WO1996005885A1 - Atrial defibrillator and method of use - Google Patents

Atrial defibrillator and method of use Download PDF

Info

Publication number
WO1996005885A1
WO1996005885A1 PCT/US1995/009108 US9509108W WO9605885A1 WO 1996005885 A1 WO1996005885 A1 WO 1996005885A1 US 9509108 W US9509108 W US 9509108W WO 9605885 A1 WO9605885 A1 WO 9605885A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
ventricular
lead
atrial
Prior art date
Application number
PCT/US1995/009108
Other languages
French (fr)
Inventor
Xiaoyi Min
Luc K. Mongeon
Rahul Mehra
Kenneth M. Anderson
Paul J. De Groot
Michael R. S. Hill
Original Assignee
Medtronic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic, Inc. filed Critical Medtronic, Inc.
Priority to EP95926747A priority Critical patent/EP0776234A1/en
Priority to AU31019/95A priority patent/AU3101995A/en
Publication of WO1996005885A1 publication Critical patent/WO1996005885A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3918Heart defibrillators characterised by shock pathway, e.g. by electrode configuration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3956Implantable devices for applying electric shocks to the heart, e.g. for cardioversion
    • A61N1/3962Implantable devices for applying electric shocks to the heart, e.g. for cardioversion in combination with another heart therapy
    • A61N1/39622Pacing therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/395Heart defibrillators for treating atrial fibrillation

