WO1995033863A1 - Apparatus for deposition of thin-film, solid state batteries - Google Patents

Apparatus for deposition of thin-film, solid state batteries Download PDF

Info

Publication number
WO1995033863A1
WO1995033863A1 PCT/US1995/006737 US9506737W WO9533863A1 WO 1995033863 A1 WO1995033863 A1 WO 1995033863A1 US 9506737 W US9506737 W US 9506737W WO 9533863 A1 WO9533863 A1 WO 9533863A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
deposition
substrate
battery
chambers
Prior art date
Application number
PCT/US1995/006737
Other languages
French (fr)
Inventor
Stanford R. Ovshinsky
Herbert Ovshinsky
Rosa Young
Original Assignee
Ovonic Battery Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ovonic Battery Company, Inc. filed Critical Ovonic Battery Company, Inc.
Priority to CA002190856A priority Critical patent/CA2190856C/en
Priority to AU28148/95A priority patent/AU684192B2/en
Priority to DE69529284T priority patent/DE69529284D1/en
Priority to KR1019960706934A priority patent/KR100326345B1/en
Priority to EP95923670A priority patent/EP0764221B1/en
Publication of WO1995033863A1 publication Critical patent/WO1995033863A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/188Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates generally to thin-film, solid-state batteries and more specifically to apparatus for the deposition of thin-film, solid-state batteries.
  • Rechargeable batteries are used in almost every aspect of daily life.
  • high charge capacity batteries will be greater than ever before. Indeed, to make mass use of electric vehicles economically feasible, very high specific capacity may be critically necessary.
  • weight is a significant factor. Because a large component of the total weight of the vehicle is the weight of the batteries, reducing the weight of the cells is a significant consideration in designing batteries to power electric vehicles.
  • a rechargeable electrochemical cell is ideally suited to serve as a portable power source due to its small size, light weight, high power capacity and long operating life.
  • a rechargeable cell may operate as an "install and forget" power source. With the exception of periodic charging, such a rechargeable cell typically performs without attention and rarely becomes the limiting factor in the life of the device it powers.
  • Liquid electrolyte systems have been around for many decades and are the most well known to the general public.
  • Examples of liquid electrolyte rechargeable battery systems include lead-acid, nickel cadmium, and the more recent nickel-metal hydride systems.
  • a more recent advancement is the solid electrolyte rechargeable battery systems.
  • the solid electrolyte devices have several distinct advantages over those based on liquid electrolytes.
  • a solid electrolyte is classified by its type of movable ion, such as Li ⁇ + > -conductive solid electrolyte, Ag ⁇ + > -conductive solid electrolyte, Cu ⁇ + > -conductive solid electrolyte, H ⁇ + > -conductive solid electrolyte, etc.
  • a solid electrochemical element is constituted by combining one of these solid electrolytes with an appropriate electrode material.
  • Oxide ion conductors such as zirconia are operated at high temperatures due to their low conductivity at ambient temperatures.
  • Chloride ion conductors such as PbCI2 and BaCI2 have similar temperature restrictions.
  • Silver ion such as AgBr, AgCl, and Agl also show low room temperature ionic conductivity.
  • lithium-polymer batteries have received the most widespread interest.
  • Reports in 1979 that lithiated poly-ethylene-oxide (PEO) possesses lithium ion conductivity raised the expectations for a solid state battery employing PEO as solid electrolyte. Indeed, if PEO, or other polymers, were a true solid electrolyte with practical ionic conductivities and a cationic transfer number of 1 , a stable interface with the lithium electrode and good charging uniformity could be realized.
  • the expectations no doubt, were stimulated by the relative success of the true solid electrolyte "B" Alumina, in the Sodium Sulphur battery.
  • plasticized polymers to enhance conductivity at room temperature.
  • plasticized polymers is the correct material science terminology for the materials, they are in effect no different than a battery separator filled with organic solvent and electrolyte. In this case, we are back to liquid filled systems with all the old unsolved fundamental problems and several new ones.
  • Solid electrolytes consist of solid atomic structures which selectively conduct a specific ion through a network of sites in a two or three dimensional matrix. If the activation energy for mobility is sufficiently low, the solid electrolyte can serve as both the separator and electrolyte in a battery. This can allow one to fabricate an all solid state cell. An important aspect of such electrolytes is that they selectively conduct only one type of ion. If that ion features reversible electrochemistry witrr both the positive and negative electrode of the battery, and if the solid electrolyte itself is inert to the electrodes, the cell will enjoy a uniform and reversible electrochemistry with no composition change and no passivation or side reactions.
  • the electrode area required for a 20 kwh battery is 42 m ⁇ 2 > for Ni-Cd batteries and is 1610 m ⁇ 2 > for Li-Polymer batteries.
  • the problem can be diagnosed as follows: 1) lithium plating is dendritic, 2) dendrites eventually short through the separator, 3) shorted cells heat up during charging, 4) shorted cells will go into reversal during full battery discharge, 5) low capacity cells will go into reversal during full battery discharge, 6) in reversal, lithium is likely to plate on the cathode which can cause direct chemical reaction between cathode material and lithium, 7) processes 3 and 6 can generate enough heat to melt lithium (165 Centigrade), and 8) molten lithium is an extremely strong reducing agent which will react with most organic and inorganic materials.
  • An explosion could occur depending on: (a) the amount of lithium in the cell, (b) the surface to volume aspect ratio of the cell, (c) the reactivity of the other cell components to lithium, (d) the vapor pressure of the products, and (e) the vent design.
  • Battery design should be aimed at minimizing the risk of lithium melt down. Given that it is extremely unlikely that lithium melt down can be completely avoided in mass usage of large rechargeable lithium batteries, it is essential to guarantee non explosion when the melt down does occur. Dry polymer electrolyte offers some improvement with regard to exposition when compared to high vapor pressure liquid electrolyte. However, that improvement is counteracted by the need for a very thin separator. Overall, the likelihood of ensuring explosion free melt downs in large cells and batteries is diminutive.
  • the separator occupies 30% of the stack volume, carbon is added to the positive electrode in concentration of up to 30% and the positive electrode utilization is poor.
  • the practical energy density is likely to 5 be considerably lower than of what can be achieved with liquid electrolyte.
  • Estimated deliverable energy density of lithium polymer batteries is 15-20% of the theoretical energy density. This translates to (using 485 Wh/Kg as theoretical maximum) approximately 70 to 100 Wh/Kg at best.
  • compromises that will have to be made to improve manufacturability, safety and cycle life beyond the l o current laboratory state-of-the-an technology. This will have the effect to reduce the practical energy density to even below the values proposed above.
  • the power capability of a battery depends upon the physical and chemical properties of the cell components as well as the cell design. Lithium polymer battery developers are trying to counteract the poor inherent conductivity of the polymer electrolytes by
  • Traction batteries are assembled from a string of individual cells connected in series. During both charge and discharge, the same amount of current will pass through all the cells. In practical manufacturing and usage, it is impossible to keep all cells at exactly the same state of charge. This forces a weak
  • Lithium batteries are very poor in this respect. Over discharge will result in plating lithium on the positive electrode which can result in a spontaneous chemical reaction with severe safety implications. Overcharge is likely to result in electrolyte degradation that can generate some volatile gasses as well as increase cell impedance. These problems are particularly severe for lithium cells because: 1) degradation occurs during cycle life, therefore, even if initial capacities are matched very closely, it is unreasonable to expect that the degradation rate will be identical for all cells, 2) the cells tend to develop soft or hard shorts, thereby making it impossible to maintain the cells at the same state of charge at all times, and 3) cell capacity is dependent on temperature, therefore cells that are physically cooler due to their location will deliver less capacity than others.
  • lithium polymer batteries if ever made commercially, will be considerably more expensive than Ni-Cd batteries considering that: 1) primary Li-Mn02 cells, which are in mass production, are still more expensive than Ni-Cd cells, 2) the purity requirements for a secondary cell are much higher than that of a primary cell, and 3) the electrode area per watt-hour of a lithium polymer secondary battery will be approximately an order of magnitude larger than that of a primary Li-Mn02 battery. Even more problematic than the cost factor is the low cycle life of the lithium polymer batteries, which is particularly important in EV applications. Small rechargeable lithium batteries employing organic liquid electrolyte have delivered 100 to 400 cycles in laboratory tests.
  • lithium polymer electrolyte batteries of the same size could be made to deliver a comparable number of cycles.
  • all the data published to date on lithium polymer batteries was run on cells with a very large amount of excess lithium, therefore, no conclusion can be drawn at this stage.
  • cycle life of a large multi cell battery is likely to be considerably lower than that of a small two-cell battery. Additional reduction of the expected cycle life results from consideration of the fact that the battery will be limited by the weakest cell, and as previously mentioned, the likelihood of temperature or electrical imbalance is high. Further, power may degrade faster than capacity, so cycle life could become limited due to an unacceptable drop in power. Therefore, it is probably a fair assumption that if a full size battery was built at today's state-of-the-art technology, it could possibly make 100 cycles or so, which is about an order of magnitude short of what is required for an EV.
  • lithium-polymer batteries will be inadequate to meet today's requirements for a universally acceptable, thin-film, solid state rechargeable secondary battery system, other solid state systems need to be developed. Additionally, there is a need for an apparatus to easily and economically fabricate such batteries.
  • the instant invention comprises a multi-chambered deposition apparatus for depositing solid-state, thin-film battery materials onto substrate material.
  • the apparatus minimally includes at least three distinct evacuable deposition chambers, which are physically interconnected in series.
  • the first deposition chamber is adapted to deposit a layer of battery electrode material having a first polarity onto the substrate.
  • the second deposition chamber is adapted to deposit a layer of solid-state electrolyte material onto the layer of battery electrode material deposited in the first chamber.
  • the third deposition chamber is adapted to deposit a layer of battery electrode material having an opposite polarity from that deposited in the first chamber onto the solid-state electrolyte.
  • the apparatus includes an evacuable substrate insertion chamber which is physically interconnected in series to the first deposition chamber.
  • the insertion chamber is adapted to hold one or more individual substrates and pass them to the first deposition chamber.
  • This second embodiment also includes an evacuable substrate retraction chamber which is physically interconnected in series to the third deposition chamber.
  • the retraction chamber is adapted to hold one or more individual substrates and remove them from the third deposition chamber.
  • the deposition apparatus includes an interconnective passageway connecting the retraction chamber and the insertion chamber such that the substrate may undergo multiple depositions by recycling the previously deposited substrate from the retraction chamber to the insertion chamber.
  • the deposition apparatus includes a fourth evacuable deposition chamber between the third deposition chamber and the retraction chamber.
  • the fourth chamber is adapted to deposit a top conductive battery terminal upon the second battery electrode layer.
  • the apparatus includes an evacuable payout chamber which is physically interconnected in series to the first deposition chamber.
  • the payout chamber holds a roll of substrate material, which is unrolled and passed to said first deposition chamber.
  • this third embodiment includes an evacuable take-up chamber which is physically interconnected in series to the third deposition chamber.
  • the roll of substrate material upon which the solid-state battery material has been deposited passes from the third deposition chamber into the take-up chamber and is collected on a take-up mandrel.
  • This third embodiment of the apparatus can be adapted to deposit a plurality of solid state battery cells onto the substrate.
  • the first and third deposition chambers and the payoff and take-up chambers are, respectively, reversible. Therefore, when the roll of substrate material has undergone one pass through the deposition chambers, the direction of the substrate can be reversed and the substrate thereby passed through the deposition chambers again.
  • the take-up chamber becomes the payoff chamber
  • the payoff chamber becomes the take-up chamber
  • the third deposition chamber becomes the first deposition chamber and deposits the battery electrode material having the first polarity onto the substrate
  • the first deposition chamber becomes the third deposition chamber and deposits the opposite polarity battery electrode material onto the substrate.
  • the apparatus of this third embodiment may also include one or both of a fourth evacuable deposition chamber positioned between said first deposition chamber and said payoff chamber and a fifth evacuable deposition chamber positioned between said third deposition chamber and the take-up chamber.
  • the fourth and fifth deposition chambers are adapted to deposit current collector layers between the second electrode layer of a first deposited battery and the first electrode of the next deposited battery and also a top conductive battery terminal upon the second battery electrode layer of the last deposited battery.
  • a fourth embodiment which is essentially a modification of the third embodiment, is adapted to deposit a plurality of solid state battery cells onto the substrate.
  • the payoff and take-up chambers are again reversible so that when said roll of substrate material has undergone one pass through said deposition chambers, the direction of travel of said substrate can be reversed and said substrate can undergo another pass through the deposition chambers.
  • two additional deposition chambers identical to the first and the third deposition chambers, are included in the apparatus.
  • the additional chambers are activated when the direction of travel of the roll of substrate material is reversed.
  • the additional reverse direction deposition chambers are positioned on the opposite side of the second deposition chamber from its forward direction counterpart.
  • the fourth embodiment can also include an additional set of evacuable deposition chambers, which are positioned on opposite sides of the second deposition chamber.
  • the additional set of chambers are adapted to deposit a conductive current collector layer atop a deposited battery cell.
  • One chamber is positioned to deposit the conductive layer when the substrate is traveling in the forward direction and the other to deposit the conductive layer when the substrate is traveling in the reverse direction.
  • the deposition chambers of the instant invention are preferably adapted to deposit materials by at least one method selected from the group consisting of evaporation, chemical vapor deposition, physical vapor deposition, microwave plasma enhanced chemical vapor deposition, sputtering, laser ablation, spray coating, or plasma spraying.
  • FIG. 1 is a cross-sectional depiction of a first embodiment of a solid state battery of the type to be produced by the deposition apparatus of the instant invention and specifically illustrating the individual layers thereof;
  • FIG. 2 is a cross-sectional depiction of a second embodiment of a solid state battery of the type to be produced by the deposition apparatus of the instant invention and specifically illustrating the individual layers thereof, including plural electrochemical cells and current collectors therebetween;
  • FIG. 3 is a highly schematic depiction of a first embodiment of the instant invention, specifically indicating the positive and negative electrode deposition chambers, the solid-state electrolyte deposition chamber, and interconnective gas gates therebetween;
  • FIG. 4 is a highly schematic depiction of a second embodiment of the instant invention specifically illustrating a multi-pass deposition apparatus for depositing multi-celled batteries atop pre-cut pieces of substrate material, in addition to those features of FIG. 3, this apparatus includes a substrate insertion chamber, a substrate retraction chamber, an interconnective passageway connecting said retraction chamber and said insertion chamber and an additional deposition chambers in which current collector layers are deposited;
  • FIG. 5 is a highly schematic depiction of a third embodiment of the instant invention specifically illustrating a multi-pass deposition apparatus for depositing multi-celled batteries atop elongated webs of substrate material, in addition to those features of FIG. 3, this apparatus includes substrate take-up and payout chambers and two additional deposition chambers in which current collector layers are deposited;
  • FIG. 6 is a highly schematic depiction of a fourth embodiment of the instant invention specifically illustrating another multi-pass deposition apparatus for depositing multi-celled batteries atop elongated webs of substrate material, in addition to those features of FIG. 5, this apparatus includes two additional deposition chambers in which layers of positive and negative electrode materials are deposited.
