30 A method and system for sampling and determining the presence of contaminants in recyclable plastic materials

Country Status (13)

Country Link
US (3) US5569606A (en)
EP (1) EP0762917B1 (en)
JP (1) JP3022600B2 (en)
KR (1) KR100264138B1 (en)
AT (1) ATE204499T1 (en)
AU (1) AU681295B2 (en)
BR (1) BR9507789A (en)
DE (1) DE69522325T2 (en)
ES (1) ES2159639T3 (en)
PL (1) PL179604B1 (en)
TW (1) TW272150B (en)
WO (1) WO1995032780A2 (en)
ZA (1) ZA954366B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011466A1 (en) * 1998-08-19 2000-03-02 Plastics Forming Enterprises, Inc. Quality control system for monitoring and control of contaminants in recycled plastics
JP2000509339A (en) * 1996-04-01 2000-07-25 プラスティック テクノロジーズ インコーポレイテッド Improved decontamination method of recycled polyethylene terephthalate by particle size reduction
US9708463B2 (en) 2015-01-14 2017-07-18 International Business Machines Corporation Recyclate verification

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899392A (en) * 1996-11-12 1999-05-04 Plastic Technologies, Inc. Decontamination of RPET through particle size reduction
EP0938665B1 (en) * 1996-11-18 2003-05-21 Thermedics Detection Inc. Water container inspection
US6052884A (en) * 1997-06-30 2000-04-25 National Railroad Passenger Corporation Conveyorized system for rebuilding tread and disc brake actuator units for use in railway cars
EP1150257A1 (en) * 2000-04-29 2001-10-31 Prokent AG Device for automatically collecting empty containers
BR0017236A (en) 2000-05-02 2003-03-11 Plastic Techn Inc Process for removing contaminants from rpet flakes
AT411682B (en) * 2002-06-05 2004-04-26 Bacher Helmut METHOD FOR PRODUCING RECYCLED PLASTIC MATERIAL AND DEVICE FOR IMPLEMENTING THE METHOD
DE20321865U1 (en) 2003-10-13 2012-01-31 Krones Aktiengesellschaft Plastic recycling with controllable decontamination
DE10348145A1 (en) * 2003-10-13 2005-05-19 Krones Ag Plastic recycling with controllable decontamination
DE10348144A1 (en) * 2003-10-13 2005-05-19 Krones Ag PET bottle recycling
US7612161B2 (en) * 2006-04-24 2009-11-03 Phoenix Technologies International, Llc Method for treating extremely small particles of plastic
RU2450871C2 (en) * 2007-10-16 2012-05-20 Кхс Аг Cell for vessel, particularly, cell for bottle and basket with such cells
US20100101661A1 (en) * 2008-10-28 2010-04-29 Eco Rebox Llc Reusable shipping and packing materials and method of use
US20100063887A1 (en) * 2008-09-10 2010-03-11 MEK Enterprises, LLC Method of reusing shipping and packing materials
US20100153220A1 (en) * 2008-09-10 2010-06-17 Eco Rebox Llc Method of reusing shipping and packing materials
US20100117267A1 (en) * 2008-11-13 2010-05-13 Schworm Henry A Process for pelletizing pet
DE102009003847A1 (en) * 2009-04-29 2010-11-04 Krones Ag Apparatus and method for discharging objects from a moving conveyor
DE102009003876A1 (en) * 2009-05-04 2010-11-18 Wincor Nixdorf International Gmbh Device for cleaning reverse vending machines and method for doing so
US8063374B2 (en) * 2009-09-22 2011-11-22 California Polytechnic Corporation Systems and methods for determining recycled thermoplastic content
IT1396699B1 (en) * 2009-11-19 2012-12-14 Unitec Spa IMPROVED PLANT FOR CLEANING CONTAINERS FOR VEGETABLE PRODUCTS.
ES2399021B1 (en) * 2011-09-09 2014-03-05 Fundación Andaltec I+D+I PROCEDURE FOR IDENTIFICATION OF MATERIALS THROUGH SENSORY INTEGRATION.
EP3204898A1 (en) * 2014-10-09 2017-08-16 Tetra Laval Holdings & Finance SA Quality monitoring in a packaging line
US10090145B2 (en) * 2016-07-08 2018-10-02 Enos Engineering, LLC System and method for testing the chemical content of plastic containers moving along a test line
CN110788025A (en) * 2019-11-14 2020-02-14 广西立盛茧丝绸有限公司 Fluorescence spectrum cocoon selection method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000862A1 (en) * 1986-08-04 1988-02-11 The Coca-Cola Company Methods of discriminating between contaminated and uncontaminated containers
US4834194A (en) * 1987-11-13 1989-05-30 Manchak Frank Method and apparatus for detection of volatile soil contaminants in situ
EP0376119A2 (en) * 1988-12-27 1990-07-04 COBARR S.p.A. A method for recycling PET beverage bottles
US5110055A (en) * 1989-04-03 1992-05-05 Partek Corporation Method and apparatus for cleaning thermoplastic material for reuse
WO1992008118A1 (en) * 1990-10-26 1992-05-14 E.I. Du Pont De Nemours And Company System and method for monitoring the concentration of volatile material dissolved in a liquid
US5143308A (en) * 1991-03-26 1992-09-01 Plastic Recycling Alliance, Lp Recycling system
US5218856A (en) * 1992-03-06 1993-06-15 Axiom Analytical, Inc. Analysis of liquid-carried impurities by means of sparging
US5224658A (en) * 1991-12-20 1993-07-06 Amoco Corporation Method and apparatus for releasing fluid inclusion volatiles from rock samples
WO1993024841A1 (en) * 1992-06-01 1993-12-09 The Coca-Cola Company A method and system for sampling and determining the presence of compounds in containers