Definitions

  • the present invention relates to medical stimulators and leads generally, and more particularly to implantable defibrillators and defibrillation leads.
  • Multi-electrode ventricular defibrillation systems are disclosed in U.S. Patent No. 4,727,877 issued to Kallok, U.S. Patent No. 4,708,145 issued to Tacker, et al. , and as disclosed in U.S. Patent No. 5,099,838, issued to Bardy.
  • Other endocardial defibrillation electrodes are disclosed in U.S. Patent No. 4,481,953 issued to Gold et al. , U.S. Patent No. 4,161,952 issued to Kinney, et al. , U.S. Patent No.
  • An electrode lead system specifically designed for atrial defibrillation is disclosed in the article "Elective Countershock in Atrial Fibrillation With an Intracardiac Electrode - A Preliminary Report, by Jain, et al. , published in the Journal of the Association of Physicians of India, Vol. 18, pp 821-824, 1970.
  • This lead was provided with a 10 mm silver electrode for location in the right atrium and was tested in conjunction with either a second electrode located in the right atrium or a second, cutaneous electrode located on the left side of the chest wall.
  • a second electrode system specifically designed for use in atrial cardioversion is disclosed in the article “Safety and feasibility of transvenous cardioversion in atrial tachycardia", by Blanc et al. , published in Cardiac Pacing, edited by Gomez, Futura Pub. Co., 1985, pp 1526- 1529.
  • This electrode system employed a single lead with electrodes located in the atrium and pulmonary artery.
  • the present invention is directed toward the provision of a defibrillator and defibrillation lead system particularly optimized for use in defibrillation or cardioversion of the atrium at low energy levels.
  • the lead system includes a coronary sinus/great vein electrode, an elongated right atrial/ superior vena cava (SVC) electrode and an elongated ventricular electrode.
  • SVC right atrial/ superior vena cava
  • a subcutaneous electrode which preferably takes the form of some or all of the conductive housing of the defibrillator is also employed.
  • the present invention is preferably practiced in a defibrillator/cardioverter which delivers an asymmetrical biphasic capacitive discharge pulse between the electrodes, as disclosed in U.S. patent No.
  • the coronary sinus/great vein electrode is connected in common with the right ventricular electrode, and a biphasic pulse is delivered between these coupled electrodes and the right atrial/SVC electrode.
  • the conductive housing is employed as an additional electrode, the housing is preferably implanted in the left pectoral region of the patient's chest and connected in common with to the right atrial/SVC electrode during delivery of the pulse.
  • the device is configured to perform atrial and ventricular defibrillation or cardioversion, and some or all of the electrodes may also be employed for ventricular cardioversion or defibrillation.
  • ventricular and atrial/SVC electrodes which are configured to deploy in a coiled configuration, as described in U.S. Patent No. 5,016,808 issued on May 21, 1992, to Heil et al . incorporated herein in its entirety, may be employed. Such electrodes are believed especially valuable for use in practicing the present invention for the reduction in over-all system impedance and corresponding reduction in energy thresholds which result.
  • the electrode system of the present invention allows for construction of an atrial defibrillator which will meet the energy level objectives described above.
  • the electrode system employed for atrial defibrillation also provides a low threshold ventricular defibrillation system, particularly if the pulse is delivered between the ventricular electrode and the right atrial/SVC electrode coupled in common with the coronary sinus/great vein electrode, allowing for an enhanced combined atrial/ventricular defibrillation system.
  • BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 illustrates a first embodiment of an implantable defibrillator and lead according to the present invention.
  • Fig. 2 illustrates a second embodiment of an implantable defibrillator and lead according to the present invention.
  • Fig. 3 illustrates a third embodiment of an implantable defibrillator and lead according to the present invention.
  • Fig. 4 illustrates a functional schematic diagram of an implantable pacemaker/cardioverter/defibrillator in which the invention may usefully be practiced in conjunction with the electrodes illustrated in Figures 1, 2 and 3.
  • Fig. 5 illustrates a functional schematic diagram of the high voltage output circuit of the implantable pacemaker/cardioverter/defibrillator illustrated in Figure 4.
  • Fig. 1 illustrates a defibrillator and lead set according to the present invention.
  • the ventricular lead takes the form of the lead disclosed in the above cited patents issued to Bardy, and includes an elongated insulative lead body 16, carrying three concentric coiled conductors, separated from one another by tubular insulative sheaths. Located adjacent the distal end of the lead are a ring electrode 24, an extendable helix electrode 26, mounted retractably within an insulative electrode head 28, and an elongated coil electrode 20. Each of the electrodes is coupled to one of the coiled conductors within the lead body 16. Electrodes 24 and 26 are employed for cardiac pacing and for sensing ventricular depolarizations.
  • the defibrillation electrode 20 may be fabricated from platinum, platinum alloy or other materials known to be usable in implantable defibrillation electrodes and may be about 5 cm in length.
  • the atrial/SVC lead includes an elongated insulative lead body 15, carrying three concentric coiled conductors, separated from one another by tubular insulative sheaths, corresponding to the structure of the ventricular lead.
  • Each of the electrodes is coupled to one of the coiled conductors within the lead body 15.
  • Electrodes 17 and 21 are employed for atrial pacing and for sensing atrial depolarizations.
  • An elongated coil electrode 23 is provided, proximal to electrode 21 and coupled to the third conductor within the lead body 15.
  • Electrode 23 preferably is 10 cm in length or greater and is configured to extend from the SVC toward the tricuspid valve. In one preferred embodiment tested by the inventors, approximately 5 cm of the right atrium/SVC electrode was located in the right atrium, with the remaining 5 cm located in the SVC.
  • a bifurcated connector 13 which carries three electrical connectors, each coupled to one of the coiled conductors.
  • the coronary sinus lead takes the form of the coronary sinus lead disclosed in the above cited '838 patent issued to Bardy, and includes an elongated insulative lead body 6, carrying one coiled conductor, coupled to an elongated coiled defibrillation electrode 8. Electrode 8, illustrated in broken outline, is located within the coronary sinus and great vein of the heart . At the proximal end of the lead is a connector plug 4 which carries an electrical connector, coupled to the coiled conductor.
  • the coronary sinus/great vein electrode 8 may be about 5 cm in length.
  • An implantable pacemaker/cardioverter/defibrillator 10 is shown in combination with the leads, with the lead connector assemblies 4, 13 and 14 inserted into the connector block 12.
  • insulation of the outward facing portion of the housing 11 of the pacemaker/cardioverter/defibrillator 10 may be provided using a plastic coating, for example parylene or silicone rubber, as is currently employed in some unipolar cardiac pacemakers.
  • the outward facing portion may instead be left uninsulated, or some other division between insulated and uninsulated portions may be employed.
  • the uninsulated portion of the housing 11 optionally serves as a subcutaneous defibrillation electrode, used to defibrillate either the atria or ventricles.
  • an electrode system according to the present invention in which pulses are delivered between a right atrial/SVC electrode (alone or optionally coupled to a subcutaneous electrode) and a ventricular electrode electrically coupled to a coronary sinus/great vein electrode will provide atrial defibrillation thresholds in the range of about 1 Joule or less across a substantial portion of the patient population.
  • the present invention is believed to provide a substantial improvement over the right atrial or SVC to coronary sinus/great vein electrode system employed in the '403 Mehra patent.
  • a particularly efficient ventricular defibrillation electrode system is provided.
  • the improvement of the present invention over the right atrium to coronary sinus/great vein defibrillation electrode system is somewhat surprising, given that the blood in the right atrium and right ventricle is more conductive than heart tissue, and that delivery of a pulse between the right atrial/SVC electrode and the right ventricular electrode would normally be expected to shunt current away from the left atrium.
  • FIG. 2 illustrates an alternative defibrillator and lead set according to the present invention.
  • the pacemaker/cardioverter/defibrillator 110 corresponds precisely to the pacemaker/cardioverter/defibrillator 10 illustrated in Figure 1. Only the configurations of the atrial/SVC lead and the right ventricular lead are changed.
  • the ventricular lead includes an elongated insulative lead body 116, carrying three concentric coiled conductors, separated from one another by tubular insulative sheaths. Located adjacent the distal end of the lead are a ring electrode 124, an extendable helix electrode 126, mounted retractably within an insulative electrode head, and an elongated coil electrode 120. Each of the electrodes is coupled to one of the coiled conductors within the lead body 116. At the proximal end of the lead is a bifurcated connector 14 which carries three electrical connectors, each coupled to one of the coiled conductors.
  • the atrial lead/SVC includes an elongated insulative lead body 115, carrying three concentric coiled conductors, separated from one another by tubular insulative sheaths. Located adjacent the distal end of the lead are a ring electrode 121 and an extendable helix electrode 117, mounted retractably within an insulative electrode head. Mounted proximal to the ring electrode 121 is a right atrial/superior vena cava electrode 123. Each of the electrodes is coupled to one of the coiled conductors within the lead body 115. Electrodes 117 and 121 are employed for atrial pacing and for sensing atrial depolarizations. At the proximal end of the lead is a bifurcated connector assembly 113 which carries three electrical connectors, each coupled to one of the coiled conductors.
  • the lead bodies 115 and 116 the atrial/SVC lead and the ventricular lead are formed to exhibit a coiled or helical configuration when relaxed, in a manner similar to that disclosed in the above-cited '808 patent issued to Heil et al.
  • the lead bodies 115, 116 are straightened by insertion of a stylet prior to transvenous introduction, and the helical electrodes 117 and 126 are screwed into heart tissue while the straightening stylets are in place. The stylets are removed thereafter, allowing the leads to assume their helical or coiled configurations.
  • the lead bodies may be formed to define a tapered or conical helixes, cylindrical helixes, or helixes generally defining a three dimensional ovoid.
  • the actual configuration displayed will of course be dependant on the interrelation of the lead's configuration and the dimensions of the chamber in which it is located. Because of the coiled lead body configuration, a greater length of lead body may be located within a desired chamber, and the electrodes located thereon may correspondingly have an increased length and surface area, reducing their impedance an correspondingly reducing over-all system impedance.
  • the coronary sinus lead corresponds to that illustrated in Figure 1 and includes an elongated insulative lead body 116, carrying one coiled conductor, coupled to an elongated coiled defibrillation electrode 118. Electrode 118, illustrated in broken outline, is located within the coronary sinus and great vein of the heart .
  • the coronary sinus lead may be fabricated similar to those located in the right atrium and right ventricle, and may have a lead body which takes the form of a helix or sigmoid in order to increase the available electrode surface area.
  • the leads illustrated in Figure 2 may be substituted singly or multiply for the leads illustrated in Figure 1.
  • an atrial lead having a coiled lead body may be advantageously employed with a ventricular lead having a generally straight lead body, and so forth.
  • Fig. 3 illustrates an alternative defibrillator and lead set according to the present invention.
  • the pacemaker/cardioverter/defibrillator 410 corresponds precisely to the pacemaker/cardioverter/defibrillator 10 illustrated in Figure 1. Only the configurations of the atrial/SVC lead and the right ventricular lead are changed.
  • the ventricular lead includes the right atrial/SVC defibrillation electrode, and the atrial lead corresponds to a standard atrial pacing lead.
  • the ventricular lead includes an elongated insulative lead body 16, carrying four parallel coiled conductors, mounted within a four lumen tubular insulative sheath.
  • a ring electrode 424 Located adjacent the distal end of the lead are a ring electrode 424, an extendable helix electrode 426, mounted retractably within an insulative electrode head 428, and an elongated coil electrode 420.
  • An additional elongated coil electrode 423 is located proximal to electrode 420, spaced to allow placement in the right atrium/SVC.
  • Each of the electrodes is coupled to one of the coiled conductors within the lead body 16.
  • Electrodes 424 and 426 are employed for cardiac pacing and for sensing ventricular depolarizations.
  • a bifurcated connector 414 At the proximal end of the lead is a bifurcated connector 414 which carries four electrical connectors, each coupled to one of the coiled conductors.
  • the defibrillation electrodes 420 and 423 may be fabricated from platinum, platinum alloy or other materials known to be usable in implantable defibrillation electrodes and may conveniently be about 5 cm in length and about 10 cm or greater in length, respectively.
  • the atrial/SVC lead includes an elongated insulative lead body 415, carrying two concentric coiled conductors, separated from one another by a tubular insulative sheath, corresponding to the structure of the commercially available atrial pacing leads. Located adjacent the J-shaped distal end of the lead are a ring electrode 421 and an extendable helix electrode 417, mounted retractably within an insulative electrode head 419.
  • Electrodes 417 and 421 are employed for atrial pacing and for sensing atrial depolarizations.
  • a bipolar, in-line connector 413 which carries two electrical connectors, each coupled to one of the coiled conductors.
  • the coronary sinus lead corresponds to the coronary sinus lead illustrated in Figure 1 and includes an elongated insulative lead body 406, carrying one coiled conductor, coupled to an elongated coiled defibrillation electrode 408. Electrode 408, illustrated in broken outline, is located within the coronary sinus and great vein of the heart. At the proximal end of the lead is a connector plug 404 which carries an electrical connector, coupled to the coiled conductor.
  • the coronary sinus/great vein electrode 408 may be about 5 cm in length.
  • FIG. 4 is a functional schematic diagram of an implantable pacemaker/cardioverter/defibrillator in which the present invention may usefully be practiced. This diagram should be taken as exemplary of the type of device in which the invention may be embodied, and not as limiting, as it is believed that the invention may usefully be practiced in a wide variety of device implementations, including cardioverter and defibrillators which do not provide anti-tachycardia pacing therapies.
  • Electrodes 324 and 326 correspond to electrodes 24 and 26, and are used for sensing and pacing in the ventricle.