  • FIG. 7 is a highly schematic depiction of a fifth embodiment of the instant invention specifically illustrating yet another multi-pass deposition apparatus for depositing multi-celled batteries atop precut webs of substrate material, in addition to those features of FIG. 4, this apparatus includes two additional deposition chambers in which layers of positive and negative electrode materials are deposited, it should be noted that since the substrate travels back and forth from insertion chamber to retraction chamber through the deposition chambers, no connective passageway between the insertion and retraction chambers is required.
  • FIG. 1 is a cross-sectional depiction of a thin-film solid state battery of the type to be deposited by the apparatus of the present invention.
  • reference numeral 1 is the substrate of the thin-film battery.
  • the substrate provides support for the battery and may also serve as the bottom electrical terminal of the battery.
  • Substrate 1 may be formed from an electrically conductive metal such as aluminum, nickel, copper or stainless steal, or it may be formed from a light weight, electrically insulating polymer or ceramic material. If the substrate 1 is formed of an electrically insulating material or is reactive with the battery electrode materials, then an electrically conductive bottom battery terminal layer 2 is deposited onto the substrate.
  • the material used to form the battery terminal layer 2 may be an electrically conductive metal such as aluminum, nickel, copper, molybdenum or may even be an electrically conductive ceramic or oxide material.
  • the substrate 1 plus any battery terminal layer 2 should be only as thick as needed to perform their support and conduction functions. Any additional thickness will only increase the "dead weight" of the battery.
  • the total thickness of the substrate 1 plus the battery terminal layer 2 will not be greater than about 200 microns and preferably not greater than about 50 to 100 microns.
  • the battery terminal layer 2 is preferably between 0.5 and 5 microns thick.
  • Deposited on top of the substrate 1 and battery terminal layer 2 is at least one multi-layered electrochemical cell. Each electrochemical cell includes a thin-film negative electrode layer 3, a thin-film positive electrode layer 5 and a thin-film solid electrolyte proton conductive layer 4.
  • the thin-film negative electrode layer 3 is typically between about 1 and 15 microns thick and is formed from a material which electrochemically adsorbs and desorbs ions such as ionic hydrogen or lithium during charging and discharging thereof, respectively.
  • the layer is formed from electrochemical hydrogen storage materials such as metal hydride materials.
  • metal hydride materials may be any of those already known any used in liquid electrolyte nickel-metal hydride batteries. These materials may be AB2 or AB5 type metal hydride materials. They may be amorphous, polycrystalline, microcrystalline, nanocrystalline, single crystal or multi-structural materials. They may include only a single compositional phase or may include multiple compositional phases.
  • new metal hydride systems can be developed to take advantage of the environmental differences between an alkaline liquid electrolyte system and the new thin-film solid electrolyte systems.
  • a liquid electrolyte system there is generally a problem with corrosion of the electrode due to the caustic nature of the alkaline electrolyte. Therefore, elements which provide corrosion resistance must be added to the negative electrode material to mitigate corrosion damage.
  • the solid electrolyte system of the present invention no such corrosion problems will occur due to the absence of caustic liquids and as such, no corrosion inhibitor materials will need to be added to the negative electrode.
  • metallic lithium or lithium intercalated carbon can be used as the negative electrode layer 3.
  • the positive electrode layer 5 is typically between 5 and 20 microns thick and is formed from a material which electrochemically desorbs and adsorbs ions such as ionic hydrogen or lithium during charging and discharging thereof, respectively.
  • the layer is formed from a transition metal hydroxide such as nickel hydroxide material.
  • the nickel hydroxide material can be any of those material known in the prior art for use in rechargeable battery systems. They may also be advanced active materials like the locally ordered, disordered, high capacity, long cycle life positive electrode material disclosed in U.S. patent application Ser. No.s 7/975,031 filed Nov. 12, 1992 and 8/027,973 filed Mar. 8, 1993, the disclosures of which are incorporated herein by reference.
  • These materials include a solid solution nickel hydroxide electrode material having a multiphase structure and at least one compositional modifier to promote said multiphase structure.
  • the multiphase structure comprises at least one polycrystalline gamma -phase including a polycrystalline T-phase unit cell comprising spacedly disposed plates with at least one ion incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2 ⁇ + > oxidation state and a 3.5 ⁇ + > or greater, oxidation state.
  • the compositional modifier is a metal, a metallic oxide, a metallic oxide alloy, a metal hydride, and/or a metal hydride alloy.
  • the compositional modifier is chosen from the group consisting of Al, Bi, Co, Cr, Cu, Fe, In, LaH3, Mn, Ru, Sb, Sn, TiH2, TiO, Zn and mixtures thereof. More preferably, at least three of these compositional modifiers are used.
  • the at least one chemical modifier incorporated is preferably chosen from the group consisting of Al, Ba, Ca, Co, Cr, Cu, F, Fe, K, Li, Mg, Mn, Na, Sr, and Zn.
  • the positive electrode layer 5 can be formed from a material such as lithium nickelate (LiNi04), lithium cobaltate or (LiCo04) lithium manganate (LiMn04), vanadiom oxide, titanium disulfide, etc..
  • a thin-film solid state electrolyte layer 4 is typically between about 0.5 and 2 microns thick, but may be as thin as 1000 Angstroms if the layer onto which it is deposited has a low degree of surface roughness.
  • the type of ionic conductivity required of the solid electrolyte is dependent on the electrochemical reactions involved in the cell. Since the charging cycle electrode reactions of the rechargeable protonic battery are:
  • the solid state electrolyte layer 4 which separates the positive electrode layer 5 and the negative electrode layer 3 must be a proton conductor. That is, the solid electrolyte material must be capable of readily conducting or transporting protons from the positive electrode layer 5 to the negative electrode layer 3 while the battery is charging and from the negative electrode layer 3 to the positive electrode layer 5 while the battery is discharging.
  • the solid electrolyte layer 4 must also be electrically insulating so that the battery electrodes do not short. That is, the electrolyte also acts as the electrode separator. The present inventors have found that a hydrogenated electrical insulator has all of the characteristics required.
  • this is a hydrogenated silicon nitride material, but hydrogenated silicon oxide or hydrogenated silicon oxynitride may also be used.
  • the hydrogenated silicon nitride material has a composition, in atomic percent, of between about 20% and about 50% Hydrogen, between about 20% and about 40% silicon and about 20% to about 50%.
  • the ration of silicon to nitrogen is generally between about 2:1 and about 1 :2, but may be varied outside this range if specifically advantageous under the circumstances.
  • the charging electrode reactions are: C + Li ⁇ + > + e ⁇ - > -CHARGE > LiC ;and LiNi02-CHARGE > Ni02 + Li ⁇ + > + e ⁇ - > , therefore, in the lithium systems, a lithium conductor is needed.
  • Solid lithium conductors useful as the ionic conductor layer 4 are lithiated silicon nitride (Li8SiN4), lithium phosphate (LiP04), lithium titanium phosphate (LiTiP04) and lithium phosphonitride (LiPO 4-x N x where 0 ⁇ x ⁇ 1).
  • a top battery terminal layer 6 is deposited on top of the positive electrode layer 5.
  • the battery terminal layer 6 is typically between 1 and 5 microns thick and is formed from an electrically conductive material such as a metal or an electrically conductive ceramic or oxide. Specifically, aluminum, copper, molybdenum or nickel may be used.
  • FIG. 2 depicts a solid state battery of the type to be deposited by the apparatus of the instant invention containing multiple stacked electrochemical cells. The reference numeral of the layers of this battery correspond to those of the battery depicted in FIG. 1.
  • a layer of current collecting material 7 is deposited between positive electrode layer 5 of one cell and the negative electrode layer 3 of the adjacent cell.
  • This layer is formed of an electrically conductive material and is typically between 1000 angstroms and 0.5 microns thick.
  • this layer is formed from a metal such as aluminum, copper, molybdenum or nickel and is resistant to the conduction of protons.
  • FIG. 1 depicts a first, basic embodiment of the apparatus of the instant invention.
  • the basic apparatus includes three interconnected deposition chambers 8, 9 and 10.
  • the deposition chambers are physically interconnected by gas gates 12.
  • the gas gates allow a substrate to be passed form one deposition chamber to another while preventing cross contamination of gasses therebetween.
  • the chambers are specifically adapted to deposit battery materials onto the substrate.
  • the solid-state battery is deposited upon the substrate as it passes through the chambers. Initially, the substrate is passed to the first deposition chamber 8, where a first electrode layer (ref. numeral 3 of FIG. 1) of battery electrode material having first polarity (such as a positive battery electrode material) is deposited thereon.
  • a first electrode layer (ref. numeral 3 of FIG. 1) of battery electrode material having first polarity (such as a positive battery electrode material) is deposited thereon.
  • the substrate having the first battery electrode layer deposited thereon is now transported to the second deposition chamber 9 through gas gate 12.
  • a solid state electrolyte layer (ref. numeral 4 of FIG. 1 ) is deposited upon the first electrode layer.
  • the substrate with its deposited layers is passed through another gas gate 12 into the third deposition chamber 10.
  • a layer of electrode material (ref. numeral 5 of FIG. 1 ) of opposite polarity (such as a negative electrode material) from the first electrode is deposited upon the layer of solid-state electrolyte material.
  • the formed solid-state battery is optionally passed to a fourth chamber where a conductive top battery terminal layer (ref. numeral 6 of FIG. 1 ) is deposited upon the second electrode layer.
  • a conductive top battery terminal layer (ref. numeral 6 of FIG. 1 ) is deposited upon the second electrode layer.
  • the top terminal deposition chamber 17 and its attendant layer may be omitted if desired when the materials of the second battery electrode layer are also suitable to additionally act the top battery terminal.
  • the battery can be removed from the apparatus via another gas gate 12.
  • the deposition chambers and gas gates are formed from materials which are chemically inert to the materials of construction of the solid-state batteries and to the deposition processes used in the production thereof.
  • the contemplated deposition processes include, but are not limited to, sputtering, evaporation, chemical vapor deposition (CVD), microwave plasma enhanced CVD (PECVD), radio frequency PECVD, physical vapor deposition (PVD), plasma enhanced PVD, laser ablation, spray coating, and plasma spraying.
  • CVD chemical vapor deposition
  • PECVD microwave plasma enhanced CVD
  • PVD physical vapor deposition
  • PVD physical vapor deposition
  • plasma enhanced PVD laser ablation, spray coating, and plasma spraying.
  • the choice of deposition process will depend upon many factors such as materials to be deposited, precursor starting materials used, pressures/vacuums required by the process (in relation to the pressure of the process in the adjacent chambers), cost, electrochemical and physical quality of deposited materials, and others.
  • FIG. 4 there is depicted therein a second embodiment of the instant invention.
  • This embodiment comprises a deposition apparatus for depositing single or multi-celled solid-state batteries upon precut substrates, as needed. That is, the apparatus can be run in either single-pass or multi-pass mode, single-pass mode depositing a single-celled battery and multi-pass mode depositing multi-celled batteries.
  • precut is meant a substrate which is of relatively limited length and width dimensions when compared with the rolls of substrate web which can be as long as 2000 feet or more.
  • one or more precut substrates are loaded into the substrate insertion chamber 17 through a gas gate 12.
  • the insertion chamber 17 is physically interconnected in series to the first deposition chamber 8 and is adapted to hold one or more precut substrates and pass them sequentially through a gas gate 12 into the first electrode chamber 8. Once the substrate enters the first deposition chamber 8, deposition proceeds as described hereinabove with reference to FIG. 3.
  • the deposited batteries are then collected in the substrate retraction chamber 18.
  • the substrate retraction chamber 18 is physically interconnected in series to either the top conductive battery terminal deposition chamber or the third deposition chamber if a top conductive battery terminal is not required.
  • the substrate retraction chamber 18 is adapted to hold one or more individual substrates for removal from the system through another gas gate 12.
  • the substrate having one or more cells deposited thereon is transferred from the substrate retraction chamber 18 to the substrate insertion chamber 17 along interconnective passageway 13 and thereafter transported from the insertion chamber 17 to the first deposition chamber.
  • deposition chamber 11 is adapted deposit a current collector layer (ref. numeral 7 of FIG. 2) upon the second electrode layer (ref. numeral 5 of FIG. 2) of each cell and a conductive top battery terminal upon the final cell of the multi-celled battery.
  • the solid-state batteries can be deposited on an elongated web of substrate material.
  • FIG. 5 depicts an apparatus to accomplish this deposition. The elongated web of substrate material is unrolled from a roll 14 thereof in payout chamber 13 which is serially connected to the deposition chambers by a gas gate 12.
  • the deposition chambers minimally include the electrode deposition chambers 8 and 10 and the solid-state electrolyte deposition chamber 9 (as described herein above with respect to FIG. 3).
  • the present embodiment may include an additional chamber 11 , adapted to deposit a conductive top battery terminal, if desired. Once the battery has been deposited, the final product is collected on take-up roller 16 in the take-up chamber 15, which is serially connected to the second electrode deposition chamber (or the top battery terminal deposition chamber 11 if such is included).
  • the apparatus of FIG. 5 can be run in a multi-pass mode.
  • multi-pass mode the apparatus is designed to be reversible. That is, once a single battery cell has been deposited, along with a current collector layer (ref. numeral 7 of FIG. 2), the direction of travel of the web substrate materials is reversed, such that the take-up chamber 15 becomes the payout chamber, and the payout chamber 13 becomes the take-up chamber. Also, the roles of the second electrode deposition chamber 10 and the first electrode deposition chamber 8 are reversed such that the first electrode material is deposited in the second electrode chamber 10 and the second electrode material is deposited in the first electrode chamber 8.
  • the current collector deposition chamber 11 is deactivated when the substrate direction is reversed and, an additional current collector deposition chamber 11' is positioned between chamber 13 and chamber 8.
  • an additional current collector deposition chamber 11' is positioned between chamber 13 and chamber 8.
  • FIG. 6 depicts another multi-pass embodiment of the instant invention. Operation of the present embodiment is substantially similar to operation of the embodiment of FIG. 5, with one noticeable exception.
  • additional, reverse direction deposition chambers 8' and 10' are added to the apparatus. These chambers, like the reverse direction current collector deposition chamber 11', are inactive when the apparatus is being operated in the forward direction, and are only activated in multi-pass mode when direction of travel of the substrate is reversed.
  • the ordering of the deposition chambers shown in FIG. 6 is but one of a multitude of orderings which will allow for proper forward and reverse depositions.
  • the specific ordering chosen will depend greatly upon the battery system to be deposited and the methods available (i.e. CVD, PVD etc.) for the deposition of the components of that battery system.
  • One consideration when choosing from a plurality of deposition methods will be the need to minimize the pressure differential between adjacent chambers.
  • the specific order of deposition chambers depicted in FIG. 6 is particularly useful in depositing a vanadium oxide/silicon nitride/lithium metal multi-celled solid state battery upon a continuous web of aluminum or stainless steel foil.
  • the first electrode chamber 8 is adapted to deposit vanadium oxide by evaporation.
  • the solid-state electrode deposition chamber 9 is adapted to deposit a silicon nitride material (such as a hydrogenated or lithiated silicon nitride) by sputtering.
  • the second electrode deposition chamber 10 is adapted to deposit metallic lithium by evaporation.
  • the current collector layer deposition chamber 11 is adapted to deposit molybdenum by evaporation.
  • FIG. 7 depicts a final multi-pass embodiment of the instant invention. Operation of the present embodiment is substantially similar to operation of the embodiment of FIG.4, with two noticeable exceptions. Additional, reverse direction deposition chambers 8', 10' and 11' are added to the apparatus and the interconnective passageway 19 is eliminated. These chambers, like the reverse direction current collector deposition chamber 11' (of FIG. 5), are inactive when the precut substrate is being passes in the forward direction from insertion chamber 17 to retraction chamber 18, and are only activated in multi-pass mode when direction of travel of the substrate is reversed for a second depostion pass.
  • Additional, reverse direction deposition chambers 8', 10' and 11' are added to the apparatus and the interconnective passageway 19 is eliminated. These chambers, like the reverse direction current collector deposition chamber 11' (of FIG. 5), are inactive when the precut substrate is being passes in the forward direction from insertion chamber 17 to retraction chamber 18, and are only activated in multi-pass mode when direction of travel of the substrate is reversed for a second