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1198488A (en) * 1966-08-23 1970-07-15 Hans Peter Olof Unger Improvements in or relating to Automated Analysis
US3763877A (en) * 1971-11-12 1973-10-09 Thermo Electron Corp Fluid flow control system
US3845309A (en) * 1973-09-10 1974-10-29 Thermo Electron Corp Fluorescent gas analyzer
US4193963A (en) * 1974-09-20 1980-03-18 Petroleo Brasileiro S.A.-Petrobras Apparatus for the determination of chemical compounds by chemiluminescence with ozone
US4843016A (en) * 1974-10-07 1989-06-27 Thermedics Inc. Detection system and method
US4098463A (en) * 1977-02-03 1978-07-04 Metals & Plastics, Inc. Temperature-controlled comminuting method and apparatus
GB1596784A (en) * 1977-04-12 1981-08-26 British American Tobacco Co Gas detection
US4265855A (en) * 1978-11-03 1981-05-05 Electro-Nucleonics, Inc. System for performing immunochemical and other analyses involving phase separation
US4761268A (en) * 1984-04-12 1988-08-02 Fisher Scientific Company Liquid handling
US4775633A (en) * 1984-04-26 1988-10-04 Thermedics Inc. Detection of hydrazine compounds in gaseous samples by their conversion to nitric oxide-yielding derivatives
US4580440A (en) * 1984-07-17 1986-04-08 British Aerospace Public Company Limited, Bracknell Division Method of detecting a contraband substance
US4858768A (en) * 1986-08-04 1989-08-22 The Coca-Cola Company Method for discrimination between contaminated and uncontaminated containers
US5152963A (en) * 1986-08-04 1992-10-06 Wreyford Donald M Total sulfur analyzer system operative on sulfur/nitrogen mixtures
US4880120A (en) * 1987-09-02 1989-11-14 The Coca-Cola Company Plastic container inspection process
US4871118A (en) * 1988-11-02 1989-10-03 Simplicity Engineering, Inc. Machine for densifying plastic containers and the like
US4909089A (en) * 1988-11-18 1990-03-20 Thermedics Inc. Walk-in inspection apparatus for producing air samples
US4899573A (en) * 1989-02-24 1990-02-13 American Glass Research, Inc. Apparatus and an associated method for leak and volume inspection of containers
ATE95108T1 (en) * 1989-03-28 1993-10-15 Govoni Spa DEVICE FOR HANDLING, SORTING AND RECOVERING CRUSHED AND NON-CRUSHED PLASTIC CONTAINERS.
US4909090A (en) * 1989-04-24 1990-03-20 Thermedics Inc. Vapor sampling probe
US5108705A (en) * 1990-03-12 1992-04-28 Thermedics Inc. Vapor detection with high speed gas chromatography
US5115987A (en) * 1991-02-19 1992-05-26 Mithal Ashish K Method for separation of beverage bottle components
CA2038481C (en) * 1991-03-18 1993-07-06 Changize Sadr Method and apparatus for recycling thermoplastic containers