  • Electrodes 317 and 321 correspond to electrodes 17 and 19 and are used for pacing and sensing in the atrium. Electrodes 310, 311, 318 and 320 are coupled to high voltage output circuit 234.
  • High voltage output circuit 234 includes high voltage switches controlled by CV/defib control logic 230 via control bus 238. The switches within circuit 234 control which electrodes are employed and which are coupled to the positive and negative terminals of the capacitor bank including capacitors 246 and 248 during delivery of the defibrillation pulses.
  • Electrodes 424 and 326 are located on or in the ventricle and are coupled to the R-wave amplifier 200, which preferably takes the form of an automatic gain controlled amplifier providing an adjustable sensing threshold as a function of the measured R-wave amplitude.
  • a signal is generated on R-out line 202 whenever the signal sensed between electrodes 612 and 614 exceeds the present sensing threshold.
  • Electrodes 317 and 321 are located on or in the atrium and are coupled to the P-wave amplifier 204, which preferably also takes the form of an automatic gain controlled amplifier providing an adjustable sensing threshold as a function of the measured P-wave amplitude.
  • a signal is generated on P-out line 206 whenever the signal sensed between electrodes 617 and 621 exceeds the present sensing threshold.
  • the general operation of the R-wave and P-wave amplifiers 200 and 204 may correspond to that disclosed in U.S. Patent No. 5,117,824, by Keimel, et al. , issued June 2, 1992, for an Apparatus for Monitoring Electrical Physiologic Signals, incorporated herein by reference in its entirety.
  • Switch matrix 208 is used to select which of the available electrodes are coupled to wide band (0.5-200 Hz) amplifier 210 for use in digital signal analysis. Selection of electrodes is controlled by the microprocessor 224 via data/address bus 218, which selections may be varied as desired. Signals from the electrodes selected for coupling to bandpass amplifier 210 are provided to multiplexer 220, and thereafter converted to multi-bit digital signals by A/D converter 222, for storage in random access memory 226 under control of direct memory access circuit 228. Microprocessor 224 may employ digital signal analysis techniques to characterize the digitized signals stored in random access memory 226 to recognize and classify the patient's heart rhythm employing any of the numerous signal processing methodologies known to the art.
  • the pacer timing/control circuitry 212 includes programmable digital counters which control the basic time intervals associated with DDD, WI, DVI, VDD, AAI, DDI and other modes of single and dual chamber pacing well known to the art. Circuitry 212 also controls escape intervals associated with anti-tachyarrhythmia pacing in both the atrium and the ventricle, employing any anti- tachyarrhythmia pacing therapies known to the art.
  • Intervals defined by pacing circuitry 212 include atrial and ventricular pacing escape intervals, the refractory periods during which sensed P-waves and R-waves are ineffective to restart timing of the escape intervals and the pulse widths of the pacing pulses.
  • the durations of these intervals are determined by microprocessor 226, in response to stored data in memory 226 and are communicated to the pacing circuitry 212 via address/data bus 218.
  • Pacer circuitry 212 also determines the amplitude of the cardiac pacing pulses under control of microprocessor 224.
  • the escape interval counters within pacer timing/control circuitry 212 are reset upon sensing of R-waves and P-waves as indicated by a signals on lines 202 and 206, and in accordance with the selected mode of pacing on timeout trigger generation of pacing pulses by pacer output circuitry 214 and 216, which are coupled to electrodes 317, 321, 324 and 326.
  • the escape interval counters are also reset on generation of pacing pulses, and thereby control the basic timing of cardiac pacing functions, including anti-tachyarrhythmia pacing.
  • the durations of the intervals defined by the escape interval timers are determined by microprocessor 224, via data/address bus 218.
  • the value of the count present in the escape interval counters when reset by sensed R-waves and P-waves may be used to measure the durations of R-R intervals, P-P intervals, P-R intervals and R-P intervals, which measurements are stored in memory 226 and used to detect the presence of tachyarrhythmias.
  • Microprocessor 224 operates as an interrupt driven device, and is responsive to interrupts from pacer timing/control circuitry 212 corresponding to the occurrence sensed P-waves and R-waves and corresponding to the generation of cardiac pacing pulses. These interrupts are provided via data/address bus 218. Any necessary mathematical calculations to be performed by microprocessor 224 and any updating of the values or intervals controlled by pacer timing/control circuitry 212 take place following such interrupts.
  • the intervals separating that R-wave from the immediately preceding R- wave, paced or sensed (R-R interval) and the interval separating the paced or sensed R-wave from the preceding atrial depolarization, paced or sensed (P-R interval) may be stored.
  • the intervals separating the sensed P-wave from the immediately preceding paced of sensed atrial contraction (P-P Interval) and the interval separating the sensed P-wave from the immediately preceding sensed or paced ventricular depolarization (R-P interval) may be stored.
  • a portion of the memory 226 is configured as a plurality of recirculating buffers, capable of holding a preceding series of measured intervals, which may be analyzed in response to the occurrence of a pace or sense interrupt to determine whether the patient's heart is presently exhibiting atrial or ventricular tachyarrhythmia.
  • Detection of atrial or ventricular tachyarrhythmias, as employed in the present invention, may correspond to tachyarrhythmia detection algorithms known to the art.
  • presence of atrial or ventricular tachyarrhythmia may be confirmed by means of detection of a sustained series of short R-R or P-P intervals of an average rate indicative of tachyarrhythmia or an unbroken series of short R-R or P-P intervals.
  • the suddenness of onset of the detected high rates, the stability of the high rates, or a number of other factors known to the art may also be measured at this time.
  • Appropriate ventricular tachyarrhythmia detection methodologies measuring such factors are described in U.S. Patent No. 4,726,380, issued to Vollmann, U.S. Patent No. 4,880,005, issued to Pless et al. and U.S. Patent No.
  • timing intervals for controlling generation of anti-tachyarrhythmia pacing therapies are loaded from microprocessor 224 into the pacer timing and control circuitry 212, to control the operation of the escape interval counters therein and to define refractory periods during which detection of R-waves and P-waves is ineffective to restart the escape interval counters.
  • microprocessor 224 In the event that generation of a cardioversion or defibrillation pulse is required, microprocessor 224 employs the an escape interval counter to control timing of such cardioversion and defibrillation pulses, as well as associated refractory periods. In response to the detection of atrial or ventricular fibrillation or tachyarrhythmia requiring a cardioversion pulse, microprocessor 224 activates cardioversion/defibrillation control circuitry 230, which initiates charging of the high voltage capacitors 246 and 248 via charging circuit 236, under control of high voltage charging control lines 240 and 242.
  • VCAP line 244 The voltage on the high voltage capacitors is monitored via VCAP line 244, which is passed through multiplexer 220 and in response to reaching a predetermined value set by microprocessor 224, results in generation of a logic signal on Cap Full (CF) line 254, terminating charging. Thereafter, timing of the delivery of the defibrillation or cardioversion pulse is controlled by pacer timing/control circuitry 212. Following delivery of the fibrillation or tachycardia therapy the microprocessor then returns the device to cardiac pacing and awaits the next successive interrupt due to pacing or the occurrence of a sensed atrial or ventricular depolarization.
  • VCAP line 244 which is passed through multiplexer 220 and in response to reaching a predetermined value set by microprocessor 224, results in generation of a logic signal on Cap Full (CF) line 254, terminating charging.
  • CF Cap Full
  • Output circuit 234 determines whether a monophasic or biphasic pulse is delivered, the polarity of the electrodes and which electrodes are involved in delivery of the pulse. Output circuit 234 also includes high voltage switches which control whether electrodes are coupled together during delivery of the pulse.
  • electrodes intended to be coupled together during the pulse may simply be permanently coupled to one another, either exterior to or interior of the device housing, and polarity may similarly be pre-set, as in current implantable defibrillators.
  • An example of output circuitry for delivery of biphasic pulse regimens to multiple electrode systems may be found in the above cited patent issued to Mehra and in U.S. Patent No. 4,727,877, incorporated by reference in its entirety.
  • circuitry which may be used to control delivery of monophasic pulses is set forth in commonly assigned U.S. Patent No. 5,163,427, by Keimel, issued
  • ventricular defibrillation may be accomplished using higher pulse energy levels than required for atrial defibrillation and may employ the same or a different electrode set.
  • electrodes 310, 311, 318 and 320 or only 1 3 electrodes 311, 318 and 320 may be employed for atrial defibrillation.
  • Electrodes 311, 320 and 310 might be employed for ventricular defibrillation, with electrode 311 (right atrium/SVC) coupled to electrode 310 (device housing) .
  • electrodes 310, 318 and 320 may be employed, with electrode 318 (coronary sinus/great vein) coupled to electrode 310.
  • electrodes 311, 310, 318 and 323 might all be employed for ventricular defibrillation, with electrodes 310, 311 and 323 coupled in common.
  • only electrodes 310 and 320 might be employed for ventricular defibrillation. added or substituted for either of electrodes 311 or 318 for treating ventricular fibrillation.
  • One particularly desirable embodiment of the invention employs only the right atrial/SVC electrode 311, the coronary sinus/great vein electrode 318 and the right ventricular electrode 320.
  • electrodes 320 and 318 are coupled in common with one another, and the atrial defibrillation pulse is delivered between these electrodes and electrode 311.
  • electrodes 311 and 318 are coupled in common with one another, and the ventricular defibrillation pulse is delivered between these electrodes and electrode 320.
  • This particular set of electrodes thus provides optimized defibrillation pulse regimens for both atrial and ventricular defibrillation, by simply switching the connection of the coronary sinus/great vein electrode.
  • an anti-tachycardia pacing therapy may be selected and delivered to the chamber in which the tachycardia is diagnosed or to both chambers.
  • a more aggressive anti- tachycardia pacing therapy may abe scheduled. If repeated attempts at anti-tachycardia pacing therapies fail, a higher level cardioversion pulse may be selected thereafter.
  • Therapies for tachycardia termination may also vary with the rate of the detected tachycardia, with the therapies increasing in aggressiveness as the rate of the detected tachycardia increases. For example, fewer attempts at anti-tachycardia pacing may be undertaken prior to delivery of cardioversion pulses if the rate of the detected tachycardia is above a preset threshold.
  • the references cited above in conjunction with descriptions of prior art tachycardia detection and treatment therapies are applicable here as well .
  • the typical therapy will be delivery of a high amplitude defibrillation pulse, typically in excess of 10 joules in the case of ventricular fibrillation and about 1 joule or less in the case of atrial defibrillation.
  • Lower energy levels will be employed for cardioversion.
  • the amplitude of the defibrillation pulse may be incremented in response to failure of an initial pulse or pulses to terminate fibrillation.
  • Prior art patents illustrating such pre-set therapy menus of anti-tachyarrhythmia therapies include the above-cited U.S.
  • FIG. 5 is a functional schematic diagram of switching circuitry which may be employed in high voltage output circuit 234, illustrated in Figure 4.
  • the circuitry includes eight high voltage switches 501, 502, 503, 504, 505, 506, 507 and 508, which are individually controlled by signals on control bus 238. These switches allow connection of any of the four electrodes 301, 311, 320 and 318 to either the positive or the negative terminal of the capacitor and comprising capacitors 246 and 248.
  • any combination of electrodes may be selected, any polarities desired may be provided, and monophasic or biphasic pulses may be delivered, depending upon control signals on control bus 238.
  • the switching circuitry may be simplified. For example, if two electrodes (e,g.
  • switches 318 and 320 are hard wired together, either in the connector block or in the device housing, one set of two switches (504, 508) may be deleted.
  • one set of two switches (504, 508) may be deleted.
  • a set of switches (501,505) may similarly be deleted. If only atrial defibrillation is desired, using only three electrodes both of these changes could be made, resulting in an output circuit employing only four switches and which corresponds to high voltage output circuits presently used in implantable ventricular defibrillators.
  • the invention may also be usefully practiced in substantially simpler devices.
  • the illustrated defibrillation electrodes may simply be coupled to an implantable atrial cardioverter as disclosed in U.S. Patent No. 3,738,370, issued to Charms, or as disclosed in published PCT Application Serial No. -US92/02829, Publication No. W092/18198, by Adams et al, both of which are incorporated herein by reference in their entireties.
  • a simple device of this type is believed workable in some patients.
  • inclusion of the ability to detect and terminate ventricular tachycardias and fibrillation is believed of extreme importance in patients in whom delivery of atrial cardioversion or defibrillation pulses unintentionally in initiates ventricular arrhythmias.
  • defibrillation electrodes disclosed above all take the form of elongated coils, other electrode types may also be employed in conjunction with the present invention.
  • carbon fiber braids as disclosed in U.S. Patent No. 5,143,089 issued on September 1, 1992 to Alt
  • conductive meshes as disclosed in U.S. Patent No. 5,005,587, issued on April 9, 1991 to Scott might be employed
  • defibrillation electrodes taking the form of one or more ring electrodes as disclosed in U.S. Patent No. 4,355,646, issued on October 22, 1982 to Kallok might be substituted.
  • the specific electrode lengths set forth may be further refined as development of atrial defibrillation electrode systems continues.
  • the electrodes employed for atria sensing and pacing are disclosed as mounted to the atrial lead, these electrodes might alternatively take the form of ring electrodes mounted to either the ventricular lead or the coronary sinus/great vein lead.
  • the above disclosure should be considered exemplary, rather than limiting, with regard to the following claims.
  • the invention may also usefully to treat tachyarrhythmias which are not fibrillation.
  • high voltage pulses of amplitudes less than typically employed to treat fibrillation may be used to terminate ventricular and atrial tachycardias. This treatment is typically referred to as “cardioversion” .
  • the term “cardioversion” is also used more broadly to include both defibrillation and delivery of high voltage pulses to terminate other tachyarrhythmias. it is this broader definition which is used in the claims which follow.