Abstract

A multi-chambered deposition apparatus for depositing solid-state, thin-film battery materials onto substrate material. The apparatus minimally includes at least three distinct evacuable deposition chambers (8, 9, 10), which are physically interconnected in series. The first deposition chamber (8) is adapted to deposit a layer of battery electrode material having a first polarity onto the substrate. The second deposition chamber (9) is adapted to deposit a layer of solid-state electrolyte material onto the layer of battery electrode material deposited in the first chamber (8). The third deposition chamber (10) is adapted to deposit a layer of battery electrode material having an opposite polarity from that deposited in the first chamber (8) onto the solid-state electrolyte. The deposition chambers (8, 9, 10) are interconnected by gas gates (12) such that the substrate material is allowed to proceed from one deposition chamber to the next, while maintaining gaseous segragation between the chambers.

Description

APPARATUS FOR DEPOSITION OF THIN-FILM. SOLID STATE BATTERIES
FIELD OF THE INVENTION The present invention relates generally to thin-film, solid-state batteries and more specifically to apparatus for the deposition of thin-film, solid-state batteries.
BACKGROUND OF THE INVENTION Rechargeable batteries are used in almost every aspect of daily life. A wide variety of industrial, commercial and consumer applications exist. Larger capacity battery uses include such applications as fork lifts, golf carts, uninterruptable power supplies for protection of electronic data storage, and even energy storage for power production facilities. When electric vehicles are manufactured in mass, demand for low weight, high charge capacity batteries will be greater than ever before. Indeed, to make mass use of electric vehicles economically feasible, very high specific capacity may be critically necessary. In electric vehicles, weight is a significant factor. Because a large component of the total weight of the vehicle is the weight of the batteries, reducing the weight of the cells is a significant consideration in designing batteries to power electric vehicles.
The 1998 California Clean Air Act has posed an exceptional challenge on battery scientists and engineers to develop an improved battery that can support the commercialization of electric vehicles (EV). Needless to say, the law has not changed the reality of battery technology. In over 100 years of rechargeable battery usage, two chemistries namely: Pb-Pb02 (known as lead-acid battery) and Cd-NiOOH (known as Ni-Cd battery) have dominate with more than 90% of the market. Neither of the two are likely to fulfill the Utopian goals of powering an electric car that will match the range, economy, and performance of an internal combustion engine vehicle. Therefore, battery scientists and engineers are forced to study new battery chemistries.
In addition to industrial, commercial and other large scale uses of batteries, there are literally thousands of consumer applications of rechargeable batteries. A rechargeable electrochemical cell is ideally suited to serve as a portable power source due to its small size, light weight, high power capacity and long operating life. A rechargeable cell may operate as an "install and forget" power source. With the exception of periodic charging, such a rechargeable cell typically performs without attention and rarely becomes the limiting factor in the life of the device it powers.
Present rechargeable battery systems can be classified into two groups those employing liquid electrolytes and those employing solid electrolytes. Liquid electrolyte systems have been around for many decades and are the most well known to the general public. Examples of liquid electrolyte rechargeable battery systems include lead-acid, nickel cadmium, and the more recent nickel-metal hydride systems. A more recent advancement is the solid electrolyte rechargeable battery systems. The solid electrolyte devices have several distinct advantages over those based on liquid electrolytes. These include (1) the capability of pressure-packaging or hard encapsulation to yield extremely rugged assemblies, (2) the extension of the operating temperature range since the freezing and/or boiling-off of the liquid phase, which drastically affect the device performance when employing liquid electrolytes are no longer a consideration, (3) solid electrolyte devices are truly leak-proof, (4) they have long shelf life due to the prevention of the corrosion of electrodes and of loss of solvent by drying out which occur when using liquid electrolytes, (5) solid electrolytes permit micro-miniaturization, and (6) the do not require heavy, rigid battery cases which are essentially "dead weight" because they provide no additional capacity to the battery but must be included in the total weight thereof.
All of the above considerations have led to a growing use of solid electrolytes. Solid state batteries and timers are already available which employ the solid electrolyte as a cylindrical pellet with suitable electrodes on either side. However, this kind of geometry leads to somewhat poor solid-solid contacts and these devices tend to have high internal resistances and polarization losses. These problems have been overcome by the use of thin films as the electrolytes, since thin films deposited on top of each other have excellent contacts and should also be able to withstand shocks, acceleration forces and spin rates without undue damage. In forming such a battery system, a solid ion conductor (i.e. solid electrolyte) for moving ions within the system is required. A solid electrolyte is classified by its type of movable ion, such as Li< + > -conductive solid electrolyte, Ag< + > -conductive solid electrolyte, Cu< + > -conductive solid electrolyte, H< + > -conductive solid electrolyte, etc. A solid electrochemical element is constituted by combining one of these solid electrolytes with an appropriate electrode material. Several solid electrolytes are known to exhibit good ionic conductivity, some of which exist in the form of thin films. Oxide ion conductors such as zirconia are operated at high temperatures due to their low conductivity at ambient temperatures. Chloride ion conductors such as PbCI2 and BaCI2 have similar temperature restrictions. Silver ion such as AgBr, AgCl, and Agl also show low room temperature ionic conductivity.
Of the thin-film, solid state battery systems, lithium-polymer batteries have received the most widespread interest. Reports in 1979 that lithiated poly-ethylene-oxide (PEO) possesses lithium ion conductivity raised the expectations for a solid state battery employing PEO as solid electrolyte. Indeed, if PEO, or other polymers, were a true solid electrolyte with practical ionic conductivities and a cationic transfer number of 1 , a stable interface with the lithium electrode and good charging uniformity could be realized. The expectations, no doubt, were stimulated by the relative success of the true solid electrolyte "B" Alumina, in the Sodium Sulphur battery.
More recently, several researchers proposed the use of "plasticized polymers" to enhance conductivity at room temperature. Although the term "plasticized polymers" is the correct material science terminology for the materials, they are in effect no different than a battery separator filled with organic solvent and electrolyte. In this case, we are back to liquid filled systems with all the old unsolved fundamental problems and several new ones.
Solid electrolytes consist of solid atomic structures which selectively conduct a specific ion through a network of sites in a two or three dimensional matrix. If the activation energy for mobility is sufficiently low, the solid electrolyte can serve as both the separator and electrolyte in a battery. This can allow one to fabricate an all solid state cell. An important aspect of such electrolytes is that they selectively conduct only one type of ion. If that ion features reversible electrochemistry witrr both the positive and negative electrode of the battery, and if the solid electrolyte itself is inert to the electrodes, the cell will enjoy a uniform and reversible electrochemistry with no composition change and no passivation or side reactions.
While true solid electrolyte lithium conductors would not exhibit the inherent problems of Li-polymer systems described herein below, all polymer electrolytes reported to date are not true solid electrolytes. The conductivity occurs in an amorphous zone that conducts anions better than it conducts lithium ions (the transfer number of lithium is less than 0.5). As such, ion concentrations in the electrode surface are variable and irreversible reactions between the anion and the lithium electrodes do occur. The combination of the two effects brings about partial passivation of the lithium surface with non uniform dendritic plating on charge. Additionally, the conductivity of the polymer electrolyte is too low, typically two to four orders of magnitude lower than that of aqueous electrolyte. Also, the electrode area required for a 20 kwh battery is 42 m<2 > for Ni-Cd batteries and is 1610 m<2 > for Li-Polymer batteries. This data clearly conveys that in order to deliver acceptable power levels for EV applications, lithium polymer batteries will require nearly two orders of magnitude, larger electrode area per ampere hour than a higher power density Ni-Cd battery. Given that electrode processing is the most expensive component in battery production and that the cost of electrode processing is nearly linear with electrode area, the cost implications of the design are astonishing.
In addition to cost, safety of Li batteries, particularly liquid electrolyte systems, is always a problem. The single most important reason rechargeable lithium batteries have not been successful in the market place is their poor safety record. Most research groups that have worked on rechargeable lithium cells have "personally experienced" explosions, and explosions have occurred in the field. The problem can be diagnosed as follows: 1) lithium plating is dendritic, 2) dendrites eventually short through the separator, 3) shorted cells heat up during charging, 4) shorted cells will go into reversal during full battery discharge, 5) low capacity cells will go into reversal during full battery discharge, 6) in reversal, lithium is likely to plate on the cathode which can cause direct chemical reaction between cathode material and lithium, 7) processes 3 and 6 can generate enough heat to melt lithium (165 Centigrade), and 8) molten lithium is an extremely strong reducing agent which will react with most organic and inorganic materials. An explosion could occur depending on: (a) the amount of lithium in the cell, (b) the surface to volume aspect ratio of the cell, (c) the reactivity of the other cell components to lithium, (d) the vapor pressure of the products, and (e) the vent design.
Battery design should be aimed at minimizing the risk of lithium melt down. Given that it is extremely unlikely that lithium melt down can be completely avoided in mass usage of large rechargeable lithium batteries, it is essential to guarantee non explosion when the melt down does occur. Dry polymer electrolyte offers some improvement with regard to exposition when compared to high vapor pressure liquid electrolyte. However, that improvement is counteracted by the need for a very thin separator. Overall, the likelihood of ensuring explosion free melt downs in large cells and batteries is diminutive.
Cells utilizing polymer electrolytes that contain organic solvents, are as likely to be explosive as cells with standard (polymeric) separator and liquid electrolytes. In this case, depending on cell design, common experience places the explosion threshold in the 0.5 to 5 Ah size range; two orders of magnitude smaller than what is required for an EV battery. It should be noted that a cycled lithium electrode is more prone to explosion than a fresh uncycled one. While this fact has been known for quire some tine, lithium polymer battery developers have shied away from publishing safety test data on cycled cells.
In spite of its safety problems, there is a continued interest in lithium batteries because of their purportedly high power density. This feature makes rechargeable lithium batteries attractive. Theoretical energy densities of most rechargeable lithium chemistries are two and a half to three times higher than that of Pb-Acid and Ni-Cd batteries. Indeed, liquid electrolyte rechargeable lithium batteries could be made to deliver up to 150 Wh/Kg and 200 Wh/liter. This is about three times higher than the practical gravimetric energy density delivered by the best Ni-Cd batteries and four times higher than the practical gravimetric energy density delivered by the best Pb-Acid batteries. However, the design of the lithium polymer batteries, driven by the poor conductivity of the polymer electrolyte, is very volume inefficient. Specifically, the separator occupies 30% of the stack volume, carbon is added to the positive electrode in concentration of up to 30% and the positive electrode utilization is poor. Thus, the practical energy density is likely to 5 be considerably lower than of what can be achieved with liquid electrolyte. Estimated deliverable energy density of lithium polymer batteries is 15-20% of the theoretical energy density. This translates to (using 485 Wh/Kg as theoretical maximum) approximately 70 to 100 Wh/Kg at best. Most likely, compromises that will have to be made to improve manufacturability, safety and cycle life beyond the l o current laboratory state-of-the-an technology. This will have the effect to reduce the practical energy density to even below the values proposed above. The power capability of a battery depends upon the physical and chemical properties of the cell components as well as the cell design. Lithium polymer battery developers are trying to counteract the poor inherent conductivity of the polymer electrolytes by
15 reducing the electrode and separator thickness. Because practical manufacturing reality is likely to impose increases in the electrolyte thickness from approximately 2 to 4 mil, the power deliverable by the cell is likely to drop by 30 to 50%.
An area that requires closer attention is power degradation over life. The main degradation mechanism of the cell involves irreversible reactions between
20 lithium and electrolyte. This reduces the conductivity of the electrolyte as well as increases the impedance of the Lithium electrode due to the formation of passive films; both effects reduce the deliverable power from the battery. Because the cycle life of the lithium polymer battery is short, significant degradation in power is likely to occur in less than 100 cycles.
25 Other problems arise from real life usage and requirements placed upon battery systems. Traction batteries are assembled from a string of individual cells connected in series. During both charge and discharge, the same amount of current will pass through all the cells. In practical manufacturing and usage, it is impossible to keep all cells at exactly the same state of charge. This forces a weak
30 cell in a battery to go into reverse during deep discharge and some cells to go into overcharge during full charge. For a battery to operate at deep discharge cycles, it is essential that individual cells tolerate reverse or overcharge without damage or safety implications.