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000862A1 (en) * 1986-08-04 1988-02-11 The Coca-Cola Company Methods of discriminating between contaminated and uncontaminated containers
US4834194A (en) * 1987-11-13 1989-05-30 Manchak Frank Method and apparatus for detection of volatile soil contaminants in situ
US4834194C1 (en) * 1987-11-13 2002-09-03 Manchak Frank Method and apparatus for detection of volatile soil contaminants in situ
EP0376119A2 (en) * 1988-12-27 1990-07-04 COBARR S.p.A. A method for recycling PET beverage bottles
US5110055A (en) * 1989-04-03 1992-05-05 Partek Corporation Method and apparatus for cleaning thermoplastic material for reuse
WO1992008118A1 (en) * 1990-10-26 1992-05-14 E.I. Du Pont De Nemours And Company System and method for monitoring the concentration of volatile material dissolved in a liquid
US5143308A (en) * 1991-03-26 1992-09-01 Plastic Recycling Alliance, Lp Recycling system
US5224658A (en) * 1991-12-20 1993-07-06 Amoco Corporation Method and apparatus for releasing fluid inclusion volatiles from rock samples
US5218856A (en) * 1992-03-06 1993-06-15 Axiom Analytical, Inc. Analysis of liquid-carried impurities by means of sparging
WO1993024841A1 (en) * 1992-06-01 1993-12-09 The Coca-Cola Company A method and system for sampling and determining the presence of compounds in containers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IBM TECHNICAL DISCLOSURE BULLETIN, vol. 36, no. 5, USA, pages 379-380, 'ion trap apparatus' *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000509339A (en) * 1996-04-01 2000-07-25 プラスティック テクノロジーズ インコーポレイテッド Improved decontamination method of recycled polyethylene terephthalate by particle size reduction
WO2000011466A1 (en) * 1998-08-19 2000-03-02 Plastics Forming Enterprises, Inc. Quality control system for monitoring and control of contaminants in recycled plastics
US6533124B1 (en) 1998-08-19 2003-03-18 Plastics Forming Enterprises, Inc. Quality control system for monitoring and control of contaminants in recycled plastics
US9708463B2 (en) 2015-01-14 2017-07-18 International Business Machines Corporation Recyclate verification
US9778244B2 (en) 2015-01-14 2017-10-03 International Business Machines Corporation Recyclate verification
US9783645B2 (en) 2015-01-14 2017-10-10 International Business Machines Corporation Recyclate verification
US9908989B2 (en) 2015-01-14 2018-03-06 International Business Machines Corporation Recyclate verification

Also Published As

Publication number Publication date
PL179604B1 (en) 2000-10-31
EP0762917A2 (en) 1997-03-19
WO1995032780A3 (en) 1996-04-25
MX9605727A (en) 1998-05-31
JP3022600B2 (en) 2000-03-21
TW272150B (en) 1996-03-11
JPH09511833A (en) 1997-11-25
DE69522325T2 (en) 2002-05-08
US5569606A (en) 1996-10-29
ATE204499T1 (en) 2001-09-15
AU681295B2 (en) 1997-08-21
KR970703182A (en) 1997-07-03
ES2159639T3 (en) 2001-10-16
PL317433A1 (en) 1997-04-14
US5733783A (en) 1998-03-31
ZA954366B (en) 1996-02-05
US5688693A (en) 1997-11-18
BR9507789A (en) 1997-09-23
DE69522325D1 (en) 2001-09-27
AU2654595A (en) 1995-12-21
EP0762917B1 (en) 2001-08-22
KR100264138B1 (en) 2000-08-16

Similar Documents

Publication Publication Date Title
US5688693A (en) Method and system for sampling and determining the presence of contaminants in recyclable plastic materials
US5318911A (en) System for sampling and determining the presence of compounds in containers
US5405014A (en) Method and device for the detection and identification of harmful substances in beverage bottles in filling lines
WO1994019679A1 (en) A method and system for sampling and determining the presence of compounds
IE882550L (en) Plastic container inspection process
US5472882A (en) Method and system for sampling and determining the presence of salts of ammonia and amines in containers
US5376550A (en) Method and system for sampling and determining the presence of compounds in containers
US6013228A (en) Method and system for sampling and determining the presence of compounds in containers using a pulsed fluorescence detector
US6130093A (en) Water container inspection
KR0184531B1 (en) Method and system for sampling and determining the presence of contaminants in containers
MXPA96005727A (en) A method and system for sampling and determining the presence of plastic contaminants that can be recycled
MXPA99004612A (en) Water container inspection

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU BR JP KR MX PL

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AU BR JP KR MX PL

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1995921473

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/1996/005727

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 1995921473

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995921473

Country of ref document: EP