Abstract

An apparatus for treating atrial tachyarrhythmias, particularly atrial fibrillation. High energy pulses are delivered between electrodes locatable in the right atrium/SVC, the right ventricle and the coronary sinus/great vein, with the right ventricular and coronary sinus/great vein electrodes connected in common. Optionally a subcutaneous electrode, preferably located in the left pectoral area may also be employed, coupled in common to the right atrial/SVC electrode.

Description

ATRIAL DEFIBRILLATOR AND METHOD OF USE
BACKGROUND OF THE INVENTION
The present invention relates to medical stimulators and leads generally, and more particularly to implantable defibrillators and defibrillation leads.
Currently available implantable ventricular defibrillators typically employ epicardial or subcutaneous patch electrodes, alone, or in conjunction with one or more transvenous electrodes. Multi-electrode ventricular defibrillation systems are disclosed in U.S. Patent No. 4,727,877 issued to Kallok, U.S. Patent No. 4,708,145 issued to Tacker, et al. , and as disclosed in U.S. Patent No. 5,099,838, issued to Bardy. Other endocardial defibrillation electrodes are disclosed in U.S. Patent No. 4,481,953 issued to Gold et al. , U.S. Patent No. 4,161,952 issued to Kinney, et al. , U.S. Patent No. 4,934,049 issued to Kiekhafer et al. and in U.S. Patent No. 5,042,143 issued to Holleman, et al. The Kinney, Gold, Holleman and Kiekhafer patents all disclose endocardial defibrillation leads employing defibrillation electrodes fabricated from elongated coils of biocompatible metal, mounted exposed to the exterior of the defibrillation lead, for location in the right ventricle and other locations within the heart. The above-cited Smits patent and the Mehra application both disclose a variety of endocardial defibrillation electrodes intended for use in the atrium, ventricle and coronary sinus, all of which employ electrodes taking the form of elongated coils of conductive biocompatible metals. U.S. Patent No. 4,922,927, issued to Fine et al. proposes the use of a ventricular defibrillation electrode system using only a right ventricular electrode and a subcutaneous electrode, which may correspond to prior art subcutaneous electrodes or may be the metal enclosure of the defibrillator.
Concurrent with the development of lead systems adapted to treat ventricular fibrillation, there has also been some work directed to the development of lead systems to treat atrial fibrillation. Synchronized cardioversion using two electrodes located on a lead located in the right atrium is disclosed in U.S. Patent No. 3,738,370, issued to Charms. A later system is disclosed in U.S. Patent No. 3,952,750, issued to Mirowski et al. , employing one electrode in the atrium and presumably a second electrode at an unspecified location. Neither of these references discloses a specific embodiment for the electrodes located in the atrium.
An electrode lead system specifically designed for atrial defibrillation is disclosed in the article "Elective Countershock in Atrial Fibrillation With an Intracardiac Electrode - A Preliminary Report, by Jain, et al. , published in the Journal of the Association of Physicians of India, Vol. 18, pp 821-824, 1970. This lead was provided with a 10 mm silver electrode for location in the right atrium and was tested in conjunction with either a second electrode located in the right atrium or a second, cutaneous electrode located on the left side of the chest wall. A second electrode system specifically designed for use in atrial cardioversion is disclosed in the article "Safety and feasibility of transvenous cardioversion in atrial tachycardia", by Blanc et al. , published in Cardiac Pacing, edited by Gomez, Futura Pub. Co., 1985, pp 1526- 1529. This electrode system employed a single lead with electrodes located in the atrium and pulmonary artery.
More recently, the use of electrodes located in the right atrium and coronary sinus/great vein for atrial defibrillation has been disclosed in U.S. Patent No. 5,165,403 issued November 24, 1992 to Mehra. Delivery of atrial defibrillation pulses between the right ventricle and a subcutaneous electrode is disclosed in U.S. Patent No. 5,292,338, issued March 8, 1994 to Bardy. Delivery of atrial defibrillation pulse between a coronary sinus electrode and a subcutaneous electrode is disclosed in U.S. Patent No. 5,314,430, issued on May 24, 1994 to Bardy. The cited Mehra patent and the two cited Bardy patents are hereby incorporated herein by reference in their entireties. In the context of an implantable atrial defibrillator, it is especially desirable to reduce defibrillation energy thresholds. Because it is anticipated that such devices will likely deliver defibrillation pulses more frequently than implantable ventricular defibrillators, reduced energy thresholds are necessary to achieve a device having acceptable longevity. In addition, as the patients receiving the defibrillation pulses will generally be conscious, frequent painful shocks are believed to be undesirable, if not unacceptable. This factor further reduces the desirable atrial defibrillation threshold to about 1 Joule or less. Despite the amount of activity in this area, as reflected in the references cited above, the goal of a defibrillation lead system which will generally accomplish such low defibrillation thresholds has not been accomplished. The right atrium to coronary sinus/great vein pathway, disclosed in the Mehra '403 patent accomplishes this goal in some patients, but in others requires substantially higher energy levels. SUMMARY OF THE INVENTION
The present invention is directed toward the provision of a defibrillator and defibrillation lead system particularly optimized for use in defibrillation or cardioversion of the atrium at low energy levels. The lead system includes a coronary sinus/great vein electrode, an elongated right atrial/ superior vena cava (SVC) electrode and an elongated ventricular electrode. In some embodiments, a subcutaneous electrode, which preferably takes the form of some or all of the conductive housing of the defibrillator is also employed. The present invention is preferably practiced in a defibrillator/cardioverter which delivers an asymmetrical biphasic capacitive discharge pulse between the electrodes, as disclosed in U.S. patent No. 4,953,551, issued on September 4, 1990 to Mehra et al. , incorporated herein by reference in its entirety. The coronary sinus/great vein electrode is connected in common with the right ventricular electrode, and a biphasic pulse is delivered between these coupled electrodes and the right atrial/SVC electrode. If the conductive housing is employed as an additional electrode, the housing is preferably implanted in the left pectoral region of the patient's chest and connected in common with to the right atrial/SVC electrode during delivery of the pulse.
Preferably, the device is configured to perform atrial and ventricular defibrillation or cardioversion, and some or all of the electrodes may also be employed for ventricular cardioversion or defibrillation. In some embodiments, ventricular and atrial/SVC electrodes which are configured to deploy in a coiled configuration, as described in U.S. Patent No. 5,016,808 issued on May 21, 1992, to Heil et al . incorporated herein in its entirety, may be employed. Such electrodes are believed especially valuable for use in practicing the present invention for the reduction in over-all system impedance and corresponding reduction in energy thresholds which result. Research has led the inventors to the conclusion that the electrode system of the present invention allows for construction of an atrial defibrillator which will meet the energy level objectives described above. In addition, the electrode system employed for atrial defibrillation also provides a low threshold ventricular defibrillation system, particularly if the pulse is delivered between the ventricular electrode and the right atrial/SVC electrode coupled in common with the coronary sinus/great vein electrode, allowing for an enhanced combined atrial/ventricular defibrillation system. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 illustrates a first embodiment of an implantable defibrillator and lead according to the present invention.
Fig. 2 illustrates a second embodiment of an implantable defibrillator and lead according to the present invention.
Fig. 3 illustrates a third embodiment of an implantable defibrillator and lead according to the present invention. Fig. 4 illustrates a functional schematic diagram of an implantable pacemaker/cardioverter/defibrillator in which the invention may usefully be practiced in conjunction with the electrodes illustrated in Figures 1, 2 and 3.
Fig. 5 illustrates a functional schematic diagram of the high voltage output circuit of the implantable pacemaker/cardioverter/defibrillator illustrated in Figure 4. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Fig. 1 illustrates a defibrillator and lead set according to the present invention. The ventricular lead takes the form of the lead disclosed in the above cited patents issued to Bardy, and includes an elongated insulative lead body 16, carrying three concentric coiled conductors, separated from one another by tubular insulative sheaths. Located adjacent the distal end of the lead are a ring electrode 24, an extendable helix electrode 26, mounted retractably within an insulative electrode head 28, and an elongated coil electrode 20. Each of the electrodes is coupled to one of the coiled conductors within the lead body 16. Electrodes 24 and 26 are employed for cardiac pacing and for sensing ventricular depolarizations. At the proximal end of the lead is a bifurcated connector 14 which carries three electrical connectors, each coupled to one of the coiled conductors. The defibrillation electrode 20 may be fabricated from platinum, platinum alloy or other materials known to be usable in implantable defibrillation electrodes and may be about 5 cm in length.
The atrial/SVC lead includes an elongated insulative lead body 15, carrying three concentric coiled conductors, separated from one another by tubular insulative sheaths, corresponding to the structure of the ventricular lead. Located adjacent the J-shaped distal end of the lead are a ring electrode 21 and an extendable helix electrode 17, mounted retractably within an insulative electrode head 19. Each of the electrodes is coupled to one of the coiled conductors within the lead body 15. Electrodes 17 and 21 are employed for atrial pacing and for sensing atrial depolarizations. An elongated coil electrode 23 is provided, proximal to electrode 21 and coupled to the third conductor within the lead body 15. Electrode 23 preferably is 10 cm in length or greater and is configured to extend from the SVC toward the tricuspid valve. In one preferred embodiment tested by the inventors, approximately 5 cm of the right atrium/SVC electrode was located in the right atrium, with the remaining 5 cm located in the SVC. At the proximal end of the lead is a bifurcated connector 13 which carries three electrical connectors, each coupled to one of the coiled conductors.
The coronary sinus lead takes the form of the coronary sinus lead disclosed in the above cited '838 patent issued to Bardy, and includes an elongated insulative lead body 6, carrying one coiled conductor, coupled to an elongated coiled defibrillation electrode 8. Electrode 8, illustrated in broken outline, is located within the coronary sinus and great vein of the heart . At the proximal end of the lead is a connector plug 4 which carries an electrical connector, coupled to the coiled conductor. The coronary sinus/great vein electrode 8 may be about 5 cm in length.
An implantable pacemaker/cardioverter/defibrillator 10 is shown in combination with the leads, with the lead connector assemblies 4, 13 and 14 inserted into the connector block 12. Optionally, insulation of the outward facing portion of the housing 11 of the pacemaker/cardioverter/defibrillator 10 may be provided using a plastic coating, for example parylene or silicone rubber, as is currently employed in some unipolar cardiac pacemakers. However, the outward facing portion may instead be left uninsulated, or some other division between insulated and uninsulated portions may be employed. The uninsulated portion of the housing 11 optionally serves as a subcutaneous defibrillation electrode, used to defibrillate either the atria or ventricles. Research conducted by the inventors has led to the conclusion that an electrode system according to the present invention, in which pulses are delivered between a right atrial/SVC electrode (alone or optionally coupled to a subcutaneous electrode) and a ventricular electrode electrically coupled to a coronary sinus/great vein electrode will provide atrial defibrillation thresholds in the range of about 1 Joule or less across a substantial portion of the patient population. In particular, the present invention is believed to provide a substantial improvement over the right atrial or SVC to coronary sinus/great vein electrode system employed in the '403 Mehra patent. In addition, by simply switching the connection of the coronary sinus/great vein electrode 8 so that it is coupled in common to the right atrial/SVC electrode 23, a particularly efficient ventricular defibrillation electrode system is provided. The improvement of the present invention over the right atrium to coronary sinus/great vein defibrillation electrode system is somewhat surprising, given that the blood in the right atrium and right ventricle is more conductive than heart tissue, and that delivery of a pulse between the right atrial/SVC electrode and the right ventricular electrode would normally be expected to shunt current away from the left atrium. However, the inventors have determined that in spite of significant current shunting between these electrodes, the over-all energy and voltage thresholds are substantially reduced from the right atrial/SVC to coronary sinus/great vein electrode system. The lower system impedance provided by addition of the right ventricular electrode is believed to be important in accomplishing this desired result. Fig. 2 illustrates an alternative defibrillator and lead set according to the present invention. In this embodiment, the pacemaker/cardioverter/defibrillator 110 corresponds precisely to the pacemaker/cardioverter/defibrillator 10 illustrated in Figure 1. Only the configurations of the atrial/SVC lead and the right ventricular lead are changed. The ventricular lead includes an elongated insulative lead body 116, carrying three concentric coiled conductors, separated from one another by tubular insulative sheaths. Located adjacent the distal end of the lead are a ring electrode 124, an extendable helix electrode 126, mounted retractably within an insulative electrode head, and an elongated coil electrode 120. Each of the electrodes is coupled to one of the coiled conductors within the lead body 116. At the proximal end of the lead is a bifurcated connector 14 which carries three electrical connectors, each coupled to one of the coiled conductors. Similarly, the atrial lead/SVC includes an elongated insulative lead body 115, carrying three concentric coiled conductors, separated from one another by tubular insulative sheaths. Located adjacent the distal end of the lead are a ring electrode 121 and an extendable helix electrode 117, mounted retractably within an insulative electrode head. Mounted proximal to the ring electrode 121 is a right atrial/superior vena cava electrode 123. Each of the electrodes is coupled to one of the coiled conductors within the lead body 115. Electrodes 117 and 121 are employed for atrial pacing and for sensing atrial depolarizations. At the proximal end of the lead is a bifurcated connector assembly 113 which carries three electrical connectors, each coupled to one of the coiled conductors.