Lithium batteries are very poor in this respect. Over discharge will result in plating lithium on the positive electrode which can result in a spontaneous chemical reaction with severe safety implications. Overcharge is likely to result in electrolyte degradation that can generate some volatile gasses as well as increase cell impedance. These problems are particularly severe for lithium cells because: 1) degradation occurs during cycle life, therefore, even if initial capacities are matched very closely, it is unreasonable to expect that the degradation rate will be identical for all cells, 2) the cells tend to develop soft or hard shorts, thereby making it impossible to maintain the cells at the same state of charge at all times, and 3) cell capacity is dependent on temperature, therefore cells that are physically cooler due to their location will deliver less capacity than others. These conditions make the likelihood of cell reversal, relatively early in the life of the battery, very high. Of course, cell reversal is likely to result in venting and or explosion. It has been propose to install individual diode protection for all cells which could be an expensive, although practical, solution for a portable low watt-hour battery. The increased cost and reduced reliability associated with this solution makes this very undesirable for an EV battery. Plus, the inherent lack of overcharge and over discharge capability eliminates any possibility of ever developing a rechargeable lithium-polymer battery of a bipolar design.
An additional problem with the commercialization of Li-polymer batteries is their high cost. It is difficult to assess the cost, although clearly, processing cost per watt-hour should be much higher than that of traditional batteries. Raw material costs are clearly higher than Pb-Acid, although, it may be similar to Ni-Cd. The cost of raw material will rise due to high purity requirements. There are convincing reasons to expect that lithium polymer batteries, if ever made commercially, will be considerably more expensive than Ni-Cd batteries considering that: 1) primary Li-Mn02 cells, which are in mass production, are still more expensive than Ni-Cd cells, 2) the purity requirements for a secondary cell are much higher than that of a primary cell, and 3) the electrode area per watt-hour of a lithium polymer secondary battery will be approximately an order of magnitude larger than that of a primary Li-Mn02 battery. Even more problematic than the cost factor is the low cycle life of the lithium polymer batteries, which is particularly important in EV applications. Small rechargeable lithium batteries employing organic liquid electrolyte have delivered 100 to 400 cycles in laboratory tests. It is anticipated that lithium polymer electrolyte batteries of the same size could be made to deliver a comparable number of cycles. However, all the data published to date on lithium polymer batteries was run on cells with a very large amount of excess lithium, therefore, no conclusion can be drawn at this stage.
The cycle life of a large multi cell battery is likely to be considerably lower than that of a small two-cell battery. Additional reduction of the expected cycle life results from consideration of the fact that the battery will be limited by the weakest cell, and as previously mentioned, the likelihood of temperature or electrical imbalance is high. Further, power may degrade faster than capacity, so cycle life could become limited due to an unacceptable drop in power. Therefore, it is probably a fair assumption that if a full size battery was built at today's state-of-the-art technology, it could possibly make 100 cycles or so, which is about an order of magnitude short of what is required for an EV.
Therefore, since lithium-polymer batteries will be inadequate to meet today's requirements for a universally acceptable, thin-film, solid state rechargeable secondary battery system, other solid state systems need to be developed. Additionally, there is a need for an apparatus to easily and economically fabricate such batteries.
SUMMARY OF THE INVENTION The instant invention comprises a multi-chambered deposition apparatus for depositing solid-state, thin-film battery materials onto substrate material. The apparatus minimally includes at least three distinct evacuable deposition chambers, which are physically interconnected in series. The first deposition chamber is adapted to deposit a layer of battery electrode material having a first polarity onto the substrate. The second deposition chamber is adapted to deposit a layer of solid-state electrolyte material onto the layer of battery electrode material deposited in the first chamber. The third deposition chamber is adapted to deposit a layer of battery electrode material having an opposite polarity from that deposited in the first chamber onto the solid-state electrolyte. The deposition chambers are interconnected by gas gates such that the substrate material is allowed to proceed from one deposition chamber to the next, while maintaining gaseous segregation between the chambers. In a second embodiment, the apparatus includes an evacuable substrate insertion chamber which is physically interconnected in series to the first deposition chamber. The insertion chamber is adapted to hold one or more individual substrates and pass them to the first deposition chamber. This second embodiment also includes an evacuable substrate retraction chamber which is physically interconnected in series to the third deposition chamber. The retraction chamber is adapted to hold one or more individual substrates and remove them from the third deposition chamber. Also, the deposition apparatus includes an interconnective passageway connecting the retraction chamber and the insertion chamber such that the substrate may undergo multiple depositions by recycling the previously deposited substrate from the retraction chamber to the insertion chamber. The deposition apparatus includes a fourth evacuable deposition chamber between the third deposition chamber and the retraction chamber. The fourth chamber is adapted to deposit a top conductive battery terminal upon the second battery electrode layer. In a third embodiment, the apparatus includes an evacuable payout chamber which is physically interconnected in series to the first deposition chamber. The payout chamber holds a roll of substrate material, which is unrolled and passed to said first deposition chamber.
Also, this third embodiment includes an evacuable take-up chamber which is physically interconnected in series to the third deposition chamber. The roll of substrate material upon which the solid-state battery material has been deposited passes from the third deposition chamber into the take-up chamber and is collected on a take-up mandrel.
This third embodiment of the apparatus can be adapted to deposit a plurality of solid state battery cells onto the substrate. To that end, the first and third deposition chambers and the payoff and take-up chambers are, respectively, reversible. Therefore, when the roll of substrate material has undergone one pass through the deposition chambers, the direction of the substrate can be reversed and the substrate thereby passed through the deposition chambers again. When the reversal occurs, 1) the take-up chamber becomes the payoff chamber, 2) the payoff chamber becomes the take-up chamber, 3) the third deposition chamber becomes the first deposition chamber and deposits the battery electrode material having the first polarity onto the substrate, and 4) the first deposition chamber becomes the third deposition chamber and deposits the opposite polarity battery electrode material onto the substrate.
The apparatus of this third embodiment may also include one or both of a fourth evacuable deposition chamber positioned between said first deposition chamber and said payoff chamber and a fifth evacuable deposition chamber positioned between said third deposition chamber and the take-up chamber. The fourth and fifth deposition chambers are adapted to deposit current collector layers between the second electrode layer of a first deposited battery and the first electrode of the next deposited battery and also a top conductive battery terminal upon the second battery electrode layer of the last deposited battery.
A fourth embodiment, which is essentially a modification of the third embodiment, is adapted to deposit a plurality of solid state battery cells onto the substrate. The payoff and take-up chambers are again reversible so that when said roll of substrate material has undergone one pass through said deposition chambers, the direction of travel of said substrate can be reversed and said substrate can undergo another pass through the deposition chambers. However, two additional deposition chambers, identical to the first and the third deposition chambers, are included in the apparatus. The additional chambers are activated when the direction of travel of the roll of substrate material is reversed. The additional reverse direction deposition chambers are positioned on the opposite side of the second deposition chamber from its forward direction counterpart.
The fourth embodiment can also include an additional set of evacuable deposition chambers, which are positioned on opposite sides of the second deposition chamber. The additional set of chambers are adapted to deposit a conductive current collector layer atop a deposited battery cell. One chamber is positioned to deposit the conductive layer when the substrate is traveling in the forward direction and the other to deposit the conductive layer when the substrate is traveling in the reverse direction.
The deposition chambers of the instant invention are preferably adapted to deposit materials by at least one method selected from the group consisting of evaporation, chemical vapor deposition, physical vapor deposition, microwave plasma enhanced chemical vapor deposition, sputtering, laser ablation, spray coating, or plasma spraying.
BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a cross-sectional depiction of a first embodiment of a solid state battery of the type to be produced by the deposition apparatus of the instant invention and specifically illustrating the individual layers thereof;
FIG. 2 is a cross-sectional depiction of a second embodiment of a solid state battery of the type to be produced by the deposition apparatus of the instant invention and specifically illustrating the individual layers thereof, including plural electrochemical cells and current collectors therebetween;
FIG. 3 is a highly schematic depiction of a first embodiment of the instant invention, specifically indicating the positive and negative electrode deposition chambers, the solid-state electrolyte deposition chamber, and interconnective gas gates therebetween; FIG. 4 is a highly schematic depiction of a second embodiment of the instant invention specifically illustrating a multi-pass deposition apparatus for depositing multi-celled batteries atop pre-cut pieces of substrate material, in addition to those features of FIG. 3, this apparatus includes a substrate insertion chamber, a substrate retraction chamber, an interconnective passageway connecting said retraction chamber and said insertion chamber and an additional deposition chambers in which current collector layers are deposited;
FIG. 5 is a highly schematic depiction of a third embodiment of the instant invention specifically illustrating a multi-pass deposition apparatus for depositing multi-celled batteries atop elongated webs of substrate material, in addition to those features of FIG. 3, this apparatus includes substrate take-up and payout chambers and two additional deposition chambers in which current collector layers are deposited; FIG. 6 is a highly schematic depiction of a fourth embodiment of the instant invention specifically illustrating another multi-pass deposition apparatus for depositing multi-celled batteries atop elongated webs of substrate material, in addition to those features of FIG. 5, this apparatus includes two additional deposition chambers in which layers of positive and negative electrode materials are deposited.
FIG. 7 is a highly schematic depiction of a fifth embodiment of the instant invention specifically illustrating yet another multi-pass deposition apparatus for depositing multi-celled batteries atop precut webs of substrate material, in addition to those features of FIG. 4, this apparatus includes two additional deposition chambers in which layers of positive and negative electrode materials are deposited, it should be noted that since the substrate travels back and forth from insertion chamber to retraction chamber through the deposition chambers, no connective passageway between the insertion and retraction chambers is required. DETAILED DESCRIPTION OF THE INVENTION
Before, describing the production apparatus of the instant invention, it will be helpful to describe the particular type of solid state batteries to be manufactured. FIG. 1 is a cross-sectional depiction of a thin-film solid state battery of the type to be deposited by the apparatus of the present invention. Specifically, reference numeral 1 is the substrate of the thin-film battery. The substrate provides support for the battery and may also serve as the bottom electrical terminal of the battery. Substrate 1 may be formed from an electrically conductive metal such as aluminum, nickel, copper or stainless steal, or it may be formed from a light weight, electrically insulating polymer or ceramic material. If the substrate 1 is formed of an electrically insulating material or is reactive with the battery electrode materials, then an electrically conductive bottom battery terminal layer 2 is deposited onto the substrate. The material used to form the battery terminal layer 2 may be an electrically conductive metal such as aluminum, nickel, copper, molybdenum or may even be an electrically conductive ceramic or oxide material. For maximum weight savings, the substrate 1 plus any battery terminal layer 2 should be only as thick as needed to perform their support and conduction functions. Any additional thickness will only increase the "dead weight" of the battery. Typically the total thickness of the substrate 1 plus the battery terminal layer 2 will not be greater than about 200 microns and preferably not greater than about 50 to 100 microns. The battery terminal layer 2 is preferably between 0.5 and 5 microns thick. Deposited on top of the substrate 1 and battery terminal layer 2 is at least one multi-layered electrochemical cell. Each electrochemical cell includes a thin-film negative electrode layer 3, a thin-film positive electrode layer 5 and a thin-film solid electrolyte proton conductive layer 4.
The thin-film negative electrode layer 3 is typically between about 1 and 15 microns thick and is formed from a material which electrochemically adsorbs and desorbs ions such as ionic hydrogen or lithium during charging and discharging thereof, respectively. Typically the layer is formed from electrochemical hydrogen storage materials such as metal hydride materials. These metal hydride material may be any of those already known any used in liquid electrolyte nickel-metal hydride batteries. These materials may be AB2 or AB5 type metal hydride materials. They may be amorphous, polycrystalline, microcrystalline, nanocrystalline, single crystal or multi-structural materials. They may include only a single compositional phase or may include multiple compositional phases. An extensive review of the known metal hydride materials useful in electrochemical cells is given in U.S. Pat. No. 5,096,667, the disclosure of which is incorporated herein by reference.