The lead bodies 115 and 116 the atrial/SVC lead and the ventricular lead are formed to exhibit a coiled or helical configuration when relaxed, in a manner similar to that disclosed in the above-cited '808 patent issued to Heil et al. The lead bodies 115, 116 are straightened by insertion of a stylet prior to transvenous introduction, and the helical electrodes 117 and 126 are screwed into heart tissue while the straightening stylets are in place. The stylets are removed thereafter, allowing the leads to assume their helical or coiled configurations. The lead bodies may be formed to define a tapered or conical helixes, cylindrical helixes, or helixes generally defining a three dimensional ovoid. The actual configuration displayed will of course be dependant on the interrelation of the lead's configuration and the dimensions of the chamber in which it is located. Because of the coiled lead body configuration, a greater length of lead body may be located within a desired chamber, and the electrodes located thereon may correspondingly have an increased length and surface area, reducing their impedance an correspondingly reducing over-all system impedance. The coronary sinus lead corresponds to that illustrated in Figure 1 and includes an elongated insulative lead body 116, carrying one coiled conductor, coupled to an elongated coiled defibrillation electrode 118. Electrode 118, illustrated in broken outline, is located within the coronary sinus and great vein of the heart . At the proximal end of the lead is a connector 114 plug which carries an electrical connector, coupled to the coiled conductor. Alternatively, the coronary sinus lead may be fabricated similar to those located in the right atrium and right ventricle, and may have a lead body which takes the form of a helix or sigmoid in order to increase the available electrode surface area.
The leads illustrated in Figure 2 may be substituted singly or multiply for the leads illustrated in Figure 1. For example, an atrial lead having a coiled lead body may be advantageously employed with a ventricular lead having a generally straight lead body, and so forth.
Fig. 3 illustrates an alternative defibrillator and lead set according to the present invention. In this embodiment, the pacemaker/cardioverter/defibrillator 410 corresponds precisely to the pacemaker/cardioverter/defibrillator 10 illustrated in Figure 1. Only the configurations of the atrial/SVC lead and the right ventricular lead are changed. The ventricular lead includes the right atrial/SVC defibrillation electrode, and the atrial lead corresponds to a standard atrial pacing lead. The ventricular lead includes an elongated insulative lead body 16, carrying four parallel coiled conductors, mounted within a four lumen tubular insulative sheath. Located adjacent the distal end of the lead are a ring electrode 424, an extendable helix electrode 426, mounted retractably within an insulative electrode head 428, and an elongated coil electrode 420. An additional elongated coil electrode 423 is located proximal to electrode 420, spaced to allow placement in the right atrium/SVC. Each of the electrodes is coupled to one of the coiled conductors within the lead body 16. Electrodes 424 and 426 are employed for cardiac pacing and for sensing ventricular depolarizations. At the proximal end of the lead is a bifurcated connector 414 which carries four electrical connectors, each coupled to one of the coiled conductors. The defibrillation electrodes 420 and 423 may be fabricated from platinum, platinum alloy or other materials known to be usable in implantable defibrillation electrodes and may conveniently be about 5 cm in length and about 10 cm or greater in length, respectively.. The atrial/SVC lead includes an elongated insulative lead body 415, carrying two concentric coiled conductors, separated from one another by a tubular insulative sheath, corresponding to the structure of the commercially available atrial pacing leads. Located adjacent the J-shaped distal end of the lead are a ring electrode 421 and an extendable helix electrode 417, mounted retractably within an insulative electrode head 419. Each of the electrodes is coupled to one of the coiled conductors within the lead body 15. Electrodes 417 and 421 are employed for atrial pacing and for sensing atrial depolarizations. At the proximal end of the lead is a bipolar, in-line connector 413 which carries two electrical connectors, each coupled to one of the coiled conductors.
The coronary sinus lead corresponds to the coronary sinus lead illustrated in Figure 1 and includes an elongated insulative lead body 406, carrying one coiled conductor, coupled to an elongated coiled defibrillation electrode 408. Electrode 408, illustrated in broken outline, is located within the coronary sinus and great vein of the heart. At the proximal end of the lead is a connector plug 404 which carries an electrical connector, coupled to the coiled conductor. The coronary sinus/great vein electrode 408 may be about 5 cm in length.
Figure 4 is a functional schematic diagram of an implantable pacemaker/cardioverter/defibrillator in which the present invention may usefully be practiced. This diagram should be taken as exemplary of the type of device in which the invention may be embodied, and not as limiting, as it is believed that the invention may usefully be practiced in a wide variety of device implementations, including cardioverter and defibrillators which do not provide anti-tachycardia pacing therapies.
The device is provided with an electrode system including electrodes as illustrated in Figure 1 or Figure 2 or Figure 3. If the electrode configuration of Figure 1 is employed, the correspondence to the illustrated electrodes is as follows. Optional electrode 310 corresponds to electrode 11, and is the uninsulated portion of the housing of the implantable pacemaker/cardioverter/defibrillator. Electrode 320 corresponds to electrode 20 and is a defibrillation electrode located in the right ventricle. Electrode 311 corresponds to electrode 23, and is located in the right atrium and SVC. Electrode 318 corresponds to electrode 8 and is a defibrillation electrode located in the coronary sinus and great vein. Electrodes 324 and 326 correspond to electrodes 24 and 26, and are used for sensing and pacing in the ventricle. Electrodes 317 and 321 correspond to electrodes 17 and 19 and are used for pacing and sensing in the atrium. Electrodes 310, 311, 318 and 320 are coupled to high voltage output circuit 234. High voltage output circuit 234 includes high voltage switches controlled by CV/defib control logic 230 via control bus 238. The switches within circuit 234 control which electrodes are employed and which are coupled to the positive and negative terminals of the capacitor bank including capacitors 246 and 248 during delivery of the defibrillation pulses.
Electrodes 424 and 326 are located on or in the ventricle and are coupled to the R-wave amplifier 200, which preferably takes the form of an automatic gain controlled amplifier providing an adjustable sensing threshold as a function of the measured R-wave amplitude. A signal is generated on R-out line 202 whenever the signal sensed between electrodes 612 and 614 exceeds the present sensing threshold.
Electrodes 317 and 321 are located on or in the atrium and are coupled to the P-wave amplifier 204, which preferably also takes the form of an automatic gain controlled amplifier providing an adjustable sensing threshold as a function of the measured P-wave amplitude. A signal is generated on P-out line 206 whenever the signal sensed between electrodes 617 and 621 exceeds the present sensing threshold. The general operation of the R-wave and P-wave amplifiers 200 and 204 may correspond to that disclosed in U.S. Patent No. 5,117,824, by Keimel, et al. , issued June 2, 1992, for an Apparatus for Monitoring Electrical Physiologic Signals, incorporated herein by reference in its entirety.
Switch matrix 208 is used to select which of the available electrodes are coupled to wide band (0.5-200 Hz) amplifier 210 for use in digital signal analysis. Selection of electrodes is controlled by the microprocessor 224 via data/address bus 218, which selections may be varied as desired. Signals from the electrodes selected for coupling to bandpass amplifier 210 are provided to multiplexer 220, and thereafter converted to multi-bit digital signals by A/D converter 222, for storage in random access memory 226 under control of direct memory access circuit 228. Microprocessor 224 may employ digital signal analysis techniques to characterize the digitized signals stored in random access memory 226 to recognize and classify the patient's heart rhythm employing any of the numerous signal processing methodologies known to the art.
The remainder of the circuitry is dedicated to the provision of cardiac pacing, cardioversion and defibrillation therapies, and, for purposes of the present invention may correspond to circuitry known in the prior art . An exemplary apparatus is disclosed of accomplishing pacing, cardioversion and defibrillation functions follows. The pacer timing/control circuitry 212 includes programmable digital counters which control the basic time intervals associated with DDD, WI, DVI, VDD, AAI, DDI and other modes of single and dual chamber pacing well known to the art. Circuitry 212 also controls escape intervals associated with anti-tachyarrhythmia pacing in both the atrium and the ventricle, employing any anti- tachyarrhythmia pacing therapies known to the art.
Intervals defined by pacing circuitry 212 include atrial and ventricular pacing escape intervals, the refractory periods during which sensed P-waves and R-waves are ineffective to restart timing of the escape intervals and the pulse widths of the pacing pulses. The durations of these intervals are determined by microprocessor 226, in response to stored data in memory 226 and are communicated to the pacing circuitry 212 via address/data bus 218. Pacer circuitry 212 also determines the amplitude of the cardiac pacing pulses under control of microprocessor 224.
During pacing, the escape interval counters within pacer timing/control circuitry 212 are reset upon sensing of R-waves and P-waves as indicated by a signals on lines 202 and 206, and in accordance with the selected mode of pacing on timeout trigger generation of pacing pulses by pacer output circuitry 214 and 216, which are coupled to electrodes 317, 321, 324 and 326. The escape interval counters are also reset on generation of pacing pulses, and thereby control the basic timing of cardiac pacing functions, including anti-tachyarrhythmia pacing. The durations of the intervals defined by the escape interval timers are determined by microprocessor 224, via data/address bus 218. The value of the count present in the escape interval counters when reset by sensed R-waves and P-waves may be used to measure the durations of R-R intervals, P-P intervals, P-R intervals and R-P intervals, which measurements are stored in memory 226 and used to detect the presence of tachyarrhythmias.
Microprocessor 224 operates as an interrupt driven device, and is responsive to interrupts from pacer timing/control circuitry 212 corresponding to the occurrence sensed P-waves and R-waves and corresponding to the generation of cardiac pacing pulses. These interrupts are provided via data/address bus 218. Any necessary mathematical calculations to be performed by microprocessor 224 and any updating of the values or intervals controlled by pacer timing/control circuitry 212 take place following such interrupts.