In addition to the known metal hydride materials, new metal hydride systems can be developed to take advantage of the environmental differences between an alkaline liquid electrolyte system and the new thin-film solid electrolyte systems. For example, in a liquid electrolyte system, there is generally a problem with corrosion of the electrode due to the caustic nature of the alkaline electrolyte. Therefore, elements which provide corrosion resistance must be added to the negative electrode material to mitigate corrosion damage. In the solid electrolyte system of the present invention, no such corrosion problems will occur due to the absence of caustic liquids and as such, no corrosion inhibitor materials will need to be added to the negative electrode. Alternatively, in the case of lithium systems, metallic lithium or lithium intercalated carbon can be used as the negative electrode layer 3. The positive electrode layer 5 is typically between 5 and 20 microns thick and is formed from a material which electrochemically desorbs and adsorbs ions such as ionic hydrogen or lithium during charging and discharging thereof, respectively. Typically the layer is formed from a transition metal hydroxide such as nickel hydroxide material. The nickel hydroxide material can be any of those material known in the prior art for use in rechargeable battery systems. They may also be advanced active materials like the locally ordered, disordered, high capacity, long cycle life positive electrode material disclosed in U.S. patent application Ser. No.s 7/975,031 filed Nov. 12, 1992 and 8/027,973 filed Mar. 8, 1993, the disclosures of which are incorporated herein by reference. These materials include a solid solution nickel hydroxide electrode material having a multiphase structure and at least one compositional modifier to promote said multiphase structure. The multiphase structure comprises at least one polycrystalline gamma -phase including a polycrystalline T-phase unit cell comprising spacedly disposed plates with at least one ion incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2< + > oxidation state and a 3.5< + > or greater, oxidation state. The compositional modifier is a metal, a metallic oxide, a metallic oxide alloy, a metal hydride, and/or a metal hydride alloy. Preferably the compositional modifier is chosen from the group consisting of Al, Bi, Co, Cr, Cu, Fe, In, LaH3, Mn, Ru, Sb, Sn, TiH2, TiO, Zn and mixtures thereof. More preferably, at least three of these compositional modifiers are used. The at least one chemical modifier incorporated is preferably chosen from the group consisting of Al, Ba, Ca, Co, Cr, Cu, F, Fe, K, Li, Mg, Mn, Na, Sr, and Zn. Also, for lithium ion systems, the positive electrode layer 5 can be formed from a material such as lithium nickelate (LiNi04), lithium cobaltate or (LiCo04) lithium manganate (LiMn04), vanadiom oxide, titanium disulfide, etc..
Between the negative electrode layer 3 and the positive electrode layer 5, is deposited a thin-film solid state electrolyte layer 4. This layer is typically between about 0.5 and 2 microns thick, but may be as thin as 1000 Angstroms if the layer onto which it is deposited has a low degree of surface roughness. The type of ionic conductivity required of the solid electrolyte is dependent on the electrochemical reactions involved in the cell. Since the charging cycle electrode reactions of the rechargeable protonic battery are:
M + H< + > + e< - > -CHARGE > MH; and
Ni(OH)2-CHARGE > NiOOH + H< + > + e< - > , the solid state electrolyte layer 4 which separates the positive electrode layer 5 and the negative electrode layer 3 must be a proton conductor. That is, the solid electrolyte material must be capable of readily conducting or transporting protons from the positive electrode layer 5 to the negative electrode layer 3 while the battery is charging and from the negative electrode layer 3 to the positive electrode layer 5 while the battery is discharging. The solid electrolyte layer 4 must also be electrically insulating so that the battery electrodes do not short. That is, the electrolyte also acts as the electrode separator. The present inventors have found that a hydrogenated electrical insulator has all of the characteristics required.
Typically this is a hydrogenated silicon nitride material, but hydrogenated silicon oxide or hydrogenated silicon oxynitride may also be used. Preferably the hydrogenated silicon nitride material has a composition, in atomic percent, of between about 20% and about 50% Hydrogen, between about 20% and about 40% silicon and about 20% to about 50%. The ration of silicon to nitrogen is generally between about 2:1 and about 1 :2, but may be varied outside this range if specifically advantageous under the circumstances.
Alternatively, for the lithium systems, the charging electrode reactions are: C + Li< + > + e< - > -CHARGE > LiC ;and LiNi02-CHARGE > Ni02 + Li< + > + e< - > , therefore, in the lithium systems, a lithium conductor is needed. Solid lithium conductors useful as the ionic conductor layer 4 are lithiated silicon nitride (Li8SiN4), lithium phosphate (LiP04), lithium titanium phosphate (LiTiP04) and lithium phosphonitride (LiPO 4-x N x where 0 < x < 1).
A top battery terminal layer 6 is deposited on top of the positive electrode layer 5. The battery terminal layer 6 is typically between 1 and 5 microns thick and is formed from an electrically conductive material such as a metal or an electrically conductive ceramic or oxide. Specifically, aluminum, copper, molybdenum or nickel may be used. FIG. 2 depicts a solid state battery of the type to be deposited by the apparatus of the instant invention containing multiple stacked electrochemical cells. The reference numeral of the layers of this battery correspond to those of the battery depicted in FIG. 1. Additionally, because this battery includes more than one electrochemical cell, a layer of current collecting material 7 is deposited between positive electrode layer 5 of one cell and the negative electrode layer 3 of the adjacent cell. This layer is formed of an electrically conductive material and is typically between 1000 angstroms and 0.5 microns thick. Preferably this layer is formed from a metal such as aluminum, copper, molybdenum or nickel and is resistant to the conduction of protons.
One final interesting and useful product variation which should be noted is the deposition of these thin-film batteries onto stainless steel substrates on the opposite side of thin-film amorphous silicon solar cells to integrate the collection and storage of solar energy. Now that a basic description of the product to be manufactured has been provided, a detailed description of the deposition apparatus of the instant invention is presented. FIG. 1 depicts a first, basic embodiment of the apparatus of the instant invention. The basic apparatus includes three interconnected deposition chambers 8, 9 and 10. The deposition chambers are physically interconnected by gas gates 12. The gas gates allow a substrate to be passed form one deposition chamber to another while preventing cross contamination of gasses therebetween. The chambers are specifically adapted to deposit battery materials onto the substrate. The solid-state battery is deposited upon the substrate as it passes through the chambers. Initially, the substrate is passed to the first deposition chamber 8, where a first electrode layer (ref. numeral 3 of FIG. 1) of battery electrode material having first polarity (such as a positive battery electrode material) is deposited thereon.
The substrate having the first battery electrode layer deposited thereon is now transported to the second deposition chamber 9 through gas gate 12. In the second deposition chamber 9 a solid state electrolyte layer (ref. numeral 4 of FIG. 1 ) is deposited upon the first electrode layer. Next, the substrate with its deposited layers is passed through another gas gate 12 into the third deposition chamber 10. In the third deposition chamber, a layer of electrode material (ref. numeral 5 of FIG. 1 ) of opposite polarity (such as a negative electrode material) from the first electrode is deposited upon the layer of solid-state electrolyte material.
Now that the second electrode layer has been deposited, the formed solid-state battery is optionally passed to a fourth chamber where a conductive top battery terminal layer (ref. numeral 6 of FIG. 1 ) is deposited upon the second electrode layer. The top terminal deposition chamber 17 and its attendant layer may be omitted if desired when the materials of the second battery electrode layer are also suitable to additionally act the top battery terminal. Once the cell is finished, the battery can be removed from the apparatus via another gas gate 12.
The deposition chambers and gas gates are formed from materials which are chemically inert to the materials of construction of the solid-state batteries and to the deposition processes used in the production thereof. The contemplated deposition processes include, but are not limited to, sputtering, evaporation, chemical vapor deposition (CVD), microwave plasma enhanced CVD (PECVD), radio frequency PECVD, physical vapor deposition (PVD), plasma enhanced PVD, laser ablation, spray coating, and plasma spraying. The choice of deposition process will depend upon many factors such as materials to be deposited, precursor starting materials used, pressures/vacuums required by the process (in relation to the pressure of the process in the adjacent chambers), cost, electrochemical and physical quality of deposited materials, and others.
Turning now to FIG. 4, there is depicted therein a second embodiment of the instant invention. This embodiment comprises a deposition apparatus for depositing single or multi-celled solid-state batteries upon precut substrates, as needed. That is, the apparatus can be run in either single-pass or multi-pass mode, single-pass mode depositing a single-celled battery and multi-pass mode depositing multi-celled batteries. By the term "precut" is meant a substrate which is of relatively limited length and width dimensions when compared with the rolls of substrate web which can be as long as 2000 feet or more. Typically, one or more precut substrates are loaded into the substrate insertion chamber 17 through a gas gate 12. The insertion chamber 17 is physically interconnected in series to the first deposition chamber 8 and is adapted to hold one or more precut substrates and pass them sequentially through a gas gate 12 into the first electrode chamber 8. Once the substrate enters the first deposition chamber 8, deposition proceeds as described hereinabove with reference to FIG. 3.
If the apparatus is being used in single-pass mode, the deposited batteries are then collected in the substrate retraction chamber 18. The substrate retraction chamber 18 is physically interconnected in series to either the top conductive battery terminal deposition chamber or the third deposition chamber if a top conductive battery terminal is not required. The substrate retraction chamber 18 is adapted to hold one or more individual substrates for removal from the system through another gas gate 12. Alternatively, if the system is being used in a multi-pass mode, the substrate having one or more cells deposited thereon is transferred from the substrate retraction chamber 18 to the substrate insertion chamber 17 along interconnective passageway 13 and thereafter transported from the insertion chamber 17 to the first deposition chamber. In this manner, a multi-celled battery can be deposited onto a single substrate without having to remove the substrate from the apparatus. In multi-pass mode, deposition chamber 11 is adapted deposit a current collector layer (ref. numeral 7 of FIG. 2) upon the second electrode layer (ref. numeral 5 of FIG. 2) of each cell and a conductive top battery terminal upon the final cell of the multi-celled battery. In yet another embodiment of the instant invention, the solid-state batteries can be deposited on an elongated web of substrate material. FIG. 5 depicts an apparatus to accomplish this deposition. The elongated web of substrate material is unrolled from a roll 14 thereof in payout chamber 13 which is serially connected to the deposition chambers by a gas gate 12. Once the elongated web of substrate material leaves the payout chamber 13, it is transported to the deposition chambers. The deposition chambers minimally include the electrode deposition chambers 8 and 10 and the solid-state electrolyte deposition chamber 9 (as described herein above with respect to FIG. 3). As with the apparatus of FIG. 3, the present embodiment may include an additional chamber 11 , adapted to deposit a conductive top battery terminal, if desired. Once the battery has been deposited, the final product is collected on take-up roller 16 in the take-up chamber 15, which is serially connected to the second electrode deposition chamber (or the top battery terminal deposition chamber 11 if such is included).
In addition to the single-pass mode described, the apparatus of FIG. 5 can be run in a multi-pass mode. In multi-pass mode, the apparatus is designed to be reversible. That is, once a single battery cell has been deposited, along with a current collector layer (ref. numeral 7 of FIG. 2), the direction of travel of the web substrate materials is reversed, such that the take-up chamber 15 becomes the payout chamber, and the payout chamber 13 becomes the take-up chamber. Also, the roles of the second electrode deposition chamber 10 and the first electrode deposition chamber 8 are reversed such that the first electrode material is deposited in the second electrode chamber 10 and the second electrode material is deposited in the first electrode chamber 8. Finally, the current collector deposition chamber 11 is deactivated when the substrate direction is reversed and, an additional current collector deposition chamber 11' is positioned between chamber 13 and chamber 8. Once the second battery cell is deposited upon the first, the direction of travel of the substrate is again reversed. Chamber 11' is deactivated, chamber 11 is activated, and finally, chambers 13 and 15, and chambers 8 and 10 again reverse jobs, respectively. This reversal continues until the desired number of cells are deposited upon the substrate. During the final cell deposition pass, chamber 11 (or 11') deposits the top battery terminal, as needed.
FIG. 6 depicts another multi-pass embodiment of the instant invention. Operation of the present embodiment is substantially similar to operation of the embodiment of FIG. 5, with one noticeable exception. Instead of reversing the function of the first electrode deposition chamber 8 and the second electrode deposition chamber 10, additional, reverse direction deposition chambers 8' and 10' are added to the apparatus. These chambers, like the reverse direction current collector deposition chamber 11', are inactive when the apparatus is being operated in the forward direction, and are only activated in multi-pass mode when direction of travel of the substrate is reversed.
The ordering of the deposition chambers shown in FIG. 6 is but one of a multitude of orderings which will allow for proper forward and reverse depositions. The specific ordering chosen will depend greatly upon the battery system to be deposited and the methods available (i.e. CVD, PVD etc.) for the deposition of the components of that battery system. One consideration when choosing from a plurality of deposition methods will be the need to minimize the pressure differential between adjacent chambers. The specific order of deposition chambers depicted in FIG. 6 is particularly useful in depositing a vanadium oxide/silicon nitride/lithium metal multi-celled solid state battery upon a continuous web of aluminum or stainless steel foil. The first electrode chamber 8 is adapted to deposit vanadium oxide by evaporation. The solid-state electrode deposition chamber 9 is adapted to deposit a silicon nitride material (such as a hydrogenated or lithiated silicon nitride) by sputtering. The second electrode deposition chamber 10 is adapted to deposit metallic lithium by evaporation. Finally, the current collector layer deposition chamber 11 is adapted to deposit molybdenum by evaporation.
FIG. 7 depicts a final multi-pass embodiment of the instant invention. Operation of the present embodiment is substantially similar to operation of the embodiment of FIG.4, with two noticeable exceptions. Additional, reverse direction deposition chambers 8', 10' and 11' are added to the apparatus and the interconnective passageway 19 is eliminated. These chambers, like the reverse direction current collector deposition chamber 11' (of FIG. 5), are inactive when the precut substrate is being passes in the forward direction from insertion chamber 17 to retraction chamber 18, and are only activated in multi-pass mode when direction of travel of the substrate is reversed for a second depostion pass.
It is to be understood that the disclosure set forth herein is presented in the form of detailed embodiments described for the purpose of making a full and complete disclosure of the present invention, and that such details are not to be interpreted as limiting the true scope of this invention as set forth and defined in the appended claims.

Claims

We claim:
1. A multi-chambered deposition apparatus for depositing solid-state, thin-film battery materials onto substrate material, said apparatus including: at least three distinct evacuable deposition chambers, said deposition chambers physically interconnected in series; the first of said deposition chambers adapted to deposit battery electrode material having a first polarity onto the substrate; the second of said deposition chambers adapted to deposit solid-state electrolyte material onto the battery electrode material deposited in the first chamber; the third of said deposition chambers adapted to deposit battery electrode material of the opposite polarity from that deposited in the first chamber; and at least two gas gates, each gas gate interconnecting two of said deposition chambers such that the substrate material is allowed to proceed from one deposition chamber to the next, while maintaining gaseous segregation between the chambers.
2. A deposition apparatus as in claim 1 , further including an evacuable payout chamber, said payout chamber physically interconnected in series to said first deposition chamber and holding a roll of substrate material, which is unrolled and passed to said first deposition chamber; and a gas gate interconnecting said payout chamber and said first deposition chamber.
3. A deposition apparatus as in claim 2, further including an evacuable take-up chamber, said take-up chamber physically interconnected in series to said third deposition chamber and holding a take-up mandrel for the roll of substrate material upon which the solid-state battery material is deposited, the substrate passing from said third deposition chamber into said take-up chamber; and a gas gate interconnecting said take-up chamber and said third deposition chamber.
4. A deposition apparatus as in claim 3, wherein said deposition apparatus is adapted to deposit a plurality of solid state battery cells onto said substrate, and to that end, said first and said third deposition chambers and said payoff and take-up chambers are, respectively, reversible, such that when said roll of substrate material has undergone one pass through said deposition chambers, the direction of said substrate can be reversed and said substrate can undergo another pass through the deposition chambers, when this reversal occurs:
1) the take-up chamber becomes the payoff chamber;
2) the payoff chamber becomes the take-up chamber; 3) the third deposition chamber becomes the first deposition chamber and deposits said battery electrode material having said first polarity onto the substrate; and
4) the first deposition chamber becomes the third deposition chamber and deposits said opposite polarity battery electrode material onto the substrate.
5. A deposition apparatus as in claim 3, further including a fourth evacuable deposition chamber between said third deposition chamber and said take-up chamber, said fourth chamber being adapted to deposit a top conductive battery terminal upon the second battery electrode layer.
6. A deposition apparatus as in claim 4, further including a fourth evacuable deposition chamber between said first deposition chamber and said payoff chamber; and a fifth evacuable deposition chamber between said third deposition chamber and said take-up chamber, said fourth and fifth deposition chambers being adapted to deposit current collector layers between the second electrode layer of a first deposited battery and the first electrode of the next deposited battery and a top conductive battery terminal upon the second battery electrode layer of the last deposited battery.
7. A deposition apparatus as in claim 1, further including an evacuable substrate insertion chamber, said insertion chamber physically interconnected in series to said first deposition chamber and adapted to hold one or more individual substrates and pass them to said first deposition chamber; and a gas gate interconnecting said insertion chamber and said first deposition chamber.
8. A deposition apparatus as in claim 7, further including an evacuable substrate retraction chamber, said retraction chamber physically interconnected in series to said third deposition chamber and adapted to hold one or more individual substrates and remove them from said third deposition chamber; and a gas gate interconnecting said retraction chamber and said third deposition chamber.
9. A deposition apparatus as in claim 8, further including an interconnective passageway connecting said retraction chamber and said insertion chamber such that the substrate may undergo multiple depositions by recycling the previously deposited substrate from the retraction chamber to the insertion chamber.
10. A deposition apparatus as in claim 8, further including a fourth evacuable deposition chamber between said third deposition chamber and said retraction chamber, said fourth chamber being adapted to deposit a top conductive battery terminal upon the second battery electrode layer.
11. A deposition apparatus as in claim 3, wherein said deposition apparatus is adapted to deposit a plurality of solid state battery cells onto said substrate, said payoff and take-up chambers are reversible so that when said roll of substrate material has undergone one pass through said deposition chambers, the direction of travel of said substrate can be reversed and said substrate can undergo another pass through the deposition chambers, to that end, two additional deposition chambers, identical to said first and said third deposition chambers, are included in the apparatus, the additional chambers are activated when the direction of travel of said roll of substrate material is reversed and the additional reverse direction deposition chambers are positioned on the opposite side of said second chamber from its forward direction counterpart.
12. A deposition apparatus as in claim 11 , further including an additional set of evacuable deposition chambers, each chamber of said set being positioned on opposite sides of said second deposition chamber and adapted to deposit a conductive layer atop a deposited battery cell, one chamber is positioned to deposit the conductive layer when the substrate is traveling in the forward direction and the other to deposit the conductive layer when the substrate is traveling in the reverse direction.
13. A deposition apparatus as in claim 1 , wherein said deposition chambers are adapted to deposit materials by at least one method selected from the group consisting of evaporation, chemical vapor deposition, physical vapor deposition, microwave plasma enhanced chemical vapor deposition, sputtering, laser ablation, spray coating, or plasma spraying.
14. A deposition apparatus as in claim 1 , wherein said first deposition chamber is adapted to deposit a positive electrode material.
15. A deposition apparatus as in claim 1 , wherein said first deposition chamber is adapted to deposit a negative electrode material.
PCT/US1995/006737 1994-06-06 1995-05-26 Apparatus for deposition of thin-film, solid state batteries WO1995033863A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002190856A CA2190856C (en) 1994-06-06 1995-05-26 Apparatus for deposition of thin-film, solid state batteries
AU28148/95A AU684192B2 (en) 1994-06-06 1995-05-26 Apparatus for deposition of thin-film, solid state batteries
DE69529284T DE69529284D1 (en) 1994-06-06 1995-05-26 DEVICE FOR DEPOSITING THIN FILM SOLID BATTERIES
KR1019960706934A KR100326345B1 (en) 1994-06-06 1995-05-26 Device for depositing thin-state solid state battery
EP95923670A EP0764221B1 (en) 1994-06-06 1995-05-26 Apparatus for deposition of thin-film solid state batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/254,392 1994-06-06
US08/254,392 US5411592A (en) 1994-06-06 1994-06-06 Apparatus for deposition of thin-film, solid state batteries