For example, in response to a sensed or paced ventricular depolarization or R-wave, the intervals separating that R-wave from the immediately preceding R- wave, paced or sensed (R-R interval) and the interval separating the paced or sensed R-wave from the preceding atrial depolarization, paced or sensed (P-R interval) may be stored. Similarly, in response to the occurrence of a sensed or paced atrial depolarization (P-wave) , the intervals separating the sensed P-wave from the immediately preceding paced of sensed atrial contraction (P-P Interval) and the interval separating the sensed P-wave from the immediately preceding sensed or paced ventricular depolarization (R-P interval) may be stored. Preferably, a portion of the memory 226 (Fig. 4) is configured as a plurality of recirculating buffers, capable of holding a preceding series of measured intervals, which may be analyzed in response to the occurrence of a pace or sense interrupt to determine whether the patient's heart is presently exhibiting atrial or ventricular tachyarrhythmia. Detection of atrial or ventricular tachyarrhythmias, as employed in the present invention, may correspond to tachyarrhythmia detection algorithms known to the art. For example, presence of atrial or ventricular tachyarrhythmia may be confirmed by means of detection of a sustained series of short R-R or P-P intervals of an average rate indicative of tachyarrhythmia or an unbroken series of short R-R or P-P intervals. The suddenness of onset of the detected high rates, the stability of the high rates, or a number of other factors known to the art may also be measured at this time. Appropriate ventricular tachyarrhythmia detection methodologies measuring such factors are described in U.S. Patent No. 4,726,380, issued to Vollmann, U.S. Patent No. 4,880,005, issued to Pless et al. and U.S. Patent No. 4,830,006, issued to Haluska et al . , all incorporated herein by reference in their entireties. An additional set of tachycardia recognition methodologies is disclosed in the article "Onset and Stability for Ventricular Tachyarrhythmia Detection in an Implantable Pacer-Cardioverter-Defibrillator" by Olson et al . , published in Computers in Cardiology, October 7-10, 1986, IEEE Computer Society Press, pages 167-170, also incorporated herein in its entirety. However, one of the advantages of the present invention is that it is believed practicable in conjunction with most prior art tachycardia detection algorithms. Atrial fibrillation detection methodologies in particular are disclosed in Published PCT Application Serial No. US92/02829, Publication No. W092/18198, by Adams et al . , and in the article "Automatic Tachycardia Recognition", by Arzbaecher et al . , published in PACE, May-June, 1984, pp. 541-547, both of which are incorporated by reference in their entireties. In the event that an atrial or ventricular tachyarrhythmia is detected, and an anti-tachyarrhythmia pacing regimen is desired, appropriate timing intervals for controlling generation of anti-tachyarrhythmia pacing therapies are loaded from microprocessor 224 into the pacer timing and control circuitry 212, to control the operation of the escape interval counters therein and to define refractory periods during which detection of R-waves and P-waves is ineffective to restart the escape interval counters.
Alternatively, circuitry for controlling the timing and generation of anti-tachycardia pacing pulses as described in U.S. Patent No. 4,577,633, issued to Berkovits et al. on March 25, 1986, U.S. Patent No. 4,880,005, issued to Pless et al . on November 14, 1989, U.S. Patent No. 4,726,380, issued to Vollmann et al. on February 23, 1988 and U.S. Patent No. 4,587,970, issued to Holley et al . on May 13, 1986, all of which are incorporated herein by reference in their entireties may also be used.
In the event that generation of a cardioversion or defibrillation pulse is required, microprocessor 224 employs the an escape interval counter to control timing of such cardioversion and defibrillation pulses, as well as associated refractory periods. In response to the detection of atrial or ventricular fibrillation or tachyarrhythmia requiring a cardioversion pulse, microprocessor 224 activates cardioversion/defibrillation control circuitry 230, which initiates charging of the high voltage capacitors 246 and 248 via charging circuit 236, under control of high voltage charging control lines 240 and 242. The voltage on the high voltage capacitors is monitored via VCAP line 244, which is passed through multiplexer 220 and in response to reaching a predetermined value set by microprocessor 224, results in generation of a logic signal on Cap Full (CF) line 254, terminating charging. Thereafter, timing of the delivery of the defibrillation or cardioversion pulse is controlled by pacer timing/control circuitry 212. Following delivery of the fibrillation or tachycardia therapy the microprocessor then returns the device to cardiac pacing and awaits the next successive interrupt due to pacing or the occurrence of a sensed atrial or ventricular depolarization.
One embodiment of an appropriate system for delivery and synchronization of ventricular cardioversion and defibrillation pulses and for controlling the timing functions related to them is disclosed in more detail in commonly assigned U.S. Patent No. 5,188,105 by Keimel, issued February 23, 1993, incorporated herein by reference in its entirety. Embodiments of appropriate systems for delivery and synchronization of atrial cardioversion and defibrillation pulses and for controlling the timing functions related to them are disclosed in more detail in
U.S. Patent No. 5,269,298 by Adams et al. , issued December 14, 1993 and in U.S. Patent No. 4,316,472 by Mirowski et al . , issued February 23, 1982, both incorporated herein by reference in their entireties. However, any known cardioversion or defibrillation pulse control circuitry is believed usable in conjunction with the present invention. For example, circuitry controlling the timing and generation of cardioversion and defibrillation pulses as disclosed in U.S. Patent No. 4,384,585, issued to Zipes on May 24, 1983, in U.S. Patent No. 4,949,719 issued to Pless et al . , cited above, and in U.S. Patent No. 4,375,817, issued to Engle et al . , all incorporated herein by reference in their entireties may also be employed. In the illustrated device, delivery of the cardioversion or defibrillation pulses is accomplished by output circuit 234, under control of control circuitry 230 via control bus 238. Output circuit 234 determines whether a monophasic or biphasic pulse is delivered, the polarity of the electrodes and which electrodes are involved in delivery of the pulse. Output circuit 234 also includes high voltage switches which control whether electrodes are coupled together during delivery of the pulse. Alternatively, electrodes intended to be coupled together during the pulse may simply be permanently coupled to one another, either exterior to or interior of the device housing, and polarity may similarly be pre-set, as in current implantable defibrillators. An example of output circuitry for delivery of biphasic pulse regimens to multiple electrode systems may be found in the above cited patent issued to Mehra and in U.S. Patent No. 4,727,877, incorporated by reference in its entirety.
An example of circuitry which may be used to control delivery of monophasic pulses is set forth in commonly assigned U.S. Patent No. 5,163,427, by Keimel, issued
November 17, 1992, also incorporated herein by reference in its entirety. However, output control circuitry as disclosed in U.S. Patent No. 4,953,551, issued to Mehra et al. on September 4, 1990 or U.S. Patent No. 4,800,883, issued to Winstrom on January 31, 1989 both incorporated herein by reference in their entireties, may also be used in conjunction with a device embodying the present invention for delivery of biphasic pulses.
In the event that, as in Figure 1, both atrial and ventricular defibrillation are available, ventricular defibrillation may be accomplished using higher pulse energy levels than required for atrial defibrillation and may employ the same or a different electrode set. For example, electrodes 310, 311, 318 and 320 or only 1 3 electrodes 311, 318 and 320 may be employed for atrial defibrillation. Electrodes 311, 320 and 310 might be employed for ventricular defibrillation, with electrode 311 (right atrium/SVC) coupled to electrode 310 (device housing) . Alternatively, electrodes 310, 318 and 320 may be employed, with electrode 318 (coronary sinus/great vein) coupled to electrode 310. As a further alternative, electrodes 311, 310, 318 and 323 might all be employed for ventricular defibrillation, with electrodes 310, 311 and 323 coupled in common. As yet another alternative, only electrodes 310 and 320 might be employed for ventricular defibrillation. added or substituted for either of electrodes 311 or 318 for treating ventricular fibrillation. One particularly desirable embodiment of the invention employs only the right atrial/SVC electrode 311, the coronary sinus/great vein electrode 318 and the right ventricular electrode 320. During atrial defibrillation, electrodes 320 and 318 are coupled in common with one another, and the atrial defibrillation pulse is delivered between these electrodes and electrode 311. During ventricular defibrillation, electrodes 311 and 318 are coupled in common with one another, and the ventricular defibrillation pulse is delivered between these electrodes and electrode 320. This particular set of electrodes thus provides optimized defibrillation pulse regimens for both atrial and ventricular defibrillation, by simply switching the connection of the coronary sinus/great vein electrode.
In modern implantable cardioverter/defibrillators, the particular therapies are programmed into the device ahead of time by the physician, and a menu of therapies is typically provided. For example, on initial detection of an atrial or ventricular tachycardia, an anti-tachycardia pacing therapy may be selected and delivered to the chamber in which the tachycardia is diagnosed or to both chambers. On redetection of tachycardia, a more aggressive anti- tachycardia pacing therapy may abe scheduled. If repeated attempts at anti-tachycardia pacing therapies fail, a higher level cardioversion pulse may be selected thereafter. Therapies for tachycardia termination may also vary with the rate of the detected tachycardia, with the therapies increasing in aggressiveness as the rate of the detected tachycardia increases. For example, fewer attempts at anti-tachycardia pacing may be undertaken prior to delivery of cardioversion pulses if the rate of the detected tachycardia is above a preset threshold. The references cited above in conjunction with descriptions of prior art tachycardia detection and treatment therapies are applicable here as well .
In the event that atrial or ventricular fibrillation is identified, the typical therapy will be delivery of a high amplitude defibrillation pulse, typically in excess of 10 joules in the case of ventricular fibrillation and about 1 joule or less in the case of atrial defibrillation. Lower energy levels will be employed for cardioversion. As in the case of currently available implantable pacemakers/ cardioverter/defibrillators, and as discussed in the above- cited references, it is envisioned that the amplitude of the defibrillation pulse may be incremented in response to failure of an initial pulse or pulses to terminate fibrillation. Prior art patents illustrating such pre-set therapy menus of anti-tachyarrhythmia therapies include the above-cited U.S. Patent No. 4,830,006, issued to Haluska, et al., U.S. Patent No. 4,727,380, issued to Vollmann et al. and U.S. Patent No. 4,587,970, issued to Holley et al.
Figure 5 is a functional schematic diagram of switching circuitry which may be employed in high voltage output circuit 234, illustrated in Figure 4. The circuitry includes eight high voltage switches 501, 502, 503, 504, 505, 506, 507 and 508, which are individually controlled by signals on control bus 238. These switches allow connection of any of the four electrodes 301, 311, 320 and 318 to either the positive or the negative terminal of the capacitor and comprising capacitors 246 and 248. As illustrated, any combination of electrodes may be selected, any polarities desired may be provided, and monophasic or biphasic pulses may be delivered, depending upon control signals on control bus 238. In the event that a reduced set of available electrode configurations is desired, the switching circuitry may be simplified. For example, if two electrodes (e,g. 318 and 320) are hard wired together, either in the connector block or in the device housing, one set of two switches (504, 508) may be deleted. Correspondingly, if only three electrodes are desired, (e.g. electrode 310 is deleted) a set of switches (501,505) may similarly be deleted. If only atrial defibrillation is desired, using only three electrodes both of these changes could be made, resulting in an output circuit employing only four switches and which corresponds to high voltage output circuits presently used in implantable ventricular defibrillators.
While the invention is disclosed above embodied in a dual chamber pacemaker/cardioverter/defibrillator, the invention may also be usefully practiced in substantially simpler devices. For example, the illustrated defibrillation electrodes may simply be coupled to an implantable atrial cardioverter as disclosed in U.S. Patent No. 3,738,370, issued to Charms, or as disclosed in published PCT Application Serial No. -US92/02829, Publication No. W092/18198, by Adams et al, both of which are incorporated herein by reference in their entireties. A simple device of this type is believed workable in some patients. However, inclusion of the ability to detect and terminate ventricular tachycardias and fibrillation is believed of extreme importance in patients in whom delivery of atrial cardioversion or defibrillation pulses unintentionally in initiates ventricular arrhythmias.
While the defibrillation electrodes disclosed above all take the form of elongated coils, other electrode types may also be employed in conjunction with the present invention. For example, carbon fiber braids as disclosed in U.S. Patent No. 5,143,089 issued on September 1, 1992 to Alt, conductive meshes as disclosed in U.S. Patent No. 5,005,587, issued on April 9, 1991 to Scott might be employed, or defibrillation electrodes taking the form of one or more ring electrodes as disclosed in U.S. Patent No. 4,355,646, issued on October 22, 1982 to Kallok might be substituted. Similarly, it is believed that the specific electrode lengths set forth may be further refined as development of atrial defibrillation electrode systems continues. Similarly, while the electrodes employed for atria sensing and pacing are disclosed as mounted to the atrial lead, these electrodes might alternatively take the form of ring electrodes mounted to either the ventricular lead or the coronary sinus/great vein lead. As such, the above disclosure should be considered exemplary, rather than limiting, with regard to the following claims.
While the device disclosed above is describe primarily in terms of delivering defibrillation pulses using the elongated electrodes described, it should be understood that the invention may also usefully to treat tachyarrhythmias which are not fibrillation. For example, high voltage pulses of amplitudes less than typically employed to treat fibrillation may be used to terminate ventricular and atrial tachycardias. This treatment is typically referred to as "cardioversion" . The term "cardioversion is also used more broadly to include both defibrillation and delivery of high voltage pulses to terminate other tachyarrhythmias. it is this broader definition which is used in the claims which follow.
In conjunction with the above specification, we claim:

Claims

IN THE CLAIMS:
1. An apparatus for delivering cardioversion pulses to the atrium of a patient's heart, comprising: means for sensing atrial tachyarrhythmia; first, second and third transvenously implantable cardioversion electrodes adapted for location in or adjacent to a patient's heart; means for coupling said first electrode to said second electrode; an implantable high voltage pulse generator having a housing and coupled to said first, second and third electrodes and including means for delivering a cardioversion pulse between said first and second electrode while coupled to one another and said third . electrode, in response to a sensed occurrence of atrial tachyarrhythmia.
2. An apparatus according to claim 1, wherein: said first electrode is adapted for location in the coronary sinus of said patient's heart; said second electrode is adapted for location in the right ventricle of said patient's heart; and said third electrode is adapted for location in the right atrium /superior vena cava portion of said patient's heart.
3. An apparatus according to claim 2 further comprising a ventricular cardiac sensing electrode, and wherein said pulse generator comprises sense amplifier means for sensing ventricular depolarizations and means for delivering said cardioversion pulses synchronized to sensed ventricular depolarizations.
4. An apparatus according to claim 2 comprising a medical lead carrying said second electrode, said lead further carrying a ventricular cardiac sensing electrode, and wherein said pulse generator comprises sense amplifier means for sensing ventricular depolarizations and means for delivering said cardioversion pulses synchronized to sensed ventricular depolarizations.
5. An apparatus according to claim 2 comprising a medical lead carrying said second electrode, said lead further carrying a ventricular cardiac pacing electrode, and wherein said pulse generator comprises pulse generator means for generating ventricular pacing pulses and means for delivering said ventricular pacing pulses to said ventricular cardiac pacing electrode, depolarizations.
6. An apparatus according to claim 1 or claim 2 or claim 3 or claim 4 or claim 5 further comprising; a fourth electrode adapted for subcutaneous location in said patient's chest; and a second coupling means for coupling said fourth electrode to said third electrode; and wherein said delivering means comprises means for delivering a cardioversion pulse between said first and second electrodes while coupled to one another and said second and third and fourth electrodes while coupled to one another, in response to a sensed occurrence of atrial tachyarrhythmia.
7. A apparatus according to claim 6 wherein said fourth electrode comprises an uninsulated portion of said housing.
8. An apparatus according to claim 1 or claim 2 or claim 3 or claim 4 or claim 5 wherein said delivering means comprises means for delivering biphasic pulses.
9. An apparatus according to claim 1 or claim 2, further comprising: means for detecting ventricular tachyarrhythmia; and a third coupling means for coupling said first electrode to said third electrode; and wherein said implantable pulse generator comprises means for delivering a cardioversion pulse between said first and third electrodes while coupled to one another and said second electrode means, in response to a sensed occurrence of ventricular tachyarrhythmia.
10. An apparatus according to claim 1 or claim 2 wherein at least one of said first, second and third electrodes comprises an electrode mounted on a lead body along a portion of said lead body which takes the form of a helix.
11. An apparatus according to claim 1 or claim 2 wherein said third electrode comprises an electrode mounted on a lead body along a portion of said lead body which takes the form of a helix such that the helical portion of said lead body may be located within an atrium.
PCT/US1995/009108 1994-08-19 1995-07-19 Atrial defibrillator and method of use WO1996005885A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP95926747A EP0776234A1 (en) 1994-08-19 1995-07-19 Atrial defibrillator and method of use
AU31019/95A AU3101995A (en) 1994-08-19 1995-07-19 Atrial defibrillator and method of use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/293,769 US5549642A (en) 1994-08-19 1994-08-19 Atrial defibrillator and method of use
US08/293,769 1994-08-19

Publications (1)

Publication Number Publication Date
WO1996005885A1 true WO1996005885A1 (en) 1996-02-29

Family

ID=23130503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/009108 WO1996005885A1 (en) 1994-08-19 1995-07-19 Atrial defibrillator and method of use

Country Status (5)

Country Link
US (1) US5549642A (en)
EP (1) EP0776234A1 (en)
AU (1) AU3101995A (en)
CA (1) CA2196432A1 (en)
WO (1) WO1996005885A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811399A2 (en) * 1996-06-04 1997-12-10 INCONTROL, Inc. Post atrial cardioversion high rate atrial pacing with gradual rate return