Publications (1)

Publication Number Publication Date
WO1995033863A1 true WO1995033863A1 (en) 1995-12-14

Family

ID=22964129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/006737 WO1995033863A1 (en) 1994-06-06 1995-05-26 Apparatus for deposition of thin-film, solid state batteries

Country Status (7)

Country Link
US (1) US5411592A (en)
EP (1) EP0764221B1 (en)
KR (1) KR100326345B1 (en)
AU (1) AU684192B2 (en)
CA (1) CA2190856C (en)
DE (1) DE69529284D1 (en)
WO (1) WO1995033863A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063918B2 (en) 2000-10-23 2006-06-20 The University Of Maryland, College Park Nanoscale solid-state polymeric battery system
CN102792508A (en) * 2010-01-19 2012-11-21 双向电池公司 Low-cost, high power, high energy density, solid-state, bipolar metal hydride batteries

Families Citing this family (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5651868A (en) * 1994-10-26 1997-07-29 International Business Machines Corporation Method and apparatus for coating thin film data storage disks
US5653811A (en) 1995-07-19 1997-08-05 Chan; Chung System for the plasma treatment of large area substrates
US5652043A (en) * 1995-12-20 1997-07-29 Baruch Levanon Flexible thin layer open electrochemical cell
US6033974A (en) 1997-05-12 2000-03-07 Silicon Genesis Corporation Method for controlled cleaving process
US20070122997A1 (en) * 1998-02-19 2007-05-31 Silicon Genesis Corporation Controlled process and resulting device
US5985742A (en) * 1997-05-12 1999-11-16 Silicon Genesis Corporation Controlled cleavage process and device for patterned films
US6291313B1 (en) 1997-05-12 2001-09-18 Silicon Genesis Corporation Method and device for controlled cleaving process
US6027988A (en) * 1997-05-28 2000-02-22 The Regents Of The University Of California Method of separating films from bulk substrates by plasma immersion ion implantation
US6548382B1 (en) 1997-07-18 2003-04-15 Silicon Genesis Corporation Gettering technique for wafers made using a controlled cleaving process
US6103599A (en) * 1997-07-25 2000-08-15 Silicon Genesis Corporation Planarizing technique for multilayered substrates
US6569555B1 (en) 1997-10-06 2003-05-27 Reveo, Inc. Refuelable and rechargeable metal-air fuel cell battery power supply unit for integration into an appliance
US6296960B1 (en) 1997-10-06 2001-10-02 Reveo, Inc. System and method for producing electrical power using metal-air fuel cell battery technology
US6306534B1 (en) 1997-10-06 2001-10-23 Reveo, Inc. Metal-air fuel cell battery systems employing means for discharging and recharging metal-fuel cards
US6451463B1 (en) 1997-10-06 2002-09-17 Reveo, Inc. Electro-chemical power generation systems employing arrays of electronically-controllable discharging and/or recharging cells within a unity support structure
US6299997B1 (en) * 1997-10-06 2001-10-09 Reveo, Inc. Ionically-conductive belt structure for use in a metal-air fuel cell battery system and method of fabricating the same
US6348277B1 (en) 1997-10-06 2002-02-19 Reveo, Inc. Method of and system for producing and supplying electrical power to an electrical power consuming device using a metal-air fuel cell battery (FCB) module and a supply of metal-fuel cards
US6558829B1 (en) 1997-10-06 2003-05-06 Reveo, Inc. Appliance with refuelable and rechargeable metal-air fuel cell battery power supply unit integrated therein
US6472093B2 (en) 1997-10-06 2002-10-29 Reveo, Inc. Metal-air fuel cell battery systems having a metal-fuel card storage cartridge, insertable within a fuel cartridge insertion port, containing a supply of substantially planar discrete metal-fuel cards, and fuel card transport mechanisms therein
US6228176B1 (en) 1998-02-11 2001-05-08 Silicon Genesis Corporation Contoured platen design for plasma immerson ion implantation
US6051073A (en) * 1998-02-11 2000-04-18 Silicon Genesis Corporation Perforated shield for plasma immersion ion implantation
US6274459B1 (en) 1998-02-17 2001-08-14 Silicon Genesis Corporation Method for non mass selected ion implant profile control
US6291326B1 (en) 1998-06-23 2001-09-18 Silicon Genesis Corporation Pre-semiconductor process implant and post-process film separation
US6379835B1 (en) 1999-01-12 2002-04-30 Morgan Adhesives Company Method of making a thin film battery
US6299998B1 (en) 1999-03-15 2001-10-09 Reveo, Inc. Movable anode fuel cell battery
US6398824B1 (en) 1999-04-02 2002-06-04 Excellatron Solid State, Llc Method for manufacturing a thin-film lithium battery by direct deposition of battery components on opposite sides of a current collector
US6458723B1 (en) 1999-06-24 2002-10-01 Silicon Genesis Corporation High temperature implant apparatus
US6500732B1 (en) 1999-08-10 2002-12-31 Silicon Genesis Corporation Cleaving process to fabricate multilayered substrates using low implantation doses
EP1212787B1 (en) * 1999-08-10 2014-10-08 Silicon Genesis Corporation A cleaving process to fabricate multilayered substrates using low implantation doses
US6263941B1 (en) 1999-08-10 2001-07-24 Silicon Genesis Corporation Nozzle for cleaving substrates
US6221740B1 (en) 1999-08-10 2001-04-24 Silicon Genesis Corporation Substrate cleaving tool and method
KR100320197B1 (en) * 1999-08-21 2002-01-10 구자홍 An apparatus for forming polymer continuously on the surface of metal by dc plasma polymerization
US6653003B1 (en) 1999-10-12 2003-11-25 Reveo Inc. Fuel cell support and electrical interconnector
US6511516B1 (en) 2000-02-23 2003-01-28 Johnson Research & Development Co., Inc. Method and apparatus for producing lithium based cathodes
US6639355B1 (en) 1999-12-20 2003-10-28 Morgan Adhesives Company Multidirectional electroluminescent lamp structures
US6621212B1 (en) 1999-12-20 2003-09-16 Morgan Adhesives Company Electroluminescent lamp structure
US6624569B1 (en) 1999-12-20 2003-09-23 Morgan Adhesives Company Electroluminescent labels
DE60126779T2 (en) * 2000-03-24 2007-12-13 Cymbet Corp., Elk River MANUFACTURE AT LOW TEMPERATURE OF THIN-LAYERED ENERGY STORAGE DEVICES
US6387563B1 (en) 2000-03-28 2002-05-14 Johnson Research & Development, Inc. Method of producing a thin film battery having a protective packaging
US6423106B1 (en) 2000-04-05 2002-07-23 Johnson Research & Development Method of producing a thin film battery anode
US6558825B1 (en) 2000-05-12 2003-05-06 Reveo, Inc. Fuel containment and recycling system
US6402796B1 (en) 2000-08-07 2002-06-11 Excellatron Solid State, Llc Method of producing a thin film battery
US20020110733A1 (en) * 2000-08-07 2002-08-15 Johnson Lonnie G. Systems and methods for producing multilayer thin film energy storage devices
TW560102B (en) * 2001-09-12 2003-11-01 Itn Energy Systems Inc Thin-film electrochemical devices on fibrous or ribbon-like substrates and methd for their manufacture and design
US20030068559A1 (en) * 2001-09-12 2003-04-10 Armstrong Joseph H. Apparatus and method for the design and manufacture of multifunctional composite materials with power integration
US20030059526A1 (en) * 2001-09-12 2003-03-27 Benson Martin H. Apparatus and method for the design and manufacture of patterned multilayer thin films and devices on fibrous or ribbon-like substrates
US7319057B2 (en) * 2001-10-30 2008-01-15 Ovonyx, Inc. Phase change material memory device
US20070094865A1 (en) * 2002-01-10 2007-05-03 Ji-Guang Zhang Packaged thin film batteries and methods of packaging thin film batteries
US7204862B1 (en) 2002-01-10 2007-04-17 Excellatron Solid State, Llc Packaged thin film batteries and methods of packaging thin film batteries
US7960054B2 (en) * 2002-01-10 2011-06-14 Excellatron Solid State Llc Packaged thin film batteries
KR100455425B1 (en) * 2002-03-29 2004-11-06 주식회사 엘지이아이 Surface treatment device of heat exchanger
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US6916679B2 (en) * 2002-08-09 2005-07-12 Infinite Power Solutions, Inc. Methods of and device for encapsulation and termination of electronic devices
US20040048157A1 (en) * 2002-09-11 2004-03-11 Neudecker Bernd J. Lithium vanadium oxide thin-film battery
US8187377B2 (en) * 2002-10-04 2012-05-29 Silicon Genesis Corporation Non-contact etch annealing of strained layers
US20040131760A1 (en) * 2003-01-02 2004-07-08 Stuart Shakespeare Apparatus and method for depositing material onto multiple independently moving substrates in a chamber
US6906436B2 (en) * 2003-01-02 2005-06-14 Cymbet Corporation Solid state activity-activated battery device and method
US7603144B2 (en) * 2003-01-02 2009-10-13 Cymbet Corporation Active wireless tagging system on peel and stick substrate
US7294209B2 (en) * 2003-01-02 2007-11-13 Cymbet Corporation Apparatus and method for depositing material onto a substrate using a roll-to-roll mask
US20040142203A1 (en) * 2003-01-07 2004-07-22 Woolley Christopher P. Hydrogen storage medium
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US6886240B2 (en) * 2003-07-11 2005-05-03 Excellatron Solid State, Llc Apparatus for producing thin-film electrolyte
US6852139B2 (en) * 2003-07-11 2005-02-08 Excellatron Solid State, Llc System and method of producing thin-film electrolyte
US7211351B2 (en) 2003-10-16 2007-05-01 Cymbet Corporation Lithium/air batteries with LiPON as separator and protective barrier and method
JP2007518246A (en) * 2004-01-06 2007-07-05 シンベット コーポーレーション Layered barrier structure comprising one or more layers having a boundary and method of manufacturing the barrier structure
US7691536B2 (en) * 2004-02-20 2010-04-06 Excellatron Solid State, Llc Lithium oxygen batteries and method of producing same
US10566669B2 (en) 2004-02-20 2020-02-18 Johnson Ip Holding, Llc Lithium oxygen batteries having a carbon cloth current collector and method of producing same
US20080070087A1 (en) * 2004-02-20 2008-03-20 Excellatron Solid State, Llc Non-volatile cathodes for lithium oxygen batteries and method of producing same
KR100928275B1 (en) * 2004-04-12 2009-11-24 자이단호진 기타큐슈산교가쿠쥬쓰스이신키코 Method and apparatus for reduced pressure drying using microwave
US7696089B1 (en) 2004-05-11 2010-04-13 Johnson Research & Development Co., Inc. Passivated thin film and method of producing same
US7478637B2 (en) * 2004-11-09 2009-01-20 Philip Morris Usa Inc. Continuous process for surface modification of cigarette filter materials
US20060219288A1 (en) * 2004-11-10 2006-10-05 Daystar Technologies, Inc. Process and photovoltaic device using an akali-containing layer
US20060096536A1 (en) * 2004-11-10 2006-05-11 Daystar Technologies, Inc. Pressure control system in a photovoltaic substrate deposition apparatus
WO2006053128A2 (en) * 2004-11-10 2006-05-18 Daystar Technologies, Inc. Pallet based system for forming thin-film solar cells
US7576017B2 (en) * 2004-11-10 2009-08-18 Daystar Technologies, Inc. Method and apparatus for forming a thin-film solar cell using a continuous process
TWI331634B (en) 2004-12-08 2010-10-11 Infinite Power Solutions Inc Deposition of licoo2
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US7776478B2 (en) * 2005-07-15 2010-08-17 Cymbet Corporation Thin-film batteries with polymer and LiPON electrolyte layers and method
US20070012244A1 (en) * 2005-07-15 2007-01-18 Cymbet Corporation Apparatus and method for making thin-film batteries with soft and hard electrolyte layers
CA2615479A1 (en) * 2005-07-15 2007-01-25 Cymbet Corporation Thin-film batteries with polymer and lipon electrolyte layers and methods
WO2007112370A1 (en) 2006-03-26 2007-10-04 Lotus Applied Technology, Llc Atomic layer deposition system and method for coating flexible substrates
US7811900B2 (en) * 2006-09-08 2010-10-12 Silicon Genesis Corporation Method and structure for fabricating solar cells using a thick layer transfer process
US8993410B2 (en) 2006-09-08 2015-03-31 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
US8293619B2 (en) 2008-08-28 2012-10-23 Silicon Genesis Corporation Layer transfer of films utilizing controlled propagation
US9362439B2 (en) 2008-05-07 2016-06-07 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region
EP2067163A4 (en) 2006-09-29 2009-12-02 Infinite Power Solutions Inc Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
JP2008234850A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Electrochemical element, and method and apparatus for manufacturing electrode of electrochemical element
US9034525B2 (en) * 2008-06-27 2015-05-19 Johnson Ip Holding, Llc Ionically-conductive amorphous lithium lanthanum zirconium oxide
US20120196189A1 (en) 2007-06-29 2012-08-02 Johnson Ip Holding, Llc Amorphous ionically conductive metal oxides and sol gel method of preparation
US8211496B2 (en) * 2007-06-29 2012-07-03 Johnson Ip Holding, Llc Amorphous lithium lanthanum titanate thin films manufacturing method
WO2009023744A1 (en) * 2007-08-13 2009-02-19 University Of Virginia Patent Foundation Thin film battery synthesis by directed vapor deposition
US20090092903A1 (en) * 2007-08-29 2009-04-09 Johnson Lonnie G Low Cost Solid State Rechargeable Battery and Method of Manufacturing Same
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
KR20150128817A (en) 2007-12-21 2015-11-18 사푸라스트 리써치 엘엘씨 Method for sputter targets for electrolyte films
JP5705549B2 (en) 2008-01-11 2015-04-22 インフィニット パワー ソリューションズ, インコーポレイテッド Thin film encapsulation for thin film batteries and other devices
WO2009117496A2 (en) * 2008-03-20 2009-09-24 Excellatron Solid State, Llc Oxygen battery system
CN101983469B (en) 2008-04-02 2014-06-04 无穷动力解决方案股份有限公司 Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
WO2009134697A2 (en) * 2008-04-30 2009-11-05 Applied Materials, Inc. Roll to roll oled production system
US7945344B2 (en) * 2008-06-20 2011-05-17 SAKT13, Inc. Computational method for design and manufacture of electrochemical systems
US9249502B2 (en) 2008-06-20 2016-02-02 Sakti3, Inc. Method for high volume manufacture of electrochemical cells using physical vapor deposition
WO2010019577A1 (en) * 2008-08-11 2010-02-18 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US8330126B2 (en) * 2008-08-25 2012-12-11 Silicon Genesis Corporation Race track configuration and method for wafering silicon solar substrates
JP5650646B2 (en) 2008-09-12 2015-01-07 インフィニット パワー ソリューションズ, インコーポレイテッド Energy device with integral conductive surface for data communication via electromagnetic energy and method for data communication via electromagnetic energy
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
CN102246273A (en) * 2008-10-10 2011-11-16 奥塔装置公司 Continuous feed chemical vapor deposition
US8329557B2 (en) 2009-05-13 2012-12-11 Silicon Genesis Corporation Techniques for forming thin films by implantation with reduced channeling
US8357464B2 (en) 2011-04-01 2013-01-22 Sakti3, Inc. Electric vehicle propulsion system and method utilizing solid-state rechargeable electrochemical cells
US9368772B1 (en) 2009-06-15 2016-06-14 Sakti3, Inc. Packaging and termination structure for a solid state battery
KR101792287B1 (en) 2009-09-01 2017-10-31 사푸라스트 리써치 엘엘씨 Printed circuit board with integrated thin film battery
CN102639749B (en) 2009-10-14 2015-06-17 莲花应用技术有限责任公司 Inhibiting excess precursor transport between separate precursor zones in an atomic layer deposition system
KR101930561B1 (en) 2010-06-07 2018-12-18 사푸라스트 리써치 엘엘씨 Rechargeable high-density electrochemical device
KR101323812B1 (en) 2011-02-28 2013-10-31 스템코 주식회사 Thin film battery using flexible metal clad laminate, Apparatus for manufacturing for the same, and Manufacturing method for the same
US10770745B2 (en) 2011-11-09 2020-09-08 Sakti3, Inc. Monolithically integrated thin-film solid state lithium battery device having multiple layers of lithium electrochemical cells
US11527774B2 (en) 2011-06-29 2022-12-13 Space Charge, LLC Electrochemical energy storage devices
US10658705B2 (en) 2018-03-07 2020-05-19 Space Charge, LLC Thin-film solid-state energy storage devices
US10601074B2 (en) 2011-06-29 2020-03-24 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US9853325B2 (en) 2011-06-29 2017-12-26 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US8301285B2 (en) 2011-10-31 2012-10-30 Sakti3, Inc. Computer aided solid state battery design method and manufacture of same using selected combinations of characteristics
US9127344B2 (en) 2011-11-08 2015-09-08 Sakti3, Inc. Thermal evaporation process for manufacture of solid state battery devices
EP2801120B1 (en) 2012-01-05 2018-10-31 Electrovaya Inc. Thin film electrochemical cell with a polymer double seal
US10333123B2 (en) 2012-03-01 2019-06-25 Johnson Ip Holding, Llc High capacity solid state composite cathode, solid state composite separator, solid-state rechargeable lithium battery and methods of making same
WO2013146851A1 (en) * 2012-03-30 2013-10-03 小島プレス工業株式会社 Process and device for producing lithium-ion secondary battery
US9793525B2 (en) 2012-10-09 2017-10-17 Johnson Battery Technologies, Inc. Solid-state battery electrodes
US9627717B1 (en) 2012-10-16 2017-04-18 Sakti3, Inc. Embedded solid-state battery
US20140166989A1 (en) * 2012-12-17 2014-06-19 Universal Display Corporation Manufacturing flexible organic electronic devices
US9478797B2 (en) * 2013-01-25 2016-10-25 Applejack 199 L.P. System, method and apparatus for forming a thin film lithium ion battery
US20170301958A1 (en) * 2014-10-03 2017-10-19 Su Xiang Deng Plasma deposition to fabricate lithium batteries
US9627709B2 (en) 2014-10-15 2017-04-18 Sakti3, Inc. Amorphous cathode material for battery device
US11148202B2 (en) 2015-12-16 2021-10-19 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
JP6763965B2 (en) 2015-12-21 2020-09-30 ジョンソン・アイピー・ホールディング・エルエルシー Solid-state batteries, separators, electrodes and manufacturing methods
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
GB2548361B (en) 2016-03-15 2020-12-02 Dyson Technology Ltd Method of fabricating an energy storage device
EP3475340B1 (en) * 2016-06-22 2021-04-14 The Government of the United States of America, as represented by the Secretary of the Navy P(cn)3 reactions with lithium dicynamide producing lithiated carbon phosphonitride extended solids
KR102162773B1 (en) * 2016-10-07 2020-10-07 주식회사 엘지화학 Method for Manufacturing Electrode for Secondary Battery Comprising Pre-Slitting Process
WO2019020393A1 (en) * 2017-07-27 2019-01-31 Evatec Ag Permeation-barrier
GB2566473B (en) 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
GB2566472B (en) 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
GB2569392B (en) 2017-12-18 2022-01-26 Dyson Technology Ltd Use of aluminium in a cathode material
GB2569387B (en) 2017-12-18 2022-02-02 Dyson Technology Ltd Electrode
GB2569390A (en) 2017-12-18 2019-06-19 Dyson Technology Ltd Compound
US11508951B2 (en) * 2018-11-13 2022-11-22 Alliance For Sustainable Energy, Llc Solid-state energy storage devices and methods of making the same
CN114007782A (en) 2019-04-30 2022-02-01 6K有限公司 Mechanically alloyed powder feedstock
CA3153254A1 (en) 2019-11-18 2021-06-17 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
JP2023532457A (en) 2020-06-25 2023-07-28 シックスケー インコーポレイテッド Fine composite alloy structure
EP4237174A1 (en) 2020-10-30 2023-09-06 6K Inc. Systems and methods for synthesis of spheroidized metal powders
CN114427080A (en) * 2022-01-17 2022-05-03 广州华星光电半导体显示技术有限公司 Copper film plating process for PVD equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172319A (en) * 1977-06-30 1979-10-30 Polaroid Corporation Electrical cells and batteries and methods of making the same
US5090356A (en) * 1991-06-28 1992-02-25 United Solar Systems Corporation Chemically active isolation passageway for deposition chambers
US5096667A (en) * 1989-11-24 1992-03-17 Energy Conversion Devices, Inc. Catalytic hydrogen storage electrode materials for use in electrochemical cells and electrochemical cells incorporating the materials
US5097800A (en) * 1983-12-19 1992-03-24 Spectrum Control, Inc. High speed apparatus for forming capacitors
US5344728A (en) * 1992-11-12 1994-09-06 Ovonic Battery Company, Inc. Compositionally and structurally disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579792A (en) * 1982-01-20 1986-04-01 Polaroid Corporation Lithium batteries with organic slurry cathodes
EP0122092A3 (en) * 1983-04-06 1985-07-10 General Engineering Radcliffe Limited Vacuum coating apparatus
JPH02148715A (en) * 1988-11-29 1990-06-07 Canon Inc Apparatus for forming semiconductor device continuously
US5326652A (en) * 1993-01-25 1994-07-05 Micron Semiconductor, Inc. Battery package and method using flexible polymer films having a deposited layer of an inorganic material
US5348822A (en) * 1992-11-12 1994-09-20 Ovonic Battery Company, Inc. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172319A (en) * 1977-06-30 1979-10-30 Polaroid Corporation Electrical cells and batteries and methods of making the same
US5097800A (en) * 1983-12-19 1992-03-24 Spectrum Control, Inc. High speed apparatus for forming capacitors
US5096667A (en) * 1989-11-24 1992-03-17 Energy Conversion Devices, Inc. Catalytic hydrogen storage electrode materials for use in electrochemical cells and electrochemical cells incorporating the materials
US5090356A (en) * 1991-06-28 1992-02-25 United Solar Systems Corporation Chemically active isolation passageway for deposition chambers
US5344728A (en) * 1992-11-12 1994-09-06 Ovonic Battery Company, Inc. Compositionally and structurally disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0764221A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063918B2 (en) 2000-10-23 2006-06-20 The University Of Maryland, College Park Nanoscale solid-state polymeric battery system
CN102792508A (en) * 2010-01-19 2012-11-21 双向电池公司 Low-cost, high power, high energy density, solid-state, bipolar metal hydride batteries
EP2526587A2 (en) * 2010-01-19 2012-11-28 Ovonic Battery Company, Inc. Low-cost, high power, high energy density, solid-state, bipolar metal hydride batteries
EP2526587A4 (en) * 2010-01-19 2014-06-11 Ovonic Battery Co Low-cost, high power, high energy density, solid-state, bipolar metal hydride batteries

Also Published As

Publication number Publication date
US5411592A (en) 1995-05-02
DE69529284D1 (en) 2003-02-06
EP0764221B1 (en) 2003-01-02
AU684192B2 (en) 1997-12-04
CA2190856C (en) 2006-05-09
EP0764221A4 (en) 2000-01-26
CA2190856A1 (en) 1995-12-14
AU2814895A (en) 1996-01-04
KR100326345B1 (en) 2002-09-27
KR970703442A (en) 1997-07-03
EP0764221A1 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
AU684192B2 (en) Apparatus for deposition of thin-film, solid state batteries
US5985485A (en) Solid state battery having a disordered hydrogenated carbon negative electrode
CA2177056C (en) A solid state battery using an ionic or protonic electrolyte
US8956761B2 (en) Lithium ion battery and method for manufacturing of such battery
US5376475A (en) Aqueous lithium-hydrogen ion rechargeable battery
US10840543B2 (en) System and method for the formation of facile lithium metal anode interface with a solid state electrolyte
US8551656B2 (en) Solid electrolyte cell and positive electrode active material
US20070269716A1 (en) Multifunctional battery and method of making the same
KR101688258B1 (en) Low-cost, high power, high energy density, solid-state, bipolar metal hydride batteries
WO2016197098A1 (en) Solid state bipolar battery
US20020001751A1 (en) Electrode composition comprising doped tungsten oxides, method of preparation thereof and electrochemical cell comprising same
US20090313814A1 (en) Method of producing nonaqueous secondary battery
WO1997019481A1 (en) A solid state battery having a disordered hydrogenated carbon negative electrode
US20230369586A1 (en) Stable lithium metal sulfide coatings for solid-state batteries
US20230387388A1 (en) Stable protective oxide coatings for anodes in solid-state batteries
Rathuwadu A Breakthrough in Battery Research: Lithium Ion Batteries
CN116741924A (en) Reference electrode for vehicle-mounted battery cell diagnosis and reference electrode manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA DK FI JP KR NO RU UA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2190856

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1995923670

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995923670

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995923670

Country of ref document: EP