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662689A (en) * 1995-09-08 1997-09-02 Medtronic, Inc. Method and apparatus for alleviating cardioversion shock pain
US5690686A (en) * 1996-04-30 1997-11-25 Medtronic, Inc. Atrial defibrillation method
US5840079A (en) 1997-03-27 1998-11-24 Medtronic, Inc. Method and apparatus for treatment of atrial fibrillation
US5836976A (en) * 1997-04-30 1998-11-17 Medtronic, Inc. Cardioversion energy reduction system
US5954752A (en) * 1997-04-30 1999-09-21 Medtronic, Inc. Cardioversion energy reduction system
US6067471A (en) 1998-08-07 2000-05-23 Cardiac Pacemakers, Inc. Atrial and ventricular implantable cardioverter-defibrillator and lead system
US6246906B1 (en) 1998-03-19 2001-06-12 Cardiac Pacemakers, Inc. System and method for treating atrial arrhythmias
US6556862B2 (en) 1998-03-19 2003-04-29 Cardiac Pacemakers, Inc. Method and apparatus for treating supraventricular tachyarrhythmias
US6091989A (en) * 1998-04-08 2000-07-18 Swerdlow; Charles D. Method and apparatus for reduction of pain from electric shock therapies
US6259954B1 (en) 1999-02-18 2001-07-10 Intermedics Inc. Endocardial difibrillation lead with strain-relief coil connection
AU1790201A (en) * 1999-11-24 2001-06-04 Cardiac Pacemakers, Inc. Method and apparatus for termination of cardiac tachyarrhythmias
US6456876B1 (en) * 2000-02-28 2002-09-24 Pacesetter, Inc. Dual-chamber implantable cardiac stimulation system and device with selectable arrhythmia termination electrode configurations and method
US6477422B1 (en) 2000-03-22 2002-11-05 Medtronic, Inc. Method and apparatus for capture detection
US6584362B1 (en) 2000-08-30 2003-06-24 Cardiac Pacemakers, Inc. Leads for pacing and/or sensing the heart from within the coronary veins
US6493586B1 (en) 2000-08-30 2002-12-10 Cardiac Pacemakers, Inc. Site reversion in cardiac rhythm management
US6480740B2 (en) 2000-12-26 2002-11-12 Cardiac Pacemakers, Inc. Safety pacing in multi-site CRM devices
US6453195B1 (en) 2001-03-19 2002-09-17 Medtronic, Inc. Closed loop drug delivery system and remote management thereof
US6909920B2 (en) 2001-04-27 2005-06-21 Medtronic, Inc. System and method for positioning an implantable medical device within a body
EP1385575A1 (en) 2001-04-30 2004-02-04 Medtronic, Inc. Transcutaneous monitor and method of use, using therapeutic output from an implanted medical device
US7050851B2 (en) 2001-06-29 2006-05-23 Medtronic, Inc. Implantable cardioverter/defibrillator with housing electrode and lead detection and switching circuitry
US6949763B2 (en) * 2001-10-11 2005-09-27 Marc Ovadia Semiconductor and non-semiconductor non-diffusion-governed bioelectrodes
US6668195B2 (en) 2001-10-30 2003-12-23 Medtronic, Inc. Methods and apparatus for reducing the likelihood of atrial fibrillation
US6768053B1 (en) * 2002-01-09 2004-07-27 Nanoset, Llc Optical fiber assembly
US20050247472A1 (en) * 2002-01-22 2005-11-10 Helfer Jeffrey L Magnetically shielded conductor
US20040064164A1 (en) * 2002-09-30 2004-04-01 Ries Andrew J. Connector module jumper for quadrapolar leads
US20040073261A1 (en) * 2002-10-09 2004-04-15 Kroll Mark W. Methods and systems for treating ventricular fibrillation
US7546165B2 (en) * 2005-12-19 2009-06-09 Cardiac Pacemakers, Inc. Interconnections of implantable lead conductors and electrodes and reinforcement therefor
US8712519B1 (en) * 2006-03-31 2014-04-29 Pacesetter, Inc. Closed-loop adaptive adjustment of pacing therapy based on cardiogenic impedance signals detected by an implantable medical device
US20080046059A1 (en) * 2006-08-04 2008-02-21 Zarembo Paul E Lead including a heat fused or formed lead body
US7917229B2 (en) * 2006-08-31 2011-03-29 Cardiac Pacemakers, Inc. Lead assembly including a polymer interconnect and methods related thereto
US8983598B2 (en) * 2006-10-04 2015-03-17 Cardiac Pacemakers, Inc. System for neurally-mediated anti-arrhythmic therapy
US7930028B2 (en) * 2006-10-20 2011-04-19 Biotronik Crm Patent Ag Implantable cardiac device with a shock lead
US8219209B2 (en) 2008-08-15 2012-07-10 Cardiac Pacemakers, Inc. Implantable medical lead having reduced dimension tubing transition
US10905884B2 (en) 2012-07-20 2021-02-02 Cardialen, Inc. Multi-stage atrial cardioversion therapy leads
CN108348756B (en) 2015-11-20 2021-10-22 心脏起搏器股份公司 Single channel coronary vein lead for multi-chamber sensing and pacing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016808A (en) * 1989-09-14 1991-05-21 Cardiac Pacemakers, Inc. Implantable tapered spiral endocardial lead for use in internal defibrillation
WO1992018198A2 (en) * 1991-04-12 1992-10-29 Incontrol, Inc. Improved atrial defibrillator, lead systems, and method
US5243980A (en) * 1992-06-30 1993-09-14 Medtronic, Inc. Method and apparatus for discrimination of ventricular and supraventricular tachycardia
US5314430A (en) * 1993-06-24 1994-05-24 Medtronic, Inc. Atrial defibrillator employing transvenous and subcutaneous electrodes and method of use
US5324309A (en) * 1992-09-25 1994-06-28 Medtronic, Inc. Overlapping pulse cardioversion or defibrillation

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738370A (en) * 1971-01-18 1973-06-12 B Charms Method of defibrillating a malfunctioning heart by means of electrodes located within the atrium
US4316472C1 (en) * 1974-04-25 2001-08-14 Mieczyslaw Mirowski Cardioverting device with stored energy selecting means and discharge initiating means and related method
US3952750A (en) * 1974-04-25 1976-04-27 Mieczyslaw Mirowski Command atrial cardioverting device
US4161952A (en) * 1977-11-01 1979-07-24 Mieczyslaw Mirowski Wound wire catheter cardioverting electrode
US4375817A (en) * 1979-07-19 1983-03-08 Medtronic, Inc. Implantable cardioverter
US4355646A (en) * 1980-11-26 1982-10-26 Medtronic, Inc. Transvenous defibrillating lead
US4384585A (en) * 1981-03-06 1983-05-24 Medtronic, Inc. Synchronous intracardiac cardioverter
US4708145A (en) * 1982-06-01 1987-11-24 Medtronic, Inc. Sequential-pulse, multiple pathway defibrillation method
US4726380A (en) * 1983-10-17 1988-02-23 Telectronics, N.V. Implantable cardiac pacer with discontinuous microprocessor, programmable antitachycardia mechanisms and patient data telemetry
US4577633A (en) * 1984-03-28 1986-03-25 Medtronic, Inc. Rate scanning demand pacemaker and method for treatment of tachycardia
US4727877A (en) * 1984-12-18 1988-03-01 Medtronic, Inc. Method and apparatus for low energy endocardial defibrillation
US4587970A (en) * 1985-01-22 1986-05-13 Telectronics N.V. Tachycardia reversion pacer
CA1290813C (en) * 1985-08-12 1991-10-15 Michael B. Sweeney Pacemaker for detecting and terminating a tachycardia
US4800883A (en) * 1986-04-02 1989-01-31 Intermedics, Inc. Apparatus for generating multiphasic defibrillation pulse waveform
US4830006B1 (en) * 1986-06-17 1997-10-28 Intermedics Inc Implantable cardiac stimulator for detection and treatment of ventricular arrhythmias
US4953551A (en) * 1987-01-14 1990-09-04 Medtronic, Inc. Method of defibrillating a heart
US4922927A (en) * 1987-12-30 1990-05-08 Intermedics, Inc. Transvenous defibrillating and pacing lead
US5099838A (en) * 1988-12-15 1992-03-31 Medtronic, Inc. Endocardial defibrillation electrode system
US4949719A (en) * 1989-04-26 1990-08-21 Ventritex, Inc. Method for cardiac defibrillation
DE3914662A1 (en) * 1989-05-03 1990-11-08 Alt Eckhard DEVICE FOR TRANSMITTING ELECTRICAL SIGNALS BETWEEN AN IMPLANTABLE MEDICAL DEVICE AND ELECTRICALLY EXPENSIBLE HUMAN TISSUE
US4934049A (en) * 1989-07-07 1990-06-19 Medtronic, Inc. Method for fabrication of a medical electrode
US5005587A (en) * 1989-11-13 1991-04-09 Pacing Systems, Inc. Braid Electrode leads and catheters and methods for using the same
US5042143A (en) * 1990-02-14 1991-08-27 Medtronic, Inc. Method for fabrication of implantable electrode
US5163427A (en) * 1990-11-14 1992-11-17 Medtronic, Inc. Apparatus for delivering single and multiple cardioversion and defibrillation pulses
US5117824A (en) * 1990-11-14 1992-06-02 Medtronic, Inc. Apparatus for monitoring electrical physiologic signals
US5188105A (en) * 1990-11-14 1993-02-23 Medtronic, Inc. Apparatus and method for treating a tachyarrhythmia
US5165403A (en) * 1991-02-26 1992-11-24 Medtronic, Inc. Difibrillation lead system and method of use
US5292338A (en) * 1992-07-30 1994-03-08 Medtronic, Inc. Atrial defibrillator employing transvenous and subcutaneous electrodes and method of use
US5269298A (en) * 1992-10-23 1993-12-14 Incontrol, Inc. Atrial defibrillator and method for providing synchronized delayed cardioversion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016808A (en) * 1989-09-14 1991-05-21 Cardiac Pacemakers, Inc. Implantable tapered spiral endocardial lead for use in internal defibrillation
WO1992018198A2 (en) * 1991-04-12 1992-10-29 Incontrol, Inc. Improved atrial defibrillator, lead systems, and method
US5243980A (en) * 1992-06-30 1993-09-14 Medtronic, Inc. Method and apparatus for discrimination of ventricular and supraventricular tachycardia
US5324309A (en) * 1992-09-25 1994-06-28 Medtronic, Inc. Overlapping pulse cardioversion or defibrillation
US5314430A (en) * 1993-06-24 1994-05-24 Medtronic, Inc. Atrial defibrillator employing transvenous and subcutaneous electrodes and method of use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811399A2 (en) * 1996-06-04 1997-12-10 INCONTROL, Inc. Post atrial cardioversion high rate atrial pacing with gradual rate return
EP0811399A3 (en) * 1996-06-04 1999-05-12 INCONTROL, Inc. Post atrial cardioversion high rate atrial pacing with gradual rate return

Also Published As

Publication number Publication date
EP0776234A1 (en) 1997-06-04
AU3101995A (en) 1996-03-14
US5549642A (en) 1996-08-27
CA2196432A1 (en) 1996-02-29

Similar Documents

Publication Publication Date Title
US5549642A (en) Atrial defibrillator and method of use
US5690686A (en) Atrial defibrillation method
US5314430A (en) Atrial defibrillator employing transvenous and subcutaneous electrodes and method of use
EP0652789B1 (en) Atrial defibrillator employing transvenous and subcutaneous electrodes
AU695992B2 (en) Atrial defibrillator and method of use
US5840079A (en) Method and apparatus for treatment of atrial fibrillation
EP1077740B1 (en) Atrial anti-arrhythmia pacemaker
US5713924A (en) Defibrillation threshold reduction system
US5683429A (en) Method and apparatus for cardiac pacing to prevent atrial fibrillation
US5562708A (en) Method and apparatus for treatment of atrial fibrillation
EP0060117B1 (en) Synchronized intracardiac cardioverter
US20150094783A1 (en) Method for detecting and treating ventricular arrhythmia
EP1105189B1 (en) Method and apparatus for treatment of arrhythmias
WO2004011089A1 (en) Apparatus and method for transmitting an electrical signal in an implantable medical device
EP1177013A1 (en) Apparatus for determining atrial lead dislocation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2196432

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1995926747

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995926747

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995926747

Country of ref document: EP